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Abstract

The window size in TCP can be modeled as a piecewise deterministic Markov
process that increases linearly in time and experiences downward jumps at Pois-
son times. We present a transient analysis of this window size process. Our
main result is the Laplace transform of the transient moments. Explicit formu-
lae for the integer and fractional moments are derived, as well as an explicit
characterization of the speed of convergence to steady-state. Central to our
approach is the infinitesimal generator and Dynkin’s martingale.
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1 Introduction

Data transfer over the Internet is predominantly controlled by TCP (Transmission
Control Protocol), which adapts the window size (transmission rate) of data trans-
fers to the congestion of the network. A TCP connection between a source and a
destination progressively increases the window size, until it receives a signal that
its path in the network is too congested, upon which the window size is drasti-
cally reduced. The most common implementation of TCP uses an additive-increase
multiplicative-decrease (AIMD) algorithm. This allows the window size to increase
linearly in the absence of congestion signals, whereas when congestion is detected,
the window size is reduced by a multiplicative factor.

The emergence of TCP has spurred an enormous amount of research. In the
pioneering work of Ott et al. [15], the window size process is approximated as a
fluid model that constitutes a piecewise deterministic Markov process (PDMP). Our
framework incorporates the model in [15], as well as some of the extensions made in
Altman et al. [1], Altman et al. [2] and Guillemin et al. [12]. All these works restrict
to the stationary behavior of the PDMP, which is tantamount to the assumption
that the TCP connection is long enough so that its throughput is governed by the
stationary regime. We obtain results on the transient moments of the PDMP. Our
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results may help in judging the effects that parameters have on the dynamics of the
system.

We model the window size as a Markov process (Xt)t≥0 that increases linearly with
rate 1. Congestion signals arrive according to a Poisson process with rate λ, and
upon receipt of the ith signal, the window size is reduced by multiplication with a
random variable Qi. We assume that (Qi)i∈N is a sequence of i.i.d. random variables
with range in [0, 1). Let Q denote a generic random variable equal in distribution to
Qi. TCP corresponds to the special case Q = q for some constant q in [0, 1), with
q = 1/2 as most common choice.

We obtain all transient moments of the window size for any possible starting point
X0 = x. The main mathematical technique we use stems from the field of PDMPs
and involves the analysis of the infinitesimal generator using Dynkin’s formula.

A quantity of particular interest is the relaxation time, loosely defined as the time
it takes for the PDMP to reach stationarity. Being in possession of the explicit
formulae for the transient moments, we can measure relaxation time in terms of the
difference between the transient and the stationary moments. Let Ex(Xn

t ) denote
the nth moment of the Markov process at time t with X0 = x. We find that (see
Theorem 8)

Ex(Xn
t ) = E(Xn

∞) +
n∑

k=1

ck,n,xe−θkt, (1)

with θk = λ(1 − E(Qk)), and where both E(Xn∞) and ck,n,x are fully expressed in
terms of θ1, . . . , θn. From (1) we see that there is an exponential speed of convergence
to the stationary moments. The relaxation time can be defined as the time until the
difference between Ex(Xn

t ) and its stationary counterpart E(Xn∞) is smaller than
some predetermined value.

It seems evident that knowledge on transient behavior is useful for design and
dimensioning purposes. By considering a more general model, we aim to account for
a wide range of control mechanisms other than TCP and for future enhancements
to congestion control.

There are some connections to other fields. First, our PDMP is part of a larger
class of models known as growth-collapse processes, which are real-valued processes
that grow between random collapse times, at which they jump down according to
some distribution depending on their current level. This evolutionary pattern is
encountered in a large variety of physical phenomena, see Eliazar & Klafter [9],
like build-up of friction, earthquakes, avalanches, neuron firing, shot noise, and so
on. Insurance mathematics [16], inventory theory [17] and queueing theory [4] are
other fields where growth rate and occasional disasters are witnessed and analyzed.
There is a second connection to the field of stochastic recursive equations of the type
X

d= Q ·X +Z, where X,Q, Z are random variables, and X is independent of Q and
Z. Indeed, the limiting random variable X∞ of our Markov process satisfies such
an equation. Vervaat [18] provides a detailed study of these equations and several
examples of explicit solutions for particular choices of (Q,Z) (see also Gjessing &
Paulsen [10]). A third connection is shown in Section 6 As it turns out, our Markov
process is in distribution equal to the exponential functional associated to a Lévy
process (compound Poisson process).
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Figure 1: The process (Xt)t≥0. Linear increase with slope one and random jumps
at Poisson times (Ti)i∈N. The ith jump goes from XTi− to XTi = Qi ·XTi−.

The paper is structured as follows. In Section 2 we give a detailed model de-
scription. The infinitesimal generator of the PDMP plays a fundamental role in our
paper. We prove that a certain class of non-locally bounded functions belongs to
the domain of the generator. In Section 3 we investigate the stationary distribution
of the Markov process, making use only of the generator. Section 4 presents the
transient analysis of the Markov process and comprises the core of this paper. We
start with a derivation of the Laplace transform of the transient moments. The
proof uses the generator, Dynkin’s martingale, the solution of an inhomogeneous
linear difference equation and the Bohr-Mollerup theorem. The Laplace transform
is then shown to lead to fractional and integer moments of the stationary and tran-
sient distribution. A brief discussion follows in Section 5. We conclude the paper
with the connection to Lévy processes in Section 6.

2 Model description

Consider a Markov process (Xt)t≥0 that increases with slope one and has random
jumps at Poisson times (Ti)i∈N. The ith jump goes from XTi− to XTi = Qi ·
XTi−, where (Qi)i∈N is a sequence of independent and identically distributed random
variables with range [0, 1) and probability distribution function H. Let λ be the
intensity of the Poisson process and let Nt count the number of jumps in [0, t].
Moreover, let Q denote a generic random variable with distribution function H and
let

θa = λ (1− E(Qa)) ,

for a > amin = infc∈R{E(Qc) < ∞}. It turns out that these quantities are crucial for
the description of the transient behavior of (Xt)t≥0. A connection with the Laplace
exponent of an associated Lévy process is given in Section 6.

The process (Xt)t≥0 is an example of a piecewise deterministic Markov process
introduced by Davis [8]. The state space S consists of all non-negative real numbers,
thus S = [0,∞). If no jumps to zero occur, then we agree to exclude zero from S so
that S = (0,∞) in this case.
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The full infinitesimal generator of the Markov process (Xt)t≥0 is given by

Af(x) = f ′(x)− λf(x) + λ

∫ 1

0
f(yx) dH(y) , x ∈ S. (2)

The domain of the generator consists of all measurable functions f : S → R for
which the process f(Xt) −

∫ t
0 Af(Xs) ds is a martingale. According to Davis [8], a

function f : S → R belongs to the domain of A if it is absolutely continuous on S
and the expectation of

∑Nt
k=1 |f(XTk−)− f(XTk

)| is finite for every choice of t ≥ 0
and x > 0. This is the case, for example, if f is absolutely continuous and locally
bounded on S and this subclass will be sufficiently rich in most cases. However,
since we also deal with certain non-locally bounded functions we show the following
result, which identifies a subclass of the domain of A embracing functions like the
negative powers xa, a < 0.

Lemma 1. Let f : S→ [0,∞) be a non-increasing function with f(x·y) ≤ f(x)·f(y)
for all x, y ∈ S. Then f belongs to the domain of the generator if Exf(Q) < ∞ for
all x ∈ S.
Proof. Let Mt = mins∈[T1∧t,≤t] Xs. Then, since for k ≤ Nt and thus Tk ≤ t,

|f(XTk−)− f(XTk
)| ≤ f(XTk−) + f(XTk

) ≤ 2f(XTk
) ≤ 2f(Mt).

We thus obtain

Ex

( Nt∑

k=1

|f(XTk−)− f(XTk
)|

)
≤ 2Ex (f(Mt) ·Nt) .

Clearly Mt = XTk
for some 0 ≤ k ≤ Nt, if we let T0 = 0. Then

Mt = (· · · ((X0 + Z1) ·Q1 + Z2) ·Q2 + · · · ) ·Qk,

where (Zk)k≥1 are independent and exponentially distributed random variables.
Thus Mt ≥ X(t∧T1)− · Wt, where Wt = Q1 · Q2 · · ·QNt . Consequently, using the
monotonicity of f ,

Ex(f(Mt) ·Nt) ≤ Ex(f(X(t∧T1)− ·Wt) ·Nt).

Conditioning on the first jump time T1 yields

Ex(f(Xt∧T1− ·Wt) ·Nt) =
∫ ∞

0
λe−λyEx(f(X(t∧y)− ·Wt) ·Nt | T1 = y) dy

=
∫ t

0
λe−λyEx(f((x + y) ·Wt−y) ·Nt−y) dy.

Next we condition on Nt−y to obtain
∫ t

0
λe−λyEx(f((x + y) ·Wt−y) ·Nt−y) dy

=
∫ t

0

∞∑

n=0

n · P (Nt−y = n)λe−λyEx(f((x + y) ·Q1 · . . . ·Qn)) dy

≤
∫ t

0

∞∑

n=0

n · P (Nt−y = n)Exf(Q)nλe−λyf(x + y) dy,

which is clearly finite for all x > 0 and all t ≥ 0 as long as Exf(Q) < ∞.
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3 Stationary behavior

Since for large values of Xt the downward jumps always dominate the deterministic
linear increase and since the jump intensity λ is constant, it is plausible that the
process will always be stable, in the sense that a limiting distribution for Xt exists
as t tends to infinity. That this is actually the case is established in the following
theorem.

Theorem 2. The process (Xt)t≥0 always has a stationary distribution.

Proof. Let z = 1+δ
θ1

and τz = inf{t > 0|Xt = z}. We first show that the mean
of τz is finite if we start the process in x ≤ z. Let X̃t be a process with the same
deterministic behavior and the same jump times Ti as Xt but with X0 = 0 and jumps
that always go to zero. If we show that the expectation of τ̃z = inf{t > 0|X̃t = z} is
finite, the same follows for τz, since X̃t always stays below Xt. Let N be the number
of jumps before τ̃z. Then N has a geometric distribution with parameter e−λz and
τ̃z is a geometric sum of random variables, which is bounded by z. It follows that
E0τ̃

∗ < ∞ and then that indeed Exτz < ∞.
Next we start the process Xt in x ≥ z and show that again Exτz < ∞. Let

p1(x) = x, then p1 is in the domain of A and Ap1(x) = 1− θ1x.
Choose a δ > 0 and let τ = inf{t > 0|Xt ≤ z}. Up to time τ the process

Xt + θ1

∫ t
0 Xs ds − t is a supermartingale, bounded below by z + δt > 0. It follows

that

f(x) ≥ Ex

(
Xτ + θ1

∫ τ

0
Xs ds− τ

)
≥ 1 + δ

θ1
+ δEx(τ),

implying that Exτ < ∞. Hence, the expected time the process needs to go from
z back to z, which is Ezτz + E(EXτz

τ), is finite. From the theory of regenerative
processes it follows that (Xt)t≥0 has a stationary distribution (cf. Asmussen [4]).

Theorem 3. The density ν ′ of the stationary distribution ν satisfies the equation

ν ′(z) = λ

(∫ 1

0
ν(z/y) dH(y)− ν(z)

)
. (3)

If ψ(s) =
∫∞
0 e−st dν(t) denotes the Laplace transform of ν then

ψ(s) =
λ

λ + s

∫ 1

0
ψ(sy) dH(y). (4)

Moreover, at least for 0 ≤ s ≤ λ,

ψ(s) =
∞∑

n=0

(−s)n

∏n
k=1 θk

. (5)

Proof. We first consider the Laplace transform ψ(s). The function f(x) = e−sx is a
bounded member of the domain of A and

Af(x) = −(λ + s)e−sx + λ

∫ 1

0
e−syx dH(y),
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so that (4) follows by integrating with respect to ν, since for all bounded f in the
domain of A we have

∫∞
0 Af(x) dν(x) = 0. Equation (3) follows immediately by

inversion.
Since lim inf θk ≤ λ as k →∞, the radius of convergence of the series (5) is clearly

larger than λ. By inserting (5) into (4) we find

λ

λ + s

∫ 1

0

∞∑

n=0

(−sy)n

∏n
k=1 θk

dH(y) =
λ

λ + s

∞∑

n=0

(−s)n
∫ 1
0 yn dH(y)∏n
k=1 θk

=
λ

λ + s

∞∑

n=0

(−s)n
(
1− θn

λ

)
∏n

k=1 θk

=
λ

λ + s

( ∞∑

n=0

(−s)n

∏n
k=1 θk

+
s

λ

∞∑

n=0

(−s)n−1

∏n−1
k=1 θk

)

=
∞∑

n=0

(−s)n

∏n
k=1 θk

,

and hence the series (5) actually represents ψ.

The results of Theorem 3 are not new. In fact, the Laplace transform of the
stationary distribution has been derived in Guillemin et al. [12], although both the
setting and the method of proof is different from ours. They consider the same
process, but represent our random variable Q as qR with q ∈ [0, 1) and R some
non-negative random variable. Guillemin et al. [12] consider the stochastic recursive
equation

X∞
d= Q ·X∞ + Z, (6)

where X∞, Q, Z are independent and Z is exponential with mean 1/λ. It follows
then that

ψ(s) = Ee−sZEe−sQX∞ = Ee−sZ

∫ 1

0
Ee−syX∞ dH(y),

yielding (4). Also, for n ∈ N,

E(Xn
∞) = E((QX∞ + Z)n) =

n∑

k=0

(
n

k

)
E(Qk)E(Xk

∞)E(Zn−k),

(see also Gnedin et al. [11], p. 481) which gives

E(Xn
∞) =

n!
λnθn

n−1∑

k=0

(λ− θk)
λk

k!
E(Xk

∞) =
n!∏n
i=1 θi

. (7)

These integer moments, with ψ(s) =
∑∞

n=0 E(Xn∞) (−s)n

n! and after checking Carle-
man’s criterion, then lead to (5); see Proposition 8 in [12].

Having this said, we point out that our proof of Theorem 3 strongly builds on the
properties of the infinitesimal generator, an approach that shall prove its value in
the upcoming section on transient analysis.
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4 Transient moments

In what follows we derive our main result, namely a formula for the Laplace trans-
form of the transient moments of the process. More precisely Theorem 5 provides a
formula for

µa
x(u) =

∫ ∞

0
e−utEx(Xa

t ) dt. (8)

We start by observing that this function satisfies a certain difference equation in a.

Lemma 4. If a > amin, −a 6∈ N ∪ {0}, then Ex(Xa−1
t ) < ∞ and

µa
x(u) =

xa + aµa−1
x (u)

θa + u
. (9)

Proof. The function pa(x) = xa is absolutely continuous and if E(Qa) < ∞ then
pa satisfies the conditions of Lemma 1. Indeed, pa is non-increasing and pa(xy) =
pa(x)pa(y). Consequently, pa is in the domain of the generator. We have from (2)
with f(x) = pa(x):

Apa(x) = axa−1 − xa

∫ 1

0
λ(1− ya) dH(y) = axa−1 − θax

a.

Then, by Dynkin’s formula (cf. Davis [8], Proposition 14.13),

pa(Xt)−
∫ t

0
Apa(Xs) ds = Xa

t −
∫ t

0
aXa−1

s ds− θa

∫ t

0
Xa

s ds

is a martingale. In particular, its mean is constantly equal to ExXa
0 = xa, thus

Ex

(
Xa

t −
∫ t

0

(
aXa−1

s − θaX
a
s

)
ds

)
= xa. (10)

Since ExXa
t < ∞ for a ≥ 0 it follows from this formula that ExXa−1

t < ∞ for a >
−1. Once ExXa

t < ∞ is established for a ∈ (−1, 0), induction leads to ExXa
t < ∞

for a > amin and −a 6∈ N ∪ {0}. If a ≤ amin then (10) is not assured since pa may
be not a member of the domain of A.

Letting fa(t) = Ex(Xa
t ), differentiation yields f ′a(t)+θafa(t) = afa−1(t). Applying

Laplace transforms we obtain

uµa
x(u)− fa(0) + θaµ

a
x(u) = aµa−1

x (u).

and (9) follows from the initial condition fa(0) = xa.

Once Lemma 4 is established, determining the Laplace transform (8) reduces to
the solution of an inhomogeneous linear difference equation.

Theorem 5. If a > amin, −a 6∈ N ∪ {0}, then

µa
x(u) =

Γ(a + 1)
(λ + u)a

∞∏

k=1

θa+k + u

θk + u

(
1
u

+
∞∑

m=1

xm

m!

m−1∏

j=1

(θj + u)
)

−
∞∑

k=1

Γ(a + 1)xa+k

Γ(a + 1 + k)

k−1∏

j=1

(θa+j + u). (11)
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Proof. We have to solve

Aa(u) =
θa+1 + u

a + 1
Aa+1(u)− xa+1

a + 1
. (12)

The general solution Aa(u) is given by ω(a, u)Ãa(u) + A∗a(u), where Ãa(u) is a
solution of the homogeneous equation

Ãa(u) =
θa+1 + u

a + 1
Ãa+1(u), (13)

A∗a(u) is a particular solution of (12) and ω is an arbitrary periodic function with
ω(a, u) = ω(a + 1, u) (see Milne-Thomson [14]). A naive solution is obtained from
repeated application of (13) which leads to the expression

∏∞
k=1

θa+k+u
a+k . Unfortu-

nately, the product is zero and yields only the trivial solution. We need a solution
for which Ãa(u)

Ãa+1(u)
≈ θa+1+u

a+1 as a →∞ to prevent convergence of the infinite product
to infinity or zero. We choose

Ãa(u) =
Γ(a + 1)
(λ + u)a

lim
N→∞

N∏

k=1

θa+k + u

θk + u
.

It follows that

Ãa(u) =
Γ(a + 2)

(λ + u)a+1

λ + u

(a + 1)
lim

N→∞

N∏

k=1

θa+k + u

θk + u

=
Γ(a + 2)

(λ + u)a+1

λ + u

(a + 1)
lim

N→∞
θa+1 + u

θa+N+1 + u

N∏

k=1

θa+k+1 + u

θk + u

=
θa+1 + u

(a + 1)
Γ(a + 2)

(λ + u)a+1
lim

N→∞

N∏

k=1

θa+k+1 + u

θk + u
=

θa+1 + u

a + 1
Ãa+1(u),

as required by (13). Next we search for a particular solution of the inhomogeneous
equation (12). This time the repeated application of (12) yields a valid particular
solution, as can be checked by calculation:

A∗a(u) = −
∞∑

k=1

Γ(a + 1)
Γ(a + 1 + k)

k−1∏

j=1

(θa+j + u)xa+k.

Thus

Aa(u) = ω(a, u)
Γ(a + 1)
(λ + u)a

∞∏

k=1

θa+k + u

θk + u
−

∞∑

k=1

Γ(a + 1)
Γ(a + 1 + k)

k−1∏

j=1

(θa+j + u)xa+k.

So far we do not know which choice of ω(a, u) yields the Laplace transform µa
x(u) =∫∞

0 e−utEx(Xa
t ) dt. We claim that Aa(u) = µa

x(u) if ω(a, u) = C/u for some constant
C. It follows then from the initial conditions that this constant takes the form

C = 1 + u
∞∑

k=1

xk

k!

k−1∏

j=1

(θj + u).
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To prove our claim we mimic the inventive proof of Proposition 7 in Guillemin et al.
[12] (see also Maulik & Zwart [13], Proposition 2.2, where the special case x = 0 and
u = 0 is proved). Let ω(a, u) = C/u and define the function

G(a) =
µa−1

x (u)
Aa−1(u)

· Γ(a).

Our goal is to show that G(a) = Γ(a). According to Bohr-Mollerup’s theorem (see
Andrews et al. [3]) it is enough to show that G(a + 1) = aG(a), G(1) = 1 and that
G is convex.

Due to Equation (12), which is valid for both µ and Aa, we find that

xa

(
1− G(a + 1)

Γ(a + 1)

)
=

(
G(a + 1)

G(a)
− a

)
µa−1

x (u)

and in particular
(

G(a + 1)
G(a)

− a

)
µa−1

0 (u) = 0,

so that the required functional equation G(a + 1) = aG(a) holds. That G(1) = 1
follows from A0(u) = µ0

x(u). Moreover

log G(a) = log µa−1
0 (u) + log u− log C

+(a− 1) + log(λ + u) +
∞∑

k=1

log
(

θk + u

θa−1+k + u

)
. (14)

The function θa 7→ λ(1− EQa) is clearly concave since a 7→ EQa is convex, so that
the series on the right in (14) is convex. The convexity of the middle terms in (14) is
clear. To show that log µa−1

0 (u) is convex, note that µa
0(u) =

∫∞
0 e−utE0X

a
t dt and

E0X
a
t are convex (cf. the proof in [13]).

If we multiply µa
x(u) in equation (11) by u and let u → 0 we get the following

corollary, identifying the fractional stationary moments.

Corollary 6. If a > amin and −a 6∈ N ∪ {0} then the fractional moments of the
limiting distribution are given by

E(Xa) =
Γ(a + 1)

λa

∞∏

k=1

θa+k

θk
.

A simple calculation leads to the following result, which can be found for the x = 0
case in Bertoin & Yor [5].

Corollary 7. For integer values a = n ∈ N formula (11) reduces to

µn
x(u) =

n!∏n
k=1(θk + u)

(
1
u

+
n∑

k=1

xk

k!

k−1∏

j=1

(θj + u)
)

. (15)
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An inversion of (15) is possible and results in the following theorem. It provides
the precise rate of convergence of Ex(Xn

t ) to the stationary limit E(Xn∞) in terms
of exponential functions e−θmt.

Theorem 8. If n ∈ N the n-th transient moment of Xt is

Ex(Xn
t ) =

n!∏n
i=1 θi

+ n!
n∑

m=1

( m∑

k=0

xk

k!

n∏

j=k,j 6=m

1
(θj − θm)

)
· e−θmt. (16)

Proof. By partial fraction expansion we obtain

1∏n
j=k(θj + u)

=
n∑

m=k

1
(θm + u)

∏n
j=k,j 6=m(θj − θm)

,

so that we can write (15) as

µn
x(u)
n!

=
n∑

m=1

1
θm + u

(
1
u

1∏n
j=1,j 6=m(θj − θm)

+
m∑

k=1

xk

k!
1∏n

j=k,j 6=m(θj − θm)

)
.

Since 1/(θm + u) is the Laplace transform of e−θmt and 1/u · 1/(θm + u) is the
transform of (−e−θmt)/θm, we have

ExXn
t

n!
=

n∑

m=1

(
1− e−θmt

θm
∏n

j=1,j 6=m(θj − θm)
+

m∑

k=1

xk

k!
e−θmt

∏n
j=k,j 6=m(θj − θm)

)

=
n∑

m=1

(
1

θm
∏n

j=1,j 6=m(θj − θm)
+

(
m∑

k=0

xk

k!
∏n

j=k,j 6=m(θj − θm)

)
· e−θmt

)
.

A further application of partial fraction expansion yields (16).

We remark that (16) may also be written as a polynomial in x:

Ex(Xn
t ) = n!

n∑

k=0

xk

k!

n∑

m=k

n∏

j=k,j 6=m

e−θmt

(θj − θm)
.

5 Discussion

Formula (16) leads to the following expression for the mean:

ExXt =
1− (1− θ1x)e−θ1t

θ1
, (17)

which shows exponential convergence to the stationary mean EX∞ = 1/θ1. If the
process is started in x = 1/θ1, then the transient mean stays constant, if started
above (below) 1/θ1, the mean stays above (below) 1/θ1.

If the relaxation time would be defined as

rx(ε) = inf{t ≥ 0 : |1−ExXt/EX∞| < ε}, (18)

the following result follows immediately from (17).
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Corollary 9.

rx(ε) =
1
θ1

log
|1− θ1x|

ε
, (19)

for ε < |1/θ1 − x|.
A further measure for the speed of convergence to the steady state may follow

from the formula for the variance, which is given by

Varx(Xt) =
2θ1 − θ2

θ2
1θ2

+ 2
(

2θ1 − θ2

θ2
1(θ1 − θ2)

− 2θ1 − θ2

θ1 (θ1 − θ2)
x

)
e−θ1t

−
(

2
θ2(θ1 − θ2)

− 2
θ1 − θ2

x− x2

)
e−θ2t

−
(

1
θ2
1

− 2
θ1

x + x2

)
e−2θ1t. (20)

Note that the exponential terms appear according to their asymptotic order since

θ1 ≤ θ2 = λ(1−E(Q2)) ≤ λ(1− (EQ)2) = λ(1− EQ)(1 + EQ) ≤ 2θ1.

If we start the process in EX∞ = 1/θ1 then (20) reduces to the handy expression

Varx(Xt) = VarX∞ ·
(
1− e−θ2t

)
.

For the case Q
d= U , with U a uniformly distributed random variable on [0,1), and

x = 0, Theorems 4 and 5 in Boxma et al. [6] coincide with (17) and (20), respectively.

6 Connection to Lévy processes

The transformation Xt 7→ log Xt converts the multiplicative jumps of the process
Xt into jumps with i.i.d. jump sizes. Let Lt = − log Wt = −∑Nt

k=1 log Qk be the
associated compound Poisson process. Then the process Yt = Xt ·eLt has absolutely
continuous paths. Moreover eLt is piecewise constant and Xt has slope one between
the jumps, so that the density of Yt is given by Y ′

t = eLtX ′
t + 0 = eLt . Hence

Xt = e−LtX0 +
∫ t

0
eLs−Lt ds

d= e−LtX0 +
∫ t

0
eLs−t ds,

since Lt has stationary increments and X0 = Y0. It follows that

Xt
d= e−LtX0 +

∫ t

0
e−Ls ds. (21)

The function a 7→ θa is the Laplace exponent of the Lévy process Lt, since

θa = λ

(
1−

∫ 1

0
qa dH(q)

)
= λ

(
1−

∫ ∞

0
e−ua dH(e−u)

)
= λ (1− β(a)) ,

where β(a) is the Laplace transform of − log Q.
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For t →∞ it is readily seen from (21) that

X∞
d=

∫ ∞

0
e−Ls ds,

which relates the stationary distribution of the Markov process (Xt)t≥0 to the ter-
minating value of the exponential functional. This relation was already observed in
Guillemin et al. [12], Section 3 (see also Carmona et al. [7]).

References

[1] Altman, E., Avrachenkov, K., Barakat, C., and Núñez Queija, R.
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