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Abstract. Let X1, X2, . . . be independent variables, each having a normal distribution
with negative mean −β < 0 and variance 1. We consider the partial sums Sn = X1 +
. . . + Xn, with S0 = 0, and refer to the process {Sn : n ≥ 0} as the Gaussian random
walk. We present explicit expressions for the mean and variance of the maximum M =
max{Sn : n ≥ 0}. These expressions are in terms of Taylor series about β = 0 with
coefficients that involve the Riemann zeta function. Our results extend Kingman’s first
order approximation [20] of the mean for β ↓ 0. We build upon the work of Chang & Peres
[10], and use Bateman’s formulas on Lerch’s transcendent and Euler-Maclaurin summation
as key ingredients.

1. Introduction

Let X1, X2, . . . be independent variables, each having a normal distribution with mean
−β < 0 and variance 1. We consider the partial sums Sn = X1 + . . .+Xn, with S0 = 0, and
refer to the process {Sn : n ≥ 0} as the Gaussian random walk. In this paper we present
explicit expressions for several characteristics of the distribution of the maximum

M = max{Sn : n ≥ 0}. (1.1)

The distribution of M plays an important role in several areas of applied probability. In
queueing theory, it typically occurs in a regime called heavy traffic (see [2, 18, 20, 26]), in
which the load is just below its critical level, and so the queue is only just stable with
relatively large queue lengths and waiting times. For the limiting waiting time W =
limn→∞ Wn, with W1 = 0 and Wn+1 = (Wn + Xn)+ (with x+ := max{0, x}), it follows
from Spitzer’s random-walk identities that W is, in distribution, equal to M . In the con-
text of queues and heavy traffic, Kingman [20] was the first to observe the relevance of M
in his 1965 paper. He noticed among other things:

Despite the apparent simplicity of the problem, there does not seem to be
an explicit expression even for EM ..., but it is possible to give quite sharp
inequalities and asymptotic results for small β.
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Indeed, Kingman showed that, for β ↓ 0,

EM =
1

2β
− c + O(β) , c ≈ 0.58. (1.2)

Determining the tail distribution of M is tantamount to computing level crossing prob-
abilities of the Gaussian random walk, i.e., for x > 0, {M > x} = {τ(x) < ∞}, where
τ(x) = inf{n ≥ 1 : Sn > x}. This level-crossings interpretation makes that the tail distribu-
tion of M is important in sequential analysis and risk theory. Chang & Peres [10] derived an
exact expression (2.1) for the expected value of the first descending ladder height1, denoted
as ESτ− , with τ− = inf{n ≥ 1 : Sn ≤ 0}, which by the relation ESτ− = −β/P(M = 0)
(see Asmussen [2], p. 225) leads to an exact expression for P(M = 0). They present ESτ−

as a Taylor series about β = 0 with coefficients that involve the Riemann zeta function, a
considerable achievement that generalizes first order approximations of Siegmund [22] and
second order approximations of Chang [9].

Ladder heights fulfill an important role in probability theory, both in the exact analysis
of random walks (see Asmussen [2], Feller [14]), and in the asymptotic analysis of boundary
crossing problems (Siegmund [23]). In the latter case, a quantity of interest is the limiting
expected overshoot, defined as E(S2

τ )/(2ESτ ), τ = τ(0), for β = 0. This quantity can
be shown to be −ζ(1/2)/

√
2π ≈ 0.5826, with ζ(z) the Riemann zeta function. The same

quantity arises in sequentially testing for the drift of a Brownian motion [11], corrected
diffusion approximations [22], simulation of Brownian motion [3, 8], option pricing [6],
and thermodynamics of a polymer chain [12]. These applications have in common that a
Brownian motion is observed only at equidistant sampling points. As it turns out2, the c
in (1.2) is in fact −ζ(1/2)/

√
2π, so Kingman, albeit in disguised form, related EM to the

Riemann zeta function already in 1965. We shall extend Kingman’s approximation (1.2) to
an explicit expression for EM , in the same spirit as Chang & Peres extended the results of
Siegmund [22] and Chang [9]. Moreover, we present a similar expression for the variance of
M , to be denoted by VarM . The new expressions for EM and VarM both concern Taylor
series about zero with coefficients that involve the Riemann zeta function.

The maximum and the first ladder height have been studied in the general setting of
random walks with generally distributed increments, see [4, 9, 23], the Gaussian random
walk being a special case. For this general setting, Taylor series for the expected first
ladder height and the expected maximum are presented in Blanchet & Glynn [4]. On a
formal level, the results of Blanchet & Glynn [4] generalize our results and those of Chang
& Peres [10]. However, finding the coefficients of the formal description of the Taylor series
in [4] is a non-trivial exercise and requires the expansion of a characteristic function and the
numerical evaluation of an integral (see [4], Sec. 6, in which an outline for this numerical
procedure is given). This does not lead to exact expressions for the coefficients as in Chang
& Peres [10] or as in the present paper.

1Actually, they consider the first ascending ladder height for the Gaussian random walk with positive
drift.

2Kingman [20] presents c as (2π)−1/2
∑

∞

n=1
[
√

n(
√

n +
√

n − 1)2]−1/2, which by Euler-Maclaurin summa-

tion can be shown to be −(2π)−1/2ζ(1/2). Similar relations are the topic of Problem 602 posed by Glasser
& Boersma in [15].
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We first derive the Chang & Peres result, see (2.1) below, in our own fashion. Like Chang
& Peres we start from a Spitzer-type expression for P(M = 0), take its derivative with re-
spect to β, rewrite the derivative in terms of the Riemann zeta function, and finally integrate
to obtain (2.1). For rewriting the derivative, Chang & Peres built upon the 1905 paper of
Hardy [17] and present an analytic continuation of the function Lis(z) =

∑∞
n=1 n−szn,

known as the polylogarithm or Jonquières function. They were probably unaware of the
fact that Lis(z) is a special case of Lerch’s transcendent, see (2.4), for which the matter of
analytic continuation has been established in full generality by Bateman (and/or the staff
of the Bateman Manuscript Project), see [13], §1.11(8) and (2.5). Hence, although Chang
& Peres [10] give a separate proof, their Theorem 2.1 should be attributed to Bateman.

Our derivation of (2.1) − that incorporates Bateman’s formulas and an asymptotic deter-
mination of the integration constant − sets the stage for the derivation of the new explicit
expressions for EM and VarM . As an aside, we obtain the following asymptotic results for
β ↓ 0:

EM =
1

2β
+

ζ(1/2)√
2π

+
1

4
β + O(β2), (1.3)

and

VarM =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 + O(β3), (1.4)

where ζ(1/2) ≈ −1.4604 and ζ(−1/2) ≈ −0.2079. In comparing (1.2) and (1.3), (1.3)
contains an additional term 1

4β. This term, and − 1
24β2 in (1.4), follow from a rather

intricate application of the Euler-Maclaurin summation formula. The error terms in both
(1.3) and (1.4) will be replaced by Taylor series with coefficients that involve the Riemann
zeta function.

1.1. Structure of the paper. We present our main results in the next section. Sec. 3 is
devoted to an exposition of our derivation of the Chang & Peres result. The proofs of the
new expressions for the mean and variance of the maximum are given in Sec. 4 and Sec. 5,
respectively. The new expressions for the mean and variance of M are alternatives for their
Spitzer-type counterparts. The latter tend to converge more slowly for a decreasing drift β,
whereas the opposite holds for the new expressions. We investigate this difference in speed
of convergence in Sec. 6. Concluding remarks are made in Sec. 7.

2. Main results

We present three theorems. The first, on P(M = 0), is essentially due to Chang & Peres
[10], but we give a separate proof in Sec. 3:

Theorem 1. (Chang & Peres [10]) The probability that the maximum of the Gaussian

random walk is zero satisfies

P(M = 0) =
√

2β exp

{

β√
2π

∞
∑

r=0

ζ(1/2 − r)

r!(2r + 1)

(−β2

2

)r
}

, (2.1)

for 0 < β < 2
√

π.

Then, largely motivated by Chang & Peres, but taking our own approach, we prove the
next two theorems.
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Theorem 2. The expectation of the maximum of the Gaussian random walk satisfies

EM =
1

2β
+

ζ(1/2)√
2π

+
1

4
β +

β2

√
2π

∞
∑

r=0

ζ(−1/2 − r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

, (2.2)

for 0 < β < 2
√

π.

Theorem 3. The variance of the maximum of the Gaussian random walk satisfies

VarM =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β− β2

24
− 2β3

√
2π

∞
∑

r=0

ζ(−3/2 − r)

r!(2r + 1)(2r + 2)(2r + 3)

(−β2

2

)r

, (2.3)

for 0 < β < 2
√

π.

The key ingredients for obtaining the above series are Euler-Maclaurin summation and a
result on Lerch’s transcendent. Lerch’s transcendent is defined as the analytic continuation
of the series

Φ(z, s, v) =
∞
∑

n=0

(v + n)−szn, (2.4)

which converges for any real number v 6= 0,−1,−2, . . . if z and s are any complex numbers
with either |z| < 1, or |z| = 1 and Re(s) > 1. Note that ζ(s) := Φ(1, s, 1). We shall use the
important result derived by Bateman [13], §1.11(8) (with ζ(s, v) := Φ(1, s, v) the Hurwitz
zeta function)

Φ(z, s, v) =
Γ(1 − s)

zv
(ln 1/z)s−1 + z−v

∞
∑

r=0

ζ(s − r, v)
(ln z)r

r!
, (2.5)

which holds for | ln z| < 2π, s 6= 1, 2, 3, . . ., and v 6= 0,−1,−2, . . . .

3. Proof of Theorem 1

From Spitzer’s identity for random walks [24] we have

P(M = 0) = exp

{

−
∞
∑

n=1

1

n
P(Sn > 0)

}

= exp

{

−
∞
∑

n=1

1

n
P (−β

√
n)

}

, (3.1)

with P (·) the standard normal distribution function

P (a) =
1√
2π

∫ a

−∞
e−

1

2
x2

dx. (3.2)

The second equality in (3.1) follows from the normality of Sn.
With F defined by

F (β) =
∞
∑

n=1

1

n

1√
2π

∫ ∞

β
√

n
e−

1

2
x2

dx, β > 0, (3.3)

we have

F ′(β) =
−1√
2π

∞
∑

n=1

e−
1

2
β2n

√
n

=
−e−

1

2
β2

√
2π

∞
∑

n=0

e−
1

2
β2n

√
n + 1
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=
−e−

1

2
β2

√
2π

Φ(z = e−
1

2
β2

, s = 1
2 , v = 1). (3.4)

Then by (2.5), when 0 < 1
2β2 < 2π,

F ′(β) =
−e−

1

2
β2

√
2π

[

Γ(1/2)

e−
1

2
β2

(1
2β2)−1/2 + e

1

2
β2

∞
∑

r=0

ζ(1
2 − r)

(−1
2β2)r

r!

]

=
−1√

2
(1
2β2)−1/2 − 1√

2π

∞
∑

r=0

ζ(1
2 − r)

(−1
2β2)r

r!
, (3.5)

with ζ(s) denoting the Riemann zeta function. Thus we get

F ′(β) +
1

β
=

−1√
2π

∞
∑

r=0

ζ(1
2 − r)

(−1
2β2)r

r!
, 0 < β < 2

√
π. (3.6)

The series on the right-hand side of (3.6) converges uniformly in β ∈ [0, β0] when 0 ≤ β0 <
2
√

π, see (6.3). Therefore, when we integrate the identity in (3.6) from 0 to β < 2
√

π, we
may interchange the sum and integral at the right-hand side, and we get

F (β) + lnβ = L − 1√
2π

∞
∑

r=0

ζ(1
2 − r)(−1

2)rβ2r+1

r!(2r + 1)
, (3.7)

where L = limβ↓0 (F (β) + lnβ).

We shall show that L = −1
2 ln 2. To that end we note that

F (β) =
∞
∑

n=1

1

n

1√
π

∫ ∞
√

1

2
β2n

e−u2

du

=
1

2

∞
∑

n=1

1

n

(

2√
π

∫ ∞
√

1

2
β2n

e−u2

du − e−
1

2
β2n

)

− 1

2
ln
(

1 − e−
1

2
β2
)

=
1

4
β2

∞
∑

n=1

1
1
2β2n

(

2√
π

∫ ∞
√

1

2
β2n

e−u2

du − e−
1

2
β2n

)

− lnβ +
1

2
ln 2 + o(1) (3.8)

as β ↓ 0. The function

g(y) :=
1

y

( 2√
π

∫ ∞

√
y

e−u2

du − e−y
)

, y > 0, (3.9)

decays exponentially as y → ∞ while g(y) = O(y−1/2), y ↓ 0. It is then routine to show
that

1

4
β2

∞
∑

n=0

g(1
2β2n) → 1

2

∫ ∞

0
g(y)dy,

1

2
β2 ↓ 0. (3.10)

The latter integral can be evaluated as
∫ ∞

0

1

y

( 2√
π

∫ ∞

√
y

e−u2

du − e−y
)

dy =
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( 2√
π

∫ ∞

√
y

e−u2

du − e−y
)

ln y
∣

∣

∣

∞

0
−
∫ ∞

0

( 2√
π
· −1

2
y−1/2 · e−y + e−y

)

ln y dy =

1√
π

∫ ∞

0
y−1/2e−y ln y dy −

∫ ∞

0
e−y ln y dy =

1√
π

Γ′(1/2) − Γ′(1) = −2 ln 2,

(3.11)

by Abramowitz-Stegun [1] 6.3.1-4 on p. 258. Hence, L = −1
2 ln 2 indeed, and so it is shown

that, for 0 < β < 2
√

π, we have

F (β) = − lnβ − 1

2
ln 2 − 1√

2π

∞
∑

r=0

ζ(1
2 − r)(−1

2)rβ2r+1

r!(2r + 1)
, (3.12)

which, by (3.1), completes the proof of Thm. 1.
To recapitulate, we started from the Spitzer-type expression (3.1), rewrote its derivative

(3.3) in terms of Lerch’s transcendent (3.4), applied Bateman’s formulas to obtain a Tay-
lor series (3.5), integrated the Taylor series (3.7), and finally determined the integration
constant L.

Remark 4. The integration constant could have been determined from the relation P(M =
0) = −β/ESτ− (with ESτ− the expected value of the first descending ladder height, see

Sec. 1), and using the fact that ESτ− = −1/
√

2 for β = 0, as proven by Spitzer [25]; see also
Lai [21]. Alternatively, one could use the first order approximation in Jelenkovic et al. [18],
that is, P(M = 0) =

√
2β(1 + o(1)) as β ↓ 0. The primary purpose of this section, however,

is to set the stage for the next two sections, in which there is no other way of determining
integration constants than to apply asymptotic methods.

4. Proof of Theorem 2

From Spitzer’s identity [24] we know that

EM =

∞
∑

n=1

1

n
E(S+

n ) =

∞
∑

n=1

(e−
1

2
β2n

√
2πn

− βP (−β
√

n)
)

. (4.1)

We then have
∞
∑

n=1

e−
1

2
β2n

√
2πn

=
e−

1

2
β2

√
2π

Φ(z = e−
1

2
β2

, s = 1
2 , v = 1) =

1

β
+

1√
2π

∞
∑

r=0

ζ(1
2 − r)

r!
(−1

2β2)r. (4.2)

Now we consider

G(β) =
∞
∑

n=1

1√
2π

∫ ∞

β
√

n
e−x2/2dx. (4.3)

We have

G′(β) =
∞
∑

n=1

1√
2π

·
√

n · −e−
1

2
β2n

=
−e−

1

2
β2

√
2π

Φ(z = e−
1

2
β2

, s = −1
2 , v = 1). (4.4)
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Then by (2.5), when 1
2β2 < 2π,

G′(β) =
−e−

1

2
β2

√
2π

[

Γ(3/2)

e−
1

2
β2

(1
2β2)−3/2 + e

1

2
β2

∞
∑

r=0

ζ(−1
2 − r)

(−1
2β2)r

r!

]

=
−1

2
√

2
(1
2β2)−3/2 − 1√

2π

∞
∑

r=0

ζ(−1
2 − r)

(−1
2β2)r

r!
. (4.5)

Therefore we get

G′(β) = −β−3 − H(β) ; H(β) =
1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r. (4.6)

We note that H(β) is well-behaved in 0 ≤ β < 2
√

π, and that

d

dβ

[

G(β) − 1

2β2

]

= G′(β) +
1

β3
= −H(β). (4.7)

By integration from 0 to β we thus get

G(β) − 1

2β2
− lim

ε↓0

(

G(ε) − 1

2ε2

)

= −
∫ β

0
H(β1)dβ1

=
−1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (4.8)

We shall show that

lim
ε↓0

(

G(ε) − 1

2ε2

)

= −1

4
. (4.9)

To that end we use the Euler-Maclaurin summation formula (see De Bruijn [7], Sec. 3.6,
pp. 40-42)

N
∑

n=1

f(n) =

∫ N

1
f(x)dx + 1

2f(1) + 1
2f(N)

+
m
∑

k=1

B2k

(2k!)

(

f (2k−1)(N) − f (2k−1)(1)
)

−
∫ N

1
f (2m)(x)

B2m (x − ⌊x⌋)
(2m)!

dx,

(4.10)

where the Bn(t) denote the Bernoulli polynomials, defined by

zezt

ez − 1
=

∞
∑

n=0

Bn(t)zn

n!
, (4.11)

and the Bn = Bn(0) denote the Bernoulli numbers. We apply (4.10) for m = 1, N → ∞
and

fδ(x) =
1√
π

∫ ∞

√
δx

e−u2

du =: g(δx) ; δ = 1
2ε2. (4.12)
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Hence

GN (ε) =
N
∑

n=1

1√
2π

∫ ∞

ε
√

n
e−x2/2dx =

N
∑

n=1

fδ(n)

=

∫ N

1
g(δx)dx + 1

2g(δ) + 1
2g(Nδ)

+ 1
2B2

(

g′(Nδ) − g′(δ)
)

δ −
∫ N

1
δ2g′′(δx)

B2(x − ⌊x⌋)
2

dx. (4.13)

Letting N → ∞ and noting that for g(y) = 1√
π

∫∞√
y e−u2

du there holds that g, g′, g′′ → 0

exponentially fast as y → ∞, we get

G(ε) =

∫ ∞

1
g(δx)dx + 1

2g(δ) − 1
2B2g

′(δ)δ − 1
2

∫ ∞

1
δ2g′′(δx)

B2(x − ⌊x⌋)
2

dx. (4.14)

Since |B2k(x)| ≤ B2k for 0 ≤ x ≤ 1, see Abramowitz-Stegun [1], 23.1.13 on p. 805, the last
integral at the right-hand side of (4.14) can be bounded by

∫ ∞

1
δ2|g′′(δx)|12B2dx = 1

12δ

∫ ∞

δ
|g′′(y)|dy. (4.15)

We further get

g′(y) = − e−y

2
√

πy
, g′′(y) =

e−y

4y
√

πy
(2y + 1) ≥ 0. (4.16)

Therefore, we see that

δg′(δ) = O(δ1/2) , δ

∫ ∞

δ
|g′′(y)|dy = −δg′(δ) = O(δ1/2). (4.17)

Furthermore,
∫ ∞

1
g(δx)dx = δ−1

∫ ∞

δ
g(y)dy = δ−1

∫ ∞

δ

(

1√
π

∫ ∞

√
y

e−u2

du

)

dy

= δ−1

∫ ∞

0

(

1√
π

∫ ∞

√
y

e−u2

du

)

dy − δ−1

∫ δ

0

(

1√
π

∫ ∞

√
y

e−u2

du

)

dy.

(4.18)

Then from g(δ) = 1
2 + O(δ1/2) we get

δ−1

∫ δ

0

(

1√
π

∫ ∞

√
y

e−u2

du

)

dy = 1
2 + O(δ1/2), (4.19)

and
∫ ∞

0

(

1√
π

∫ ∞

√
y

e−u2

du

)

dy =
1√
π

y

∫ ∞

√
y

e−u2

du
∣

∣

∣

∞

0
−
∫ ∞

0
y

1√
π

1
2y−1/2 · −e−ydy

=
1

2
√

π

∫ ∞

0
y1/2e−ydy =

1

4
. (4.20)
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Therefore
∫ ∞

1
g(δx)dx =

1

4δ
− 1

2
+ O(δ1/2) , δ ↓ 0. (4.21)

It finally follows that

G(ε) =
( 1

4δ
− 1

2
+ O(δ1/2)

)

+
1

2

(1

2
+ O(δ1/2)

)

; δ = 1
2ε2, (4.22)

and we obtain (4.9). It is thus concluded that

G(β) =
1

2β2
− 1

4
− 1√

2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (4.23)

Combining (4.1), (4.2) and (4.23), we then obtain

EM =
∞
∑

n=1

e−
1

2
nβ2

√
2πn

− β
∞
∑

n=1

P (−β
√

n) =
∞
∑

n=1

e−
1

2
nβ2

√
2πn

− βG(β)

=
1

β
+

1√
2π

∞
∑

r=0

ζ(1
2 − r)(−1/2)r

r!
β2r − β

[

1

2β2
− 1

4
− 1√

2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1

]

=
1

2β
+

1

4
β +

1√
2π

{ ∞
∑

r=0

ζ(1
2 − r)(−1/2)r

r!
β2r +

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+2

}

.

(4.24)

Splitting off the term with r = 0 and replacing the summation index r = 1, 2 . . . by r + 1,
r = 0, 1, . . . in the first series in (4.24), we get

EM =
1

2β
+

ζ(1/2)√
2π

+
1

4
β +

1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)rβ2r+2

r!(2r + 1)(2r + 2)
. (4.25)

5. Proof of Theorem 3

From Spitzer’s identity [24] we get

VarM =
∞
∑

n=1

1

n
E((S+

n )2), (5.1)

which, using the normality of Sn, yields

VarM =
∞
∑

n=1

1

n
√

2π

∫ ∞

β
√

n
(x
√

n − βn)2e−x2/2dx

=

∞
∑

n=1

(

(β2n + 1)P (−β
√

n) − β√
2π

√
ne−β2n/2

)

, (5.2)

where the second equality in (5.2) follows from partial integration. We have established
earlier, see (4.6) that

1√
2π

∞
∑

n=1

√
ne−β2n/2 =

1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r +

1

β3
. (5.3)
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Therefore, it remains to evaluate

I(β) =
∞
∑

n=1

nP (−β
√

n) =
∞
∑

n=1

n√
2π

∫ ∞

β
√

n
e−x2/2dx, (5.4)

and to combine the results with (5.3) and (4.23) according to (5.2).
There holds

I ′(β) = −
∞
∑

n=1

n3/2

√
2π

e−
1

2
β2n =

−e−
1

2
β2

√
2π

Φ(z = e−
1

2
β2

, s = −3
2 , v = 1), (5.5)

and by Bateman’s result (2.5),

I ′(β) =
−e−

1

2
β2

√
2π

[

Γ(5/2)

e−
1

2
β2

(1
2β2)−5/2 + e

1

2
β2

∞
∑

r=0

ζ(−3
2 − r)

(−1
2β2)r

r!

]

=
−3

4
√

2
(1
2β2)−5/2 − 1√

2π

∞
∑

r=0

ζ(−3
2 − r)

(−1
2β2)r

r!

= −3β−5 − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!
β2r, (5.6)

assuming that 0 < β < 2
√

π. The series on the last line of (5.6) is well-behaved in 0 ≤ β <
2
√

π, whence I ′(β) + 3β−5 is integrable, and we obtain

I(β) − 3
4β−4 = lim

ε↓0
(I(ε) − 3

4ε−4) − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (5.7)

We shall show that

lim
ε↓0

(

I(ε) − 3
4ε−4

)

= − 1

24
(5.8)

by applying the Euler-Maclaurin summation formula (4.10) with m = 1, N → ∞ as before.
We consider now

fδ(x) =
δx√
π

∫ ∞

√
δx

e−u2

du =: h(δx) ; δ = 1
2ε2, (5.9)

in which

h(x) = xg(x) ; g(x) =
1√
π

∫ ∞

√
x

e−u2

du, x ≥ 0. (5.10)

Then

I(ε) =
1

δ

[
∫ ∞

1
h(δx)dx + 1

2h(δ) − 1
2B2h

′(δ)δ −
∫ ∞

1
δ2h′′(δx)

B2(x − ⌊x⌋)
2

dx

]

. (5.11)

Next we shall take δ ↓ 0, and to that end we see that

1

δ
h(δ) = g(δ) → 1

2 ; h′(δ) = g(δ) − δ1/2

2
√

π
e−δ → 1

2 , δ ↓ 0. (5.12)

Furthermore,
1

δ

∫ ∞

1
h(δx)dx =

1

δ2

∫ ∞

0
h(x)dx − 1

δ2

∫ δ

0
h(x)dx, (5.13)
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in which
1

δ2

∫ δ

0
xg(x)dx → 1

4 + O(δ1/2). (5.14)

Also, by partial integration,
∫ ∞

0
h(x)dx =

∫ ∞

0
x

1√
π

(
∫ ∞

√
x

e−u2

du

)

dx

=
x2

2
√

π

∫ ∞

√
x

e−u2

du
∣

∣

∣

∞

0
−
∫ ∞

0

x2

2
√

π
· −1

2x−1/2e−xdx

=
1

4
√

π

∫ ∞

0
x3/2e−xdx =

1

4
√

π
Γ(5/2) =

3

16
. (5.15)

Therefore
1

δ

∫ ∞

1
h(δx)dx =

3

16δ2
− 1

4
+ O(δ1/2). (5.16)

Finally,

h′′(x) = (xg(x))′′ = 2g′(x) + xg′′(x)

=
1

2
√

πx
(x − 3

2)e−x ∈ L1 ([0,∞)) , (5.17)

and

1
2B2(x − ⌊x⌋) =

1

2π2

∞
∑

k=1

cos 2πkx

k2
, (5.18)

see De Bruijn [7], p. 41. Therefore,

δ

∫ ∞

1
h′′(δx)1

2B2(x − ⌊x⌋)dx =

∫ ∞

δ
h′′(x)1

2B2(x/δ − ⌊x/δ⌋)dx

=
1

2π2

∞
∑

k=1

1

k2

∫ ∞

δ
h′′(x) cos(2πkx/δ)dx → 0 , δ ↓ 0,

(5.19)

since
∫∞
δ h′′(x) cos(2πkx/δ)dx → 0 as δ ↓ 0 by the Riemann-Lebesgue lemma on Fourier

integrals. Putting this altogether, we find (recall δ = 1
2ε2)

lim
ε↓0

(

I(ε) − 3
4ε−4

)

= −1
4 + 1

2 · 1
2 − 1

2 · 1
6 · 1

2 − 0 = − 1
24 . (5.20)

Hence we obtain for 0 < β < 2
√

π

I(β) =
3

4
β−4 − 1

24
− 1√

2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+1. (5.21)

We insert this result, together with (5.3) and (4.23), into (5.2) and get

VarM = − 1√
2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+3 +

3

4
β−2 − β2

24
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− 1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!(2r + 1)
β2r+1 +

1

2
β−2 − 1

4

− 1√
2π

∞
∑

r=0

ζ(−1
2 − r)(−1/2)r

r!
β2r+1 − β−2. (5.22)

Splitting off the terms with r = 0 and replacing the summation index r = 1, 2 . . . by r + 1,
r = 0, 1, . . . in the last two series in the right-hand side of (5.22), we get

VarM =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 − 1√

2π

∞
∑

r=0

{

ζ(−3
2 − r)(−1/2)r

r!(2r + 1)
β2r+3

+
ζ(−3

2 − r)(−1/2)r+1

(r + 1)!(2r + 3)
β2r+3 +

ζ(−3
2 − r)(−1/2)r+1

(r + 1)!
β2r+3

}

=
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 − 2√

2π

∞
∑

r=0

ζ(−3
2 − r)(−1/2)rβ2r+3

r!(2r + 1)(2r + 2)(2r + 3)
.

(5.23)

6. Convergence comparison Spitzer formulas and Lerch series

It is immediately clear that the infinite series in (2.1), (2.2) and (2.3) converge more
rapidly for smaller values of β, while the contrary holds for their Spitzer-type counterparts
(3.1), (4.1) and (5.1). To exemplify this difference in speed of convergence, we consider
(4.2), i.e.,

∞
∑

n=1

e−
1

2
nβ2

√
2πn

=
1√
2π

∞
∑

r=0

ζ(1
2 − r)

r!

(

−β2

2

)r

. (6.1)

The left-hand side series converges for all β > 0 while the right-hand side series converges
for all β ∈ C, |β| < 2

√
π. From Whittaker & Watson [27] §13.151 (p. 269),

21−sΓ(s)ζ(s) cos(1
2sπ) = πsζ(1 − s). (6.2)

With s = r + 1
2 , the asymptotics of the Γ-function and the fact that ζ(r + 1/2) → 1 as

r → ∞, we see that
∣

∣

∣

∣

∣

1√
2π

ζ(1
2 − r)

r!

(

−β2

2

)r
∣

∣

∣

∣

∣

≈ 1

π
√

2r + 1

(

β2

4π

)r

, r → ∞. (6.3)

Hence, for comparing the convergence rates of the two series in (6.1), it is enough to find
the point β0 > 0 such that

e−
1

2
β2

0 =
β2

0

4π
. (6.4)

With x = 1
2β2 we need to solve x0e

x0 = 2π with x0 > 0. This yields x0 = 1.4597,
β0 = 1.7086, and the common value of the two members in (6.4) equals 0.2323. See [5],
Sec. 2, where a similar strategy is developed in connection with the evaluation of Legendre’s
chi-function.
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7. Conclusions and outlook

We have presented analytic formulas of the Chang-Peres type, involving the Riemann
zeta function, for the quantities

Jk(β) =
∞
∑

n=1

1

n
E((S+

n )k), k = 0, 1, 2, (7.1)

yielding P(M = 0), EM and VarM of the maximum M of the standard Gaussian random
walk with negative drift −β. The quantities can be expressed using the normality of Sn as

Jk(β) =

∞
∑

n=1

nk−1/2

√
2π

∫ ∞

β
(y − β)ke−

1

2
ny2

dy. (7.2)

The following general result can be shown: There holds for k = 1, 2, . . .

Jk(β) =
(k − 1)!

(2β)k
+

k
∑

j=0

(

k

j

)

(−1)jΓ(k−j+1
2 )√

2π
ζ(−1

2k − 1
2j + 1)2

k−j−1

2 βj

+
(−1)k+1k!√

2π

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r!(2r + 1) · · · (2r + k + 1)
, (7.3)

when 0 < β < 2
√

π. That such a formula should hold for Jk(β) follows from differentiation
of (7.2) k + 1 times so that there results

J
(k+1)
k (β) = (−1)k+1k!

∞
∑

n=1

nk−1/2

√
2π

e−
1

2
nβ2

, (7.4)

in which the right-hand side is readily expressed in terms of Lerch’s transcendent as we did
before. Then, using (2.5) and integrating the identity thus obtained k + 1 times, we arrive
at (7.3), except for the k + 1 integration constants that appear at the right-hand side of
(7.3) as the coefficients of βj , j = 0, 1, . . . , k. The actual determination of these integration
constants is still based on the Euler-Maclaurin summation formula in its general form (4.10)
but is so complicated that a full proof of (7.3) is outside the scope of the present paper.

We are presently undertaking an effort to analyze a specific queueing model under a
heavy traffic scaling. In the language of Queueing Theory we are dealing with a discrete-
time bulk service queue with batch arrivals in which the arrival process is a Poisson process
whose arrival rate λ is just slightly smaller than the service capacity s. In the case that
s = λ + β

√
λ, with β > 0 fixed and λ → ∞ (Halfin-Whitt regime, see [16, 18]), the

equilibrium distribution of the queue converges to that of the Gaussian random walk. The
analysis of this equilibrium distribution for finite λ is, however, far more complicated than in
the case of the Gaussian random walk. Already the first two moments require an evaluation
in terms of Lerch’s transcendent of the expressions

∞
∑

n=1

nk−1/2

∫ ∞

β
e−

1

2
nx2

xidx, (7.5)

for all integer k and all i = 0, 1, . . . . The results obtained by us for the expressions (7.5)
allow us to fully establish (7.3), i.e., including the integration constants.
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A further comment concerns the restricted validity of formulas (2.1)-(2.3), viz. for 0 <
β < 2

√
π, while the corresponding Spitzer formulas (3.1), (4.1) and (5.1) make sense for

all β > 0. By using (6.2), the explicit formula ζ(s) =
∑∞

n=1 n−s valid for s > 1, and
some further manipulations, the infinite series occurring in (2.1)-(2.3) can be re-expressed
as follows. We have for β > 0

β√
2π

∞
∑

r=0

ζ(1/2 − r)(−1
2β2)r

r!(2r + 1)
=

ζ(1/2)√
2π

β +
β

π
Re
[

e
πi
4 S0

(

−iβ2

4π

)]

, (7.6)

β2

√
2π

∞
∑

r=0

ζ(−1/2 − r)(−1
2β2)r

r!(2r + 1)(2r + 2)
=

β2

2π2
Re
[

−e
πi
4 S1

(

−iβ2

4π

)]

, (7.7)

2β3

√
2π

∞
∑

r=0

ζ(−3/2 − r)(−1
2β2)r

r!(2r + 1)(2r + 2)(2r + 3)
=

β3

4π3
Re
[

e
πi
4 S2

(

−iβ2

4π

)]

, (7.8)

in which

S0(b) =

√
π√
b

∞
∑

n=1

(

arcsin(b/n)1/2 − (b/n)1/2
)

, (7.9)

S1(b) =

√
π

2b

∞
∑

n=1

1

n

(√
n −

√
n − b

)

, (7.10)

S2(b) =

√
π

4b

∞
∑

n=1

1

n2

(√
n −

√
n − b

)

(7.11)

are well-defined functions for b (= −iβ2/4π) in an open set containing the imaginary axis.
(These alternative expressions are intimately related with Lerch’s transformation formula,
Bateman [13], 1.11(7) on p. 29, and complement the results obtained through analytic
continuation by Chang & Peres [10].) Thus for values of β larger than 2

√
π, we can evaluate

P(M = 0), EM , VarM using (2.1)-(2.3) and (7.6)-(7.11). Although the series in (7.9)-
(7.11) converge slowly, they can be evaluated quite conveniently by using dedicated forms
of the Euler-Maclaurin summation formula (4.10). We may also note that the infinite series
occurring in the expression (7.3) for the general Jk(β) can be re-expressed in a similar
fashion.

Finally, let us return once more to the rather special constant −ζ(1/2)/
√

2π ≈ 0.5826
(see Sec. 1). From Thm. 2 (or even (1.2)) we get

1

2β
− EM = −ζ(1/2)√

2π
+ O(β), (7.12)

where 1/(2β) is known to be an upper bound on EM that becomes tight in heavy traffic,
i.e., for β ↓ 0 (see [19, 20]). Hence, the difference between the upper bound and the true
value tends to a nontrivial constant −ζ(1/2)/

√
2π. In [12], constants of this type are studied

for a general class of random walks (possibly non-Gaussian) with zero drift. From Thm. 3
and the general result (7.3) we see that such non-trivial constants exist for higher moments
of M as well.
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