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Abstract. Let X1, X2, . . . be independent variables, each having a normal distribution
with negative mean −β < 0 and variance 1. We consider the partial sums Sn = X1 + . . .+
Xn, with S0 = 0, and refer to the process {Sn : n ≥ 0} as the Gaussian random walk.
This paper is concerned with the cumulants of the maximum Mβ = max{Sn : n ≥ 0}.

We express all cumulants of Mβ in terms of Taylor series about β at 0 with coefficients
that involve the Riemann zeta function. Building upon the work of Chang & Peres [10]
on P(Mβ = 0) and Bateman’s formulas on Lerch’s transcendent, expressions of this type
for the first and second cumulant of Mβ have been previously obtained by the authors
[18]. The method used in [18] is systemized in this paper to yield similar Taylor series
expressions for all cumulants.

The key idea in obtaining the Taylor series for the k-th cumulant is to differentiate
its Spitzer-type expression (involving the normal distribution) k + 1 times, rewrite the
resulting expression in terms of Lerch’s transcendent, and integrate k + 1 times. The
major issue then is to determine the k + 1 integration constants, for which we invoke
Euler-Maclaurin summation, among other things.

Since the Taylor series are only valid for β < 2
√

π, we obtain alternative series expan-
sions that can be evaluated for all β > 0. We further present sharp bounds on P(Mβ = 0)
and the first two moments of Mβ . We show how the results in this paper might find
important applications, particularly for queues in heavy traffic, the limiting overshoot in
boundary crossing problems and the equidistant sampling of Brownian motion.

1. Introduction

Let X1, X2, . . . be independent variables, each having a normal distribution with mean
−β < 0 and variance 1. We consider the partial sums Sn = X1 + . . .+Xn, with S0 = 0, and
refer to the process {Sn : n ≥ 0} as the Gaussian random walk. In this paper we present
explicit expressions for all moments (in terms of the cumulants) of the maximum

Mβ = max{Sn : n ≥ 0}. (1.1)

These explicit expressions hold for 0 < β < 2
√
π and are in terms of Taylor series about

β at 0 with coefficients that involve the Riemann zeta function. The explicit expressions
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facilitate the derivation of accurate asymptotic approximations for small values of β. We
also present sharp bounds on P(Mβ = 0), EMβ and VarMβ .

The distribution of Mβ plays an important role in several areas of applied probability,
like queueing theory, risk theory and sequential analysis. In queueing theory, the most
famous model is the GI/G/1 queue. Determining the stationary waiting time distribution
requires the solution of a linear integral equation of Wiener-Hopf type known as Lindley’s
equation (see [24]). In general, solving Lindley’s equation is challenging, both analytically
and numerically. However, sharp approximations can be obtained in a regime called heavy

traffic (see [3, 20, 23, 29]), in which the load is just below its critical level, and so the
queue is only just stable with relatively large waiting times. Kingman showed [23] that in
heavy traffic, the waiting time of a scaled version of the GI/G/1 queue can be very well
approximated by the maximum of the Gaussian random walk with β ↓ 0. In risk theory, the
counterpart of heavy traffic is small-safety loading, a regime in which the premium charged
is close to the typical pay-out for claims. In these classical heavy-traffic or small-safety
loading settings, one is thus typically interested in the distribution of Mβ for values of β
close to zero.

In queueing theory, Mβ for β away from zero plays a key role in a heavy-traffic scaling
regime known as the Halfin-Whitt regime, see [17, 20]. Under this regime, the stationary
waiting time is in fact identical in distribution to Mβ . Contrary to the classical heavy-
traffic regime, though, β need not be small, but instead is an important decision variable
(see Borst et al. [5] and the references therein).

Other important applications involving Mβ stem from the fact that the Gaussian random
walk can be obtained from a Brownian motion by equidistant sampling. For this reason, Mβ

shows up in a range of applications, such as sequentially testing for the drift of a Brownian
motion [12], corrected diffusion approximations [25], simulation of Brownian motion [4, 8],
option pricing [6], and thermodynamics of a polymer chain [14].

In all the above-mentioned applications, the moments of the maximum of the Gaussian
random walk are often the principal targets of investigation. In [18] we obtained explicit
expressions for the first two moments of Mβ . We built upon the work of Chang & Peres
[10] on the first descending ladder height Sτ with τ = inf{n ≥ 1 : Sn < 0}. They derived an
exact expression for ESτ , therewith complementing first order approximations of Siegmund
[25] and Chang [9]. By the relation ESτ = −β/P(Mβ = 0) (see Asmussen [3], p. 225), the
result leads to an exact expression for P(Mβ = 0). Chang & Peres start from a Spitzer-
type expression for P(Mβ = 0). The key idea of Chang & Peres is then to differentiate
this expression with respect to β, and rewrite the resulting expression in terms of the
polylogarithm Lis(z) =

∑∞
n=1 n

−szn, with z = exp(−β2/2), case s = 1/2. Subsequently,
Chang & Peres present an analytic continuation of Lis(z), which results in Taylor series
about β = 0 with coefficients that involve the Riemann zeta function. The final result for
ESτ is then obtained by integration. As pointed out in [18], Lis(z) is a special case of Lerch’s

transcendent, see (4.9), for which the matter of analytic continuation has been established
in full generality by Bateman (and/or the staff of the Bateman Manuscript Project), see
[15], §1.11(8).

While the first two moments were studied in [18] on their own merits, we now generalize
the approach in [18] to obtain a systematic method to compute all cumulants (i.e. moments).
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The key idea in obtaining the Taylor series for the k-th cumulant is to differentiate its
Spitzer-type expression k + 1 times, rewrite the resulting expression in terms of Lerch’s
transcendent, and integrate k + 1 times. The major issue then is to determine the k + 1
integration constants, which will be done using Euler-Maclaurin summation, among other
things.

The paper is structured as follows. We present our main results in Sec. 2. These concern
expressions for all cumulants of Mβ in terms of Taylor series about β = 0 with coefficients
that involve the Riemann zeta function, analytic continuation of these series, and sharp
bounds on P(Mβ = 0), EMβ and VarMβ for small values of β. In Sec. 3 we discuss three
applications: equidistant sampling of Brownian motion, the limiting overshoot in boundary
crossing problems and a discrete queue under Halfin-Whitt scaling. An outline of the proof
of the Taylor series result is provided in Sec. 4, while the details are presented in Sec. 5.
The analytic continuation of these series is outlined in Sec. 6. The bounds are proved in
Sec. 7.

2. Main results

Spitzer’s identity leads to (see Thm. 3.1 in [27], and e.g. [1, 22])

E(esMβ ) = exp
{

∞
∑

n=1

1

n
E(esS

+
n − 1)

}

, Re s ≤ 0, (2.1)

with x+ = max{0, x}. The k-th cumulant of a random variable A is defined as the k-th
derivative of log EesA evaluated at s = 0. We then see that

log E(esMβ ) =

∞
∑

n=1

1

n
E(esS

+
n − 1) =

∞
∑

n=1

1

n

∫ ∞

0
(sx+ 1

2s
2x2 + . . .)fS+

n
(x)dx, (2.2)

with fS+
n

the density function of S+
n , and so the k-th cumulant of Mβ equals

dk

(ds)k
log E(esMβ )

∣

∣

∣

s=0
=

∞
∑

n=1

1

n
E((S+

n )k) =: Jk(β), k = 1, 2, . . . . (2.3)

Recall that the first cumulant is the mean, the second cumulant is the variance, the third
cumulant is the central moment E(Mβ−EMβ)3, and the fourth cumulant is E(Mβ−EMβ)4−
3E(Mβ − EMβ)2. Using the normality of Sn, it follows immediately from (2.3) that the
quantities Jk(β) can be expressed as

Jk(β) =
∞
∑

n=1

1

n
√

2π

∫ ∞

β
√

n
(
√
nx− βn)ke−x2/2dx. (2.4)

In the above form, the definition of Jk(β) extends to the case k = 0, for which it obviously
holds that J0(β) =

∑∞
n=1

1
nP(Sn > 0). From Spitzer’s identity we then know that J0(β) =

− ln P(Mβ = 0) (see Sec. 8.5 in Chung [13]).
The main contribution in this paper is then the following result for Jk(β) (with ζ(z) the

Riemann zeta function):
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Theorem 1. There holds

J0(β) = − lnβ − 1

2
ln 2 − ζ(1/2)√

2π
β − 1√

2π

∞
∑

r=1

ζ(−r + 1/2)(−1/2)rβ2r+1

r!(2r + 1)
, (2.5)

and for k = 1, 2, . . .

Jk(β) =
(k − 1)!

2k
β−k +

k
∑

j=0

(

k

j

)

(−1)jΓ(k−j+1
2 )√

2π
ζ(−1

2k − 1
2j + 1)2

k−j−1

2 βj

+
(−1)k+1k!√

2π

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r!(2r + 1) · · · (2r + k + 1)
, (2.6)

when 0 < β < 2
√
π.

Thm. 1 generalizes some previously obtained results. For P(Mβ = 0) we get

P(Mβ = 0) =
√

2β exp

{

β√
2π

∞
∑

r=0

ζ(1/2 − r)

r!(2r + 1)

(−β2

2

)r
}

, (2.7)

a result that was already obtained by Chang & Peres [10], Thm. 1.1 on p. 788. An alternative
proof of (2.7) was presented in [18], along with the derivations of (2.6) for k = 1, 2, yielding

EMβ =
1

2β
+
ζ(1/2)√

2π
+

1

4
β +

β2

√
2π

∞
∑

r=0

ζ(−1/2 − r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

, (2.8)

and

VarMβ =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − β2

24
− 2β3

√
2π

∞
∑

r=0

ζ(−3/2 − r)

r!(2r + 1)(2r + 2)(2r + 3)

(−β2

2

)r

.

(2.9)

We need not necessarily rely on Thm. 1 to obtain exact results on the moments of Mβ,
since the the normality of Sn leads to (2.4). In comparing (2.6) and (2.4) it is evident that
(2.5) provides more qualitative insight into the role of β. For β ↓ 0, (2.6) is a powerful
result that clearly shows the difference between Jk(β) and its limiting value (k− 1)!(2β)−k.
For moderate values of β, (2.6) provides valuable information on the influence of β.

From a numerical viewpoint, (2.6) has advantages over (2.4) as well. It is clear that the
infinite series in (2.6) converge more rapidly for smaller values of β, while the contrary holds
for their Gaussian-type counterparts (2.4) (for a comparison of speed of convergence, see
Sec. 6 of [18]). An advantage of (2.4) is that it holds for all β > 0, and that it can be used
to derive the bounds presented in Thm. 3 below.

The series over r in (2.5) and (2.6) converge for |β| < 2
√
π while it is clear from (2.4)

that Jk(β) makes sense for all β > 0. In Sec. 6 we present alternative series expansions for
Jk(β) that can be evaluated for all β > 0. The alternative expansions for Jk(β), k = 0, 1, 2,
lead to the result below.
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Theorem 2. We have for β > 0

P(Mβ = 0) =
√

2β exp

{

ζ(1/2)√
2π

β +
β

π
Re
[

e
πi
4 S0

(

−iβ2

4π

)]

}

, (2.10)

EMβ =
1

2β
+
ζ(1/2)√

2π
+

1

4
β +

β2

2π2
Re
[

−eπi
4 S1

(

−iβ2

4π

)]

, (2.11)

VarMβ =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − β2

24
− β3

4π3
Re
[

e
πi
4 S2

(

−iβ2

4π

)]

, (2.12)

in which

S0(b) =

√
π√
b

∞
∑

n=1

(

arcsin(b/n)1/2 − (b/n)1/2
)

, (2.13)

S1(b) =

√
π

2b

∞
∑

n=1

1

n

(√
n−

√
n− b

)

, (2.14)

S2(b) =

√
π

4b

∞
∑

n=1

1

n2

(√
n−

√
n− b

)

. (2.15)

Remark. For larger values of β, the terms in (2.4) for n = 2, 3, . . . are dominated by the
term for n = 1. Upon some rewriting we get from (2.4) that

1

n
√

2π

∫ ∞

β
√

n
(
√
nx− βn)ke−x2/2dx = (2n)

1

2
k−1k! ikerfc z, (2.16)

with inerfc the n times repeated integral of the complementary error function, see Abramowitz-
Stegun [2], 7.2 on pp. 299-300. From [2], 7.2.14 on pp. 300, we then get the asymptotic
series

1

n
√

2π

∫ ∞

β
√

n
(
√
nx− βn)ke−x2/2dx ∼ 2√

π
(2n)−3/2β−k−1e−

1

2
nβ2

∞
∑

m=0

(−1)m(2m+ k)!

m!(2nβ2)m

=
β−k−1

n
√

2πn
e−

1

2
nβ2
[

k! − (k + 2)!

2nβ2
+

(k + 4)!

8n2β4
− . . .

]

.

(2.17)

When we apply this, for instance, with β = 10, we see that the term in the series in (2.4)

for Jk(β) with n = 2 is about 2−3/2e−50 times the term with n = 1: this second term and
all subsequent terms are totally negligible. For this value of β, the accuracy of

β−k−1e−
1

2
nβ2

n
√

2πn

∣

∣

∣

n=1
(2.18)

as an approximation of the first term is of the order (k + 2)(k + 1)/200 (relative error).

We shall now present some bounds and approximations. The expressions (2.5)-(2.9) all
involve infinite series, comprising the Riemann zeta function, that converge absolutely for
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0 < β < 2
√
π. For small values of β the terms involving higher powers of β are quite small.

It follows, for instance, from (2.7) that

P(Mβ = 0) =
√

2β exp

{

ζ(1/2)√
2π

β + O(β3)

}

, (2.19)

where ζ(1/2)/
√

2π ≈ −0.5826 and the constant implied by the O-symbol is of the order
|ζ(−1/2)/6

√
2π| ≈ 0.0138 when β > 0 is away from 2

√
π (see [18], (6.3) where ζ(1/2 − r)

is estimated). This is in fact Chang’s result on the expected first descending ladder height
ESτ for the Gaussian family (we recall the relation ESτ = −β/P(Mβ = 0)), see Chang [9],
Thm. 4.2 on p. 732 (see also Siegmund [25], Lemma 2 on p. 705). Likewise, we get from
(2.8)

EMβ =
1

2β
+
ζ(1/2)√

2π
+

1

4
β + O(β2), (2.20)

which is a refinement of Kingman’s result, [23], (51) on p. 156, and Siegmund’s result, [25],
Thm. 1 on p. 704, in the sense that it is more specific about the terms after the constant
ζ(1/2)/

√
2π. Similarly, we have

VarMβ =
1

4β2
− 1

4
− 2ζ(−1/2)√

2π
β − 1

24
β2 + O(β3). (2.21)

More generally, the expression on the first line at the right-hand side of (2.6) provides an
approximation of Jk(β) whose absolute and relative error decays quickly with k when β > 0
is well below 2

√
π. This is so since for these values of β the term on the second line of the

right-hand side of (2.6) is of the order (k − 1)!(β/2π)k+1, compare [18], Sec. 6.
We now present some sharp bounds on the expressions in (2.7)-(2.9) that rely solely on

β and do not contain the Riemann zeta function.

Theorem 3. (i) There holds for 0 < β ≤
√

2/π

P(Mβ = 0) ≤ 2
(

1 − e−β2/2
)1/2

exp
{

− β√
π

+
1

8
β2
}

, (2.22)

P(Mβ = 0) ≥ 2
(

1 − e−β2/2
)1/2

exp
{

− 3β

2
√

2π
+

1

8
β2 − β3

9
√

2π

}

. (2.23)

(ii) There holds for β > 0

EMβ ≤ 1

2β
− 1√

π
+

1

4
β − β2

12
√
π

+
β4

240
√
π
, (2.24)

EMβ ≥ 1

2β
− 3

2
√

2π
+

1

4
β − β2

12
√

2π
− β4

24
√

2π
. (2.25)

(iii) There holds for β > 0

VarMβ ≤ 1

4β2
− 1

4
+

β

3
√
π
− 1

16
β2 +

β3

60
√
π
, (2.26)

VarMβ ≥ 1

4β2
− 1

4
+

β

3
√

2π
− β3

30
√

2π
− β5

63
√

2π
. (2.27)
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For Thm. 3(i) we note that 2(1 − e−β2/2)1/2 =
√

2β(1 + O(β2)), see (2.7). Furthermore,
comparing Thm. 3(i) with (2.7) and Thm. 3(ii) with (2.8), we note that

0.5642 ≈ 1√
π

< −ζ(1/2)√
2π

<
3

2
√

2π
≈ 0.5984 (2.28)

with −ζ(1/2)/
√

2π ≈ 0.5826. Finally, comparing Thm. 3(iii) with (2.9), we note that

0.1330 ≈ 1

3
√

2π
< −2ζ(−1/2)√

2π
<

1

3
√
π

≈ 0.1881 (2.29)

with −2ζ(−1/2)/
√

2π ≈ 0.1659.
Tables 1-3 display the bounds and/or approximations for P(M = 0), EM and VarM ,

respectively, for various values of β. In Figs. 1-3 we have plotted P(M = 0), βEM and
β2VarM , respectively, as a function of β.

Table 1. P(Mβ = 0) for various values of β. The exact values of P(Mβ = 0)
are approximated by truncating the infinite series in (2.7) at r = 50. In (2.19)
the term O(β3) has been omitted.

β 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7900
P(Mβ = 0) 0.1334 0.2518 0.3564 0.4485 0.5293 0.6000 0.6615 0.7099

(2.23) 0.1332 0.2509 0.3541 0.4441 0.5215 0.5873 0.6421 0.6827
(2.22) 0.1337 0.2527 0.3582 0.4515 0.5335 0.6053 0.6678 0.7169
(2.19) 0.1334 0.2517 0.3562 0.4480 0.5283 0.5981 0.6582 0.7049

Table 2. EMβ for various values of β. The exact values of EMβ are ap-
proximated by truncating the infinite series in (2.8) at r = 50. In (2.20) the
term O(β2) has been omitted.

β 0.1000 0.2500 0.5000 0.7500 1.0000 1.5000 2.0000
EMβ 4.4420 1.4773 0.5321 0.2484 0.1264 0.0347 0.0090
(2.25) 4.4263 1.4619 0.5172 0.2318 0.1017 -0.0490 -0.2474
(2.24) 4.4603 1.4954 0.5492 0.2643 0.1411 0.0503 0.0354
(2.20) 4.4424 1.4799 0.5424 0.2716 0.1674 0.1257 0.1674

Table 3. VarMβ for various values of β. The exact values of VarMβ are
approximated by truncating the infinite series in (2.9) at r = 50. In (2.21)
the term O(β3) has been omitted.

β 0.1000 0.2500 0.5000 0.7500 1.0000 1.5000 2.0000
VarMβ 24.7662 3.7889 0.8229 0.2969 0.1276 0.0280 0.0062
(2.27) 24.7633 3.7830 0.8146 0.2871 0.1134 -0.0324 -0.2306
(2.26) 24.7682 3.7933 0.8296 0.3043 0.1350 0.0343 0.0139
(2.21) 24.7662 3.7889 0.8225 0.2954 0.1242 0.0162 -0.0224
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0

0.2

0.4
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0.8

1

true value
lower bound
upper bound
Chang’s result

β

Figure 1. Plot of P(Mβ = 0), along with the bounds (2.24), (2.25), and
Chang’s result (2.19) with O(β3) deleted. The exact values of P(Mβ = 0)
are approximated by truncating the infinite series in (2.7) at r = 50.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
true value
lower bound
upper bound
approximation

β

Figure 2. Plot of βEMβ, along with β times the bounds (2.24), (2.25), and
the approximation (2.20) with O(β2) deleted. The exact values of EMβ are
approximated by truncating the infinite series in (2.8) at r = 50.
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Figure 3. Plot of β2VarMβ , along with β2 times the bounds (2.26), (2.27),
and the approximation (2.21) with O(β3) deleted. The exact values of
VarMβ are approximated by truncating the infinite series in (2.9) at r = 50.

3. Applications

3.1. Equidistant sampling of Brownian motion. Let the process {Bt : t ≥ 0} be a
Brownian motion with negative drift coefficient −β and variance parameter σ2, so that

Bt = B0 − βt+ σWt, (3.1)

where {Wt : t ≥ 0} is a Wiener process (standard Brownian motion). Let

M̃ = max{Bt : t ≥ 0}. (3.2)

We take B0 = 0, and then it is well known that P(M̃ ≥ x) = e−(2β/σ2)x (exponential
distribution with rate 2β/σ2, see e.g. Chen-Yao [11], Lemma 5.5 on p. 102). It thus follows
that

E(esM̃ ) =
2β/σ2

2β/σ2 − s
, (3.3)

and so the k-th cumulant of M̃ equals

(k − 1)!

2kβkσ−2k
. (3.4)

We set σ to 1 (without loss of generality). One way then to see the Gaussian random
walk is the (equidistantly) sampled version of this Brownian motion, and by increasing
the sampling frequency the Gaussian random walk will converge to the Brownian motion.
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How fast is this convergence? To address this question we first extend our definition of the
Gaussian random walk. Let the Gaussian random walk be defined by

S(β, ν) := {Sn(β, ν) : n = 0, 1, . . .}, (3.5)

where Sn(β, ν) = 0 and Sn(β, ν) = Xν,1 + . . . + Xν,n, with Xν,1, Xν,2, . . . independent
variables, each having a normal distribution with mean −β/ν < 0 and variance 1/ν. Let

Mν,β = max{Sn(β, ν) : n = 0, 1, . . .}. (3.6)

Our earlier definition of the Gaussian random walk corresponds to S(β, 1) with its associated
maximum M1,β =: Mβ . Since

Mν,β
d
= ν−1/2Mν−1/2β , (3.7)

where
d
= denotes equality in distribution, all characteristics of Mν,β can be expressed in

those of Mβ .
We now sample the Brownian motion at points 0, 1/ν, 2/ν, . . ., with ν some positive

integer, and use as a measure of convergence the difference in all-time maximum between
the Brownian motion and its sampled version (where we know that EM̃ = 1/(2β)). From
our results on EMβ for the Gaussian random walk (2.8), and (3.4), (3.7) we find that

EM̃ − EMν,β = −ζ(1/2)√
2πν

+ O(1/ν). (3.8)

Results similar to (3.8), in slightly different settings, have been presented in Asmussen et
al. [4], Thm. 2 on p. 884, and Calvin [8], Thm. 1 on p. 611. A crucial difference is that our
result (3.8) is obtained from the exact expression for EMν,β, while the results in [4, 8] are
derived from considering the Brownian motion in a finite time interval, and estimating its
maximum by Euler-Maclaurin summation.

The leading part of the right-hand side of (3.8) does not depend on the drift β. However,
from Thm. 1 we can easily obtain higher-order asymptotics that do involve the drift, like

EM̃ − EMν,β = −ζ(1/2)√
2πν

+
β

4ν
+ O(ν−3/2). (3.9)

Moreover, our exact analysis of Mβ leads to asymptotic expressions up to any order, for all

cumulants of the maximum. For example, it readily follows from (2.9) that (with VarM̃ =
1/(4β2))

VarM̃ − VarMν,β = − 1

4ν
− 2ζ(−1/2)√

2π

β

ν3/2
+ O(ν−2), (3.10)

where −2ζ(−1/2)/
√

2π ≈ 0.1659.

3.2. Limiting overshoot in boundary crossing problems. The first (descending) lad-
der height τ = inf{n ≥ 1 : Sn < 0} fulfills a crucial role in applications of random walk
theory (see e.g. Asmussen [3], Feller [16] and Siegmund [25]). One important application
is the asymptotic analysis of boundary crossing problems (Siegmund [26]). In the latter
case, a quantity of interest is the expected limiting overshoot which arises in e.g. sequential
analysis [12, 32], corrected diffusion approximations [25] and option pricing [6].

Define the overshoot Ra by
Ra = −Sτa − a, (3.11)
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where τ(a) is the first passage time inf{n : Sn < −a}. Hence, Ra is the excess of the
random walk over the boundary −a at the time it first downcrosses −a. Standard results
from renewal theory say that Ra converges in distribution to a random variable R∞ we refer
to as the limiting overshoot (see [3], Thm. 2.1 on p. 224). For the expected limiting overshoot
ER∞ = lima→∞ ERa =: ρ(β) it is known that ρ(β) = −ES2

τ/2ESτ (see e.g. Woodroofe [32],
Corollary 2.2 on p. 20).

A relation between the moments of τ and the moments of Mβ can be found in Asmussen
[3], Thm. 2.2 on p. 270,

n
∑

k=0

(

n+ 1

k

)

EMk
β EXn+1−k =

ESn+1
τ

Eτ
, n = 1, 2, . . . . (3.12)

From (3.12) for n = 1 we get ES2
τ = Eτ(1+β2−2βEMβ) which together with ESτ = −βEτ

yields

ρ(β) =
1 + β2

2β
− EMβ . (3.13)

Combining (3.13) and (2.8) immediately leads to the result below.

Corollary 1. There holds

ρ(β) = −ζ(1/2)√
2π

+
1

4
β − β2

√
2π

∞
∑

r=0

ζ(−1/2 − r)

r!(2r + 1)(2r + 2)

(−β2

2

)r

, (3.14)

when 0 < β < 2
√
π.

Corollary 1 complements results obtained earlier by several authors. Chernoff [12] showed
that ρ(0) = −ζ(1/2)/

√
2π, Siegmund [25], Problem 10.2 on p. 227, showed that ρ′(0) = 1/4

(see also Wijsman [30]), and Chang & Peres [10], p. 801, showed that ρ′′(0) = ζ(3/2)/2(2π)3/2

(which equals −ζ(−1/2)/
√

2π by Riemann’s relation, cf. (6.3)).

3.3. A discrete queue under Halfin-Whitt scaling. The proof of Thm. 1 consists of
finding an analytic expression in terms of Lerch’s transcendent, see (4.9) below, of the
quantity

Tk,i(β) =
∞
∑

n=1

nk+1/2

∫ ∞

β
e−

1

2
nx2

xidx (3.15)

with i = 0, 1, . . . and k ∈ Z. This has an application in the analysis of some specific queue
in heavy traffic. Consider the process

W0 = 0; Wm+1 = (Wm +Am − s)+, m = 0, 1, . . . , (3.16)

in which x+ = max{0, x} and the Am are i.i.d. according to a random variable A having a
Poisson distribution with mean λ (the arrival rate) and s (service capacity) is a positive in-
teger larger than λ. Denote by W the random variable following the stationary distribution
of the process defined in (3.16).

We then consider a heavy-traffic regime in which the arrival rate is just below the service
capacity according to s = λ + β

√
λ, with β > 0 fixed and λ → ∞. This regime has a long

history in queueing theory (see Borst et al. [5] for an overview), and is referred to as the
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Halfin-Whitt regime or square-root safety staffing, see [5, 17, 20]. It is readily seen (see

[19]) that the distribution of W/
√
λ converges to that of Mβ as λ → ∞. The analysis of

this equilibrium distribution for finite λ is, however, far more complicated than in the case
of the Gaussian random walk. We show in [19] that

− ln P(W = 0) =

∞
∑

n=1

p(ns)

n1/2

1√
2π

∫ ∞

β̂
e−

1

2
nx2

ϕ(x/
√
s)dx (3.17)

in which

β̂ =
(

− 2s
(

1 − λ

s
+ ln

λ

s

))1/2
≈ s− λ√

λ
= β, (3.18)

where ≈ is sharp for large values of λ. Furthermore, p(n) = nne−n
√

2πn/n! and ϕ is
a function analytic in |x| < 2

√
π with ϕ(0) = 1. For p there is Stirling’s formula, see

Abramowitz-Stegun [2], 6.1.37 on p. 257,

p(n) ∼ 1 − 1

12n
+

1

288n2
+ . . . =

∞
∑

l=0

pl

nl
, n→ ∞, (3.19)

and for ϕ there is the power series representation

ϕ(x) = 1 − 2

3
x+

1

12
x2 + . . . =

∞
∑

i=0

bix
i, |x| < 2

√
π. (3.20)

Thus for − ln P(W = 0) there is the asymptotics

− ln P(W = 0) ∼ 1√
2π

∞
∑

l,i=0

plbis
−l−i/2T−l−1,i(β̂), s→ ∞, (3.21)

with the T ’s defined in (3.15).
Similar expressions, though somewhat more complicated than the one in (3.17), exist for

EW and VarW and these give rise to asymptotic expansions as in (3.21) involving Tk,i with
i = 0, 1, . . .; k = 0,−1,−2 . . . and k = 1, 0,−1 . . ., respectively. Hence, for 0 < β < 2

√
π, we

can use the analytic expression for Tk,i as found in Sec. 5 in the asymptotic formula (3.21)
and its counterparts for EW and VarW .

4. Proof of Theorem 1

Starting from (2.4), we can express Jk(β) as

Jk(β) =

∞
∑

n=1

nk−1/2

√
2π

∫ ∞

β
(y − β)ke−

1

2
ny2

dy

=
1√
2π

k
∑

i=0

(

k

i

)

(−β)k−iTk−1,i(β), (4.1)

where

Tk−1,i(β) =
∞
∑

n=1

nk−1/2

∫ ∞

β
e−

1

2
nx2

xidx. (4.2)
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In Sec. 5 we shall conduct a detailed study of the quantities Tk−1,i(β), leading to

Tk−1,i(β) =
Γ(k + 1/2)

2k − i
2k+1/2βi−2k + Lk−1,i −

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+i+1

r!(2r + i+ 1)
(4.3)

for i = 0, 1, . . . , i 6= 2k, and

Tk−1,2k(β) = −Γ(k+ 1
2)2k+1/2 lnβ+Lk−1,2k −

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+2k+1

r!(2r + 2k + 1)
, (4.4)

where

Lk−1,i =
1

2
Γ
( i+ 1

2

)

2
i+1

2 ζ(−k + 1
2 i+ 1), i = 0, 1, . . . , i 6= 2k, (4.5)

Lk−1,2k = 2k+1/2Γ(k + 1/2)
(

k−1
∑

j=0

1

2j + 1
− 1

2
ln 2
)

. (4.6)

For k = 0 we have directly from (4.4) and (4.6) that J0(β) = − ln P(Mβ = 0) = 1√
2π
T−1,0.

For k = 1, 2, . . . we observe that

J
(k+1)
k (β) = (−1)k+1k!

∞
∑

n=1

nk−1/2

√
2π

e−
1

2
nβ2

, (4.7)

where we have differentiated the expression on the second line of (4.1) k + 1 times with
respect to β, using

d

dβ

[

∫ ∞

β
f(y, β)dy

]

= −f(β, β) +

∫ ∞

β

∂f

∂β
(y, β)dy. (4.8)

The right-hand side of (4.7) can be expressed in terms of Lerch’s transcendent Φ, defined
as the analytic continuation of the series

Φ(z, s, v) =
∞
∑

n=0

(v + n)−szn, (4.9)

which converges for any real number v 6= 0,−1,−2, . . . if z and s are any complex numbers
with either |z| < 1, or |z| = 1 and Re(s) > 1. Note that ζ(s) = Φ(1, s, 1). Indeed,

J
(k+1)
k (β) =

(−1)k+1k!√
2π

e−
1

2
β2

Φ(z = e−
1

2
β2

, s = 1
2 − k, v = 1). (4.10)

We then use the important result derived by Bateman [15], §1.11(8) (with ζ(s, v) :=
Φ(1, s, v) the Hurwitz zeta function)

Φ(z, s, v) =
Γ(1 − s)

zv
(ln 1/z)s−1 + z−v

∞
∑

r=0

ζ(s− r, v)
(ln z)r

r!
, (4.11)

which holds for | ln z| < 2π, s 6= 1, 2, 3, . . ., and v 6= 0,−1,−2, . . ., as to obtain

J
(k+1)
k (β) =

(−1)k+1k!√
2π

(

Γ(k + 1/2)

(

2

β2

)k+1/2

+
∞
∑

r=0

ζ(−k − r + 1
2)

(−1
2β

2)r

r!

)

(4.12)
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for 0 < β < 2
√
π. Hence

J
(k+1)
k (β) − (−1)k+1k!√

2π
Γ(k + 1/2)

2k+1/2

β2k+1
=

(−1)k+1k!√
2π

∞
∑

r=0

ζ(−k − r + 1
2)

(−1
2β

2)r

r!
. (4.13)

The right-hand side of (4.13) is a well-behaved function of β. We integrate identity (4.13)
from 0 to β and use dominated convergence of the series at the right-hand side of (4.13) to
interchange sum and integral, see (4.11). This results into

Jk(β) − (−1)k+1k!√
2π

Γ(k + 1/2)2k+1/2 β−k

−2k(−2k + 1) · . . . · −k =

L0 + L1β + . . .+ Lkβ
k +

(−1)k+1k!√
2π

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r!(2r + 1)(2r + 2) · . . . · (2r + k + 1)
,

(4.14)

where Lk, Lk−1, . . . , L0 are integration constants that appear subsequently when integrating
(4.13) k + 1 times. We observe that

(−1)k+1k!√
2π

Γ(k + 1/2)2k+1/2

−2k(−2k + 1) · . . . · −k =
(k − 1)!

2k
, (4.15)

and we are left with determining the L0, . . . , Lk. Thus from (4.1)-(4.2) (with Czj [f(z)]
denoting the coefficient of zj in f(z))

Lj =
1√
2π

k
∑

i=0

(

k

i

)

(−1)k−iCβj

[

βk−iTk−1,i

]

=
1√
2π

(

k

k − j

)

(−1)jLk−1,k−j

=
1√
2π

(

k

j

)

(−1)j 1

2
Γ
(k − j + 1

2

)

2
k−j+1

2 ζ(−1
2k − 1

2j + 1), j = 0, 1, . . . , k,

(4.16)

where it has been used that βk−iTk−1,i has non-zero coefficients for the terms β−k, βk−i

and βk+2r+1, r = 0, 1, . . ., only. From (4.14), (4.15) and (4.16) we then get Thm. 1.
An alternative proof of Thm. 1 starts from the last line expression in (4.1) for Jk(β) and

uses the full result (4.2) for i = 0, 1, . . . , k. Thus

Jk(β) =
1√
2π

Γ(k + 1/2)2k+1/2β−k
k
∑

i=0

(

k

i

)

(−1)k−i

2k − i

+
k
∑

i=0

(

k

i

)

(−1)k−i Γ( i+1
2 )√
2π

ζ(−k + 1
2 i+ 1)2

i−1

2 βk−i

− 1√
2π

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)r

r!
β2r+k+1

k
∑

i=0

(

k

i

)

(−1)k−i

2r + i+ 1
. (4.17)
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To complete this proof of Thm. 1 we only need to establish that

1√
2π

Γ(k + 1/2)2k+1/2
k
∑

i=0

(

k

i

)

(−1)k−i

2k − i
=

(k − 1)!

2k
, (4.18)

i.e., that

k
∑

i=0

(

k

i

)

(−1)k−i

2k − i
=

(k − 1)!k!

(2k)!
, (4.19)

and that
k
∑

i=0

(

k

i

)

(−1)k−i

2r + i+ 1
=

−(−1)k+1k!

(2r + 1) · . . . · (2r + k + 1)
, r = 0, 1, . . . . (4.20)

The identities (4.19) and (4.20) follow from the relation

k
∑

i=0

(

k

i

)

(−1)k−i

x− i
=

k!

x(x− 1) · . . . · (x− k)
, (4.21)

by plugging in x = 2k > k and x = −2r − 1 < 0, respectively. The identity in (4.21) is
readily obtained by partial fraction expansion of the right-hand side.

5. Proof of the result for Tk,i

We shall conduct a study of the quantities

Tk,i(a) =
∞
∑

n=1

nk+1/2

∫ ∞

a
e−

1

2
nx2

xidx, (5.1)

for integer k and i = 0, 1, . . . which is required (with a = β and k − 1 instead of k) in
(4.2). The main result is (5.4) and (5.5) with Lk,i and Lk,2k+2 given in (5.53) and (5.54),
respectively. We intend to use this result in a different setting (Halfin-Whitt scaling, see
Subsec. 3.3) and this is why we passed to a neutral variable a (instead of β) and shifted the
integer k by one unit.

We have when 1
2a

2 < 2π by (4.11)

T ′
k,i(a) = −

∞
∑

n=1

nk+1/2e−
1

2
na2

ai = −aie−
1

2
a2

Φ(z = e−
1

2
a2

, s = −k − 1
2 , v = 1)

= −Γ(k + 3/2)2k+3/2ai−2k−3 −
∞
∑

r=0

ζ(−k − r − 1
2)(−1/2)ra2r+i

r!
. (5.2)

Hence

T ′
k,i(a) + Γ(k + 3/2)2k+3/2ai−2k−3 = −

∞
∑

r=0

ζ(−k − r − 1
2)(−1/2)ra2r+i

r!
, (5.3)
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where the right-hand side of (5.3) is well-behaved as a ↓ 0. Therefore, upon integration
from 0 to a,

Tk,i(a) +
Γ(k + 3/2)2k+3/2

i− 2k − 2
ai−2k−2 = Lk,i −

∞
∑

r=0

ζ(−k − r − 1
2)(−1/2)ra2r+i+1

r!(2r + i+ 1)
(5.4)

when i 6= 2k + 2, and

Tk,2k+2(a) + Γ(k + 3/2)2k+3/2 ln a = Lk,2k+2 −
∞
∑

r=0

ζ(−k − r − 1
2)(−1/2)ra2r+2k+3

r!(2r + 2k + 3)
, (5.5)

where

Lk,i = lim
a↓0

[

Tk,i(a) +
Γ(k + 3/2)2k+3/2

i− 2k − 2
ai−2k−2

]

, i = 0, 1, . . . , i 6= 2k + 2, (5.6)

and
Lk,2k+2 = lim

a↓0

[

Tk,2k+2(a) + Γ(k + 3/2)2k+3/2 ln a
]

. (5.7)

Below we shall determine the Lk,i, and to that end we distinguish between the cases

I. i > 2k + 2, II. i = 2k + 2, III.a i = 1, 3, . . . , 2k + 1, III.b i = 0, 2, . . . , 2k.

Note that when k ≤ 0, some or all the cases in II and III are degenerate since we restrict to
i = 0, 1, . . .. Furthermore, for Thm. 1 it is only necessary to consider Tk−1,i with k = 0, 1, . . .
and i = 0, 1, . . . , k. However, this does not significantly ease the problem at hand, and for
future work on the queueing queueing model sketched in Subsec. 3.3, it is necessary to solve
the full problem.

Case I. We have for i > 2k + 2 that

Lk,i = lim
a↓0

Tk,i(a) =
∞
∑

n=1

nk+1/2

∫ ∞

0
e−

1

2
nx2

xidx

=
1

2
Γ
( i+ 1

2

)

2
i+1

2

∞
∑

n=1

1

ni/2−k
=

1

2
Γ
( i+ 1

2

)

2
i+1

2 ζ( i
2 − k), (5.8)

and this is a finite, positive number since i > 2k + 2.

Case II. We assume that 2k + 2 ≥ 0 and we determine Lk,2k+2. To that end we write
Tk,2k+2(a) as

Tk,2k+2(a) =
∞
∑

n=1

nk+1/2

∫ ∞

a
e−

1

2
nx2

x2k+2dx

= 2k+3/2
∞
∑

n=1

1

n

∫ ∞

√
nδ
e−u2

u2k+2du, (5.9)

where δ = 1
2a

2. Now
∫∞
0 e−u2

u2k+2du = 1
2Γ(k + 3/2), and this leads to writing the series

on the second line of (5.9) as
∞
∑

n=1

1

n

∫ ∞

√
nδ
e−u2

u2k+2du =
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δ
∞
∑

n=1

1

nδ

(
∫ ∞

√
nδ
e−u2

u2k+2du− 1

2
Γ(k + 3/2)e−nδ

)

− 1

2
Γ(k + 3/2) ln(1 − e−δ).

(5.10)

The function

x > 0 7−→ 1

x

(
∫ ∞

√
x
e−u2

u2k+2du− 1

2
Γ(k + 3/2)e−x

)

(5.11)

decays exponentially as x → ∞, is O(xk+1/2) as x ↓ 0, and is smooth everywhere else on
(0,∞). It is elementary to show that the first expression on the second line of (5.10) tends
to

∫ ∞

0

1

x

(
∫ ∞

√
x
e−u2

u2k+2du− 1

2
Γ(k + 3/2)e−x

)

dx =: Ik (5.12)

as δ ↓ 0. Since ln(1 − e−δ) = ln δ + O(δ) as δ = 1
2a

2 ↓ 0, we thus see that

Tk,2k+2(a) + 2k+1/2Γ(k + 3/2) ln(1
2a

2) −→ 2k+3/2Ik (5.13)

as a ↓ 0. We finally compute Ik by partial integration as

Ik = −
∫ ∞

0
lnx
(

− 1

2
x−1/2e−xxk+1 +

1

2
Γ(k + 3/2)e−x

)

dx

=
1

2
Γ′(k + 3/2) − 1

2
Γ(k + 3/2)Γ′(1) = Γ(k + 3/2)

(

− ln 2 +
k
∑

j=0

1

2j + 1

)

,

(5.14)

where Abramowitz-Stegun [2], 6.3.2 and 6.3.4 on p. 258, has been used. Therefore,

Lk,2k+2 = lim
a↓0

[

Tk,2k+2(a) + 2k+3/2Γ(k + 3/2) ln a
]

= lim
a↓0

[

2k+3/2Ik + 2k+1/2Γ(k + 3/2) ln 2
]

= 2k+3/2Γ(k + 3/2)
(

k
∑

j=0

1

2j + 1
− 1

2
ln 2
)

. (5.15)

Case III.a. We assume k ≥ 0, and we let i = 2m+ 1 with m = 0, 1, . . . , k. We rewrite
∫ ∞

a
e−

1

2
nx2

x2m+1dx =
1

2

( 2

n

)m+1
∫ ∞

1

2
na2

e−vvmdv. (5.16)

From Szegö [28], §1, we have
∫ ∞

y
e−vvmdv = m!e−y

m
∑

r=0

yr

r!
. (5.17)

Consequently,

Tk,2m+1(a) =
∞
∑

n=1

nk+1/2 1

2

( 2

n

)m+1
m!e−

1

2
na2

m
∑

r=0

(1
2na

2)r

r!
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= m!2m
m
∑

r=0

(1
2a

2)r

r!

∞
∑

n=1

nk−m+r−1/2e−
1

2
na2

. (5.18)

Now, by Bateman’s result (4.11), we have for 1
2a

2 < 2π that

∞
∑

n=1

nk−m+r−1/2e−
1

2
na2

= e−
1

2
a2

Φ(z = e−
1

2
a2

, s = −k +m− r + 1
2 , v = 1)

= Γ(k −m+ r + 1/2)(1
2a

2)−k+m−r−1/2 +
∞
∑

r′=0

ζ(−k +m− r + 1
2 − r′)(−1/2)r′a2r′

(r′)!

= Γ(k −m+ r + 1/2)2k−m+r+1/2a−2k+2m−2r−1 + ζ(−k +m+ 1
2) + O(a2). (5.19)

Hence,

Tk,2m+1(a) = m!2m
m
∑

r=0

2−ra2r

r!
Γ(k −m+ r + 1/2)2k−m+r+1/2a−2k+2m−2r−1

+ m!2mζ(−k +m+ 1
2) + O(a2)

= 2k+1/2a−2k+2m−1
m
∑

r=0

m!

r!
Γ(k −m+ r + 1/2) +m!2mζ(−k +m+ 1

2) + O(a2).

(5.20)

Lemma 1.
m
∑

r=0

m!

r!
Γ(k −m+ r + 1/2) =

Γ(k + 3/2)

k −m+ 1/2
. (5.21)

Proof. From (5.6) we have that

Tk,2m+1(a) +
Γ(k + 3/2)

2m− 2k + 1
2k+3/2a2m−2k−1 (5.22)

has a finite limit as a ↓ 0. Then (5.20) immediately gives the result. Of course, a direct
proof is also possible. Using Γ(x + 1) = xΓ(x) repeatedly, one rewrites the identity to be
proved as

m
∑

r=0

m!

r!
(x+ r − 1)(x+ r − 2) · . . . · x = (x+m)(x+m− 1) · . . . · (x+ 1), (5.23)

and this is readily proved by induction. 2

From the lemma we have that

Lk,2m+1 = m!2mζ(−k +m+ 1
2) (5.24)

as Lk,2m+1 is the limit of (5.22) as a ↓ 0 (see the last line of (5.20)).
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Case III.b. We assume k ≥ 0 and we let i = 2m, m = 0, 1, . . . , k. We have now with
δ = 1

2a
2 and the substitution u = x

√

n/2 that

Tk,2m(a) =
∞
∑

n=1

nk+1/2

∫ ∞

a
e−

1

2
nx2

x2mdx

= 2m+1/2
∞
∑

n=1

nk−m

∫ ∞

√
nδ
e−u2

u2mdu

= 2m+1/2δm−k
∞
∑

n=1

(nδ)k−m

∫ ∞

√
nδ
e−u2

u2mdu. (5.25)

Set

f(x) = g(δx) ; g(y) = yk−m

∫ ∞

√
y
e−u2

u2mdu. (5.26)

We apply the Euler-Maclaurin summation formula (see De Bruijn [7], Sec. 3.6, pp. 40-42)

N
∑

n=1

f(n) =

∫ N

1
f(x)dx+ 1

2f(1) + 1
2f(N)

+

p
∑

j=1

B2j

(2j)!

(

f (2j−1)(N) − f (2j−1)(1)
)

+Rp,N , (5.27)

in which

Rp,N = −
∫ N

1
f (2p)(x)

B2p (x− ⌊x⌋)
(2p)!

dx, (5.28)

where the Bn(t) denote the Bernoulli polynomials, defined by

zezt

ez − 1
=

∞
∑

n=0

Bn(t)zn

n!
, (5.29)

and the Bn = Bn(0) denote the Bernoulli numbers. Since f and all its derivatives decay
exponentially fast as x→ ∞, we can let N → ∞ in (5.27), and we obtain

∞
∑

n=1

f(n) =

∫ ∞

1
f(x)dx+ 1

2f(1) −
p
∑

j=1

B2j

(2j!)
f (2j−1)(1) +Rp, (5.30)

where Rp = limN→∞Rp,N . In terms of g, see (5.25), (5.26), we have

Tk,2m(a) = 2m+1/2δm−k
{

∫ ∞

1
g(δx)dx+ 1

2g(δ) −
p
∑

j=1

B2j

(2j!)
δ2j−1g(2j−1)(δ) +Rp

}

, (5.31)

where δ = 1
2a

2 and

Rp = −δ2p

∫ ∞

1
g(2p)(x)

B2p (x− ⌊x⌋)
(2p)!

dx. (5.32)

We use (5.31) with a p such that δm−kRp → 0 as δ = 1
2a

2 ↓ 0. It turns out that any p ≥ 1
with 2p− 1 > k −m achieves this goal. To see this we note that g decays exponentially as
y → ∞ and
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g(y) = yk−m
(

∫ ∞

0
e−u2

u2mdu−
∫

√
y

0
e−u2

u2mdu
)

=
1

2
Γ(m+ 1/2)yk−m −

∞
∑

j=0

(−1)j

j!

yk+j+1/2

2m+ 2j + 1
, y > 0. (5.33)

As a consequence of (5.33) we have that

g(2p)(y) = O(yk+1/2−2p), y ↓ 0, (5.34)

since k −m < 2p− 1 < 2p. Therefore

Rp = −δ2p−1
(

∫ 1

δ
+

∫ ∞

1

)

g(2p)(y)
B2p (y/δ − ⌊y/δ⌋)

(2p)!
dy

= O
(

δ2p−1

∫ 1

δ
yk+1/2−2pdy

)

+ O(δ2p−1) = O(δq) + O(δ2p−1), (5.35)

where q = 2p − 1 when k + 1
2 − 2p > −1 and q = k + 1

2 when k + 1
2 − 2p < −1. In either

case we have q ≥ k −m+ 1
2 , whence

δm−kRp = O(δ1/2), δ ↓ 0, (5.36)

and our goal, to show that δm−kRp → 0 as δ ↓ 0, has been achieved.
We next consider the terms

∫ ∞

1
g(δx)dx,

1

2
g(δ), and δ2j−1g(2j−1)(δ), j = 1, . . . , p, (5.37)

that occur at the right-hand side of (5.31) with p ≥ 1 such that 2p− 1 > k −m. We have
∫ ∞

1
g(δx)dx =

1

δ

∫ ∞

0
g(y)dy − 1

δ

∫ δ

0
g(y)dy. (5.38)

Now from (5.33)

1

δ

∫ δ

0
g(y)dy =

1

2
Γ(m+ 1/2)

δk−m

k −m+ 1
+ O(δk+1/2). (5.39)

Also, by partial integration,
∫ ∞

0
g(y)dy =

∫ ∞

0
yk−m

(

∫ ∞

√
y
e−u2

u2mdu
)

dy

=
1

2(k −m+ 1)

∫ ∞

0
yk+1/2e−ydy =

Γ(k + 3/2)

2(k −m+ 1)
. (5.40)

Thus
∫ ∞

1
g(δx)dx =

Γ(k + 3/2)δ−1

2(k −m+ 1)
− Γ(m+ 1/2)

2(k −m+ 1)
δk−m + O(δk+1/2). (5.41)

Next we have from (5.33)

1

2
g(δ) =

1

4
Γ(m+ 1/2)δk−m + O(δk+1/2). (5.42)
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Finally, from (5.33) for j = 1, . . . , p

δ2j−1g(2j−1)(δ) =
1

2
Γ(m+ 1/2)

(k −m)!δk−m

(k −m− 2j + 1)!
+ O(δk+1/2). (5.43)

Note that the first quantity on the right-hand side of (5.43) should be read as 0 when
2j − 2 ≥ k −m.

Combining (5.36), (5.41) and (5.42), (5.43) we see from (5.31) that

Tk,2m(a) = 2m+1/2δm−k
{Γ(k + 3/2)δ−1

2(k −m+ 1)
− Γ(m+ 1/2)

2(k −m+ 1)
δk−m + O(δk+1/2)

+
1

4
Γ(m+ 1/2)δk−m + O(δk+1/2)

− 1

2
Γ(m+ 1/2)

p
∑

j=1

B2j

(2j)!

(k −m)!δk−m

(k −m− 2j + 1)!

}

+ O(δ1/2). (5.44)

That is,

Tk,2m(a) = 2m+1/2 Γ(k + 3/2)δm−k−1

2(k −m+ 1)
− 1

2
Γ(m+ 1/2)2m+1/2Ck−m,p + O(δ1/2), (5.45)

where for n = 0, 1, . . .,

Cn,p =
−1

n+ 1
+

1

2
−

p
∑

j=1

B2j

(2j)!

n!

(n− 2j + 1)!
. (5.46)

Lemma 2. There holds

Cn,p = ζ(−n), for n = 0, 1, . . . , n ≤ 2p− 2. (5.47)

Proof. First consider the case that n = 0. Then n!/(n − 2j + 1)! = 0 by convention,
and the

∑p
j=1 at the right-hand side of (5.46) vanishes altogether. From ζ(0) = −1/2, see

Abramowitz-Stegun [2], 23.2.11 on p. 807, we conclude that (5.47) holds for n = 0.
When n = 1, 2, . . . we have that all terms j with 2j−1 > n in the series at the right-hand

side of (5.46) vanish. Also, B2j+1 = 0 for j = 1, 2, . . .. Therefore, since n ≤ 2p− 2,

p
∑

j=1

B2j

(2j)!

n!

(n− 2j + 1)!
=

n+1
∑

i=2

Bi

i!

n!

(n+ 1 − i)!
=

−B0

n+ 1
−B1 +

1

n+ 1

n+1
∑

i=0

(

n+ 1

i

)

Bi.

(5.48)
By Abramowitz-Stegun [2], 23.1.3 and 23.1.7 on p. 804 (x = h = 0), we have

B0 = 1, B1 = −1

2
;

n+1
∑

i=0

(

n+ 1

i

)

Bi = Bn+1, n = 0, 1, . . . . (5.49)

Furthermore, by Abramowitz-Stegun [2], 23.2.14-15 on p. 807, we have

Bn+1

n+ 1
= −ζ(−n), n = 1, 2, . . . . (5.50)

And then the result follows for n = 1, 2, . . . by inserting (5.49) and (5.50) into (5.48). 2
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Restoring the variable a via δ = 1
2a

2, we see from (5.45) and the lemma that for m =
0, 1, . . . , k

Tk,2m(a) =
Γ(k + 3/2)

2k − 2m+ 2
2k+3/2a2m−2k−2 +

1

2
Γ(m+ 1/2)2m+1/2ζ(−k +m) + O(a). (5.51)

Hence, we have for m = 0, 1, . . . , k

Lk,2m = lim
a↓0

[

Tk,2m(a) +
Γ(k + 3/2)

2m− 2k − 2
2k+3/2a2m−2k−2

]

=
1

2
Γ(m+ 1/2)2m+1/2ζ(−k +m). (5.52)

Combining (5.8), (5.24) and (5.52) we have for integer i ≥ 0

Lk,i =
1

2
Γ
( i+ 1

2

)

2
i+1

2 ζ(−k + 1
2 i), i 6= 2k + 2, (5.53)

while from (5.15) we have

Lk,2k+2 = 2k+3/2Γ(k + 3/2)
(

k
∑

j=0

1

2j + 1
− 1

2
ln 2
)

. (5.54)

For k < 0, the right-hand side of (5.54) equals −2k+1/2Γ(k + 3/2) ln 2, and the case that
k = −1 yields −1

2

√
2π ln 2, as should.

Comment on the proof. Despite the fact that the validity range of (5.53) contains
i = 0, 1, . . . , 2k + 1, we have not been able to find an argument that works both for odd
and for even such i. Clearly, one cannot use the argument of III.a for even i, the formula
(5.17) being crucial. The argument of III.b cannot be used for odd i since in that case the

g that would appear in (5.26) has leading order behaviour 1
2m!yk−m−1/2, and no high-order

2p derivative of this latter function vanishes (as was the case in (5.33) for i = 2m, even).

6. Alternative series expressions for the Bateman series

In this section we shall prove Thm. 2. Consider for k = 0 the series

Q0(β) =
−1√
2π

∞
∑

r=1

ζ(−r + 1/2)(−1/2)rβ2r+1

r!(2r + 1)
(6.1)

and for k = 1, 2, . . . the series

Qk(β) =
(−1)k+1k!√

2π

∞
∑

r=0

ζ(−k − r + 1/2)(−1/2)rβ2r+k+1

r!(2r + 1) · · · (2r + k + 1)
(6.2)

that occur in the expression (2.5) and (2.6) for J0(β) and Jk(β), k = 1, 2, . . ., respectively.
Note that Qk(β) in (6.2) with k = 0 differs from Q0(β) in (6.1) only in that in the latter the
term with r = 0 is excluded. The series in (6.1) and (6.2) converge for |β| < 2

√
π while it is

clear from (2.4) that Jk(β) makes sense for all β > 0. In this section we present alternative
series expansions for Jk(β) that can be evaluated for all β > 0; these alternative expressions
are intimately related with Lerch’s transformation formula, Bateman [15], 1.11(7) on p. 29.
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Using Riemann’s relation, see Whittaker-Watson [31], §13.151 on p. 269,

ζ(1 − s) =
2

(2π)s
Γ(s)ζ(s) cosπs (6.3)

with s = k + r + 1/2, k, r = 0, 1, . . ., we have

ζ(−k − r + 1/2) =

(

2

π

)1/2 Γ(k + r + 1/2)ζ(k + r + 1/2)

(2π)k+r
cos 1

2π(k + r + 1/2). (6.4)

Therefore, for k = 0, 1, . . . from (6.4) and using that

cos 1
2π(k + r + 1/2) = Re[e

πi
4 ikir], (6.5)

we get

Qk(β) = 2
(

−β
2π

)k+1
Re
[

e
πi
4 ikSk

(

β2

4πi

)]

, (6.6)

in which

Sk(b) =
∑

r

Γ(k + r + 1/2)ζ(k + r + 1/2)

r!(2r + 1) · · · (2r + k + 1)
br , |b| < 1. (6.7)

The summation over r in (6.7) are from 1 to ∞ and from 0 to ∞ for the cases k = 0 and
k = 1, 2, . . ., respectively.

We shall express Sk(b) in a form that can be used to evaluate Qk(β) for all β > 0. We
start by using

ζ(k + r + 1/2) =
∞
∑

n=1

n−k−r−1/2, (6.8)

where we need that k+ r ≥ 1 (explaining why for Q0(β) the term with r = 0 was deleted).
This yields

Sk(b) =
∞
∑

n=1

1

nk+1/2
Tk(b/n), (6.9)

in which

Tk(t) =
∑

r

Γ(k + r + 1/2)tr

r!(2r + 1) · · · (2r + k + 1)
, |t| < 1, (6.10)

with the same convention for the summation over r as before. Let Un denote the Chebyshev
polynomial of the second kind and degree n = 0, 1, . . ., see Abramowitz-Stegun [2], item
22.3.7 in Table 22.3 on p. 775. We define an R-operation for a function f(t) having a
Laurent series

∑∞
j=−∞ cjt

j in 0 < |t| < 1 by

R[f(t)] =
∞
∑

j=0

cjt
j = f(t) −

−1
∑

j=−∞
cjt

j . (6.11)

Proposition 1. (i) We have for |t| < 1

T0(t) =
√
π

(

arcsin
√
t√

t
− 1

)

. (6.12)
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(ii) We have for k = 1, 2, . . ., |t| < 1

Tk(t) =
−√

π

k2k
R
[(1 − t)1/2Uk−1(

√
t)

(t1/2)k+1

]

. (6.13)

Proof. (i) By analyticity it is sufficient to consider t = x2 with 0 ≤ x < 1. There holds

T0(x
2) =

1

x

∞
∑

r=1

Γ(r + 1/2)x2r+1

r!(2r + 1)
=

√
π

x

∫ x

0

∞
∑

r=1

(−1/2

r

)

(−y2)rdy

=

√
π

x

∫ x

0

( 1
√

1 − y2
− 1
)

dy =
√
π

(

arcsinx

x
− 1

)

. (6.14)

(ii) We first write

ψk(t) :=
−√

π

k2k

(1 − t)1/2Uk−1(
√
t)

(t1/2)k+1
=

∞
∑

j=−∞
cjt

j , (6.15)

where we note that Uk−1 is odd when k − 1 is odd and even when k − 1 is even, so that
ψk(t) in (6.15) has indeed a Laurent expansion in powers of t. Writing again t = x2 and
denoting with Cxn [f(x)] the coefficient of xn in f(x), we have that (6.13) is equivalent with

−√
π

k2k
Cx2j+k+1 [(1 − x2)1/2Uk−1(x)] =

Γ(k + j + 1/2)

j!(2j + 1) · · · (2j + k + 1)
, j = 0, 1, . . . . (6.16)

We first verify (6.16) for k = 1, 2. Since U0(x) = 1, we must show that

−1
2

√
πCx2j+1 [(1 − x2)1/2] =

Γ(j + 3/2)

j!(2j + 1)(2j + 2)
, j = 0, 1, . . . . (6.17)

The left-hand side of (6.17) equals −1
2

√
π(−1)j+1

(

1/2
j+1

)

while the right-hand side equals

1

4

Γ(j + 1/2)

(j + 1)!
=

1

4

(j − 1/2)(j − 3/2) · . . . · −1/2 · Γ(−1/2)

(j + 1)!
=

1

4
(−1)j+1

(

1/2

j + 1

)

· −2
√
π.

(6.18)
Next U1(x) = 2x, whence we should verify whether

−1
4

√
πCx2j+3 [(1 − x2)1/2x] =

Γ(j + 5/2)

j!(2j + 1)(2j + 2)(2j + 3)
, j = 0, 1, . . . . (6.19)

The left-hand side of (6.19) equals −1
4

√
π(−1)j+1

(

1/2
j+1

)

, while the right-hand side equals
1
8Γ(j + 1/2)/(j + 1)!, and this gives (6.19) from (6.18).

We now assume that we have established (6.16) for k = 1, 2, . . . , n+ 1 (for n = 1, 2, . . .).
Using that Un+1(x) = 2xUn(x)−Un−1(x), see Abramowitz-Stegun [2], item 22.7.5 in Table
22.7 on p. 782, we write the left-hand side of (6.16) for k = n+ 2 as

−√
π

(n+ 2)2n+2
Cx2j+n+3 [(1 − x2)1/2Un+1(x)] =

n+ 1

n+ 2

Γ(n+ j + 3/2)

j!(2j + 1) · · · (2j + n+ 2)
− n

4(n+ 2)

Γ(n+ j + 3/2)

(j + 1)!(2j + 3) · · · (2j + n+ 3)
.

(6.20)
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Here validity of (6.16) for k = n+ 1 and for k = n (with j + 1 instead of j) has been used.
Some standard manipulations show that the right-hand side of (6.20) equals

Γ(n+ j + 5/2)

j!(2j + 1)(2j + 2) . . . (2j + n+ 3)
. (6.21)

This establishes (6.16) for k = n+ 2, and the proof is complete. 2

Proposition 2. For the function ψk defined in (6.15) we find that

R[ψk(t)] = ψk(t) −
1

2k+1

⌊ k−1

2 ⌋
∑

r=0

Γ(k − 1
2 − r)Γ(−1

2 − r)

Γ(1
2k − r)Γ(1

2k + 1
2 − r)

t−1−r. (6.22)

Proof. Following the proof of Proposition 1(ii) we can show that (6.16) also holds for
j = −1,−2, . . . ,−

⌊

k+1
2

⌋

. For this the denominator j!(2j + 1) · · · (2j + k + 1) of the right-

hand side of (6.16) is interpreted as 2k+1(j+
⌊

k+1
2

⌋

)!(j+ 1
2)(j+ 3

2) · · · (j+
⌊

k
2

⌋

+ 1
2), and then

the result follows upon some administration with Γ-functions. An alternative proof for both
Proposition 1 and 2 follows from expressing Tk(t) in terms of hypergeometric functions, and
using Abramowitz-Stegun [2], items 15.1.15 and 15.1.17 on p. 556, for the cases of even and
odd k, respectively. 2

Combining (2.7), (6.1), (6.6), (6.9) and 1(i) yields the result for P(Mβ = 0) in Thm. 2.
By the explicit regularization in Proposition 2, similar results can be obtained for Sk(b),
k = 1, 2, . . ., leading to expressions for the cumulants Jk(β) through (6.6), (6.2) and (2.6)
that are valid for all values of β > 0. We get, for instance,

S1(b) =

√
π

2b

∞
∑

n=1

1

n

(√
n−

√
n− b

)

, (6.23)

S2(b) =

√
π

4b

∞
∑

n=1

1

n2

(√
n−

√
n− b

)

, (6.24)

S3(b) =
−√

π

24b2

∞
∑

n=1

1

n3

(√
n(n− 9

2b) +
√
n− b(4b− n)

)

. (6.25)

We note that the series in (2.13) and (6.23)-(6.25) have terms that are analytic in a
set that allows evaluation of Sk(b), k = 0, 1, 2, 3, for all points b = β2/4πi with β > 0.
The series converge for these values of b, although convergence is slow, especially for the
series (2.13) and (6.23). Nevertheless, the series can be evaluated conveniently by using a
dedicated form of Euler-Maclaurin summation.

An alternative to using Euler-Maclaurin summation techniques is as follows. We can
do the developments of this section equally well with series QkR(β) where the subscript R
refers to the fact that the terms with index r ≤ R have been omitted in the series (6.1) and
(6.2). This gives rise to functions TkR(t), by correspondingly deleting terms in the series
(6.10), and functions SkR(b) associated with TkR as in (6.9). Now these TkR(t) are O(tR+1)

as t→ 0, whence the terms in the series (6.9) for SkR are O(n−k−R−3/2), n→ ∞. Thus, by
moving an appropriate number of terms from the Bateman series to the polynomial part of
the representation (2.6) for Jk(β) we achieve that the remaining infinite series can still be
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evaluated for all β > 0 in the form of an infinite series with explicitly given terms having
any desired decay rate.

7. Proofs of the bounds on P(Mβ = 0), EMβ and VarMβ

In this section we present the proof of Thm. 3 on bounds for P(Mβ = 0), EMβ and
VarMβ . It turns out that these three quantities can be expressed in terms of a simple
analytic expression together with a series of the form

δ
∞
∑

n=1

f(δn) =: If (δ), δ > 0, (7.1)

with δ = 1
2β

2 typically small and f a rapidly decaying, positive, decreasing, convex function

on (0,∞) for which
∫∞
0 f(x)dx =: If is finite (f does not need to be bounded at x = 0).

For such functions f there is the following result.

Proposition 3. There holds, for f as above,

If +
1

2
δf(δ) −

∫ δ

0
f(x)dx ≤ If (δ) ≤ If −

∫ δ/2

0
f(x)dx, δ > 0. (7.2)

Furthermore, If (δ) decreases from If =
∫∞
0 f(x)dx to 0 as δ increases from 0 to ∞.

The proof of the inequality (7.2) uses basic facts from advanced calculus. The mono-
tonicity is established by basic facts as well, but is not entirely trivial. Monotonicity can
be checked easily for the special case that f is of the form

ft(x) = (1 − x/t)+, x ≥ 0, (7.3)

for some t > 0. Then writing a general f as

f(x) =

∫ ∞

0
tf ′′(t)ft(x)dt, x > 0, (7.4)

we get monotonicity of If (δ) for general f as above. In (7.4) we assume that f is twice
differentiable on [x,∞) with tf ′′(t) and f ′(t) absolutely integrable on [x,∞). We may note
here that the monotonicity result fails to hold when the definition of If (δ) is changed into
δ
∑∞

n=1 f(δ(n− α)) with α positive but arbitrarily small.
Note that the difference between the far right-hand side and the far left-hand side of (7.2)

equals
∫ δ
δ/2(f(x) − f(δ))dx and that this number can be bounded by 1

4δ(f(δ/2) − f(δ)).

The bounds in (7.2) on If (δ) are in terms of the “global” quantity If =
∫∞
0 f(x)dx and

the “local” quantities δ, f(δ),
∫ a
0 f(x)dx with a = δ/2. In the cases at hand we are able to

evaluate the global quantity, and to estimate and bound the local quantities. We shall now
present the details for the three cases.

7.1. Details for P(Mβ = 0). We have by Spitzer’s identity (Thm. 3.1 in [27]) that

− ln P(Mβ = 0) = δ
∞
∑

n=1

1

nδ

1√
π

∫ ∞

√
δn
e−u2

du, δ =
1

2
β2. (7.5)
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The right-hand side of (7.5) is of the form If (δ), but it tends to ∞ when δ ↓ 0. In order to
apply the above approach, we write (7.5) as

− ln P(Mβ = 0) = −δ
∞
∑

n=1

f(δn) − 1

2
ln
(

1 − e−δ
)

, (7.6)

where we have set

f(x) =
e−x

2x
− 1

x
√
π

∫ ∞

√
x
e−u2

du, x > 0, (7.7)

and where we have used that − ln
(

1 − e−δ
)

=
∑∞

n=1 n
−1e−nδ. Note that f is rapidly

decaying and that f(x) = O(1/
√
x), x ↓ 0, whence If =

∫∞
0 f(x)dx is finite.

Proposition 4. The f defined in (7.7) is positive, decreasing and convex on (0,∞).

Proof. We use the inequality, see Abramowitz-Stegun [2], 7.1.13 on p. 298,

ey
2

∫ ∞

y
e−u2

du <
1

y +
√

y2 + 4/π
, y > 0. (7.8)

From (7.8), with y =
√
x, the positivity of the f easily follows. Next, we compute for x > 0

f ′(x) =
−e−x

2x2

(

1 + x− 1√
π
x1/2

)

+
1

x2
√
π

∫ ∞

√
x
e−u2

du, (7.9)

f ′′(x) =
e−x

2x3

(

2 + 2x+ x2 − 3

2
√
π
x1/2 − 3

2
√
π
x3/2

)

− 2

x3
√
π

∫ ∞

√
x
e−u2

du. (7.10)

Thus for y > 0

f ′(y2) < 0 ⇔ ey
2

∫ ∞

y
e−u2

du <
1

2

√
π
(

1 + y2 − 1√
π
y
)

, (7.11)

f ′′(y2) > 0 ⇔ ey
2

∫ ∞

y
e−u2

du <
1

2

√
π
(

1 + y2 +
1

2
y4 − 3

4
√
π
y − 3

4
√
π
y3
)

. (7.12)

Both inequalities at the right-hand side statements in (7.11)-(7.12) follow easily from (7.8),
and the proof is complete. 2

Proposition 5. We have that If =
∫∞
0 f(x)dx = ln 2.

Proof. See [18], (3.11). 2

To bound If (δ) according to (7.2) we need to approximate f(x) and
∫ a
0 f(x)dx. To that

end we note that for x > 0

f(x) =
1√
πx

− 1

2
+ E(x); E(x) =

1

x
√
π

∫

√
x

0

(

1 − e−u2
)

du− e−x − (1 − x)

2x
, (7.13)

and that by Taylor expansion

E(x) =

∞
∑

l=2

(−1)lxl−3/2

(l − 1)!

[ 1

(2l − 1)
√
π
− x1/2

2l

]

, x > 0. (7.14)
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It is easily seen that the terms in the latter series have alternating signs and decrease in
modulus to 0 when 0 ≤ x ≤ 1/π. Hence, retaining only 0 or 1 term in this series, we get
for x, a ∈ [0, 1/π]

0 ≤ E(x) ≤ x1/2

3
√
π
− 1

4
x, (7.15)

and

0 ≤
∫ a

0
E(x)dx ≤ 2a3/2

9
√
π

− 1

8
a2. (7.16)

Using (7.15)-(7.16) in (7.13), we get from (7.6) with Propositions 3-5 the inequalities

ln P(Mβ = 0) ≤ 1

2
ln(1 − e−δ

)

+ ln 2 −
(

2δ

π

)1/2

+
1

4
δ, (7.17)

ln P(Mβ = 0) ≥ 1

2
ln(1 − e−δ

)

+ ln 2 −
(

9δ

4π

)1/2

+
1

4
δ − 2δ3/2

9
√
π

+
1

8
δ2, (7.18)

for 0 < δ ≤ 1/π. From (7.17)-(7.18) we get Thm. 3(i) on restoring β ≤
√

2/π according to

δ = 1
2β

2 (in the resulting inequality (2.23) the 1
8δ

2 at the right-hand side of (7.18) has been
omitted).

7.2. Details for EMβ and VarMβ. We have from (2.4) by the substitution u = 1
2ny

2,

δ = 1
2β

2

βkJk(β) =
∞
∑

n=1

βknk−1/2

√
2π

∫ ∞

β
(y − β)ke−

1

2
ny2

dy

=
2k

√
π
δ

∞
∑

n=1

(δn)
k
2
−1

∫ ∞

√
δn

(u−
√
δn)ke−u2

du. (7.19)

Thus

βkJk(β) =
2k

√
π
δ

∞
∑

n=1

fk(δn) (7.20)

with

fk(x) = x
k
2
−1

∫ ∞

√
x
(u−

√
x)ke−u2

du. (7.21)

Proposition 6. f1 and f2 are positive, decreasing and convex on (0,∞).

Proof. Clearly fk is positive for k = 1, 2, . . .. From

fk(x) = x
k
2
−1

∫ ∞

0
uke−(u+

√
x)2du, x > 0, (7.22)

we compute

f ′k(x) = x
k
2
−2

∫ ∞

0
uk
[k

2
− 1 − x− u

√
x
]

e−(u+
√

x)2du, x > 0. (7.23)
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Clearly, f ′k(x) < 0 when k = 1, 2 and x > 0. More particularly,

f ′1(x) = −
∫ ∞

0
u
( 1

2x3/2
+

1

x1/2
+
u

x

)

e−(u+
√

x)2du, (7.24)

and this increases in x > 0 since both

1

2x3/2
+

1

x1/2
+
u

x
and e−(u+

√
x)2 (7.25)

are positive and decreasing in x > 0 when u ≥ 0. Similarly,

f ′2(x) = −
∫ ∞

0
u2
(

1 +
u

x1/2

)

e−(u+
√

x)2du (7.26)

increases in x > 0. This completes the proof. 2

Proposition 7. We have
∫∞
0 fk(x)dx = (k − 1)!4−k√π.

Proof. This follows from Thm. 1 and the fact that δ
∑∞

n=1 fk(δn) tends to
∫∞
0 fk(x)dx

when δ = 1
2β

2 ↓ 0. 2

We finally need to approximate fk(x) and
∫ a
0 fk(x)dx. To that end we observe that for

k = 1, 2, . . .

fk(x) = x
k
2
−1

∫ ∞

0
(u−

√
x)ke−u2

du− (−1)kEk(x), x > 0, (7.27)

where

Ek(x) = x
k
2
−1

∫

√
x

0
(
√
x− u)ke−u2

du, x > 0. (7.28)

The term comprising the integral at the right-hand side of (7.27) can be evaluated,

x
k
2
−1

∫ ∞

0
(u−

√
x)ke−u2

du =
1

2

k
∑

j=0

(

k

j

)

(−1)jx
1

2
k+ 1

2
j−1Γ

(k − j + 1

2

)

, (7.29)

simply by expanding (u−√
x)k.

Proposition 8. We have for x > 0

xk−1/2

k + 1

(

1 − 1

3
x
)

≤ Ek(x) ≤ xk−1/2

k + 1
. (7.30)

Proof. The second inequality in (7.30) follows from e−u2 ≤ 1 and computing the resulting
integral at the right-hand side of (7.28). As to the first inequality we note that both

(
√
x − u)k and e−u2

are non-negative and decreasing for u ∈ [0,
√
x], whence the average

of the product (
√
x − u)ke−u2

over [0,
√
x] is at least equal to the product of the averages

of (
√
x − u)k and e−u2

over [0,
√
x]. Then the first inequality in (7.30) follows upon using

e−u2 ≥ 1 − u2 in the latter average and computing the resulting integrals. 2

As a consequence of Proposition 8 we have for a > 0
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ak+1/2

(k + 1)(k + 1/2)

(

1 − 1

3

k + 1/2

k + 3/2
a
)

≤
∫ a

0
Ek(x)dx ≤ ak+1/2

(k + 1)(k + 1/2)
. (7.31)

Using (7.30) and (7.31) in (7.27), and combining that with (7.28)-(7.29), we get from
(7.20) with Propositions 3, 6-7, for k = 1, 2 the inequalities

βJ1(β) ≤ 1

2
−
(

2δ

π

)1/2

+
1

2
δ − δ3/2

3
√

2π
+

δ5/2

30
√

2π
, (7.32)

βJ1(β) ≥ 1

2
−
(

9δ

4π

)1/2

+
1

2
δ − δ3/2

6
√
π
− δ5/2

6
√
π
, (7.33)

and

β2J2(β) ≤ 1

4
− 1

2
δ +

4δ3/2

3
√

2π
− 1

4
δ2 +

2δ5/2

15
√

2π
, (7.34)

β2J2(β) ≥ 1

4
− 1

2
δ +

2δ3/2

3
√
π

− 2δ5/2

15
√

2π
− 8δ7/2

63
√
π
, (7.35)

and this holds for all δ > 0. From (7.32)-(7.33) and (7.34)-(7.35) we get Thm. 3(ii) and
(iii) on restoring β > 0 according to δ = 1

2β
2 and remembering that J1(β) = EMβ and

J2(β) = VarMβ .
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