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Abstract

This paper deals with the analysis of a single-location, multi-item inventory model for service
tools, in which coupled demands and coupled returns occur. We distinguish multiple Poisson
demand streams. Per stream there is a given set of tools that is requested per demand. We are
interested in the order fill rates, i.e., the percentage of demands for which all requested tools
are delivered from stock. Requested tools that are not on stock are delivered via an emergency
channel. For the warehouse under consideration, they may be considered as lost sales. Delivered
tools are returned to the warehouse after a deterministic return time, that is equal for all tools.
We develop three approximate models for the order fill rates, which are all based on Markovian
models. One approximate model has appeared to give an underestimation in all computational
tests, while the second approximate model has led to an overestimation in all instances tested.
The last approximate model combines the other two. This approximate model is very accurate
and can be computed efficiently. Hence, it is appropriate for usage in multi-item optimization
algorithms.

Keywords: Single stock point, multiple service tools, coupled demands, coupled returns, order
fill rate.

1. Introduction

Original Equipment Manufacturers (OEMs) produce expensive machines, that are critical in the

production process of their customers. Therefore, customers often have service contracts with the

OEM in which the availability of the machine is agreed upon. To make sure this performance

is met, the OEM performs preventive maintenance. Furthermore, in case of a defect, corrective

maintenance is performed, for which the company needs spare parts, service engineers, and service

tools. These resources are positioned in a global network consisting of central and local customer
∗Corresponding author
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service points. The company’s objective is to meet the agreed system performance against minimal

costs. Total costs consist of procurement costs, inventory holding costs, transportation costs for

regular, lateral and emergency shipments of spare parts and service tools, import taxes, and the

costs for employing service engineers.

The OEM has to decide how much stock is needed at which location, both for spare parts and

service tools, and how many service engineers should be hired to meet all service targets. In practice,

the system performance demanded by customers is decoupled into separate targets for engineers,

spare parts and service tools, and the minimization problem is solved for each resource separately.

In this paper we focus on the subproblem involving service tools. So far, the stock planning of

service tools has received only little attention in literature. However, since prices of service tools

can be very high, and service tools may lead to large investments for OEM’s, optimization of stock

levels of service tools is an important issue.

The situation described occurs for many OEMs, among which a company in the semiconductor

supplier industry, with whom we collaborate. This company already uses sophisticated methods

to optimize stock levels for spare parts. For service tools however the company is still in need of

a model to determine the optimal stock levels. The service tools at this company are stored at

local warehouses. When tools are needed for a maintenance action, they are taken from the nearest

warehouse by a service engineer, and after usage they are returned to this warehouse. Service tools

can also be lent to other warehouses, but after usage they do return to the warehouse they belong

to. The problem is to determine how many service tools of each type are needed to meet the service

levels agreed upon with the customers.

In order to optimize the stock levels of service tools, first an evaluation model is needed. In this

paper, therefore, we study an evaluation model for a single-location, multi-item inventory system for

service tools. Different demand streams occur following a Poisson process, where for each demand

stream a given set of tools is requested. When a demand occurs, all available tools are sent to

the customer, and the other tools are sent from a warehouse in another region or from a central

warehouse that serves as a backup. For the latter shipments, the fastest available transport mode

is usually used to avoid long down-times of machines. For the warehouse under consideration, the

demand for these tools may be considered as lost. Tools that are sent to the customer, return to

their original location after a deterministic return time. We evaluate the order fill rate, i.e., the

percentage of orders for which all requested tools are delivered from stock.

Currently, the evaluation of the order fill rates for service tools is done by ignoring the coupling

between the demands of different tools (and thus the positive correlation between inventory levels

for different items). This way of analyzing may lead to a significant underestimation of the service

offered to customers (see Section 4). Our objective is to find an accurate and efficient evaluation

procedure for the order fill rates. We aim at a procedure that is sufficiently efficient to be used

in an optimization procedure for multi-item service tools models (in which case many evaluations
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have to be executed). For these optimization procedures, we may think of similar procedures as

developed for multi-item spare parts models; see e.g. Wong et al. (2005) and Kranenburg and Van

Houtum (2007).

In spare parts research this usage of building blocks to come up with more sophisticated models

can also be recognized. Already in 1963, Hadley and Whitin (1963) studied a model very similar

to ours, namely an (S− 1, S) policy for spare parts with a Poisson arrival process, arbitrary supply

lead time distributions and lost sales. However, a difference between spare parts and service tools

is that service tools are often demanded in combination with other service tools, i.e., we have

coupled demands, while spare parts fail one at a time in general. The first model by Hadley and

Whitin (1963) has been used a lot in other spare parts inventory models; see Kennedy et al. (2002),

Sherbrooke (2004), and Muckstadt (2005) for an overview of the developments in this field.

The service tools problem is also related to assemble-to-order systems. In those systems several

subassemblies are demanded and all have to be available before an order can be assembled. Song

and Zipkin (2003) give an overview of research on assemble-to-order systems. In most of the studies

backlogging is assumed, but there are also a few papers where the lost sales case is considered. Song

et al. (1999) study a generalized model that has both complete backlogging and lost sales as a

special case. In addition, they distinguish total order service, which means that an order is fulfilled

completely or rejected as a whole, and partial order service, which means that partial fulfilment

occurs as in our service tools problem. Song et al. (1999) derive an exact matrix-analytic solution

for the order-fulfillment performance measures. The supply system in this paper is modeled as a

single-machine exponential production facility per item. Iravani et al. (2003) extended this work

by introducing flexible customers, i.e., customers that are willing to compromise on the requested

items. Dayanik et al. (2003) study computationally efficient performance estimates for the same

problem. When comparing our model to these assemble-to-order models, we observe the same

structure for demand streams, and the return times in our model are like the lead times in an

assemble-to-order system. In the terminology of assemble-to-order systems, the supply system in

our model is modeled as an ample server system with equal deterministic service times for all tools.

I.e., tools demanded together will return together after an equal deterministic return time for all

tools, or, in other words, we have coupled returns. In essence, it is because of these coupled returns

that the type of solutions for the assemble-to-order systems described above does not work for our

problem.

Another problem related to ours is the repair kit problem; see e.g. Brumelle and Granot (1993),

Mamer and Smith (1982, 1985), and Mamer and Shogan (1987). In this problem, repairmen travel

around to repair machines with a repair kit containing several items. One or more items are needed

to repair a machine. Thus, for a repair a subset of tools or spare parts is needed, as in our problem.

The problem is to determine the optimal set of items to include in the repair kit. However, in most

literature studying the repair kit problem, each repair is studied independently, which means that
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all tools are restocked again directly after usage, while we study demand over an infinite horizon,

including the effect that tools are not readily available after usage because of the return times.

More recently, Teunter (2006) studied the problem in which a repairman visits multiple locations

before his repair kit is restocked. However, in this work every tour is considered separately, which

means that also in this paper lead times are not considered.

Also related is the work of Güllü and Köksalan (2007). They study an optimization model for

the kit-management problem with an exact evaluation. In this problem items, for instance hospital

implants, are stocked at a central location, and if needed kits are composed from these items and

sent to a customer’s site. From the kit one item is used, and the others are returned to the central

location after a certain holding time. The item that is used is replenished through a finite capacity

queue. If an item is not on stock, it is supplied exogenously through an emergency channel. As

soon as a unit of that item becomes available again at the central location, it is returned to the

exogenous source. There are two differences between this model and the one we study in this paper.

The first difference is that in our problem all service tools are returned together, while in this paper

the item that is used is replenished separately after a replenishment time. The second difference

is that in our problem the exact tool that is borrowed from another location is returned to that

location after usage, and not the first unit of the same type that becomes available.

The main contribution of this paper is as follows. First, we introduce a new problem, in which

both coupled demands and coupled returns occur. Second, we show that the full evaluation problem

decomposes into evaluation problems for small sets of service tools. Third, we show that the steady-

state behavior in these smaller subproblems is almost 100% insensitive to whether the distribution

of the return times is deterministic or exponential. Fourth, because of this insensitivity property,

we formulate three approximate Markovian models in which exponential return times are assumed.

The first approximate model leads to an underestimation in all instances tested, while the second

approximate model leads to an overestimation for all instances. Both approximate procedures

are accurate for specific instances and can be computed efficiently. The third approximate model

combines the other two, and leads to very accurate approximations for all instances tested. The

absolute inaccuracy for the order fill rates as found in our test bed is only 0.005. Fifth, in the

numerical experiment, we incorporate the currently used evaluation method which ignores the

coupling in demands for different tools. The currently used method underestimates order fill rates

by no less than 0.070 in our test bed. Hence, the third approximate model improves the currently

used method by more than a factor 10.

This paper is organized as follows. In Section 2, we present our model. Section 3 shows the

insensitivity of this model when the distribution of the return times is changed from a deterministic

to an exponential distribution. In Section 4, the approximations are described, and numerical results

are presented to show their accuracy. Finally, in Section 5, conclusions are drawn.
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2. Model description

In this section, we first present our model. Afterwards, the decomposition of this model into

subproblems is described in Subsection 2.1. Because of this decomposition, we only need to study

small subproblems. In Subsection 2.2, we first analyze the fill rates for individual tools, and by

that subproblems including only one tool are solved. Subproblems including multiple tools will be

the focus of the remainder of this paper.

We consider a single warehouse with a stock of service tools, in a region where multiple machines

are installed. When a machine breaks down, a demand occurs for service tools that are needed

to repair the machine. Let I = {1, 2, ..., |I|} denote the set of service tools. For each type of

defect, a different subset of service tools is needed. In other words, there are different demand

streams for different sets of tools. Let K = {1, 2, ..., |K|} denote the set of demand streams, where

1 ≤ |K| ≤ 2|I|−1. For each k ∈ K the subset of service tools demanded is given by Ik ⊂ I (Ik 6= ∅).
We assume that for all demand streams at most one tool of type i ∈ I is needed.

If all service tools included in a demanded set are available at the warehouse, the whole set

is sent to the customer immediately. However, if only part of the demanded set is available,

partial fulfillment of the order is possible. Thus we consider a partial order service model (cf.

the terminology of Song et al., 1999). This means that the available service tools are sent to the

customer immediately, and the rest of the set is sent by emergency supply (i.e., from a warehouse in

another region or from a central warehouse that serves as a backup). For the stock at the warehouse,

the demand for the non-available tools is considered as lost. After usage all tools are returned to

their original location after a deterministic return time tret. So, there is a fixed circulation stock

for each tool stocked at the warehouse under consideration, and tools always are either on stock or

at a machine for repair purposes. In the latter case, a tool is said to be in the return pipeline. The

inventory policy for the service tools in the warehouse is called a base stock policy with base stock

vector S = (S1, S2, . . . , SI), where Si is the base stock level for service tool i.

The demand process for each stream k ∈ K is a Poisson process with a constant rate λk (≥ 0).

The demand process for all demand streams together then also is a Poisson process, with rate

λ =
∑

k∈K λk. The assumption of Poisson demand streams follows from the technical nature of

the machines under consideration. For these systems the mean time between failures is (close-to)

exponential. Besides that, the warehouse serves many machines that all fail independently with low

failure rates. The total demand process for this situation can be approximated well by a Poisson

process. Furthermore, in practice, only short down-times of machines are allowed. Therefore, it is

reasonable to assume constant failure rates.

The performance of the system is measured in terms of order fill rates, i.e. the percentages of

orders for which all requested tools can be delivered from stock. Define βk as the order fill rate for

demand stream k ∈ K. The performance of the whole system is measured by the aggregate order
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fill rate β, which denotes the fraction of all demands that is fulfilled from stock:

β =
∑

k∈K
λk
λ βk.

To determine the aggregate order fill rate, we need to calculate the order fill rates for all demand

streams k ∈ K. Therefore, our objective is to determine these order fill rates at given base stock

levels.

2.1 Decomposition into subproblems

In real life situations, the number of service tools |I| can be very large, which seems to complicate

the evaluation of the order fill rates in the model described. However, because of the partial order

fulfillment we can decompose our problem into smaller subproblems. Only demand for service tools

that are not available is lost for the warehouse under consideration. The other tools are delivered

from stock. This means that the out of stock situation for one tool does not influence the stock

levels of the other service tools. Stock levels of tools are therefore only influenced by the aggregate

demand for the tool itself. This also means that when determining the order fill rate for a demand

stream k ∈ K, you only have to consider the subset of tools Ik ⊂ I. Hence, our problem decomposes

into smaller subproblems.

Let us define subproblem k as the problem in which we study the order fill rate for demand

stream k ∈ K. The set of tools for this subproblem is denoted by Ik ⊂ I, and the base stock

levels are given by Si for all i ∈ Ik. All tools are returned to their original location after an equal

deterministic return time tret. For each J ⊂ Ik a demand stream exists with rate λJ =
∑

l∈KJ
λl,

where KJ := {l ∈ K|Ik ⊃ J and Il ∩ (Ik\J) = ∅}. This means that we consider all possible subsets

of tools within the subproblem k, including the empty set, and define the aggregate demand for

a specific subset as the sum over all demand streams in the original problem that do include this

specific subset, but no other tools within Ik. Properties following from this definition are:

1. {KJ}J⊂Ik
is a partition of K. This means that each demand stream k ∈ K is taken into

account exactly once when studying subproblem k.

2.
∑

J⊂Ik
λJ = λ. This follows from property 1.

3. λ∅ is the demand that does not include any tools within the set Ik and therefore can be

neglected when determining the order fill rate for demand stream k. So, although the total

demand rate is equal to the demand rate in the original problem, part of the demand is not

asking for any tool within the set Ik and thus does not influence the performance of demand

stream k.

For later usage, we define pJ as the probability that an arbitrary demand in subproblem k is for

demand stream J (6= ∅); i.e., pJ := λJ
λ−λ∅

. Finally, for each subproblem k, we define Lk as the

number of demand streams J 6= ∅ for which λJ > 0.
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2.2 Fill rates for individual tools

In this subsection we study the fill rates for individual tools. We consider a service tool i ∈ I, and

define λ̃i =
∑

k∈K;i∈Ik
λk as the aggregate demand rate for service tool i, and β̃i as the fill rate of

the individual service tool i. For later usage, we define ρi = λ̃itret
Si

as the utilization rate of tool i,

and p̃i as the probability that an arbitrary demand asks (among others) service tool i; i.e., p̃i = λ̃i
λ .

For a service tool i, the steady-state behavior of the on-hand stock is independent of the behavior

for all other tools. It is easily seen that its behavior is identical to the behavior of the number

of customers in an M/G/c/c queueing system with arrival rate λ̃i, mean service time tret, and Si

servers. The fill rate then is equal to one minus the corresponding Erlang loss probability:

β̃i = 1− (λ̃itret)Si/Si!
PSi

j=0(λ̃itret)j/j!
. (1)

The Erlang loss probability is known to be insensitive to the distribution of the service times (see

e.g. Cohen, 1976), and thus the fill rates for individual tools in our model are insensitive to the

distribution of the return times.

Combining this result for individual tools and the decomposition result of the previous section,

we immediately get a solution for subproblems concerning only one tool. Namely, the order fill rate

for a subproblem k with Ik = {i} for some i ∈ I is equal to β̃i. Hence, for the remainder of this

paper, it suffices to focus on subproblems k in which more that one service tool is demanded, i.e.,

with |Ik| > 1.

3. An insensitivity result for the return times

Deterministic return times complicate the analysis of our model. I.e., having exponentially dis-

tributed return times would allow us to use Markov processes to derive the performance. Therefore,

in this section, we study whether our model is sensitive to changing the deterministic return times

into exponentially distributed return times. This gives a first approximate model. For subprob-

lems with two or more tools, we will establish an almost 100% insensitivity for the order fill rate,

and that insight will be used later on for the development of more efficient approximate models.

Notice that, in Subsection 2.2, we established a complete insensitivity for the (order) fill rate in

subproblems with only one tool.

The first approximate model, M0, is obtained from the original model by replacing the deter-

ministic return times by exponentially distributed return times. In this model, we keep the property

that service tools demanded together are also returned together. Obviously, the behavior of M0

may be described by a Markov process. In the state description we have to incorporate which units

in the return pipeline are coupled. As orders may be filled partially, a coupling may occur for all

combinations of tools. An appropriate state description would be to denote for each subset I ′ ⊂ Ik

how many groups of precisely the tools of I ′ are present in the return pipeline. This would lead

7



Table 1: Parameter settings

Name of parameter Number of values Values

Number of tools |Ik| and 5 |Ik| = 2, Lk = 3

number of demand streams Lk |Ik| = 3, Lk = 4

|Ik| = 3, Lk = 7

|Ik| = 5, Lk = 6

|Ik| = 3, Lk = 4, asymmetric

Service level 2 low, high

Coupling factor Fk 3 0.2, 0.5, 0.8

Aggregate demand rate λ̃i 3 0.2, 0.6, 1.0

to a (2|Ik| − 1)-dimensional state space. For the resulting Markov process, except for very small

instances, no analytical solution is available and a numerical solution will lead to large computation

times because of the large size of the state space. Summarizing, the coupled returns complicate

the state description and lead to a large state space, which makes the determination of the order

fill rates via the Markov process unattractive. Furthermore, we are interested in insights on the

sensitivity of the model to motivate the approach used for the approximate models later on in the

paper. To gain these insights, for both the original model and the approximate model M0, we use

simulation to determine the order fill rates and their differences.

We now define the test bed of subproblems. W.l.o.g., for each subproblem, we may assume that

λ∅ = 0 and that the service tools are numbered 1, . . . , |Ik| (and thus Ik = {1, . . . , |Ik|}). The input

parameters for each subproblem are the number of service tools |Ik|, the number of non-empty

demand streams Lk, the total demand rate λ, the return time tret, the probabilities pJ , J ⊂ Ik,

and the base stock levels Si, i ∈ Ik. These input parameters are varied such that specific values

are obtained for the following variables: (i) the combination of the number of tools |Ik| and the

number of demand streams Lk; (ii) the service level, which is determined by the choice for the

basestock levels; (iii) the so-called coupling factor that is defined below; (iv) the aggregate demand

rates λ̃i. The settings for these parameters are given in Table 1, and their combinations result into

5 · 2 · 3 · 3 = 90 instances in total.

As can be seen in Table 1, for the combination of the number of tools and the number of demand

streams five values are chosen. First, we vary the number of service tools, i.e., we take |Ik| = 2, 3, 5.

Then, for the demand streams, we take one stream with coupled demands for the whole set of tools

and streams for individual tools; Lk = |Ik|+ 1 in that case. For |Ik| = 3, we also study the cases in

which all possible demand streams occur and thus Lk = 7. We mainly keep instances symmetric,

but for |Ik| = 3 and Lk = 4 we also consider asymmetric instances. Within symmetric instances,

the demand rates for each service tool are equal, and also the demand rates for all subsets with the

same size are equal.

Within all instances, equal base stock levels are chosen, i.e., S1 = . . . = S|Ik|. For these base

stock levels, two values are chosen. The first value, a base stock level of 1, leads to a low order fill
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Table 2: Parameter settings - demand probabilities

Symmetric Fk pJ

instances |J | = 1 |J | = 2 |J | = 3 |J | = 5

|Ik| = 2, Lk = 3 0.8 1/6 4/6

0.5 1/3 1/3

0.2 4/9 1/9

|Ik| = 3, Lk = 4 0.8 1/7 4/7

0.5 1/4 1/4

0.2 4/13 1/13

|Ik| = 3, Lk = 7 0.8 1/13 1/13 7/13

0.5 4/19 1/19 4/19

0.2 5/17 1/51 1/17

|Ik| = 5, Lk = 6 0.8 1/9 4/9

0.5 1/6 1/6

0.2 4/21 1/21

Asymmetric Fk pJ

instances J = {1} J = {2} J = {3} J = {1, 2, 3}
|Ik| = 3, Lk = 4, asymmetric 0.8 1/7 2/7 0 4/7

0.5 1/4 7/20 3/20 1/4

0.2 4/13 5/13 3/13 1/13

rate for the demand stream that asks all tools Ik. The second value is chosen such that the order

fill rates for the latter demand stream are approximately 95%. This is done to study both a low

and a high service level.

We define the coupling factor Fi,k for a specific subproblem k and a tool i ∈ Ik as follows:

Fi,k =
∑

J⊂Ik;i∈J

pJ

p̃i

|J | − 1
|Ik| − 1

.

This means that Fi,k = 1 if p̃i = pIk
, i.e., if demand for tool i comes only from the stream demanding

all tools; and Fi,k = 0 if p̃i = p{i}, i.e. if all demand for tool i comes from demands for this single

tool only. Next, we define the coupling factor Fk for subproblem k as a weighted average of all

individual coupling factors of the service tools:

Fk =
∑
i∈Ik

p̃i∑
j∈Ik

p̃j
Fi,k.

We vary the probabilities pJ such that we get values of 0.2, 0.5 and 0.8 for the coupling factor Fk,

which corresponds to weak, medium and strong coupling. The values pJ for the different settings

for the combination of |Ik| and Lk are given in Table 2.

Finally, the demand rates λ are chosen as follows. In the symmetric instances, λ is set such

that for all i ∈ Ik the aggregate demand rates λ̃i are equal to 0.2, 0.6 and 1.0, respectively. In

the asymmetric cases, the demand rate is varied such that values of 0.2, 0.6 and 1.0 are obtained

for the aggregate demand rate of service tool 1 and that the aggregate demand rates for service

tools 2 and 3 are 120% and 80% of the aggregate demand rate for tool 1, respectively. Notice that

instances with equal aggregate demand rates for individual tools have also equal utilization rates
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Table 3: Simulation details

Parameter Unit Value

Number of simulation runs 100

Warm-up period # demands 5000

Length of each simulation run # demands 25000

of the tools, and therefore effects of varying coupling factors under equal utilization rates can be

observed.

The return time (= mean return time in approximate model M0), tret, is equal to 1 in all

instances.

The parameters are partly chosen based on real life data from the company we collaborate

with. In this company, the return time is one week. Further, an aggregate demand rate of one

per week per tool is high, and aggregate demand rates of 0.2 per week is low. Also the size of

the subproblems, thus the amount of tools included in demand streams, is based on actual data.

Namely, in most of the real-life demands for tools up to five service tools are demanded. The base

stock levels are chosen in such a way that they lead to low order fill rates, and to an order fill

rate of approximately 95%. This last number is used as a target for the order fill rates and thus

corresponds to a high service level. Finally, the coupling factor is varied between three values to

get a better understanding of the influence of this parameter on the sensitivity of the model and

later on the performance of the approximations.

Both the original model and the approximate model M0 are studied using simulation. The

details of the simulation runs per instance are given in Table 3. The simulations took on average

38.04 seconds, with a maximum of 51.49 seconds.

In Tables 4 and 5, for the symmetric and the asymmetric instances, respectively, we have listed

95% confidence intervals for the order fill rates in both models and for their differences. Here

βk denotes the order fill rate of the stream that ask all tools Ik in subproblem k in the original

model with deterministic return times; and β
(0)
k denotes the corresponding order fill rate for the

approximate model M0 with exponential return times. (Recall that, within subproblem k we are

interested in the order fill rate for the stream that asks all tools. Order fill rates for demand streams

J ⊂ Ik with |J | < |Ik| can be analyzed via smaller subproblems. The results for these demand

streams are therefore not included.)

The listed results show that the differences in order fill rates are very small. The average

absolute difference of β
(0)
k − βk is 0.0006, and the maximum absolute difference is 0.0060. In most

of the instances the 95% confidence interval of the difference contains the value 0, however for some

instances the value 0 is not included. This means that the model is not completely insensitive

to the replacement of the deterministic return times by exponentially distributed return times.
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Table 4: Results of the sensitivity analysis - Symmetric instances

|Ik| Lk λ̃i Fk Service Si βk β
(0)
k β

(0)
k − βk

2 3 0.2 0.8 l 1 0.8006 ± 0.0006 0.8006 ± 0.0007 0.0000 ± 0.0006
h 2 0.9780 ± 0.0003 0.9780 ± 0.0003 0.0000 ± 0.0003

0.5 l 1 0.7570 ± 0.0010 0.7575 ± 0.0012 0.0006 ± 0.0010
h 2 0.9723 ± 0.0004 0.9722 ± 0.0005 -0.0001 ± 0.0004

0.2 l 1 0.7183 ± 0.0013 0.7187 ± 0.0016 0.0004 ± 0.0014
h 2 0.9685 ± 0.0007 0.9691 ± 0.0008 0.0006 ± 0.0007

0.6 0.8 l 1 0.5577 ± 0.0008 0.5572 ± 0.0010 -0.0005 ± 0.0009
h 3 0.9719 ± 0.0004 0.9717 ± 0.0003 -0.0002 ± 0.0003

0.5 l 1 0.4810 ± 0.0012 0.4808 ± 0.0015 -0.0002 ± 0.0014
h 3 0.9653 ± 0.0005 0.9651 ± 0.0005 -0.0003 ± 0.0005

0.2 l 1 0.4226 ± 0.0021 0.4227 ± 0.0020 0.0000 ± 0.0019
h 3 0.9622 ± 0.0008 0.9614 ± 0.0009 -0.0009 ± 0.0009

1 0.8 l 1 0.4162 ± 0.0008 0.4160 ± 0.0009 -0.0003 ± 0.0009
h 4 0.9773 ± 0.0003 0.9772 ± 0.0003 -0.0001 ± 0.0003

0.5 l 1 0.3332 ± 0.0010 0.3331 ± 0.0014 -0.0003 ± 0.0014
h 4 0.9723 ± 0.0005 0.9723 ± 0.0005 0.0000 ± 0.0005

0.2 l 1 0.2769 ± 0.0019 0.2783 ± 0.0019 0.0014 ± 0.0022
h 4 0.9701 ± 0.0006 0.9698 ± 0.0006 -0.0003 ± 0.0006

3 4 0.2 0.8 l 1 0.7716 ± 0.0007 0.7721 ± 0.0008 0.0005 ± 0.0007
h 2 0.9728 ± 0.0003 0.9726 ± 0.0003 -0.0002 ± 0.0003

0.5 l 1 0.6908 ± 0.0012 0.6910 ± 0.0013 0.0002 ± 0.0013
h 2 0.9613 ± 0.0006 0.9615 ± 0.0006 0.0002 ± 0.0006

0.2 l 1 0.6189 ± 0.0024 0.6203 ± 0.0021 0.0015 ± 0.0022
h 2 0.9549 ± 0.0012 0.9543 ± 0.0012 -0.0005 ± 0.0011

0.6 0.8 l 1 0.5065 ± 0.0009 0.5059 ± 0.0011 -0.0006 ± 0.0010
h 3 0.9645 ± 0.0004 0.9642 ± 0.0004 -0.0003 ± 0.0004

0.5 l 1 0.3795 ± 0.0014 0.3787 ± 0.0016 -0.0008 ± 0.0015
h 3 0.9518 ± 0.0007 0.9516 ± 0.0007 -0.0002 ± 0.0008

0.2 l 1 0.2886 ± 0.0022 0.2887 ± 0.0025 0.0001 ± 0.0026
h 3 0.9449 ± 0.0012 0.9446 ± 0.0012 -0.0004 ± 0.0014

1 0.8 l 1 0.3604 ± 0.0009 0.3589 ± 0.0010 -0.0015 ± 0.0011
h 4 0.9708 ± 0.0004 0.9708 ± 0.0004 0.0000 ± 0.0004

0.5 l 1 0.2349 ± 0.0012 0.2323 ± 0.0014 -0.0028 ± 0.0014
h 4 0.9611 ± 0.0006 0.9613 ± 0.0007 0.0002 ± 0.0008

0.2 l 1 0.1600 ± 0.0021 0.1582 ± 0.0023 -0.0017 ± 0.0025
h 4 0.9567 ± 0.0011 0.9557 ± 0.0011 -0.0011 ± 0.0013

3 7 0.2 0.8 l 1 0.7846 ± 0.0007 0.7851 ± 0.0008 0.0005 ± 0.0007
h 2 0.9749 ± 0.0003 0.9746 ± 0.0003 -0.0002 ± 0.0003

0.5 l 1 0.7019 ± 0.0014 0.7018 ± 0.0013 -0.0001 ± 0.0014
h 2 0.9626 ± 0.0006 0.9627 ± 0.0005 0.0002 ± 0.0005

0.2 l 1 0.6243 ± 0.0026 0.6247 ± 0.0025 -0.0004 ± 0.0025
h 2 0.9551 ± 0.0013 0.9549 ± 0.0013 -0.0001 ± 0.0013

0.6 0.8 l 1 0.5245 ± 0.0010 0.5249 ± 0.0012 0.0004 ± 0.0010
h 3 0.9665 ± 0.0004 0.9664 ± 0.0004 -0.0002 ± 0.0004

0.5 l 1 0.3919 ± 0.0015 0.3914 ± 0.0017 -0.0006 ± 0.0016
h 3 0.9525 ± 0.0008 0.9525 ± 0.0007 0.0000 ± 0.0008

0.2 l 1 0.2928 ± 0.0025 0.2937 ± 0.0028 0.0011 ± 0.0031
h 3 0.9443 ± 0.0013 0.9449 ± 0.0015 0.0006 ± 0.0016

1 0.8 l 1 0.3764 ± 0.0013 0.3766 ± 0.0010 0.0001 ± 0.0010
h 4 0.9723 ± 0.0004 0.9723 ± 0.0004 -0.0001 ± 0.0004

0.5 l 1 0.2437 ± 0.0014 0.2417 ± 0.0016 -0.0020 ± 0.0015
h 4 0.9614 ± 0.0006 0.9620 ± 0.0007 0.0005 ± 0.0008

0.2 l 1 0.1627 ± 0.0024 0.1613 ± 0.0025 -0.0012 ± 0.0026
h 4 0.9567 ± 0.0013 0.9564 ± 0.0012 -0.0005 ± 0.0016

5 6 0.2 0.8 l 1 0.7172 ± 0.0015 0.7325 ± 0.0015 0.0000 ± 0.0014
h 2 0.9626 ± 0.0007 0.9659 ± 0.0007 0.0002 ± 0.0006

0.5 l 1 0.5769 ± 0.0019 0.5771 ± 0.0018 0.0001 ± 0.0019
h 2 0.9422 ± 0.0009 0.9419 ± 0.0009 -0.0003 ± 0.0009

0.2 l 1 0.4630 ± 0.0048 0.6114 ± 0.0053 -0.0009 ± 0.0040
h 2 0.9287 ± 0.0022 0.9531 ± 0.0021 0.0000 ± 0.0023

0.6 0.8 l 1 0.4215 ± 0.0017 0.4326 ± 0.0019 -0.0001 ± 0.0016
h 3 0.9515 ± 0.0008 0.9547 ± 0.0008 -0.0009 ± 0.0009

0.5 l 1 0.2422 ± 0.0016 0.2378 ± 0.0016 -0.0044 ± 0.0016
h 3 0.9286 ± 0.0010 0.9285 ± 0.0011 -0.0002 ± 0.0010

0.2 l 1 0.1422 ± 0.0042 0.2805 ± 0.0049 -0.0005 ± 0.0051
h 3 0.9130 ± 0.0022 0.9441 ± 0.0023 0.0012 ± 0.0029

1 0.8 l 1 0.2748 ± 0.0016 0.2773 ± 0.0017 0.0002 ± 0.0018
h 4 0.9602 ± 0.0007 0.9637 ± 0.0007 -0.0001 ± 0.0008

0.5 l 1 0.1244 ± 0.0013 0.1183 ± 0.0013 -0.0060 ± 0.0014
h 4 0.9422 ± 0.0009 0.9428 ± 0.0009 0.0005 ± 0.0009

0.2 l 1 0.0557 ± 0.0037 0.1519 ± 0.0040 0.0027 ± 0.0050
h 4 0.9311 ± 0.0020 0.9561 ± 0.0024 -0.0003 ± 0.0028
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Table 5: Results of the sensitivity analysis - Asymmetric instances

|Ik| Lk λ̃1 Fk Service Si βk β
(0)
k β

(0)
k − βk

3 4 0.2 0.8 l 1 0.7725 ± 0.0007 0.7730 ± 0.0008 0.0005 ± 0.0007
h 2 0.9718 ± 0.0003 0.9716 ± 0.0003 -0.0002 ± 0.0003

0.5 l 1 0.6915 ± 0.0013 0.6917 ± 0.0013 0.0002 ± 0.0013
h 2 0.9606 ± 0.0006 0.9606 ± 0.0006 0.0000 ± 0.0006

0.2 l 1 0.6196 ± 0.0023 0.6209 ± 0.0021 0.0014 ± 0.0022
h 2 0.9537 ± 0.0011 0.9532 ± 0.0012 -0.0004 ± 0.0011

0.6 0.8 l 1 0.5092 ± 0.0009 0.5092 ± 0.0011 0.0000 ± 0.0010
h 3 0.9615 ± 0.0004 0.9612 ± 0.0004 -0.0003 ± 0.0004

0.5 l 1 0.3817 ± 0.0014 0.3810 ± 0.0015 -0.0007 ± 0.0014
h 3 0.9492 ± 0.0007 0.9490 ± 0.0007 -0.0003 ± 0.0008

0.2 l 1 0.2903 ± 0.0022 0.2905 ± 0.0024 0.0002 ± 0.0027
h 3 0.9424 ± 0.0011 0.9422 ± 0.0012 -0.0002 ± 0.0013

1 0.8 l 1 0.3633 ± 0.0009 0.3635 ± 0.0009 0.0002 ± 0.0010
h 4 0.9666 ± 0.0004 0.9667 ± 0.0005 0.0000 ± 0.0005

0.5 l 1 0.2370 ± 0.0012 0.2349 ± 0.0014 -0.0023 ± 0.0014
h 4 0.9577 ± 0.0007 0.9579 ± 0.0007 0.0001 ± 0.0008

0.2 l 1 0.1615 ± 0.0021 0.1606 ± 0.0022 -0.0008 ± 0.0025
h 4 0.9534 ± 0.0011 0.9524 ± 0.0011 -0.0011 ± 0.0013

However, since the differences are small, we conclude that replacing the deterministic return times

by exponentially distributed times does lead to accurate approximations for the order fill rates.

4. Efficient approximate models

By the results of Section 3, model M0 leads to accurate approximations for the order fill rates of

the original model. As stated earlier, the behavior of M0 can be described by a Markov process.

However, for this Markov process, no analytical solution is available and a numerical solution will

lead to large computation times because of the large size of the state space. Therefore, we apply

additional approximations to model M0. That leads to the approximate models M1 and M2, which

both are obtained from M0 by aggregation of states. Furthermore, we combine approximate model

M1 and M2 into a third approximate model, M3. Approximate models M1 and M2 are described

in Subsection 4.1. Then, in Subsection 4.2, approximate model M3 is described. After that, the

accuracy of all three models is tested and compared to the currently used method in Subsection

4.3.

4.1 Description of models M1 and M2

The approximate models M1 and M2 are obtained from model M0 by aggregating all states with

the same numbers of tools in the return pipeline. In other words, in M1 and M2 we only keep

track of the total amount of tools that is in the return pipeline and we ignore the way tools were

demanded. So, when the system is in a given aggregate state, it is not known whether the tools in

the return pipeline were demanded individually or in sets of tools. For the latter, we may assume

two extremes, leading to M1 and M2, respectively. In approximate model M1, we assume that
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Figure 1: Markov process for approximate model M0 in Example 1

all tools in the return pipeline were demanded individually and thus that they will be returned

individually. I.e., in model M1, we assume minimal coupling for the returns. In approximate model

M2, we assume maximal coupling ; the precise formulation of this model follows below. We first

show the construction of both M1 and M2 for an example.

Example 1. Consider model M0 for a situation with |Ik| = 2, Lk = 3, λ{1} > 0, λ{2} > 0,

λ{1,2} > 0, and S = (1, 2). The behavior of this system may be described by a Markov process.

As states we define the tuples (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 1)?, (1, 2), and (1, 2)?. For each

state, the i-th component denotes the number of service tools i in the return pipeline, i = 1, 2. In

both state (1, 1) and state (1, 1)?, there is one tool of type 1 and one tool of type 2 in the return

pipeline; in (1, 1)? they are coupled and in (1, 1) they are not. In both state (1, 2) and state (1, 2)?,

there is one tool of type 1 and two tools of type 2 in the return pipeline; in (1, 2)? one of the

two tools 2 is coupled with tool 1 and in (1, 2) there is no coupling. The Markov process that is

obtained via this state description is depicted in Figure 1. In this picture, µ = 1/tret denotes the

return rate.

We now aggregate the states (1, 1) and (1, 1)? in an aggregated state (1, 1) and the states (1, 2)

and (1, 2)? in an aggregated state (1, 2). For the aggregated states, we have to define the outgoing

transition rates. The states that are aggregated have the same transitions that correspond to

demand arrivals, and thus those transitions are taken over for the aggregated states. However, the

states that are aggregated have different transitions corresponding to returns. For the aggregated

states, we either assume minimal coupling, which leads to approximate model M1 or we assume

maximal coupling, which leads to approximate model M2. The resulting Markov processes are
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Figure 2: Markov processes for approximate models M1 (left) and M2 (right) in Example 1

denoted in Figure 2. ♦

The general description of the approximate models M1 and M2 is as follows. For both models

for a specific subproblem k, we define aggregated states x = (x1, . . . , x|Ik|), where xi denotes the

number of tools i in the return pipeline, i ∈ Ik, 0 ≤ xi ≤ Si. A state transition only occurs when a

tool or a coupled group of tools is returned or when a demand occurs.

Both approximate models have the same state transitions due to demand for tools. These

outgoing transitions and corresponding transition rates are as follows:

• Transition due to demand (Model M1 and M2):

A demand for service tools J ⊂ Ik occurs with rate λJ . This results in a transition to state

x̂ = (x̂1, ..., x̂|Ik|), with

x̂i =

{
xi + 1 if i ∈ J and xi < Si;

xi otherwise.

For approximate model M1, the outgoing transitions due to a return of a tool and corresponding

transition rates from a state x are as follows:

• Transitions due to a return (Model M1):

For each i ∈ Ik with xi > 0, a tool i is returned with rate xi/tret. This results in a transition

to state x̂ = (x̂1, . . . , x̂|Ik|), with x̂i = xi − 1 and x̂j = xj for all j 6= i.

For approximate model M2, for each state x we have the same outgoing transitions due to

demand as for model M1, but for the transitions due to a return, we obtain:

• Transitions due to a return (Model M2):

We assume maximal coupling for the tools in the return pipeline. Let G(x) = maxi∈Ik
xi be
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the maximum number of units of the same service tool in the return pipeline. We divide the

tools in the return pipeline into G groups of coupled tools. Group g, g = 1, . . . , G, consists of

the tools i for which xi ≥ g. This implies that tool i is part of the first xi groups, and tool i

is not part of the other groups. Notice that it is possible that two groups consist of precisely

the same tools. Each group g returns with rate 1/tret and this results in a transition to state

x̂ = (x̂1, . . . , x̂|Ik|), with

x̂i =

{
xi − 1 if xi ≥ g

xi otherwise

For both M1 and M2, the number of states is
∏

i∈Ik
(Si + 1). The steady-state distribution may

be computed from the steady-state equations via successive substitutions. This is efficient as long

as the number of tools in a subproblem |Ik| and the base stock levels Si are small (notice that this

is the case in the representative test bed of Section 3). An approximation for the order fill rate

βk of the original model is obtained by the summation of the steady-state probabilities over all

states x for which xi < Si for all i ∈ Ik. The resulting approximations obtained via M1 and M2

are denoted by β
(1)
k and β

(2)
k , respectively.

Notice that when there is no coupling at all between the demands for different tools, M1 will be

identical to M0, while when there is 100% coupling M2 will be identical to M0. This suggests that

M1 will lead to accurate approximations for the order fill rates in the original model for instances

with low coupling factors, and probably somewhat less accurate approximations for instances with

high coupling factors; similarly, M2 will lead to accurate approximations for the order fill rates in

the original model for instances with high coupling factors, and probably somewhat less accurate

approximations for instances with low coupling factors.

4.2 Description of approximate model M3

As explained in the last section, approximate model M1 will be most accurate when the coupling

factor is low, while approximate model M2 will be most accurate for a high coupling factor. This

observation leads to the third approximate model that combines the other two. Model M3 takes

a weighted average of model M1 and M2, where the weight factor depends on the coupling factor.

The order fill rate β
(3)
k obtained by approximate model M3 is given by:

β
(3)
k = (1− Fk)β

(1)
k + Fkβ

(2)
k .

This weighted average will lead to the same results as model M1 when Fk = 0, in which case model

M1 is identical to model M0. The weighted average will lead to the same results as model M2 when

Fk = 1, in which case model M2 is identical to model M0.
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4.3 Computational Results

The accuracy of the approximate models M1, M2 and M3 has been tested on the basis of the test

bed of Section 3. In Tables 6 and 7, for the symmetric and the asymmetric instances, respectively,

we have listed the differences in the order fill rates β
(1)
k , β

(2)
k and β

(3)
k obtained via M1, M2 and

M3 compared to the order fill rates βk of the original model. Also the performance of the method

as used currently is added for comparison. In this method the dependency between the demands

for service tools is ignored. Let us define βc
k as the order fill rate in subproblem k for the currently

used method. These order fill rates are calculated as follows:

βc
k =

∏
i∈Ik

β̃i =
∏
i∈Ik

(1− (λ̃itret)Si/Si!∑Si
j=0(λ̃itret)j/j!

).

The computation time per instance was on average 1.51, 1.46 and 2.97 seconds for model M1,

model M2 and model M3 respectively. The maximum computation times was 38.30, 36.77 and 75.04

seconds for model M1, model M2 and model M3 respectively. The computations were executed on

a Pentium 4 PC.

For all instances, the differences β
(1)
k −βk are negative and the differences β

(2)
k −βk are positive.

Thus, M1 leads to underestimations for the order fill rates in all instances, while M2 leads to

overestimations. This is directly related to the fact that we assume minimal and maximal coupling,

respectively, for tools in the repair pipeline. Minimal coupling in returns leads to a minimal

correlation between on-hand stocks of the tools, which, intuitively, has a negative effect on order

fill rates, and for maximal coupling this is the other way around.

The accuracy of the approximations obtained via M1 varies from reasonable to very good. The

absolute difference |β(1)
k − βk| is on average equal to 0.038. For instances with respectively weak,

medium and strong coupling, the averages are 0.010, 0.034 and 0.071, and thus M1 is indeed most

accurate for low coupling factors. When the service levels increase due to higher base stock levels,

the performance becomes better; the average absolute difference is 0.069 when all base stock levels

are 1, which is the low service case, versus 0.007 with higher base stock levels, which lead to a high

service. For different failure rates, there is no significant difference in the performance of model M1.

The averages for the absolute difference |β(1)
k −βk| for low, medium and high demand rates are 0.031,

0.044 and 0.040, respectively. For symmetric and asymmetric instances, the absolute errors are 0.038

and 0.038, respectively. This means that there is no significant difference between the performance

of the approximate models for the symmetric and the asymmetric instances. Summarizing, we can

say that M1 performs well when the fill rates are high, and then especially when the coupling factor

is low.

The accuracy of the approximations obtained via M2 also varies from reasonable to very good.

The absolute difference |β(2)
k − βk| is on average equal to 0.033. For instances with respectively

weak, medium and strong coupling, the averages are 0.046, 0.035 and 0.019, and thus M2 is indeed
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Table 6: Results for M1, M2, M3, and the current method - Symmetric instances

|Ik| Lk λ̃i Fk Service Si βk βc
k − βk β

(1)
k − βk β

(2)
k − βk β

(3)
k − βk

2 3 0.2 0.8 l 1 0.801 -0.106 -0.057 0.006 -0.007
h 2 0.978 -0.011 -0.007 0.001 -0.001

0.5 l 1 0.757 -0.063 -0.032 0.012 -0.010
h 2 0.972 -0.005 -0.003 0.001 -0.001

0.2 l 1 0.718 -0.024 -0.012 0.017 -0.006
h 2 0.969 -0.001 -0.001 0.001 0.000

0.6 0.8 l 1 0.558 -0.167 -0.098 0.024 -0.001
h 3 0.972 -0.011 -0.008 0.001 -0.001

0.5 l 1 0.481 -0.090 -0.050 0.045 -0.002
h 3 0.965 -0.005 -0.003 0.002 -0.001

0.2 l 1 0.423 -0.032 -0.017 0.058 -0.002
h 3 0.962 -0.001 -0.001 0.002 0.000

1 0.8 l 1 0.416 -0.166 -0.104 0.038 0.010
h 4 0.977 -0.008 -0.006 0.001 0.000

0.5 l 1 0.333 -0.083 -0.048 0.067 0.010
h 4 0.972 -0.003 -0.002 0.002 0.000

0.2 l 1 0.276 -0.027 -0.014 0.080 0.005
h 4 0.970 -0.001 0.000 0.002 0.000

3 4 0.2 0.8 l 1 0.772 -0.193 -0.091 0.010 -0.011
h 2 0.973 -0.021 -0.013 0.001 -0.002

0.5 l 1 0.691 -0.112 -0.051 0.024 -0.014
h 2 0.961 -0.010 -0.005 0.002 -0.002

0.2 l 1 0.619 -0.040 -0.017 0.039 -0.006
h 2 0.955 -0.003 -0.002 0.002 -0.001

0.6 0.8 l 1 0.507 -0.262 -0.148 0.037 0.000
h 3 0.965 -0.023 -0.015 0.002 -0.001

0.5 l 1 0.380 -0.135 -0.072 0.075 0.002
h 3 0.952 -0.010 -0.006 0.005 -0.001

0.2 l 1 0.289 -0.045 -0.022 0.102 0.003
h 3 0.945 -0.003 -0.002 0.004 -0.001

1 0.8 l 1 0.360 -0.235 -0.147 0.056 0.016
h 4 0.971 -0.016 -0.011 0.003 0.000

0.5 l 1 0.235 -0.110 -0.064 0.098 0.017
h 4 0.961 -0.007 -0.004 0.004 0.000

0.2 l 1 0.160 -0.035 -0.019 0.118 0.008
h 4 0.957 -0.002 -0.001 0.004 0.000

3 7 0.2 0.8 l 1 0.785 -0.206 -0.100 0.009 -0.013
h 2 0.975 -0.023 -0.015 0.001 -0.002

0.5 l 1 0.702 -0.123 -0.059 0.023 -0.018
h 2 0.963 -0.011 -0.007 0.002 -0.002

0.2 l 1 0.624 -0.046 -0.021 0.038 -0.009
h 2 0.955 -0.004 -0.002 0.002 -0.001

0.6 0.8 l 1 0.525 -0.280 -0.160 0.037 -0.002
h 3 0.967 -0.025 -0.017 0.002 -0.002

0.5 l 1 0.392 -0.148 -0.080 0.075 -0.002
h 3 0.953 -0.011 -0.007 0.005 -0.001

0.2 l 1 0.293 -0.049 -0.024 0.103 0.001
h 3 0.944 -0.003 -0.001 0.005 0.000

1 0.8 l 1 0.376 -0.251 -0.158 0.058 0.015
h 4 0.972 -0.018 -0.013 0.002 -0.001

0.5 l 1 0.244 -0.119 -0.069 0.101 0.016
h 4 0.961 -0.007 -0.004 0.005 0.000

0.2 l 1 0.163 -0.038 -0.021 0.119 0.007
h 4 0.957 -0.002 -0.001 0.004 0.000

5 6 0.2 0.8 l 1 0.717 -0.315 -0.130 0.018 -0.011
h 2 0.963 -0.042 -0.021 0.002 -0.003

0.5 l 1 0.577 -0.175 -0.070 0.048 -0.011
h 2 0.942 -0.022 -0.010 0.005 -0.003

0.2 l 1 0.463 -0.061 -0.023 0.081 -0.002
h 2 0.929 -0.008 -0.004 0.006 -0.002

0.6 0.8 l 1 0.422 -0.326 -0.183 0.058 0.010
h 3 0.952 -0.047 -0.026 0.005 -0.002

0.5 l 1 0.242 -0.147 -0.078 0.115 0.019
h 3 0.929 -0.024 -0.012 0.010 -0.001

0.2 l 1 0.142 -0.047 -0.025 0.142 0.009
h 3 0.913 -0.008 -0.004 0.011 -0.001

1 0.8 l 1 0.275 -0.244 -0.163 0.082 0.033
h 4 0.960 -0.035 -0.021 0.005 0.000

0.5 l 1 0.124 -0.093 -0.059 0.126 0.034
h 4 0.942 -0.017 -0.009 0.009 0.000

0.2 l 1 0.056 -0.025 -0.014 0.137 0.016
h 4 0.931 -0.006 -0.003 0.010 -0.001
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Table 7: Results for M1, M2, M3, and the current method - Asymmetric instances

|I| Lk λi CF Service Si βk βc
k − βk β

(1)
k − βk β

(2)
k − βk β

(3)
k − βk

3 4 0.2 0.8 l 1 0.773 -0.193 -0.091 0.009 -0.011
h 2 0.972 -0.021 -0.013 0.001 -0.002

0.5 l 1 0.692 -0.112 -0.051 0.023 -0.014
h 2 0.961 -0.010 -0.006 0.002 -0.002

0.2 l 1 0.620 -0.040 -0.017 0.038 -0.006
h 2 0.954 -0.003 -0.002 0.002 -0.001

0.6 0.8 l 1 0.509 -0.264 -0.148 0.034 -0.002
h 3 0.962 -0.022 -0.015 0.002 -0.001

0.5 l 1 0.382 -0.136 -0.072 0.073 0.000
h 3 0.949 -0.010 -0.006 0.004 0.000

0.2 l 1 0.290 -0.045 -0.022 0.100 0.003
h 3 0.942 -0.003 -0.002 0.005 0.000

1 0.8 l 1 0.363 -0.237 -0.148 0.053 0.013
h 4 0.967 -0.015 -0.010 0.002 0.000

0.5 l 1 0.237 -0.111 -0.064 0.096 0.016
h 4 0.958 -0.006 -0.004 0.004 0.000

0.2 l 1 0.162 -0.035 -0.019 0.116 0.008
h 4 0.953 -0.002 -0.001 0.004 0.000

most accurate when there is strong coupling. When the service levels increase due to higher base

stock levels, the performance becomes better; the average absolute difference is 0.063 when all base

stock levels are 1, which is the low service case, versus 0.004 with higher base stock levels, when

the service is high. For different failure rates, there are differences in the performance of model

M2. The averages for the absolute difference |β(2)
k − βk| for low, medium and high demand rates

are 0.015, 0.038 and 0.047 respectively. Approximate model M2 thus performs better for lower

failure rates. For symmetric and asymmetric instances, the absolute errors are 0.034 and 0.032,

respectively. This means that there is no significant difference between the performance of the

approximate models for the symmetric and the asymmetric instances. Summarizing, we can say

that M2 performs well when the fill rates are high, and then especially when the coupling factor is

high.

The accuracy of approximate model M3 is very good. The average absolute difference between

model M3 and the original model, |β(3)
k −βk|, is 0.005. For instances with respectively weak, medium

and strong coupling, the averages are 0.003, 0.007 and 0.006, and thus M3 is almost equally accurate

for high, medium and low coupling factors. When the service levels increase due to higher base

stock levels, the performance becomes better; the average absolute difference is 0.010 when all

base stock levels are 1, which situation leads to low service levels, versus 0.001 with higher base

stock levels, which lead to high service levels. For different failure rates, there is no significant

difference in the performance of model M3. The averages for the absolute difference |β(3)
k − βk| for

low, medium and high demand rates are 0.006, 0.002 and 0.008 respectively. For symmetric and

asymmetric instances, the absolute errors are 0.006 and 0.005, respectively. This means that there

is no significant difference between the performance of the approximate models for the symmetric

and the asymmetric instances. Summarizing, we can say that M3 performs well in all instances.

The maximum absolute error is 0.034, which is about the same as the average performance of the
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other approximations.

The currently used method leads to an underestimation of the service offered to customers.

The average difference between this approximation and the original model, βc
k − βk is -0.070. If

we compare the average absolute differences of approximate models M1 and M2 with the current

method, we see that both models lead to an improvement of almost 50%, which is a significant

improvement. However, for approximate model M3, we even see an improvement of over 90%

compared to the current method.

In conclusion, approximate model M3 leads to efficient and accurate approximations in all

instances tested. Therefore, M3 is definitely appropriate to be used in an optimization algorithm

for the stock levels of service tools. The models M1 and M2 might be less appropriate, since they

lead to poor approximations in some cases.

5. Conclusion

We studied an evaluation model for the order fill rate in a multi-item inventory system for service

tools, with coupled demands and coupled returns. We showed that this full evaluation model

decomposes into smaller subproblems. For these subproblems, we showed that the steady-state

behavior is almost insensitive for whether return times are deterministic or exponential. Based on

that insight, we formulated three approximate models M1, M2 and M3, and we found that model

M3 leads to efficient and fairly accurate approximations in all considered instances.

The comparison with the current way of evaluating the order fill rates shows that there is

a large improvement possible by incorporating the coupled demands in approximate evaluations.

This encourages more research in this field. First of all, the proposed approximate evaluation model

can be used in an optimization model for service tools in a single location. Later on, this can be

extended to a model including multiple locations to resemble practice even more.
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