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Abstract

In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying
the statement that these models are small worlds. There is a substantial amount of literature proving
that, in quite generality, PA-graphs possess power-law degree sequences with exponent τ > 2. The
models studied here are such that edges are attached to older vertices proportional to the degree plus
a constant, i.e., we consider linear PA-models. We prove that the diameter is bounded by a constant
times log t, where t is the size of the graph. When the power-law exponent τ exceeds 3, then we also
prove a lower bound of the form log t

log log t , while when τ ∈ (2, 3), we improve the upper bound to a
constant times log log t. These bounds are consistent with predictions by physicists that the distances
in PA-graphs are similar to the ones in other scale-free random graphs, where distances have been
shown to be of order log log t, when τ ∈ (2, 3), and of order log t when τ > 3.

1 Introduction

In the past decade, many examples have been found of real world complex networks that are small worlds
and scale-free. The small-world phenomenon states that distances in many networks are small. The scale-
free phenomenon states that the degree sequences in many networks satisfy a power law. See [2, 19, 30] for
reviews on complex networks, and [4] for a more expository account. As a result, these complex networks
are not at all like classical random graphs (see [3, 7, 29] and the references therein), particularly since
the classical models do not have power-law degrees. As a result, these empirical findings have ignited
enormous research on adaptations of the classical random graph that do obey power-law degree sequences.
See [9] for the most general models, as well as a review of the models under investigation.

While these models have power-law degree sequences, they do not explain why many complex networks
are scale-free. A possible and convincing explanation was given by Barabási and Albert [5] by a phe-
nomenon called preferential attachment (PA). Preferential attachment models the growth of the network
in such a way that new vertices are more likely to add their edges to already present vertices having a
high degree. For example, in a social network, a newcomer is more likely to get to know a person who is
socially active, and, therefore, already has a high degree. Interestingly, PA-models have power-law degree
sequences, and, therefore, preferential attachment offers a convincing explanation why many real world
networks have power-law degree sequences. As a result, many papers appeared that study such models.
See e.g. [1, 8, 10, 11, 12, 13, 15, 17] and the references therein. The literature primarily focusses on three
main questions. The first is to prove that such random graphs are indeed scale-free [1, 8, 10, 11, 15, 17].
The second is to show that the resulting models are small worlds by investigating the distances in them.
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See for example [13] for a result on the diameter. In non-rigorous work, it is often suggested that many of
the scale-free models, such as the configuration model, the models in [9] and the PA-models, have similar
properties for their distances. Distances in the configuration model have been shown to depend on the
number of finite moments of the degree distribution. The natural question is therefore whether the same
applies to preferential attachment models. A partial result is in [13], and this question will be taken up
again here. A third key question for PA-models is their vulnerability, for example to deliberate attack [11]
or to the spread of a disease [6]. The most complete discussion of scale-free random graphs and processes
living on them is given in [20].

In this paper, we investigate the diameter in some PA-models. The models that we investigate produce
a graph sequence or graph process {Gm(t)}, which, for fixed t ≥ 1 or t ≥ 2 yields a graph with t vertices
and mt edges for some given integer m ≥ 1. We shall consider three slight variations of the model, which
we denote by model (a), (b) and (c).

(a) The first model is an extension of the Barabási-Albert model, formulated rigorously in [15]. We
start with G1(1) consisting of a single vertex with a single self-loop. We denote the vertices of the
graph by 1, 2, . . ., so that the vertices of G1(t) are equal to {1, 2, . . . , t}. We denote the degree of
node i by di(t), where, in the degree, a self-loop increases the degree by 2.
Then, for m = 1, and conditionally on G1(t), the growth rule to obtain G1(t + 1) is as follows. We
add a single vertex t + 1 having a single edge. This edge is connected to a second end point, which
is equal to t + 1 with probability proportional to 1 + δ, and to a vertex i ∈ G1(t) with probability
proportional to di(t) + δ, where δ ≥ −1 is a parameter of the model. Thus,

P
(
t + 1→ i

∣∣G1(t)
)

=

{ 1+δ
t(2+δ)+(1+δ) , for i = t + 1,

di(t)+δ
t(2+δ)+(1+δ) , for i = 1, 2, . . . , t.

(1.1)

The model with integer m > 1, is defined in terms of the model for m = 1 as follows. We start
with G1(mt), with δ′ = δ

m ≥ −1, and denote the vertices in G1(mt) by 1′, . . . , (mt)′. Then we
identify the vertices 1′, 2′ . . . , m′ in G1(mt) to be vertex 1 in Gm(t), and for 1 < j ≤ t, the vertices
((j − 1)m + 1)′, . . . , (jm)′ in G1(mt) to be vertex j in Gm(t); in particular the degree dj(t)of vertex
j in Gm(t) is equal to the sum of the degrees of the vertices ((j − 1)m + 1)′, . . . , (jm)′ in G1(mt).
This defines the model for integer m ≥ 1. Observe that the range of δ is [−m,∞).
The resulting graph Gm(t) has precisely mt edges and t vertices at time t, but is not necessarily
connected. For δ = 0 we obtain the model studied in [15].

(b) The second model is identical to the one above, apart from the fact that no self-loops are allowed.
We start again with the definition for m = 1. To prevent a self loop in the first step, we let G1(1)
undefined, and start from G1(2), which is defined by the vertices 1 and 2 joined together by 2 edges.
Then, for t > 2, we define, conditionally on G1(t), the growth rule to obtain G1(t + 1) as follows.
For δ ≥ −1,

P
(
t + 1→ i

∣∣G1(t)
)

=
di(t) + δ

t(2 + δ)
, for i = 1, . . . , t. (1.2)

The model with m > 1 is again defined in terms of the model for m = 1, in precisely the same way
as in model (a).

(c) In the third model, and conditionally on Gm(t), the end points of each of the m edges of vertex
t + 1 are chosen independently, and are equal to a vertex i ∈ Gm(t), with probability proportionally
to di(t) + δ, where δ ≥ −m. We start again from Gm(2), with the nodes 1 and 2 joined together
by 2m ,m ≥ 1, edges. Since the end point of the edges are chosen independently we can give the
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definition of {Gm(t)}t≥2, for m ≥ 1, in one step. For 1 ≤ j ≤ m,

P
(
jth edge of t + 1 is connected to i

∣∣Gm(t)
)

=
di(t) + δ

t(2m + δ)
, for i = 1, . . . , t. (1.3)

In this model, as is the case in model (b), the graph Gm(t) is a connected random graph with
precisely t vertices and mt edges.

Remark 1.1. In models (a) and (b) for m > 1, the choice of δ′ = δ
m is such that in the resulting graph

Gm(t), where m vertices in G1(mt) are grouped together to a single vertex in Gm(t), the end points of the
added edges are chosen according to the degree plus the constant δ.

Remark 1.2. For m = 1, the models (b) and (c) are the same. This fact shall be used later on.

One would expect the models (a)–(c) to behave quite similarly. In [18], it was proved that for model
(c), the degree sequence is close to a power law with exponent τ = 3 + δ

m . For model (a) and δ = 0, this
was proved in [15], while in [17], power-law degree sequences are proved in rather large generality.

The goal in this paper is to study the diameter in the above models, as a first step towards the study
of distances in PA-models. In non-rigorous work, it is often suggested that the distances are similarly
behaved in the various scale-free random graph models, such as the configuration model or various models
with conditional independence of edges as in [9]. The results on distances are most complete for the
configuration model, see e.g. [22, 23, 26, 27, 28, 33]. In the configuration model, there are various cases
depending on the tails of the degree distribution. When the degrees have infinite mean, then distances are
bounded [22], when they have finite mean but infinite variance, distances grow like log log t [27, 33], where
t is the size of the graph, while, for finite variance degrees, the distances grow proportionally to log t [26].
Similar results for models with conditionally independent edges exist, see e.g. [9, 16, 21, 31]. Thus, for
these classes of models, distances are quite well understood. If the distances in PA-models are similar to
the ones in e.g. the configuration model, then we should have that the distances are of order log t when
τ > 3, i.e., δ > 0, while they should be of order log log t when τ ∈ (2, 3), i.e., for δ < 0. In PA-models
with linear growth of the number of edges, infinite mean degrees have not been observed, so this case
does not arise. An attempt in this direction is in [18], where a preferential attachment is presented in
which a random number of edges per new vertex is added. In this model, it is shown that the degrees
again obey a power law with exponent equal to τ = min{3 + δ

µ , τw}, where τw is the power-law exponent
for the number of edges added and µ ≤ ∞ the expected number of added edges per vertex. Thus, when
τw ∈ (1, 2), infinite mean degrees can arise.

There are few results on distances in PA-models. In [13], it was proved that in model (a) and for
δ = 0, for which τ = 3, the diameter of the resulting graph is equal to log t

log log t(1+o(1)). Unfortunately, the
matching result for the configuration model has not been proved, so that this does not allow us to verify
whether the models have similar distances. In this paper, we take a first step towards the verification of
the heuristic, by investigating the diameter of the preferential attachment graph both for δ > 0 and for
δ < 0. In the following section, we describe our precise results.

1.1 The diameter in preferential attachment models

In this section, we present the diameter results for the PA-models (a)-(c). We prove that for model (b)
and (c) and for all δ > −m, the diameter of Gm(t) is bounded by a large constant times log t. This result
does not hold for model (a), since the graph is not necessarily connected. When δ ≥ 0, we adapt the
argument in [13] to prove that for all three models considered here the diameter is bounded from below
by (1− ε) log t

log log t , while, for δ < 0, we prove that the diameter is bounded above by a large constant times
log log t. This establishes a phase transition for the diameter of PA-models when δ changes sign. We now
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state the precise results. In the results below, for a sequence of events {Et}t≥1, we write that Et occurs
with high probability (whp) when limt→∞ P(Et) = 1.

Theorem 1.3 (A log t upper bound for the diameter). Fix m ≥ 1 and δ > −m in models (b) and (c).
Then, there exists a constant C = C(m, δ) > 0 such that

P
(
diam(Gm(t)) > C log t

)
= o(1), t→∞, (1.4)

i.e., whp, the diameter of Gm(t) is at most C log t.

When m = 1, so that the graphs are in fact trees, there is a sharper result proved by Pittel [32]. In
this case, Pittel shows that the height of the tree, which is equal to the maximal graph distance between
vertex 1 and any of the other vertices, grows like 1+δ

γ(2+δ) log t(1 + o(1)), where γ solves the equation

γ + (1 + δ)(1 + log γ) = 0. (1.5)

This immediately proves that the diameter is at least as large, and suggests that the diameter has size
2 1+δ

γ(2+δ) log t(1 + o(1)). Scale-free trees have received substantial attention in the literature, we refer to
[14, 32] and the references therein. It is not hard to see that a similar result as proved in [32] also follows
for model (a). This is also proved when δ = 0 in [14], where it is shown that the diameter in model (a)
has size γ−1 log t, where γ is the solution of (1.5) when δ = 0. Thus, we see that the log t upper bound in
Theorem 1.3 is sharp, at least for m = 1. To see the result for model (a), we note that Nt, the number
of connected components of G1(t) in model (a), has distribution Nt = 1 + I2 + · · · + It, where Ii is the
indicator that the ith edge connects to itself, so that {Ii}ti=2 are independent indicator variables with

P(Ii = 1) =
1 + δ

(2 + δ)(i− 1) + 1 + δ
. (1.6)

As a result, it is not hard to see that Nt/ log t converges in probability to (1+δ)/(2+δ) < 1, so that whp
there exists a largest connected component of size at least t/ log t. The law of any connected component
of size st in model (a) is equal in distribution to the law of the graph G1(st + 1) in model (b), apart from
the fact that the vertices 1 and 2 in G1(st + 1) are identified (thus creating a unique self-loop). This close
connection between the two models allows one to transfer the results for model (b) to model (a).

Theorem 1.4 (A lower bound for the diameter). Fix m ≥ 1 and δ ≥ 0 in models (a)–(c). Then, for
every ε > 0,

P
(
diam(Gm(t)) < (1− ε)

log t

log log t

)
= o(1), (1.7)

i.e., whp, the diameter of Gm(t) is at least (1− ε) log t
log log t .

We conjecture that for δ > 0, the above lower bound is not sharp:

Conjecture 1.5. Fix m ≥ 1 and δ > 0 in models (a)–(c). Then, there exists a constant C = C(m, δ) > 0
such that

P
(
diam(Gm(t)) = C log t(1 + o(1))

)
= o(1), (1.8)

i.e., diam(Gm(t))/ log t converges in probability to a positive constant.

Theorems 1.3, 1.4 and Conjecture 1.5 indicate that distances in PA-models are similar to the ones in
other scale-free models for τ > 3. We now turn to the case where δ < 0 and hence τ = 3 + δ/m ∈ (2, 3).
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Theorem 1.6 (A log log t upper bound on the diameter for δ < 0). Fix m ≥ 2 and assume that δ ∈
(−m, 0) in models (a)–(c). Then, for every σ > 1

3−τ and with

CG =
4

| log (τ − 2)|
+

4σ

log m
. (1.9)

the diameter of Gm(t) is, whp, bounded above by CG log log t, as t→∞.

In the last result, we do not obtain a sharp result in terms of the constant. However, the proof suggests
that for most pairs of vertices the distance should be equal to 4

| log (τ−2)| log log t(1 + o(1)).
The results stated above are consistent with the predictions by physicists that the distances in prefer-

ential attachment graphs should be similar to the ones in other scale-free random graphs. The only two
missing bounds for a complete picture of the diameter in these PA-models are a log t lower bound for
δ > 0 and a log log t lower bound for δ < 0.

1.2 Organization of the paper

This paper is organized as follows. In Section 2, we prove the log t upper bound for the diameter stated
in Theorem 1.3. In Section 3, we prove the log t/ log log t lower bound for the diameter stated in Theorem
1.4, and in Section 4, we prove the log log t upper bound on the diameter for δ < 0 of Theorem 1.6.

2 An upper bound on the diameter: Proof of Theorem 1.3

For model (c), and with si > sj fixed, we write si −→ sj when the first edge of si is connected to vertex
sj . In case of model (b), we write si −→ sj when in {G1(t)}t≥1 vertex (si−1)m+1 is connected to one of
the vertices (sj − 1)m + 1, . . . , sjm. In model (a) self-loops are possible, so in this case the proof breaks
down, which is understandable as model (a) is not necessarily connected.

For s1 = s > s2 > · · · > sk = 1, and denoting ~sk = (s1, s2, . . . , sk), we write

E~sk
=

k−1⋂
i=1

{si −→ si+1}. (2.1)

For a configuration of Gm(t), we let dist(s, 1) denote the unique value of k such that s = s1 −→ s2 −→
· · · −→ sk−1 −→ sk = 1. Then, clearly,

diam(Gm(t)) < 2 max
s=1,...,t

dist(s, 1), (2.2)

because the distance between any two vertices is smaller than the right side of (2.2). We will show that
there exists a constant C ′ such that for each 1 ≤ s ≤ t, and with ε > 0,

P(dist(s, 1) > C ′ log s) ≤ s−(1+ε). (2.3)

Using first (2.2) and consecutively that dist(s, 1) ≤ s, the result (2.3) implies Theorem 1.3 with C = 2C ′,
because

P(diam(Gm(t)) > C log t) ≤ P
(

max
1≤s≤t

dist(s, 1) > C ′ log t

)
= P

(
max

C′ log t≤s≤t
dist(s, 1) > C ′ log t

)
≤ P

(
max

C′ log t≤s≤t
dist(s, 1) > C ′ log s

)
≤

∑
C′ log t≤s≤t

P
(
dist(s, 1) > C ′ log s

)
≤

∑
C′ log t≤s≤t

s−(1+ε) = O
(
(log t)−ε) = o(1). (2.4)
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To see (2.3), we note from Boole’s inequality, that

P(dist(s, 1) > k) ≤
∑
l>k

∑
~sl

P
( l−1⋂

i=1

{si −→ si+1}
)
, (2.5)

where, the sum is over all ordered vectors ~sl of length l, for which s1 = s and sl = 1. We claim that

P
( l−1⋂

i=1

{si −→ si+1}
)

=
l−1∏
i=1

P(si −→ si+1). (2.6)

We prove the independence by induction. For simplicity, we assume that we are in model (c), the analysis
in model (b) is quite similar, and will be completed later. First note that

P
( l−1⋂

i=1

{si −→ si+1}
)

= E
[
P
( l−1⋂

i=1

{si −→ si+1}
∣∣∣Gm(s1 − 1)

)]

= E
[
I
[ l−1⋂

i=2

{si −→ si+1}
]
P
(
s1 −→ s2|Gm(s1 − 1)

)]
, (2.7)

since the event
⋂l−1

i=2{si −→ si+1} is measurable with respect to Gm(s1 − 1), and where we write I[A] to
denote the indicator of the event A. Furthermore, from (1.3),

P
(
s1 −→ s2|Gm(s1 − 1)

)
=

ds2(s1 − 1) + δ

(2m + δ)(s1 − 1)
. (2.8)

In particular, we have that

P
(
s1 −→ s2

)
= E

[ ds2(s1 − 1) + δ

(2m + δ)(s1 − 1)

]
. (2.9)

Therefore,

P
( l−1⋂

i=1

{si −→ si+1}
)

= E
[
I
[ l−1⋂

i=2

{si −→ si+1}
] ds2(s1 − 1) + δ

(2m + δ)(s1 − 1)

]

= P
( l−1⋂

i=2

{si −→ si+1}
)
E
[ ds2(s1 − 1) + δ

(2m + δ)(s1 − 1)

]
, (2.10)

since the random variable ds2(s1− 1) only depends on how many edges are connected to s2 after time s2,
which is independent of the event

⋂l−1
i=2{si −→ si+1}, which depends on the attachment of the edges up

to and including time s2 only. We conclude that

P
( l−1⋂

i=1

{si −→ si+1}
)

= P
(
{s1 −→ s2}

)
P
( l−1⋂

i=2

{si −→ si+1}
)
. (2.11)

Iteration leads to the independence claim in (2.6).
In model (b), we have {s1 −→ s2} if and only if vertex m(s1−1)+1 is connected to one of the vertices

m(s2 − 1) + 1, . . . ,ms2, and by (1.2) this probability equals,∑ms2

k=m(s2−1)+1 dk(m(s1 − 1)) + δ

(2 + δ)(m(s1 − 1))
.

We observe that this probability depends only on the attachment in {G1(t)} of edges after time ms2 and
is independent of the event

⋂l−1
i=2{si −→ si+1}, which depends on the attachment in {G1(t)} up to and

including time ms2 only.
We proceed with the proof by investigating P(si −→ si+1) in the following lemma:
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Lemma 2.1. For model (c) we have for all s > t ≥ 1, and with a = m
2m+δ ∈ (0, 1),

P(s −→ t) ≤ 2at−a(s− 1)a−1. (2.12)

Similarly, for model (b), and again with a = m
2m+δ =∈ (0, 1),

P(s −→ t) ≤ 2a (t− 1 + 1/m)−a (s− 1)a−1. (2.13)

Proof. We start with the proof for model (c), the proof for model (b) follows at the end. By definition
P(2 −→ 1) = 1, which is bounded by the right side of (2.12). For s > 2, we note from (2.9) that

P(s −→ t) = E
[ dt(s− 1) + δ

(2m + δ)(s− 1)

]
. (2.14)

Since for s > 2, and conditionally on Gm(s− 1),

Xs,t = dt(s)− dt(s− 1),

has a binomial distribution with parameters m and success probability (dt(s− 1) + δ)/((s− 1)(2m + δ)),
we find

E[dt(s) + δ] = E[dt(s− 1) + δ]
(
1 +

m

(2m + δ)(s− 1)

)
. (2.15)

We now prove by induction on s that

E[dt(s) + δ] ≤ 2a(2m + δ)
(

s− 1
t

)a

. (2.16)

For s = t, the left side is at most 2m + δ, so that we can start the induction. From (2.15) and the
induction hypothesis, we obtain

E[dt(s + 1) + δ] ≤ 2a(2m + δ)
(

s− 1
t

)a (
1 +

a

s

)
= 2a(2m + δ)

(
s

t

)a (
1− 1

s

)a (
1 +

a

s

)
. (2.17)

Thus, it suffices to prove that for all x = s−1 ∈ [0, 1] and a ∈ (0, 1), we have that

(1− x)a(1 + ax) ≤ 1.

The proof of this elementary inequality is left to the reader as an exercise. As a result of (2.14) and
(2.16), we obtain (2.12) for all s > t ≥ 1,

We now turn to a proof of the lemma for model (b). We start with m = 1 and note from (1.2) that

P(s −→ t) = E
[ dt(s− 1) + δ

(2 + δ)(s− 1)

]
. (2.18)

and so

E[dt(s) + δ] = E[dt(s− 1) + δ]
(
1 +

1
(2 + δ)(s− 1)

)
. (2.19)

This yields the inequality

E[dt(s) + δ] ≤ 2a(2 + δ)
(

s− 1
t

)a

, s ≥ 2, (2.20)
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where m = 1 and a = 1
2+δ . Hence (2.12) is valid in model (b), for m = 1. For m > 1, we have {s −→ t}

if and only if vertex m(s− 1) + 1 is connected to one of the vertices m(t− 1) + 1, . . . ,mt in {G1(t)}, so
that with a′ = 1/(2 + δ′), and δ′ = δ/m,

P(s −→ t) ≤ 2a′
mt∑

j=m(t−1)+1

j−a′ (m(s− 1))a′−1 ≤ 2a′(s− 1)a′−1 (t− 1 + 1/m)−a′ . (2.21)

This gives the result (2.13) because a′ = 1/(2 + δ′) = m/(2m + δ) for δ′ = δ/m.
We now finish the proof of (2.3) for model (c). The proof for model (b) proceeds similarly, and is

omitted. Consider ~sl with s1 = s and sl = 1. We obtain from (2.12), using at the end sl = 1

P
( l−1⋂

i=1

{si −→ si+1}
)

=
l−1∏
i=1

P(si −→ si+1) ≤
l−1∏
i=1

2as−a
i+1(si − 1)a−1

=
l−1∏
i=1

2a
(

si − 1
si+1

)a l−1∏
i=1

1
si − 1

≤ (s1 − 1)a−1 2a(l−1)
l−1∏
i=2

1
si − 1

. (2.22)

Therefore, we arrive from s1 = s and sl = 1 at

P(dist(s, 1) > k) ≤ sa−1
∑
l>k

2a(l−1)
∑
~sl

l−1∏
i=2

1
si − 1

. (2.23)

We recall that the sum over ~sl is over ordered vectors s2, . . . , sl−1. When we turn the sum into a sum over
vectors ~sl with s1 = s and sl = 1 with only distinct coordinates, we need to divide by a factor (l − 2)!.
Denoting the unordered vector by ~tl, we then obtain

P(dist(s, 1) > k) ≤ 21−asa−1
∑
l>k

2a(l−1)

(l − 2)!

∑
~tl

l−1∏
i=2

1
ti − 1

. (2.24)

If we were to sum over all vectors ~tl, rather than the vectors with different coordinates, we would obtain

∑
~tl

l−1∏
i=2

1
ti − 1

=
( s−1∑

u=1

1
u

)l−2
. (2.25)

Clearly, this is an upper bound on the sum, so that

P(dist(s, 1) > k) ≤ 21−asa−1
∑
l>k

2a(l−1)

(l − 2)!

( s−1∑
u=1

1
u

)l−2
. (2.26)

Using that
∑s−1

u=1
1
u ≤ 1 + log s, we arrive at

P(dist(s, 1) > k) ≤ 2sa−1
∑
l>k

(
2a(1 + log s)

)l−2

(l − 2)!
≤ cs2a+a−1P(X ≥ k − 1), (2.27)

where c = 2 exp(2a), and X is a Poisson random variable with mean 2a(1 + log s).
By [29, (2.5) and Remark 2.6], for any Poisson random variable Y with mean λ, we have

P(Y > 5λ) = P(Y > E[Y ] + 4λ) ≤ exp

(
− 8λ2

(λ + 4λ/3)

)
= e−24λ/7. (2.28)
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Switching back to (2.27), taking λ = 2a(1 + log s), we obtain that

P(dist(s, 1) > 5 · 2a(1 + log s) + 1) ≤ cs1+aP(X ≥ 5λ) ≤ cs1+a exp{−24λ/7} ≤ cs−(1+ε), (2.29)

where we can take ε = 3/7 and where we used that 0 < a < 1. This completes the proof.

Remark. It is immediate from (1.1) and (1.2) that the upper bound (2.13) of the lemma also holds
for model (a).

Remark. When m = 1, we see that dist(s, 1) is equal to the graph distance between vertex 1 and s.
This can be used to prove a log t lower bound on the diameter of G1(t) in the case of models (b) and (c).
We refrain from working this argument out, as sharper results follow from [32].

3 A log lower bound on the diameter for δ ≥ 0: Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by extending the proof in [13] from δ = 0 to δ ≥ 0.
Denote in model (c) by

{g(t, j) = s}, 1 ≤ j ≤ m, (3.1)

the event that at time t the jth edge of vertex t is attached to the earlier vertex s. For the models (a)
and (b), this event means that in {G1(mt)} the edge from vertex m(t − 1) + j is attached to one of the
vertices m(s − 1) + 1, . . . ,ms. It is a direct consequence of the definition of PA-models that the event
(3.1) increases the preference for vertex s, and hence decreases (in a relative way) the preference for the
vertices u, 1 ≤ u ≤ t, u 6= s. It should be intuitively clear that another way of expressing this effect is to
say that, for different s1 6= s2, the events {g(t1, j1) = s1} and {g(t2, j2) = s2} are negatively correlated.
In order to state such a result, we introduce some notation. For integer ns ≥ 1, we denote by

Es =
ns⋂
i=1

{
g(t(s)i , j(s)

i ) = s
}
, (3.2)

the event that at time ti the jth
i edge of vertex ti is attached to the earlier vertex s. We will start by

proving that for each k ≥ 1 and all possible choices of t(s)i , j(s)

i , the events Es, for different s, are negatively
correlated:

Lemma 3.1. For distinct s1, s2, . . . , sk,

P
( k⋂

i=1

Esi

)
≤

k∏
i=1

P(Esi). (3.3)

Proof. We will use induction on the largest edge number present in the events Es. Here, for an event
{g(t, j) = s}, we let the edge number be m(t−1) + j, which is the order of the edge when we consider the
edges as being attached in sequence. The induction hypothesis is that (3.3) holds for all k and all choices
of t(s)i , j(s)

i such that maxi,s m(t(s)i − 1) + j(s)

i ≤ e, where induction is performed with respect to e. We
now complete the induction argument. To initialize the induction, we note that for e = 1, the induction
hypothesis holds trivially, since

⋂k
i=1 Esi can be empty or consist of exactly one event, and in the latter

case there is nothing to prove. This initializes the induction.
To advance the induction, we assume that (3.3) holds for all k and all choices of t(s)i , j(s)

i such that
maxi,s m(t(s)i −1)+j(s)

i ≤ e−1, and we extend it to all k and all choices of t(s)i , j(s)

i such that maxi,s m(t(s)i −
1) + j(s)

i ≤ e. Clearly, for k and t(s)i , j(s)

i such that maxi,s m(t(s)i − 1) + j(s)

i ≤ e − 1, the bound follows
from the induction hypothesis, so we may restrict attention to the case that maxi,s m(t(s)i − 1) + j(s)

i = e.
We note that there is a unique choice of t, j such that m(t − 1) + j = e. In this case, there are again
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two possibilities. Either there is exactly one choice of s and t(s)i , j(s)

i such that t(s)i = t, j(s)

i = j, or there
are at least two of such choices. In the latter case, we immediately have that

⋂k
s=1 Es = ∅, since the eth

edge can only be connected to a unique vertex. Hence, there is nothing to prove. Thus, we are left to
investigate the case where there exists unique s and t(s)i , j(s)

i such that t(s)i = t, j(s)

i = j. Denote by

E′
s =

ns⋂
i=1:(t

(s)
i ,j

(s)
i ) 6=(t,j)

{
g(t(s)i , j(s)

i ) = s
}
, (3.4)

the restriction of Es to the other edges. Then we can write

k⋂
i=1

Esi =
{
g(t, j) = s

}
∩ E′

s ∩
k⋂

i=1:si 6=s

Esi . (3.5)

By construction, all the edge numbers of the events in E′
s ∩

⋂k
i=1:si 6=s Esi are at most e − 1. Thus, we

obtain

P
( k⋂

i=1

Esi

)
≤ E

[
I[E′

s ∩
k⋂

i=1:si 6=s

Esi ]Pe−1(g(t, j) = s)
]
, (3.6)

where Pe−1 denotes the conditional probability given the edge attachments up to the (e − 1)st edge
connection.

We now first go to model (c), for which we have that

Pe−1(g(t, j) = s) =
ds(t− 1) + δ

(2m + δ)(t− 1)
. (3.7)

We wish to use the induction hypothesis. For this, we note that

ds(t− 1) = m +
∑

(t′,j′):t′≤t−1

I[g(t′, j′) = s]. (3.8)

We note that each of the terms in (3.8) has edge number strictly smaller than e and occurs with a non-
negative multiplicative constant. As a result, we may use the induction hypothesis for each of these terms.
Thus, we obtain, using also m + δ ≥ 0, that,

(2m + δ)(t− 1)P
( k⋂

i=1

Esi

)
≤ (m + δ)P(E′

s)
k∏

i=1:si 6=s

P(Esi)

+
∑

(t′,j′):t′≤t−1

P(E′
s ∩ {g(t′, j′) = s})

k∏
i=1:si 6=s

P(Esi). (3.9)

We can recombine to obtain

P
( k⋂

i=1

Esi

)
≤ E

[
I[E′

s]
ds(t− 1) + δ

(2m + δ)(t− 1)

] k∏
i=1:si 6=s

P(Esi), (3.10)

and the advancement is completed when we note that

E
[
I[E′

s]
ds(t− 1) + δ

(2m + δ)(t− 1)

]
= P(Es). (3.11)

The proofs for models (a) and (b) are somewhat simpler, since the events Esi can be reformulated in
terms of the graph process {G1(t)}t≥1.

We next study the probabilities of Es when ns ≤ 2:
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Lemma 3.2. There exist absolute constants M1,M2, such that (i) for each 1 ≤ j ≤ m, and t > s,

P
(
g(t, j) = s

)
≤ M1

t1−asa
, (3.12)

and (ii) for t2 > t1 > s, and any 1 ≤ j1, j2 ≤ m,

P
(
g(t1, j1) = s, g(t2, j2) = s

)
≤ M2

(t1t2)1−as2a
, (3.13)

where, as before, a = m
2m+δ .

Proof. For model (c), we find from (2.12),

P
(
g(t, j) = s

)
= P

(
g(t, 1) = s

)
= P(t −→ s) ≤ 2as−a(t− 1)a−1 ≤M1s

−ata−1, (3.14)

provided that M1 ≥ 2a supt≥2( t
t−1)1−a = 2. For models (a) and (b), we need

2a
(
s− 1 +

1
m

)−a(
t− 1 +

j − 1
m

)a−1
≤M1s

−ata−1,

which holds when we choose M1 ≥ 2ma.
We proceed with the proof of (3.13). We show (3.13) for model (c), the proof for the other models

being similar. For some constant M3,

P
(
g(t1, j1) = s, g(t2, j2) = s

)
= E

[
P
(
g(t1, j1) = s, g(t2, j2) = s|Gm(t2 − 1)

)]
= E

[
I[g(t1, j1) = s]

(
ds(t2 − 1) + δ

(t2 − 1)(2m + δ)

)]
=

1
(t2 − 1)(2m + δ)

Γ(t2 − 1 + a)Γ(t1)
Γ(t2 − 1)Γ(t1 + a)

E [I[g(t1, j1) = s] (ds(t1) + δ)]

≤ M3

ta1t
1−a
2

E [I[g(t1, j1) = s] (ds(t1) + δ)] , (3.15)

using for t1 < u ≤ t2 − 1, the iteration (compare (2.15)),

E [I[g(t1, j1) = s] (ds(u) + δ)] =
(
1 +

a

u− 1

)
E [I[g(t1, j1) = s] (ds(u− 1) + δ)] ,

and the asymptotic identities Γ(t1)
Γ(t1+a) ∼ t−a

1 , Γ(t2−1+a)
(t2−1)Γ(t2−1) ∼ ta−1

2 .
We are lead to compute E [I[g(t1, j1) = s] (ds(t1) + δ)] . We do so by recursion:

E
[
I[g(t1, j1) = s] (ds(t1) + δ)

∣∣Gm(t1 − 1)
]

= E
[
I[g(t1, j1) = s] (ds(t1)− ds(t1 − 1))

∣∣Gm(t1 − 1)
]

+ E
[
I[g(t1, j1) = s] (ds(t1 − 1) + δ)

∣∣Gm(t1 − 1)
]

=
m∑

j=1

E
[
I[g(t1, j1) = s]I[g(t1, j) = s]

∣∣Gm(t1 − 1)
]

+ (ds(t1 − 1) + δ) E
[
I[g(t1, j1) = s]

∣∣Gm(t1 − 1)
]

=
ds(t1 − 1) + δ

(t1 − 1)(2m + δ)
+ (m− 1)

(
ds(t1 − 1) + δ

(t1 − 1)(2m + δ)

)2

+
(ds(t1 − 1) + δ)2

(t1 − 1)(2m + δ)

≤ ds(t1 − 1) + δ

(t1 − 1)(2m + δ)
+ m

(ds(t1 − 1) + δ)2

(t1 − 1)(2m + δ)
. (3.16)
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We prove in Lemma 5.1 of the appendix that, for some constant M4,

E[(ds(t) + δ)2] ≤M4(t/s)2a. (3.17)

Combining (3.15), (3.16), (3.17) and (2.16), we find, possibly after enlarging M4,

P
(
g(t1, j1) = s, g(t2, j2) = s

)
≤
(

M3

ta1t
1−a
2

)[
mM4

(2m + δ)(t1 − 1)

( t1 − 1
s

)2a
]
≤ M2

(t1t2)1−as2a
, (3.18)

for some M2.

We combine the results of Lemmas 3.1 and 3.2 into the following corollary, yielding an upper bound for
the probability of the existence of a path. In its statement, we call a path Γ = (s0, s1, . . . , sl) self-avoiding
when si 6= sj for all 1 ≤ i < j ≤ l.

Corollary 3.3. Let Γ = (s0, s1, . . . , sl) be a self-avoiding path of length l consisting of the l + 1 unordered
vertices s0, s1, . . . , sl, then

P(Γ ∈ Gm(t)) ≤ (m2C)l
l−1∏
i=0

1
(si ∧ si+1)a(si ∨ si+1)1−a . (3.19)

Proof. Since Γ is self-avoiding, we can write {Γ ∈ G} = ∩k
i=1Esi , where either

Es = {g(t, j) = s} (3.20)

for some t > s and some 1 ≤ j ≤ m, or

Es = {g(t1, j1) = g(t2, j2) = s}, (3.21)

for some t1, t2 > s and some 1 ≤ j1, j2 ≤ m. In the first case we have according to (3.12),

P(Es) = P
(
g(t, j) = s

)
≤ M1

t1−asa
, (3.22)

whereas in the second case, according to (3.13),

P(Es) = P(g(t1, j1) = s, g(t2, j2) = s) ≤ M2

(t1t2)1−as2a
=

M2

t1−a
1 sat1−a

2 sa
. (3.23)

In both cases Mi, i = 1, 2, is an absolute constant. Lemma 3.1 then yields (3.19), where the factor m2l

originates from the choices of j ∈ {1, 2, . . . ,m}.

3.1 Application to the lower bound on the diameter when δ ≥ 0

Observe that for integers j > i we have (
j

i

)a− 1
2

≤ 1, (3.24)

if and only if a ≤ 1
2 , which happens if and only if δ ≥ 0, because a = m

2m+δ . Hence, ja−1i−a ≤ (ij)−1/2

precisely when δ ≥ 0. It now follows from (3.19) and the above inequality that for δ ≥ 0,

P(Γ ∈ Gm(t)) ≤ (m2C)l
l−1∏
i=0

1
√

sisi+1
. (3.25)
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The further proof that (3.25) implies that for δ ≥ 0,

L =
log(t− 1)

log(3Cm2 log t)
, (3.26)

is a lower bound for the diameter of Gm(t), is identical to the proof of [13, Theorem 5, p. 14], with n
replaced by t.

4 A log log upper bound on the diameter: Proof of Theorem 1.6

The proof of Theorem 1.6 is divided into two key steps. In the first, in Theorem 4.1, we give a bound
on the diameter of the core which consists of the vertices with degree at least a certain power of log t.
This argument is close in spirit to the argument in [33] used to prove bounds on the average distance for
the configuration model, but substantial adaptations are necessary to deal with preferential attachment.
After this, in Theorem 4.7, we derive a bound on the distance between vertices with a small degree and
the core. We start by defining and investigating the core of the preferential attachment model. In the
sequel, it will be convenient to prove Theorem 1.6 for 2t rather than for t. Clearly, this does not make
any difference for the results.

4.1 The diameter of the core

We recall that
τ = 3 +

δ

m
, (4.1)

so that −m < δ < 0 corresponds to τ ∈ (2, 3). Throughout this section, we fix m ≥ 2.
We take σ > 1

3−τ = −m
δ > 1 and define the core Coret of the PA-model Gm(2t) to be

Coret =
{
i ∈ {1, 2, . . . , t} : di(t) ≥ (log t)σ}, (4.2)

i.e., all the vertices which at time t have degree at least (log t)σ.
For a graph G with vertex set {1, 2, . . . , t} and a given edge set, we write dG(i, j) for the shortest-path

distance between i and j in the graph G. Also, for A ⊆ {1, 2, . . . , t}, we write

diamt(A) = max
i,j∈A

dGm(t)(i, j). (4.3)

Then, the diameter of the core in the graph Gm(2t), which we denote by diam2t(Coret), is bounded in
the following theorem:

Theorem 4.1 (The diameter of the core). Fix m ≥ 2. For every σ > 1
3−τ , whp,

diam2t(Coret) ≤ (1 + o(1))
4 log log t

| log (τ − 2)|
. (4.4)

The proof of Theorem 4.1 is divided into several smaller steps. We start by proving that the diameter
of the inner core Innert, which is defined by

Innert =
{
i ∈ {1, 2, . . . , t} : di(t) ≥ t

1
2(τ−1) (log t)−

1
2
}
, (4.5)

is, whp, at most 10. After this, we will show that the distance from the outer core, which is defined to
be equal to Outert = Coret\Innert, to the inner core can be bounded by a fixed constant times log log t.
This also shows that the diameter of the outer core is bounded by a different constant times log log t. We
now give the details.
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Proposition 4.2 (The diameter of the inner core). Fix m ≥ 2, then whp,

diam2t(Innert) ≤ 10. (4.6)

Proof. We first introduce the important notion of a t-connector between a vertex i ∈ {1, 2, . . . , t} and a
set of vertices A ⊆ {1, 2, . . . , t}, which plays a crucial role throughout the proof. Fix a set of vertices A
and a vertex i. We say that the vertex j ∈ {t + 1, t + 2, . . . , 2t} is a t-connector between i and A if one
of the edges incident to j connects to i and another edge incident to j connects to a vertex in A. Thus,
when there exists a t-connector between i and A, the distance between i and A in Gm(2t) is at most 2.

We continue the analysis by first considering model (c). We note that for a set of vertices A and a
vertex i with degree at time t equal to di(t), we have that, conditionally on Gm(t), the probability that
j ∈ {t + 1, t + 2, . . . , 2t} is a t-connector for i and A is at least

(dA(t) + δ|A|)(di(t) + δ)
[2t(2m + δ)]2

, (4.7)

independently of the fact whether the other vertices are t-connectors or not, and where, for any A ⊆
{1, 2, . . . , t}, we write

dA(t) =
∑
i∈A

di(t). (4.8)

Since di(t) + δ ≥ m + δ > 0 for every i ≤ t, and δ < 0, we have that

di(t) + δ = di(t)
(
1 +

δ

di(t)

)
≥ di(t)(1 +

δ

m
) = di(t)

m + δ

m
, (4.9)

and, thus, also dA(t)+δ|A| ≥ dA(t)m+δ
m . As a result, for η = (m+δ)2/(2m(2m+δ))2 > 0, the probability

that j ∈ {t + 1, t + 2, . . . , 2t} is a t-connector for i and A is at least ηdA(t)di(t)
t2

, independently of the fact
whether the other vertices are t-connectors or not. Therefore, the probability that there is no t-connector
for i and A is, conditionally on Gm(t), bounded above by(

1− ηdA(t)di(t)
t2

)t
≤ exp

{
−ηdA(t)di(t)

t

}
. (4.10)

We shall make use of (4.10) in several places throughout the proof.
For model (a) and (b), the right hand side of (4.10) also serves as an upper bound on the probability

of non-existence of a t-connector between A and i, conditionally on Gm(t), with trivial adaptations, and
a slightly different value of η > 0.

In the course of the proof we will make use of the following lemma:

Lemma 4.3 (The maximal degree). Fix m ≥ 1. With high probability, for δ ≤ 0,

max
i≤log t

di(t) ≥ t
1

τ−1 (log t)−1. (4.11)

We defer the proof of Lemma 4.3 to Section 5.3 of the appendix.

We start by proving the claim of Proposition 4.2 for τ ∈ (5
2 , 3). Let i∗ ≤ log t be such that di∗(t) =

maxi≤log t di(t). Further, for i ∈ Innert, we have that di(t) ≥ t
1

2(τ−1) (log t)−
1
2 . Thus, by (4.10), the

probability that there is no t-connector between i ∈ Innert and i∗ is bounded by

exp{−ηdi∗(t)di(t)
t

} ≤ exp
{
− η

t
3

2(τ−1)

t(log t)3/2

}
, (4.12)

14



which converges to 0 since, for τ > 5/2, we have 3
2(τ−1) > 1. Thus, the distance between any i ∈ Innert

and i∗ is, whp, bounded by 2. This implies that, whp, diam2t(Innert) ≤ 4.
We next extend the result to τ ∈ (2, 5

2 ]. Observe from Lemma 5.2 of the appendix that, whp, Innert

contains at least
√

t vertices and denote the first
√

t vertices of Innert by I. Observe that for τ > 2 we
have t(τ−1)−1−1 ↓ 0 so that, for any i, j ∈ I, the probability that there exists a t-connector for i and j is
bounded below by,

1− exp{−ηt
1

τ−1
−1(log t)−1} ≥ pt ≡ t

1
τ−1

−1(log t)−2, (4.13)

for t sufficiently large.
We wish to couple Innert with an Erdős-Rényi random graph with nt =

√
t vertices and edge prob-

ability pt, which we denote by G(nt, pt). For this, for i, j ∈ {1, 2, . . . , nt}, we say that an edge between
i and j is present when there exists a t-connector connecting the ith and jth vertex in I. We now prove
that this graph is bounded below by G(nt, pt). Note that (4.13) does not guarantee this coupling, instead
we should prove that the lower bound holds uniformly, when i and j belong to I.

For this, we order the nt(nt − 1)/2 edges in an arbitrary way, and bound the conditional probability
that the lth edge is present conditionally on the previous edges from below by pt, for every l. This would
prove the claimed stochastic domination by G(nt, pt).

Indeed, the lth edge is present precisely when there exists a t-connector connecting the corresponding
vertices which we call i and j in I. Moreover, we shall not make use of the first vertices which were used
to t-connect the previous edges. This removes at most nt(nt − 1)/2 ≤ t/2 possible t-connectors, after
which at least another t/2 remain. The probability that one of them is a t-connector for the ith and jth

vertex in I is bounded below by, for t sufficiently large,

1− exp{−ηt
1

τ−1
−2(log t)−1t/2} = 1− exp{−ηt

1
τ−1

−1(log t)−1/2} ≥ pt ≡ t
1

τ−1
−1(log t)−2, (4.14)

using 1− e−x ≥ x/2 for x ∈ [0, 1] and η/2 ≥ log t−1 for t sufficiently large.
This proves the claimed stochastic domination of the random graph on the vertices I and G(nt, pt).

Next, we show that diam(G(nt, pt)) is, whp, bounded by 3. For this we use the result in [7, Corollary
10.12], which gives sharp bounds on the diameter of an Erdős-Rényi random graph. Indeed, this result
implies that if pdnd−1 − 2 log n→∞, while pd−1nd−2 − 2 log n→ −∞, then diam(G(n, p)) = d, whp. In
our case, n = nt = t1/2 and p = pt = t

1
τ−1

−1(log t)−2, which implies that, whp, τ−1
3−τ < d ≤ τ−1

3−τ +1. Since,
for τ ∈ (2, 5/2], we have τ−1

3−τ < 3, we obtain that the diameter of I in Gm(2t) is whp bounded by 6 in
this case.

We finally show that for any i ∈ Innert \ I, the probability that there does not exist a t-connector
connecting i and I is small. Indeed, this probability is, since dI(t) ≥

√
tt

1
τ−1 (log t)−1/2, and di(t) ≥

t
1

2(τ−1) (log t)−1/2, the probability of there not existing a t-connector is bounded above by e−ηt1/(τ−1)−1/2(log t)−1
,

which is tiny since τ < 3. This proves that whpthe distance between any vertex i ∈ Innert \ I and I is
bounded by 2, and, together with the fact that diam2t(I) ≤ 6 thus implies that diam2t(Innert) ≤ 10.

Proposition 4.4 (The distance between the outer and the inner core). Fix m ≥ 2. With high probability,
the inner core Innert can be reached from any vertex in the outer core Outert using no more than 2 log log t

| log (τ−2)|
edges in Gm(2t). More precisely, whp

max
i∈Outert

min
j∈Innert

dGm(2t)(i, j) ≤ 2 log log t

| log (τ − 2)|
. (4.15)

Proof. Recall that
Outert = Coret \ Innert. (4.16)
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and define
N (1) = Innert = {i : di(t) ≥ u1}, (4.17)

where
u1 = lt = t

1
2(τ−1) (log t)−

1
2 . (4.18)

We now recursively define a sequence uk, for k ≥ 2, so that for any vertex i ∈ {1, 2, . . . , t} with degree at
least uk, the probability that there is no t-connector for the vertex i and the set

N (k−1) = {j : dj(t) ≥ uk−1}, (4.19)

conditionally on Gm(t) is tiny. According to (4.10) and (5.6) in the appendix, this probability is at most

exp
{
− ηBt[uk−1]2−τuk

t

}
= o(t−1), (4.20)

when we define
uk = D log t

(
uk−1

)τ−2
, (4.21)

with D exceeding (ηB)−1. The following lemma identifies uk:

Lemma 4.5 (Identification of uk). For each k ∈ N,

uk = Dak(log t)bktck , (4.22)

where

ck =
(τ − 2)k−1

2(τ − 1)
, bk =

1− (τ − 2)k−1

3− τ
− 1

2
(τ − 2)k−1, ak =

1− (τ − 2)k−1

3− τ
. (4.23)

Proof. We identify ak, bk and ck recursively. We note that c1 = 1
2(τ−1) , b1 = −1

2 , a1 = 0. By (4.21), we
can relate ck, bk and ak to ck−1, bk−1 and ak−1 as follows:

ck = (τ − 2)ck−1, bk = 1 + (τ − 2)bk−1, ak = 1 + (τ − 2)ak−1. (4.24)

Iterating (4.24) we obtain the expressions for ck, bk and ak in (4.23).
Then, the key step in the proof of Proposition 4.4 is the following lemma:

Lemma 4.6 (Connectivity between N (k−1) and N (k)). Fix m, k ≥ 2. Then the probability that there exists
an i ∈ N (k) that is not at distance two from N (k−1) in Gm(2t) is o(t−1).

Proof. We note that, by Lemma 5.2, that with probability exceeding 1− o(t−1),∑
i∈N (k−1)

di(t) ≥ Bt[uk−1]2−τ . (4.25)

On the event that the bounds in (4.25) hold, we obtain by (4.10) that the conditional probability, given
Gm(t), that there exists an i ∈ N (k) such that there is no t-connector between i and N (k−1) is bounded,
using Boole’s inequality, by

te−ηB[uk−1]2−τ uk = te−ηBD log t = o(t−1), (4.26)

where we have used (4.21) and we have taken D > 2(ηB)−1.
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We now complete the proof of Proposition 4.4. Fix

k∗ =
⌊ log log t

| log (τ − 2)|

⌋
. (4.27)

As a result of Lemma 4.6, we have that the distance between N (k∗) and Innert is at most 2k∗. Therefore,
we are done when we can show that

Outert ⊆ {i : di(t) ≥ (log t)σ} ⊆ N (k∗) = {i : di(t) ≥ uk∗}, (4.28)

so that it suffices to prove that (log t)σ ≥ uk∗ , for any σ > 1
3−τ . For this, we note that, by Lemma 4.5,

we have that
uk∗ = Dak∗ (log t)bk∗ tck∗ . (4.29)

We have that tck∗ = O(1) = (log t)o(1), (log t)bk∗ = (log t)
1

3−τ
+o(1), and Dak∗ = (log t)o(1). Thus,

uk∗ = (log t)
1

3−τ
+o(1). (4.30)

Thus, by picking t sufficiently large, we can make σ ≥ 1
3−τ +o(1). This completes the proof of Proposition

4.4.

Proof of Theorem 4.1. We note that whp diam2t(Coret) ≤ 10 + 2k∗, where k∗ is the upper bound on
maxi∈Outert minj∈Innert dGm(2t)(i, j) in Proposition 4.4, and we have made use of Proposition 4.2. This
proves Theorem 4.1.

4.2 Connecting the periphery to the core

In this section, we extend the results of the previous section and, in particular, study the distance between
the vertices not in the core Coret and the core. The main result in this section is the following theorem:

Theorem 4.7 (Connecting the periphery to the core). Fix m ≥ 2. For every σ > 1
3−τ , whp, the maximal

distance between any vertex and Coret in Gm(2t) is bounded from above by 2σ log log t/ log m.

Together with Theorem 4.1, Theorem 4.7 proves the main result in Theorem 1.6.
The proof of Theorem 4.7 consists of two key steps. The first in Proposition 4.8 states that for any

two vertices i, j ∈ {1, 2, . . . , t} the distance dGm(2t)(i, j) is bounded by a constant times log log t, i.e.,
diam2t(Gm(t)) is bounded by some constant times log log t. The second in Proposition 4.11 shows that
the distance between any vertex in {t + 1, t + 2, . . . , 2t} and {1, 2, . . . , t} is bounded by another constant
times log log t.

Proposition 4.8 (Connecting half of the periphery to the core). Fix m ≥ 2. For every σ > 1
3−τ , whp,

the maximal distance between any vertex in {1, 2, . . . , t} and the core Coret in Gm(2t) is bounded from
above by σ log log t/ log m.

Proof. We start from a vertex i ∈ {1, 2, . . . , t} and will show that the probability that the distance between
i and Coret is at least C log log t is o(t−1) where C = σ/ log m. This proves the claim. For this, we explore
the neighborhood of i as follows. From i, we connect its m ≥ 2 edges. Then, successively, we connect the
m edges from each of the at most m vertices that i has connected to and have not yet been explored. We
continue in the same fashion. We call the arising process when we have explored up to distance k from
the initial vertex i the k-exploration tree.

When we never connect two edges to the same vertex, then the number of vertices we can reach within
k steps is precisely equal to mk. We call an event where an edge connects to a vertex which already was
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in the exploration tree a collision. When k increases, the probability of a collision increases. However,
the probability that there exists a vertex for which more than 2 collisions occur in the k-exploration tree
before it hits the core is small, as we prove now:

Lemma 4.9 (A bound on the probability of multiple collisions). Fix m ≥ 2 and δ ∈ (−m, 0). Fix
C = σ/ log m, l ≥ 1, b ∈ (0, 1] and take k ≤ C log log t. Then, for every vertex i ∈ {1, 2, . . . , t}, the
probability that its k-exploration tree has at least l collisions before it hits Coret ∪ {j : j ≤ tb} is bounded
above by (

(log t)dt−b
)l

= (log t)dlt−bl,

for some d > 0.

Proof. Take i ∈ {dtbe + 1, dtbe + 2, . . . , t} and consider its k-exploration tree T (k)

i . Since we add edges
after time tb the denominator in (1.1)-(1.3) is at least tb. Moreover, before hitting the core, any vertex
in the k-exploration tree has degree at most (log t)σ. Hence, for l = 1, the probability mentioned in the
statement of the lemma is at most

∑
v∈T (k)

i

dv(t) + δ

tb
≤

∑
v∈T (k)

i

(log t)σ

tb
≤ mk(log t)σ

tb
(4.31)

where the bound follows from δ < 0 and |T (k)

i | ≤ mk. For general l this upper bound becomes:(
mk(log t)σ

tb

)l

When k = C log log t with C = σ/ log m, we have that mlk = (log t)lσ. Therefore, the claim in Lemma
4.9 holds with d = 2σ.

We next prove that, whp, {j : j ≤ tb} is a subset of the core:

Lemma 4.10 (Early vertices have large degrees whp). Fix m ≥ 1. There exists a b > 0 such that, whp,
minj≤tb dj(t) ≥ (log t)σ, for some σ > 1

3−τ . As a result, whp, {j : j ≤ tb} ⊆ Coret.

We defer the proof of Lemma 4.10 to Section 5.3 of the appendix.
Now we are ready to complete the proof of Proposition 4.8:

Proof of Proposition 4.8. By combining Lemmas 4.9 and 4.10, the probability that there exists an
i ∈ {1, 2, . . . , t} for which the exploration tree T (k)

i has at least l collisions before hitting the core is o(1),
whenever l > 1/b, since, by Boole’s inequality, it is bounded by

t∑
i=1

(log t)dlt−bl = (log t)2σlt−bl+1 = o(1), (4.32)

precisely when l > 1
b . When the k-exploration tree hits the core, then we are done by Theorem 4.1. When

the k-exploration tree from a vertex i does not hit the core, but has less than l collisions, then there are
at least mk−l vertices in k-exploration tree. Indeed, when there are at most l collisions, the minimal size
of the tree is obtained by identifying at most l vertices and their complete offspring, and the size of the
pruned tree has size at least mk−l.
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When k = C log log t with C = σ/ log m, this number is at least equal to (log t)σ+o(1). The total
weight of the core is, by (5.6) in the appendix, at least∑

i∈Coret

(di(t) + δ) ≥ Bt(log t)−(τ−2)σ. (4.33)

The probability that there does not exist a t-connector between the k-exploration tree and the core is, by
(4.10) bounded above by

exp

{
−ηBt(log t)−(τ−2)σ(log t)σ+o(1)

t

}
= o(t−1), (4.34)

by picking B sufficiently large, since σ > 1/(3− τ). This completes the proof.

Proposition 4.11. Fix m ≥ 2. For every σ > 1
3−τ , whp, the maximal distance between any vertex and

Coret ∪ {1, 2, . . . , t} in Gm(2t) is bounded from above by σ log log t
log m .

Proof. Denote k = bσ log log t
log m c − 1. We again grow the k-exploration trees from the vertices i ∈ {t + 1, t +

2, . . . , 2t}.
By Lemma 4.9 for b = 1, the probability that there exists a vertex whose k-exploration tree contains

at least two collisions before hitting the vertex set Coret ∪ {1, 2, . . . , t} is bounded above by t−2(log t)d1

for some d1 sufficiently large. When the k-exploration tree contains a vertex in Coret ∪ {1, 2, . . . , t},
then we are done by Proposition 4.8 and Theorem 4.1. If not, and there are at most 2 collisions, then
there are at least mk = (m − 1)mk−1 vertices in {t + 1, t + 2, . . . , 2t} at distance precisely equal to k
from the original vertex. Denote these vertices by i1, . . . , imk

, and denote the k-exploration tree of vertex
i ∈ {t + 1, t + 2, . . . , 2t} by T (k)

i . We write

P(@j ∈ {1, 2, . . . ,mk} such that ij −→ {1, 2, . . . , t}
∣∣T (k)

i ) (4.35)

=
mk∏
j=1

P
(
ij −→/ {1, 2, . . . , t}

∣∣is −→/ {1, 2, . . . , t}∀s < j, T (k)

i

)
.

Now we note that, uniformly in the way all edges in Gm(2t) are formed, we have that for every s ∈
{t + 1, t + 2, . . . , 2t}, ∑t

i=1(di(s) + δ)
(2m + δ)s

≥ 1
2
. (4.36)

Thus, for any vertex ij in the boundary of T (k)

i , the probability that it will be directly connected to
{1, 2, . . . , t} is at least 1/2. As a result, we have that, uniformly in t, i and j,

P
(
ij −→/ {1, 2, . . . , t}

∣∣is −→/ {1, 2, . . . , t}∀s < j, T (k)

i

)
≤ (2m + δ)t

(2m + δ)(2t)
=

1
2
. (4.37)

Therefore, we obtain that

P(@j = 1, . . . ,mk such that ij ←→ {1, 2, . . . , t}|T (k)

i ) ≤ 2−mk . (4.38)

Since mk = m−1
m (log t)σ, with σ = 1

3−τ > 1, we have that 2−mk = o(t−1). Therefore, any vertex
i ∈ {t + 1, t + 2, . . . , 2t} is, whp, within distance k + 1 from {1, 2, . . . , t}.

Proof of Theorem 4.7. Proposition 4.11 states that whp every vertex in Gm(2t) is within distance
k + 1 = bσ log log t

log m c of Coret ∪ {1, 2, . . . , t}. Proposition 4.8 states that whp every vertex in {1, 2, . . . , t}
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is at most distance k + 1 from the core Coret. This shows that every vertex in Gm(2t) is whp within
distance 2(k + 1) from the core.

Proof of Theorem 1.6. Theorem 4.7 states that every vertex in Gm(2t) is within distance 2σ log log t
log m of

the core Coret. Theorem 4.1 states that the diameter of the core is at most 4 log log t
| log (τ−2)|(1 + o(1)), so that

the diameter of Gm(2t) is at most CG log log t, where CG is given in (1.9). This completes the proof of
Theorem 1.6.

5 Appendix

5.1 The second moment of the degree sequence

Lemma 5.1. For some constant M4 > 0,

E[(ds(t) + δ)2] ≤M4(t/s)2a. (5.1)

Proof. We start with model (c). We can compute E[(ds(t1 + 1) + δ)2] recursively by:

E[(ds(t1 + 1) + δ)2|Gm(t1)] = E[(ds(t1 + 1)− ds(t1) + ds(t1) + δ)2|Gm(t1)]
= E[(ds(t1 + 1)− ds(t1))2|Gm(t1)] + 2(ds(t1) + δ)E[ds(t1 + 1)− ds(t1)|Gm(t1)] + (ds(t1) + δ)2

= E
[( m∑

j=1

I[g(t1, j) = s]
)2
|Gm(t1)

]
+

2m(ds(t1) + δ)2

(2m + δ)t1
+ (ds(t1) + δ)2

= m

(
ds(t1) + δ

(2m + δ)t1

)
−m

(
ds(t1) + δ

(2m + δ)t1

)2

+ m2
(

ds(t1) + δ

(2m + δ)t1

)2

+
2m(ds(t1) + δ)2

(2m + δ)t1
+ (ds(t1) + δ)2,

from which we obtain

E[(ds(t1 + 1) + δ)2] =

(
1 +

m2 −m

(2m + δ)2t21
+

2m

(2m + δ)t1

)
E[(ds(t1) + δ)2] +

m

(2m + δ)t1
E[ds(t1) + δ].

Define

qs(t1) = E[(ds(t1) + δ)2], es(t1) = E[ds(t1) + δ], a =
m

2m + δ
, b =

1
2m + δ

.

Then from (2.15) and the above, respectively,

es(t1 + 1) = (1 +
a

t1
)es(t1)

qs(t1 + 1) =
(
1 +

a(a− b)
t21

+
2a

t1

)
qs(t1) +

a

t1
es(t1).

We write qs(t + 1) = (1 + a(t))qs(t) + rs(t) with a(k) = a(a−b)+2ak
k2 and rs(t) = a

t es(t), then

qs(t) = (1 + a(t− 1))qs(t− 1) + rs(t− 1)

= qs(s)
t−1∏
k=s

(1 + a(k)) +
t−1∑
k=s

rs(k)
t−1∏

l=k+1

(1 + a(l)). (5.2)

Since a(k) = a(a−b)+2ak
k2 ≤ 2a

k , and a ≥ b > 0,

t−1∏
k=s

(1 + a(k)) ≤ exp{
t−1∑
k=s

a(k)} ≤ exp{
t−1∑
k=s

2a

k
} ≤ exp{

∫ t−1

s−1

2a

x
dx} =

( t− 1
s− 1

)2a
. (5.3)
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Substitution of rs(t) = a
t es(t) and using that by (2.16),

es(t) ≤M
( t

s

)a
, (5.4)

we find, for some constant M5 > 0,

t−1∑
k=s

rs(k)
t−1∏

l=k+1

(1 + a(l)) ≤ (t− 1)2a
t−1∑
k=s

rs(k)
k2a

≤ a(t− 1)2a
t−1∑
k=s

es(k)
k1+2a

≤ aM
t2a

sa

t−1∑
k=s

1
k1+a

≤ aM
t2a

sa

∞∑
k=s

1
k1+a

≤M5
t2a

s2a
. (5.5)

From (5.2) and (5.5) together, we obtain (5.1).

5.2 The total degree of an event

Lemma 5.2. Assume that l = l(t)→∞, as t→∞ and that l(t) ≤ u1, then there exists a constant B > 0
such that with probability exceeding 1− o(t−1),∑

i:di(t)≥l

di(t) ≥ Btl2−τ . (5.6)

Proof. We note that ∑
i:di(t)≥l

di(t) ≥ lP≥l(t), (5.7)

where P≥l(t) = #{i ≤ t : di(t) ≥ l} is the number of vertices with degree at least l.
In [18], detailed asymptotics for P≥l(t) were proved for model (c) that we will survey now. These

asymptotics play a key role throughout the proof. We shall comment on the adaptations of the proofs for
models (a) and (b) below.

Firstly, it is shown that there exists a B1 such that uniformly for all l,

P
(
|P≥l(t)− E[P≥l(t)]| ≥ B1

√
t log t

)
= o(t−1). (5.8)

This proves a concentration bound on the number of vertices with at least a given degree. The proof of
this result follows the argument in [15], and holds for any of the models (a)-(c).

Secondly, it is shown that with

Pl(t) = #{i ≤ t : di(t) = l} (5.9)

equal to the total number of vertices of degree equal to l, and with pk defined by

pk =
θΓ(k + δ)Γ(m + δ + θ)

Γ(m + δ)Γ(k + 1 + δ + θ)
, k ≥ m, (5.10)

so that pk ∼ k−τ , and where θ = 2 + δ/m, there exists a constant B2 such that

sup
l≥1
|E[Pl(t)]− tpl| ≤ B2. (5.11)

For model (c), this is shown in [18], for model (a) this is shown in [25, Chapter 8]. This latter proof can
easily be adapted to deal with model (b) as well. In rather generality, results of this kind (with the sharp
bound in (5.11)) are proved in [24].
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Therefore, we obtain that, with probability exceeding 1− o(t−1),

P≥lt
(t) ≥ E[P≥lt

(t)]−B1

√
t log t ≥ E[P≥lt

(t)]− E[P≥2lt
(t)]−B1

√
t log t

≥
2lt−1∑
l=lt

[tpl −B2]−B1

√
t log t ≥ B3tl

1−τ
t −B2lt −B1

√
t log t. (5.12)

We now wish to pick lt such that
tl1−τ

t � lt, (5.13)

or lt � t
1
τ , and

tl1−τ
t �

√
t log t, (5.14)

or lt � t
1

2(τ−1) (log t)−
1

2(τ−1) . Note that 1
τ ≥

1
2(τ−1) for all τ > 2, so we need

lt ≤ t
1

2(τ−1) (log t)−
1
2 ≡ u1. (5.15)

Then, for this choice, we have with probability exceeding 1− o(t−1),∑
i:di(t)≥lt

di(t) ≥ Btl2−τ
t . (5.16)

Also, for this choice, whp, P≥lt
(t)�

√
t.

5.3 Proof of Lemmas 4.3 and 4.10

Proof of Lemma 4.3. We prove the bound for model (c), the proof for models (a) and (b) is similar. We
first write the degree of vertex i as

di(t) = m +
t∑

s=i+1

m∑
j=1

I[g(s, j) = i], (5.17)

where we recall that g(s, j) = i denotes that the jth edge of vertex s is attached to vertex i. By Lemma
3.1, the indicator variables I[g(s1, j1) = i1] and I[g(s2, j2) = i2] are negatively corelated for any i1 6= i2.
As a result, we obtain that di1(t) and di2(t) are negatively correlated, so that

Var
( log t∑

i=1

di(t)
)
≤

log t∑
i=1

Var(di(t)). (5.18)

Also, by (2.15), it follows that E[di(t)] ≥ c
(

t
i

)a
, so that, for some ε > 0, and noting that a < 1,

E[
log t∑
i=1

di(t)] ≥ εta(log t)1−a. (5.19)

Furthermore, by (3.17), we have that

Var(di(t)) = Var(di(t) + m) ≤ E[(di(t) + δ)2] ≤M4

( t

i

)2a
, (5.20)

so that, for any ε > 0, and noting that a > 1/2 for δ < 0,

Var
( log t∑

i=1

di(t)
)
≤

log t∑
i=1

M4

( t

i

)2a
= O(t2a). (5.21)
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As a result, by the second moment method, we obtain that, noting that a = 1
τ−1 ∈ (1

2 , 1),

P( max
i≤log t

di(t) ≤ ta(log t)−1) ≤ P
( ∑

i≤log t

di(t) ≤ ta
)

≤ P
( ∑

i≤log t

|di(t)− E[di(t)]| ≥ εta(log t)1−a
)

≤ O(t2a)(
εta(log t)1−a

)2 = O
(
(log t)−2(1−a)

)
= o(1). (5.22)

Proof of Lemma 4.10. We investigate the problem for model (a) first, the adaptation of the proof for
model (b) is rather straightforward and will be treated immediately after the proof for model (a). The
proof for model (c) is slightly more involved.

We first note that, for models (a) and (b), the model for general m ≥ 1 is obtained from the model
for m = 1 by taking δ′ = δ/m and identifying groups of m vertices. Thus, the degree of vertex i in Gm(t)
is bounded from below by the degree of vertex im in G1(mt). We now prove the statement for m = 1
and δ > −1 fixed. We shall show by induction on j that, for m = 1, that for all t ≥ i

P(di(t) = j) ≤ Cj

Γ(t)Γ(i + 1+δ
2+δ )

Γ(t + 1+δ
2+δ )Γ(i)

, (5.23)

where Cj will be determined in the course of the proof. Clearly, for every t ≥ i, for model (a),

P(di(t) = 1) =
t∏

s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

t∏
s=i+1

( s− 1
s− 1 + 1+δ

2+δ

)
=

Γ(t)Γ(i + 1+δ
2+δ )

Γ(t + 1+δ
2+δ )Γ(i)

, (5.24)

which initializes the induction hypothesis with C1 = 1.
To advance the induction, we let s ≤ t be the last time at which a vertex is added to i. Then we have

that

P(di(t) = j) =
t∑

s=i+j−1

P
(
di(s− 1) = j − 1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ
P
(
di(t) = j|di(s) = j

)
. (5.25)

By the induction hypothesis, we have that

P
(
di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i + 1+δ
2+δ )

Γ(s− 1 + 1+δ
2+δ )Γ(i)

. (5.26)

Moreover, analogously to (5.24), we have that

P(di(t) = j|di(s) = j) =
t∏

q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(5.27)

=
t∏

q=s+1

(q − 1− j−1
2+δ

q − 1 + 1+δ
2+δ

)
=

Γ(t− j−1
2+δ )Γ(s + 1+δ

2+δ )

Γ(t + 1+δ
2+δ )Γ(s− j−1

2+δ )
.

23



Combining (5.26) and (5.27), we arrive at

P(di(t) = j) ≤
t∑

s=i+j−1

(
Cj−1

Γ(s− 1)Γ(i + 1+δ
2+δ )

Γ(s− 1 + 1+δ
2+δ )Γ(i)

)( j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)(Γ(t− j−1
2+δ )Γ(s + 1+δ

2+δ )

Γ(t + 1+δ
2+δ )Γ(s− j−1

2+δ )

)
.

(5.28)

We next use that

Γ(s− 1 +
1 + δ

2 + δ
)((2 + δ)(s− 1) + (1 + δ)) = (2 + δ)Γ(s +

1 + δ

2 + δ
), (5.29)

to arrive at

P(di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i + 1+δ
2+δ )

Γ(i)
Γ(t− j−1

2+δ )

Γ(t + 1+δ
2+δ )

t∑
s=i+j−1

Γ(s− 1)
Γ(s− j−1

2+δ )
. (5.30)

We note that, whenever l + b, l + 1 + a > 0 and a− b + 1 > 0,

t∑
s=l

Γ(s + a)
Γ(s + b)

=
1

a− b + 1

[Γ(t + 1 + a)
Γ(t + b)

− Γ(l + 1 + a)
Γ(l + b)

]
≤ 1

a− b + 1
Γ(t + 1 + a)

Γ(t + b)
. (5.31)

Application of (5.31) for a = −1, b = − j−1
2+δ , l = i + j − 1, so that a− b + 1 = j−1

2+δ > 0 when j > 1, leads
to

P(di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i + 1+δ
2+δ )

Γ(i)
Γ(t− j−1

2+δ )

Γ(t + 1+δ
2+δ )

1
j−1
2+δ

Γ(t)
Γ(t− j−1

2+δ )
(5.32)

= Cj−1
j − 1 + δ

j − 1
Γ(i + 1+δ

2+δ )
Γ(i)

Γ(t)
Γ(t + 1+δ

2+δ )
.

Equation (5.32) advances the induction when we define

Cj =
j − 1 + δ

j − 1
Cj−1. (5.33)

This completes the investigation of the probability that P(di(t) = j) for model (a).
For model (b), the argument is quite similar. Indeed, we now use as an induction hypothesis that

P(di(t) = j) ≤ Cj

Γ(t− 1+δ
2+δ )Γ(i)

Γ(t)Γ(i− 1+δ
2+δ )

, (5.34)

where again Cj will be determined in the course of the proof. Clearly, for every t ≥ i, in model (b),

P(di(t) = 1) =
t∏

s=i+1

(
1− 1 + δ

(2 + δ)(s− 1)

)
=

t∏
s=i+1

(s− 1− 1+δ
2+δ

s− 1

)
=

Γ(t− 1+δ
2+δ )Γ(i)

Γ(t)Γ(i− 1+δ
2+δ )

, (5.35)

which again initializes the induction hypothesis, and

P(di(t) = j|di(s) = j) =
t∏

q=s+1

(
1− j + δ

(2 + δ)(q − 1)

)
=

Γ(t− j+δ
2+δ )Γ(s)

Γ(t)Γ(s− j+δ
2+δ )

. (5.36)
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Therefore, (5.32) is now replaced by

P(di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i)
Γ(i− 1+δ

2+δ )

Γ(t− j+δ
2+δ )

Γ(t)

t∑
s=i+j−1

Γ(s− 1− 1+δ
2+δ )

Γ(s− j+δ
2+δ )

(5.37)

= Cj−1
j − 1 + δ

j − 1
Γ(i)

Γ(i− 1+δ
2+δ )

Γ(t− 1+δ
2+δ )

Γ(t)
.

We next turn to model (c). In the proofs for models (a) and (b), we have made crucial use of the
relation between Gm(t) and G1(mt) for these models, so that it was sufficient to investigate the case where
m = 1. When m = 1, at any time step, at most one edge can be added. This relation unfortunately fails
for model (c), and we first adapt the argument. Recall that di(t) is the degree of vertex i at time t. We
shall define ei(t) such that ei(t) ≤ di(t) and ei(t) grows by at most one at each time step. The definition
of ei(t) is recursive. We let ei(i) = di(i) = m, and, assuming we have shown that di(t) = ei(t) + ri(t),
where ri(t) ≥ 0, we proceed to time t + 1 as follows. We can increase ei(t) only when the first edge of
vertex t + 1 attaches to vertex i, and this is the case with probability ei(t)+δ

(2m+δ)t . With probability ri(t)
(2m+δ)t ,

we keep ei(t + 1) = ei(t) and we increase ri(t) by one. For the other m − 1 edges, we increase ri(t) by
one with probability di(t)+δ

(2m+δ)t . Then we clearly have that ei(t + 1) ≤ di(t + 1) if ei(t) ≤ di(t), since the
difference between di(t) and ei(t) equals ri(t), which is monotonically increasing. Moreover, we have that
ei(t + 1) equals ei(t) or ei(t) + 1, and the latter occurs with conditional probability

P(ei(t + 1) = j|ei(t) = j − 1) =
j − 1 + δ

(2m + δ)t
. (5.38)

We now adapt the above argument for models (a)-(b) to the random variable ei(t). Indeed, we now use
as an induction hypothesis that

P(ei(t) = j) ≤ Cj

Γ(t− m+δ
2m+δ )Γ(i)

Γ(t)Γ(i− m+δ
2m+δ )

, (5.39)

where again Cj will be determined in the course of the proof. Clearly, for every t ≥ i, in model (c),

P(ei(t) = m) =
t∏

s=i+1

(
1− m + δ

(2m + δ)(s− 1)

)
=

t∏
s=i+1

(s− 1− m+δ
2m+δ

s− 1

)
=

Γ(t− m+δ
2m+δ )Γ(i)

Γ(t)Γ(i− m+δ
2m+δ )

, (5.40)

and

P(ei(t) = j|ei(s) = j) =
t∏

q=s+1

(
1− j + δ

(2m + δ)(q − 1)

)
=

Γ(t− j+δ
2m+δ )Γ(s)

Γ(t)Γ(s− j+δ
2m+δ )

. (5.41)

Therefore, for j > m, the recursion leading to (5.32) is now replaced by

P(ei(t) = j) ≤
t∑

s=i+j−1

Cj−1

(Γ(s− 1− m+δ
2m+δ )Γ(i)

Γ(s− 1)Γ(i− m+δ
2m+δ )

)( j − 1 + δ

(2m + δ)(s− 1)

)(Γ(t− j+δ
2m+δ )Γ(s)

Γ(t)Γ(s− j+δ
2m+δ )

)
(5.42)

= Cj−1
j − 1 + δ

2m + δ

Γ(i)
Γ(i− m+δ

2m+δ )

Γ(t− j+δ
2m+δ )

Γ(t)

t∑
s=i+j−1

Γ(s− 1− m+δ
2m+δ )

Γ(s− j+δ
2m+δ )

≤ Cj−1
j − 1 + δ

j −m

Γ(i)
Γ(i− m+δ

2m+δ )

Γ(t− m+δ
2m+δ )

Γ(t)
,
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so that Cj is now given by Cm = 1 and, for j > m,

Cj =
j − 1 + δ

j −m
Cj−1. (5.43)

We summarize the bounds in models (a)-(c) by the fact that we have the bound, for all m ≥ 1,

P(di(t) = j) ≤ Cj
Γ(t− a1)Γ(i + a2)
Γ(t + a2)Γ(i− a1)

, (5.44)

where a1 = 0 for model (a), while a1 = m+δ
2m+δ for models (b)–(c), while a2 = m+δ

2m+δ for model (a), while
a2 = 0 for models (b)–(c), and, for all models, Cj ≤ jp−1 for some p ≥ 1.

Below, we shall rely on the obvious consequence of (5.44) that

P(di(t) ≤ j) ≤ jp Γ(t− a1)Γ(i + a2)
Γ(t + a2)Γ(i− a1)

. (5.45)

Obviously, for t and i large, we have that

P(di(t) ≤ j) ≤ jpt−(a1+a2)ia1+a2(1 + o(1)). (5.46)

We finally use (5.45) to complete the proof of Lemma 4.10. Take 0 < b < a1+a2
a1+a2+1 = m+δ

3m+2δ , then, by
Boole’s inequality,

P(∃i ≤ tb : di(t) ≤ (log t)σ) ≤
tb∑

i=1

P(di(t) ≤ (log t)σ) ≤ (log t)σp Γ(t− a1)
Γ(t + a2)

tb∑
i=1

Γ(i + a2)
Γ(i− a1)

≤ (log t)σp(a1 + a2 + 1)−1 Γ(t− a1)
Γ(t + a2)

Γ(tb + a2 + 1)
Γ(tb − a1)

= o(1), (5.47)

by a similar equality as in (5.46). This completes the proof of Lemma 4.10.
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