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Abstract

We use the lace expansion to prove asymptotic formulae for the Fourier transforms of the r-point
functions for a spread-out model of critically weighted lattice trees in Zd for d > 8. When the model is
formulated appropriately as a measure-valued process, our results together with the appropriate limiting
behaviour for the survival probability, imply convergence to the canonical measure of super-Brownian
motion in the sense of finite-dimensional distributions.
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1 Introduction

A lattice tree in Zd is a finite connected set of bonds containing no cycles (see Figure 1). Lattice trees
are an important model for branched polymers. They are of interest in statistical physics, and perhaps
combinatorics and graph theory. We expect that our results are also appealing to probabilists, since the model
can be described as a non-Markovian measure-valued process which, when critically weighted, converges (in
dimensions d > 8) to a well known measure-valued Markov process in the scaling limit.

Lattice trees are self-avoiding objects by definition (since they contain no cycles). It is plausible that the
self-avoidance constraint imposed by the model becomes less important as the dimension increases. Lubensky
and Isaacson [24] proposed dc = 8 as the critical dimension for lattice trees and animals, at which various
critical exponents cease to depend on the dimension and take on their mean-field values (with log corrections
when d = 8). Macroscopic properties of the model should be similar to a simpler model, called branching
random walk, that does not have the self-avoidance constraint. A good source of information on critical
exponents for lattice trees (self-avoiding branched polymers) is [8]. There are few rigorous results for lattice
trees for 1 < d ≤ 8. The scaling limit of the model in 2 dimensions is not expected to be conformally
invariant, so that the class of processes called Stochastic Loewner Evolution (SLE) (see for example [29]) is
not a suitable candidate for the scaling limit. Brydges and Imbrie [3] used a dimensional reduction approach
to obtain strong results for a continuum (i.e. not lattice based) model for d = 2, 3. Appealing to universality,
we would expect lattice trees to have the same critical exponents as the Brydges and Imbrie model.

In high dimensions much more is known. Tasaki and Hara [28] showed in the context of lattice animals
that the finiteness of the square diagram

∑
x,y,z ρpc(x)ρpc(y − x)ρpc(z − y)ρpc(z) implies mean-field critical

behaviour for the susceptibility χ(p) ≡ ∑
x ρp(x). The same methods and results apply to lattice trees,

with ρp(x) to be defined shortly. Hara and Slade [10], [11] proved the finiteness of the square diagram for
sufficiently spread-out lattice trees (and animals) for d > 8, and for the nearest neighbour model for d À 8,
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Figure 1: A nearest neighbour lattice tree in 2 dimensions.

as well as the mean-field critical behaviour of various quantities. Derbez and Slade [6] studied a different but
related scaling limit to that which we will consider here. They also obtained results for the Fourier transforms
of the two-point and three-point functions. Hara, van der Hofstad, and Slade [9] showed mean-field behaviour
of the unrestricted two-point function for a sufficiently spread out model when d > 8.

Results of Hara and Slade (see for example [25]) show that for d > 4, self-avoiding walk (SAW) converges
to Brownian motion in the scaling limit. This is achieved by proving convergence of the finite-dimensional
distributions and tightness. In this case tightness follows from a negative correlation property of the model.
Note that, almost surely, Brownian motion paths have Hausdorff dimension 2 ∧ d and are self-avoiding in 4
or more dimensions.

With appropriate scaling of space, time, and mass, critical branching random walk converges weakly
to super-Brownian motion (see for example [26]). One version of this statement is that µn

w=⇒ N0, where
µn ∈ MF (D(MF (Rd)) is an appropriate scaling of the law of the correspondingly scaled branching random
walk, and N0 is a sigma-finite measure on the space D(MF (Rd)) of cadlag measure-valued paths, called
the canonical measure of super-Brownian motion (CSBM). Tightness of the measures µn can be verified
using martingale or other methods. Denote by Xt a measure-valued path with law N0. The supports of
the measures Y[t0,t1] =

∫ t1
t0

Xsds and Y[t2,t3] =
∫ t3
t2

Xsds have no intersection in dimensions d ≥ 8 if t2 > t1
(N0-almost everywhere) [5]. This is the appropriate way to say that SBM is self-avoiding for d ≥ 8. We might
expect that critical lattice trees (described as a measure-valued process with appropriate scaling) converge
weakly to CSBM in the same sense as branching random walk, for d > 8. Studying a different but related
limit conjectured by Aldous [2], it was shown in [6] that sufficiently spread out lattice trees in dimensions
d > 8 converge to integrated super-Brownian excursion (ISE) as the total size of the tree goes to infinity.
ISE is a probability measure on probability measures on Rd, i.e. I ∈ M1

(
M1(Rd)

)
which describes the

distribution of the total mass of CSBM (conditioned to be 1). ISE contains no information about time
evolution, however some results concerning ancestry were also proved in [6].

In this paper we prove asymptotic formulae for the Fourier transforms of quantities called the r-point
functions, for critical sufficiently spread-out lattice trees in dimensions d > 8. Holmes and Perkins [21] prove
that these formulae, together with an appropriate asymptotic formula for the survival probability imply
convergence of the model to CSBM in the sense of finite-dimensional distributions. Similar results have been
obtained for critical spread-out models of oriented percolation [16], [12], [13] and the contact process [17],
[18] above their critical dimension. Tightness and the asymptotics of the survival probability remain open
problems.

1.1 The model

We proceed to define the quantities of interest. We restrict ourselves to the vertex set of Zd.

Definition 1.1.
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Figure 2: A nearest neighbour lattice tree in 2 dimensions. The backbone from x to y of length n = 17 is
highlighted in the second figure.

1. A bond is an unordered pair of distinct vertices in the lattice.

2. A cycle is a set of distinct bonds {v1v2, v2v3, . . . , vl−1vl, vlv1}, for some l ≥ 3.

3. A lattice tree is a finite set of vertices and lattice bonds connecting those vertices, that contains no
cycles. This includes the single vertex lattice tree that contains no bonds.

4. Let r ≥ 2 and let xi, i ∈ {1, . . . , r} be vertices in a lattice tree T . Since T contains no cycles, there
exists a minimal connected subtree containing all the xi, called the skeleton connecting the xi. If r = 2
we often refer to the skeleton connecting x1 to x2 as the backbone.

Remark 1.2. The nearest-neighbour model consists of nearest neighbour bonds {x1, x2} with x1, x2 ∈ Zd and
|x1 − x2| = 1. Figures 1 and 2 show examples of nearest-neighbour lattice trees in Z2.

We use Z+ to denote the nonnegative integers {0, 1, 2, . . . }.
Definition 1.3.

1. For x ∈ Zd let Tx = {T : x ∈ T}. Note that this set always includes the single vertex lattice tree,
T = {x} that contains no bonds. We also let Ty(x) = {T ∈ Ty : x ∈ T}, and often write T (x) for To(x),
the set of lattice trees containing the vertices o and x.

2. For T ∈ To we let Ti be the set of vertices x ∈ T such that the backbone from o to x consists of i bonds.
In particular for T ∈ To we have To = {o}. A tree T ∈ To is said to survive until time n if Tn 6= ∅.

3. For x̃ = (x1, . . . , xr−1) ∈ Zd(r−1) and ñ ∈ Zr−1
+ we we write x̃ ∈ Tñ if xi ∈ Tni for each i and define

Tñ(x̃) ≡ {T ∈ To : x̃ ∈ Tñ}.
If we think of T ∈ To as the path taken by a migrating population in discrete time, then Ti can be thought

of as the set of locations of particles alive at time i. Figure 3 identifies the set T10 for a fixed T . Similarly
Tñ(x̃) can be thought of as the set of trees for which there is a particle at xi alive at time ni for each i.

In order to provide a small parameter needed for convergence of the lace expansion, we consider trees
consisting of bonds connecting vertices separated by distance at most L for some L À 1. Each bond is
weighted according to a function D, supported on [−L,L]d with total mass 1. The methods and results in
this paper rely heavily on the main results of [9] and [15]. Since the assumptions on the model are stronger
in [9], we adopt the finite range L,D spread out model of that paper. The following definition and the
subsequent remark are taken, almost verbatim from [9].
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Figure 3: A nearest neighbour lattice tree T in 2 dimensions with the set Ti for i = 10.

Definition 1.4. Let h be a non-negative bounded function on Rd which is piecewise continuous, symmetric
under the Zd-symmetries of reflection in coordinate hyperplanes and rotation by π

2 , supported in [−1, 1]d, and
normalised (

∫
[−1,1]d h(x)ddx = 1). Then for large L we define

D(x) =
h(x/L)∑

x∈Zd h(x/L)
. (1.1)

Remark 1.5. Since
∑

x∈Zd h(x/L) ∼ Ld using a Riemann sum approximation to
∫
[−1,1]d h(x)ddx, the as-

sumption that L is large ensures that the denominator of (1.1) is non-zero. Since h is bounded,
∑

x∈Zd h(x/L) ∼
Ld also implies that

‖D‖∞ ≤ C

Ld
.

We define σ2 =
∑

x |x|2D(x). The sum
∑

x |x|rD(x) can be regarded as a Riemann sum and is asymptotic
to a multiple of Lr for r > 0. In particular σ and L are comparable. A basic example obeying the conditions
of Definition 1.4 is given by the function h(x) = 2−dI[−1,1]d(x) for which D(x) = (2L + 1)−d I[−L,L]d∩Zd(x).

Definition 1.6 (L,D spread out lattice trees). Let ΩD = {x ∈ Zd : D(x) > 0}. We define an L,D spread
out lattice tree to be a lattice tree consisting of bonds {x, y} such that y − x ∈ ΩD.

The results of this paper are for L,D spread out lattice trees in dimensions d > 8. Appealing to the
hypothesis of universality, we expect that the results also hold for nearest-neighbour lattice trees. However
from this point on, unless otherwise stated, “lattice trees” and related terminology refers to L,D spread out
lattice trees.

Definition 1.7 (Weight of a tree). Given a finite set of bonds B and a nonnegative parameter p, we define
the weight of B to be

Wp,D(B) =
∏

{x,y}∈B

pD(y − x),

with Wp,D(∅) = 1. If T is a lattice tree we define

Wp,D(T ) = Wp,D(BT ),

where BT is the set of bonds of T .

Definition 1.8 (ρ(x)). Let
ρp(x) =

∑

T∈T (x)

Wp,D(T ).
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Clearly we have ρp(o) ≥ 1 for all L, p since the single vertex lattice tree {o} contains no bonds and
therefore has weight 1. A standard subadditivity argument [23] shows that there is a finite, positive pc at
which

∑
x ρp(x) converges for p < pc and diverges for p > pc. Hara, van der Hofstad and Slade [9] proved the

following Theorem, in which O(y) denotes a quantity that is bounded in absolute value by a constant times
y.

Theorem 1.9. Let d > 8 and fix ν > 0. There exists a constant A (depending on d and L) and an L0

(depending on d and ν) such that for L ≥ L0,

ρpc(x) =
A

σ2(|x| ∨ 1)d−2

[
1 +O

(
L(d−8)∧2

(|x| ∨ 1)((d−8)∧2)−ν

)
+O

(
L2

(|x| ∨ 1)2−ν

)]
. (1.2)

Constants in the error terms are uniform in both x and L, and A is bounded above uniformly in L.

We henceforth take our trees at criticality and write

W (·) = Wpc,D(·), and ρ(x) = ρpc(x). (1.3)

It was also shown in [9] that pcρ(o) ≤ 1 +O (
L−2+ν

)
and

ρ(x) ≤ C

(
Ix=0 +

Ix 6=0

L2−ν (|x| ∨ 1)d−2

)
, (1.4)

where the constants in the above statements depend on ν and d, but not L.

1.2 The r-point functions

In this section we define the main quantities of interest in this paper, the r-point functions, and state the
main results.

Definition 1.10 (2-point function). For ζ ≥ 0, n ∈ N, and x ∈ Rd we define,

tn(x; ζ) = ζn
∑

T∈Tn(x)

W (T ). (1.5)

We also define tn(x) = tn(x; 1).

Definition 1.11 (Fourier Transform). Given an absolutely summable function f : Zd(r−1) → R, we let
f̂(k) =

∑
x1,...,xr−1

ei
∑r−1

j=1 kj ·xjf(~x) denote the Fourier transform of f (kj ∈ [−π, π]d).

In [15] the authors show that if a recursion relation of the form

fn+1(k; z) =
n+1∑

m=1

gm(k; z)fn+1−m(k; z) + en+1(k; z) (1.6)

holds, and certain assumptions S, D, E, and G on the functions f•, g• and e• hold, then there exists a critical
value zc of z such that fn(k, zc) (appropriately scaled) converges (up to a constant factor) to the Fourier
transform of the Gaussian density as n −→∞. In [14] this result is extended by generalizing assumptions E
and G according to a parameter θ > 2, where the special case θ = d/2 with d > 4 is that which is proved in
[15]. In Section 3.1 we show that t̂n(k; ζ) obeys the recursion relation

t̂n+1(k; ζ) =
n+1∑

m=1

π̂m−1(k; ζ)ζpcD̂(k)t̂n+1−m(k; ζ) + π̂n+1(k; ζ),
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where πm(x; ζ) is a function that is defined in Section 3.1. After massaging this relation somewhat, the
important ingredients in verifying assumptions E and G for our lattice trees model are bounds on π̂m using
information about ρ(x) and t̂l(k; ζ) for l < m. The quantities π̂m−1(k; ζ) are reformulated using a technique
known as the lace expansion, which is discussed in Section 2 and ultimately reduces the problem to one of
studying certain Feynman diagrams. As in some of the references already discussed, the critical dimension
dc = 8 appears in this analysis as the dimension above which the square diagram

ρ(4)(o) =
∑
x,y,z

ρ(x)ρ(y − x)ρ(z − y)ρ(z)

converges.
The parameter ζ appears in (1.10) as an additional weight on bonds in the backbone of trees T ∈ Tn(x).

Those trees are already critically weighted by pc (a weight present on every bond in the tree) as described by
Definition 1.7 and (1.3) and exhibit mean-field behaviour in the form of Theorem 1.9. One might therefore
expect a Gaussian limit for t̂n with ζ = 1. The following theorem is proved using the induction approach
of [14], together with a short argument showing that the critical value of ζ obtained from the induction is
ζc = 1.

Theorem 1.12. Fix d > 8, t > 0, γ ∈ (0, 1 ∧ d−8
2 ) and δ ∈ (0, (1 ∧ d−8

2 ) − γ). There exists a positive
L0 = L0(d) such that: For every L ≥ L0 there exist positive A and v depending on d and L such that

t̂bntc

(
k√

vσ2n

)
= Ae−

|k|2
2d

t +O
( |k|2

n

)
+O

( |k|2t1−δ

nδ

)
+O

(
1

(nt ∨ 1)
d−8
2

)
,

with the error estimate uniform in
{
k ∈ Rd : |k|2 ≤ Ct−1 log(bntc ∨ 1)

}
, where C = C(γ) and the constants

in the second and third error terms may depend on L.

More generally, we consider lattice trees containing the origin and r− 1 other fixed points at fixed times.

Definition 1.13 (r-point function). For r ≥ 3, ñ ∈ Nr−1 and x̃ ∈ Rd(r−1) we define

trñ(x̃) =
∑

T∈Tñ(x̃)

W (T ). (1.7)

To state a version of Theorem 1.12 for r-point functions for r > 3 we need the notion of shapes, which
are abstract (partially labelled) sets of vertices and edges connecting those vertices, with special binary tree
topologies.

The degree of a vertex v is the number of edges incident to v. Vertices of degree 1 are called leaves.
Vertices of degree ≥ 3 are called branch points. There is a unique shape for r = 2 consisting of 2 vertices
(labelled 0, 1) connected by a single edge. The vertex labelled 0 is called the root. For r ≥ 3 we have∏r

j=3(2j−5) r-shapes obtained by adding a vertex to any of the 2(r−1)−3 edges of each (r−1)-shape, and
a new edge to that vertex. The leaf of this new edge is labelled r−1. Each r-shape has 2r−3 edges, labelled
in a fixed but arbitrary manner as 1, . . . , 2r − 3. This is illustrated in figure 4 which shows the shapes for
r = 2, 3, 4. Let Σr denote the set of r-shapes. By convention, the edges in α ∈ Σr are directed away from
the root. By construction each r-shape has r − 2 branch points, each of degree 3.

Given a shape α ∈ Σr and k̃ ∈ R(r−1)d we define ~κ(α) ∈ R(2r−3)d as follows. For each leaf j in α (other
than 0) we let Ej be the set of edges in α of the unique path in α from 0 to j. For l = 1, . . . , 2r−3, we define

κl(α) =
r−1∑

j=1

kjI{l∈Ej}. (1.8)
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Figure 4: The unique shape α(r) for r = 2, 3 and the 3 shapes for r = 4.

Next, given α and ~s ∈ R(2r−3)
+ we define ς̃(α) ∈ R(r−1)

+ by

ςj(α) =
∑

l∈Ej

sl.

Finally we define
Rt̃(α) = {~s : ς̃(α) = t̃}.

This is an r − 2-dimensional subset of R(2r−3)
+ . For r = 3 we simply have

Rt̃(α) = {(s, t1 − s, t2 − s) : s ∈ [0, t1 ∧ t2]}.
It is known [1] that for r ≥ 2, 0 < t1 < t2 · · · < tr−1 and φk(x) = eik·x,

EN0




r−1∏

j=1

Xtj (φkj )


 =

∑

α∈Σr

∫

Rt̃(α)

2r−3∏

l=1

e−
κl(α)2sl

2d d~s, (1.9)

where Xt(φ) ≡ ∫
φ(x)Xt(dx), and EN denotes integration with respect to the sigma-finite measure N0. For

r = 3 this reduces to ∫ t1∧t2

0
e−

(k1+k2)2s
2d e−

k2
1(t1−s)

2d e−
k2
2(t2−s)

2d ds. (1.10)

Theorem 1.14. Fix d > 8, and δ ∈ (0, (1 ∧ d−8
2 )). There exists L0 = L0(d) À 1 such that: for each L ≥ L0

there exists V = V (d, L) > 0 such that for every t̃ ∈ (0,∞)(r−1), r ≥ 3, K > 0, and ‖~k‖∞ ≤ K,

t̂rbnt̃c

(
k̃√

vσ2n

)
= nr−2V r−2A2r−3

[ ∑

α∈Σr

∫

Rt̃(α)

2r−3∏

l=1

e−
κl(α)2sl

2d d~s +O
(

1
nδ

)]
, (1.11)

where the constant in the error term depends on t̃,K, δ and L.

Theorem 1.14 is proved in Section 4 using a version of the lace expansion on a tree of [19]. The proof
proceeds by induction on r, with Theorem 1.12 as the initializing case. Lattice trees T ∈ Tñ(x̃) can be classi-
fied according to their skeleton (recall Definition 1.1). Such trees typically have a skeleton with the topology
of some α ∈ Σr and the lace expansion and induction hypothesis combine to give the main contribution to
(1.11). The relatively few trees that do not have the topology of any α ∈ Σr are considered separately and
are shown to contribute only to the error term of (1.11).

1.3 A measure-valued process

Let MF (Rd) denote the space of finite measures on Rd with the weak topology and B(D) denote the Borel
σ-algebra on D. For each i, n ∈ N and each lattice tree T , we define a finite measure Xn,T

i
n

∈ MF (Rd) by

Xn,T
i
n

=
1

V A2n

∑

x:
√

vσ2nx∈Ti

δx, (1.12)
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where δx(B) = Ix∈B for all B ∈ B(Rd). Figure 3 shows a fixed tree T and the set Ti for i = 10. For this T ,
the measure Xn,T

10n−1 assigns mass (V A2n)−1 to each vertex in the set T10/
√

vσ2n ≡ {x :
√

vσ2nx ∈ T10}. We
extend this definition to all t ∈ R+ by

Xn,T
t = Xn,T

bntc
n

,

so that for fixed n and T , we have {Xn,T
t }t≥0 ∈ D(MF (Rd)).

Next we must decide what we mean by a “random tree”. We define a probability measure P on the
countable set To by P({T}) = ρ(o)−1W (T ), so that

P(B) =
∑

T∈B W (T )
ρ(o)

, B ⊂ To. (1.13)

Lastly we define the measures µn ∈ MF (D(MF (Rd))) by

µn(H) = V Aρ(o)nP
(
{T : {Xn,T

t }t∈R+ ∈ H}
)

, H ∈ B(D(MF (Rd))). (1.14)

The constants in the definition of µn have been chosen because of (1.9), (1.11) and the relationship

Eµn




r−1∏

j=1

Xn
tj (φkj )


 = V Aρ(o)nEP




r−1∏

j=1

Xn,T
tj

(φkj )


 =

V Aρ(o)n
ρ(o)(V A2n)r−1

t̂rbnt̃c

(
k̃√

σ2vn

)
. (1.15)

Given a measure-valued path X = {Xt}t≥0 let S(X) = inf{t > 0 : Xt(1) = 0} denote the extinction time
of the path. It is known [21] that convergence of µn to N0 in the sense of finite-dimensional distributions for
dimensions d > 8 follows from Theorems 1.12 and 1.14 together with the conjectured result for the survival
probability µn(S > ε) → N0(S > ε). It is also known [21] that Theorems 1.12 and 1.14 imply the following
Theorem, in which {Xn

t } denotes a process chosen according to the finite measure µn and {Xt} denotes
super-Brownian excursion, i.e. a measure-valued path chosen according to the σ-finite measure N0. We
also use DF to denote the set of discontinuities of a function F . A function Q : MF (Rd)m → R is called a
multinomial if Q( ~X) is a real multinomial in {X1(1), . . . , Xm(1)}. A function F : MF (Rd)m → C is said to
be bounded by a multinomial if there exists a multinomial Q such that |F | ≤ Q.

Theorem 1.15. There exists L0 À 1 such that for every L ≥ L0, with µn defined by (1.14) the following
hold:

For every s, λ > 0, m ≥ 1, ~t ∈ [0,∞)m and every F : MF (Rd)m → C bounded by a multinomial and such
that N0( ~X~t ∈ DF ) = 0,

Eµn

[
F ( ~Xn

~t
)Xn

s (1)
]
→ EN0

[
F ( ~X~t)Xs(1)

]
, and (1.16)

Eµn

[
F ( ~Xn

~t
)I{Xn

s (1)>λ}
]
→ EN0

[
F ( ~X~t)I{Xs(1)>λ}

]
. (1.17)

The factors in Theorem 1.15 involving the total mass at time s, are essentially two ways of ensuring that
our convergence statements are about finite measures. In particular these factors ensure that there is no
contribution from paths with arbitrarily small lifetime.

The remainder of this paper is organized as follows. In Section 2 we explain the lace construction that
will be used in bounding diagrams arising from the lace expansion. We apply the lace expansion to prove
Theorems 1.12 and 1.14 in Sections 3 and 4, assuming certain diagrammatic bounds. These bounds are
proved in Sections 5 and 6 respectively.
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Figure 5: A shape α ∈ Σr for r = 4 with fixed branch labellings, followed by a graph Γ on N (α, (2, 4, 3, 1, 1)),
and the subnetwork Ab(Γ).

2 The lace expansion

The lace expansion was introduced in [4] for weakly self-avoiding walk, and was applied to lattice trees in
[10, 11, 6, 9]. It has also been applied to various other models such as strictly self-avoiding walk, oriented
and unoriented percolation, the contact process, and most recently the Ising model [27]. The lace expansion
on a tree was introduced and applied to networks of mutually avoiding SAW joined with the topology of
a tree in [19]. It was subsequently used to study networks with arbitrary topology [20]. In this section
we closely follow [19] although we require modifications to the definitions of connected graphs and laces to
suit the lattice trees setting. In Section 2.1 we introduce our terminology and define and construct laces
on star-shaped networks of degree 1 or 3. In Section 2.3 we analyse products of the form

∏
st∈N [1 + Ust]

and perform the lace expansion in a general setting. Such products will appear in formulas for the r-point
functions in Sections 3 and 4.

2.1 Graphs and Laces

Given a shape α ∈ Σr, and ~n ∈ N2r−3 we define N = N (α,~n) to be the skeleton network formed by inserting
ni − 1 vertices into edge i of α, i = 1, . . . , 2r − 3. Thus edge i in α becomes a path consisting of ni edges in
N .

A subnetwork M ⊆ N is a subset of the vertices and edges of N such that if uv is an edge in M then
u and v are vertices in M. Fix a connected subnetwork M ⊆ N . The degree of a vertex v in M is the
number of edges in M incident to v. A vertex of M is a leaf (resp. branch point) of M if it is of degree 1
(resp. 3) in M. A path in M is any connected subnetwork M1 ⊂ M such that M1 has no branch points.
A branch of M is a path of M containing at least two vertices, whose two endvertices are either leaves or
branch points of M, and whose interior vertices (if they exist) are not leaves or branch points of M. Note
that if b′ ∈M1 ⊂M is a branch point of M1 then it is also a branch point of M. Similarly if v ∈M1 ⊂M
is a leaf of M then it is also a leaf of M1. The reverse implications need not hold in general. Two vertices
s, t are branch neighbours in M if there exists some branch in M of which s, t are the two endvertices (this
forces s and t to be of degree 1 or 3). Two vertices s, t of M are said to be adjacent if there is an edge in M
that is incident to both s and t.

For r ≥ 3, let b denote the unique branch neighbour of the root in N . If r = 2, let b be one of the leaves
of N . Without loss of generality we assume that the edge in α (and hence the branch in N ) containing the
root is labelled 1 and we assume that the other two branches incident to b are labelled 2, 3. Vertices in N
may be relabelled according to branch and distance along the branch, with branches oriented away from the
root. For example the vertices on branch 1 from the root 0 to the branch point b neighbouring the root (or
leaf to leaf if r = 2) would be labelled 0 = (1, 0), (1, 1), . . . , (1, n1) = b.

Examples illustrating some of the following definitions appear in Figures 5-6.

Definition 2.1. Let M⊆ N .

9



0

Figure 6: A graph Γ ∈ G(N ) that contains a bond in R.

1. A bond is a pair {s, t} of vertices in M with the vertex labelling inherited from N . Let EM denote
the set of bonds of M. The set of edges and vertices of the unique minimal path in M joining (and
including) s and t is denoted by [s, t]. The bond {s, t} is said to cover [s, t]. We often abuse the notation
and write st for {s, t}.

2. A graph on M is a set of bonds. Let GM denote the set of graphs on M. The graph containing no
bonds will be denoted by ∅.

3. Let R = RM denote the set of bonds which cover more than one branch point of M (see Figure
6). If r ≤ 3 then R = ∅ since in this case M ⊆ N cannot have more than one branch point. Let
G−RM = {Γ ∈ GM : Γ ∩RM = ∅}, i.e. the set of graphs on M containing no bonds in R.

4. A graph Γ ∈ GM is a connected graph on M if ∪st∈Γ[s, t] = M (i.e. if every edge of M is covered by
some st ∈ Γ). Let Gcon

M denote the set of connected graphs on M, and G−R,con
M = Gcon

M ∩ G−RM .

5. A connected graph Γ ∈ Gcon
M is said to be minimal or minimally connected if the removal of any of its

bonds results in a graph that is not connected (i.e. for every st ∈ Γ, Γ \ st /∈ Gcon
M ).

6. Given Γ ∈ GM and a subnetwork A ⊂M we define Γ|A = {st ∈ Γ : s, t ∈ A}.
7. Given a vertex v ∈M and Γ ∈ GM we let Av(Γ) be the largest connected subnetwork A of M containing

v such that Γ|A is a connected graph on A. In particular Av(∅) = v. Note that if A1 and A2 are
connected subnetworks of M containing v such that Γ|Ai is a connected graph on Ai, then A1∪A2 also
has this property.

8. Let Eb
N be the set of graphs Γ ∈ G−RN such that Ab(Γ) contains a vertex adjacent to some branch point

b′ 6= b of N . Note that this set is empty if r ≤ 3, since then N contains at most one branch point. Note
also that if b is adjacent to another branch point of N , then Eb

N = G−RN , since Ab(∅) = b.

For ∆ ∈ {0, 1, 3}, ~n ∈ N∆, let S∆
~n denote the network consisting of ∆ paths meeting at a common vertex

v, where path i is of length ni > 0 (i.e. it contains ni edges). This is called a star-shaped network of degree
∆. By definition of our networks N (α,~n), with ~n ∈ N2r−3, for any Γ ∈ G−RN \ Eb

N , Ab(Γ) contains at most
one branch point and is therefore a star-shaped subnetwork of degree 3 (if it contains a branch point), 1, or
0 (if Ab(Γ) is a single vertex). A star-shaped network S1

n of degree 1 containing n edges may be identified
with the interval [0, n], since it contains no branch point. We therefore sometimes write S[0, n] for S1

n. Note
that the “missing” star-shaped network S2

(n1,n2) of degree 2 may be identified with the star shaped network
S1

n1+n2
.

Figure 7 shows graphs on each of S1
8 and S3

(4,4,7). The first graph in each case is connected, while the
second is disconnected.

10
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b b

Figure 7: Two graphs on each of S1
8 and S3

(4,4,7). The first graph for each star is connected. The second is
disconnected. The connected graph on S3

(4,4,7) is a lace while the connected graph on S1
8 is not a lace.

Definition 2.2. Fix a connected subnetwork M ⊆ N , containing more than 1 vertex. Let Γ ∈ G−R,con
M be

given and let v be a branch point of M if such a branch point exists. Otherwise let v be one of the leaves of
M. Let Γb

e ⊂ Γ be the set of bonds siti in Γ which cover the vertex v and which have an endpoint (without
loss of generality ti) strictly on branch Me (i.e. ti is a vertex of branch Me and ti 6= v). By definition of
connected graph, Γv

e will be nonempty. From Γv
e we select the set Γv,max

e for which the network distance from
ti to v is maximal. We choose the bond associated to branch Me at v as follows:

1. If there exists a unique element siti of Γv,max
e whose network distance from si to v is maximal, then

this siti is the bond associated to branch Me at v.

2. If not then the bond associated to branch Me at v is chosen (from the elements Γv,max
e whose network

distances from si to v are maximal) to be the bond siti with si on the branch of highest label.

Definition 2.3 (Lace). A lace on a star shape S = S∆
~n , with ~n ∈ N∆, ∆ ∈ {1, 3} is a connected graph

L ∈ Gcon
S such that:

• If st ∈ L covers a branch point v of S then st is the bond in L associated to some branch Se at v.

• If st ∈ L does not cover such a branch point then L \ st is not connected.

We write L(S) for the set of laces on S, and LN (S) for the set of laces on S consisting of exactly N bonds.

See Figure 7 for some examples of connected graphs and laces. We now describe a method of constructing
a lace LΓ from a given connected graph Γ, on a star-shaped network S of degree 1 or 3. Note that the only
(connected) graph on a star-shape of degree 0 (i.e. a single vertex) is the graph Γ = ∅ containing no bonds,
and we define L∅ = ∅.
Definition 2.4 (Lace construction). Let S be a star-shaped network of degree 1 or 3. In the latter case, b
is the branch point, otherwise b denotes one of the leaves of S. Fix Γ ∈ G−R,con

S . Let F be the set of branch
labels for branches incident to b. For each e in F ,

• Let se
1t

e
1 be the bond in Γ associated to branch Se at b, and let be be the other endvertex of Se.

• Suppose we have chosen {se
1t

e
1, . . . , s

e
l t

e
l }, and that ∪l

i=1[s
e
i t

e
i ] does not cover be. Then we define

tel+1 = max{t ∈ Se : ∃ s ∈ Se, s ≤b tel such that st ∈ Γ},
se
l+1 = min{s ∈ Se : stel+1 ∈ Γ}, (2.1)

where max (min) refers to choosing t (s) of maximum (minimum) network distance from b. Similarly
s ≤b t if the network distance from t to b is greater than the network distance of s from b.

11
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Figure 8: An illustration of the construction of a lace from a connected graph. The first figure shows a
connected graph Γ on a star S3

(n1,n2,n3). The intermediate figures show each of the LΓ(e) for e ∈ Fb, while
the last figure shows the lace LΓ.

• We terminate this procedure as soon as be is covered by ∪l
i=1[s

e
i t

e
i ], and set LΓ(e) = {se

1t
e
1, . . . , s

e
l t

e
l }.

Next we define
LΓ = ∪

e∈F
LΓ(e).

Given a lace L ∈ L(S) we define

C(L) = {st ∈ ES \ L : LL∪st = L} (2.2)

to be the set of bonds compatible with L. In particular if L ∈ L(S) and if there is a bond s′t′ ∈ L (with
s′t′ 6= st) which covers both s and t (i.e. [s, t] ( [s′t′]), then st is compatible with L.

The following results (with only small modifications required for the different notion of connectivity) are
proved for star-shaped networks in [19], .

Lemma 2.5. Given a star shaped network S = S∆
~n , ∆ ∈ {1, 3}, and a connected graph Γ ∈ Gcon(S), the

graph LΓ is a lace on S.

Lemma 2.6. Let Γ ∈ G−R,con
S . Then LΓ = L if and only if L ⊆ Γ is a lace and Γ \ L ⊆ C(L).

See Figure 8 for an example of a connected graph Γ on a star-shaped network of degree 3, and its
corresponding lace LΓ.

2.2 Classification of laces

Definition 2.7 (Minimal lace). We write Lmin(S) for the set of minimal laces on S.

A lace L on a star shape S of degree 1 (or equivalently 2) is necessarily minimal by Definitions 2.3 and
2.1. For a lace on a star shape of degree 3 this need not be true. See Figure 9 for an example of a minimal
and a non-minimal lace for ∆ = 3. A non-minimal lace contains a bond st that is “removable” in the
sense that L \ st is still a lace. In general such a bond is not unique. One can easily construct a lace on a
star shaped network of degree 3 for which each of the bonds s1t1, . . . , s3t3 covering the branch point satisfy
L \ siti ∈ L(S).

12



00

Figure 9: Basic examples of a minimal and a non-minimal lace for ∆ = 3. For the non-minimal lace, a
“removable” edge is highlighted.

0 0

Figure 10: Basic examples of a cyclic and an acyclic lace.

Definition 2.8 (Acyclic). A lace L on S3 is acyclic if there is at least one branch Se (called a special branch)
such that there is exactly one bond, st in L, covering the branch point of S3 that has an endpoint strictly on
branch Se. A lace that is not acyclic is called cyclic.

It is obvious that in the above definition, st is the bond in L associated to branch Se. In addition, it is
immediate from Definition 2.8 that for a cyclic lace, the bonds covering the branch point can be ordered as
{sktk : k = 1, . . . , 3}, with tk and sk+1 on the same branch for each k (with s4 identified with s1). See Figure
10 for an example of this classification.

Let Le,N (S) be the set of laces L ∈ LN (S), such that L \ sete ∈ LN−1(S), where sete is the bond in L
associated to Se. Let

Le,N−1
min = {L ∈ LN−1

min (S) : ∃st with L ∪ {st} ∈ Le,N (S), {st} associated to Se for L ∪ {st}}, (2.3)

and observe that Le,N−1
min is a subset of the (acyclic) laces with two bonds covering the branch point. Given

L ∈ Le,N−1
min , define

Pe(L) = {st : L ∪ {st} ∈ Le,N (S), st associated to Se for L ∪ {st}}. (2.4)

Using
•∪ to denote a disjoint union, as shown in [19],

Le,N (S) ⊆ •∪
L∈Le,N−1

min (S)

•∪st∈Pe(L) {L ∪ {st}}. (2.5)

The set Pe(L) can be totally ordered firstly according to distances from the branch point and then by branch
numbers. The following Lemma is proved in [19].

Lemma 2.9 ([19], Lemma 6.4). Given a lace L ∈ Le,N−1
min and st ∈ Pe(L),

C(L ∪ {st}) = C(L)
•∪ {ij ∈ Pe(L) : ij < st}. (2.6)

13



2.3 The Expansion

Here we examine products of the form
∏

st∈EN [1 + Ust]. Following the method of [20], we write

∏

st∈EN

[1 + Ust] =
∏

st∈EN \R
[1 + Ust]−


 ∏

st∈EN \R
[1 + Ust]




(
1−

∏

st∈R
[1 + Ust]

)
. (2.7)

Define K(M) =
∏

st∈EM\R[1+Ust]. Expanding this we obtain, for each possible subset of EM \R, a product
of Ust for st in that subset. The subsets of EM \R are precisely the graphs on M which contain no elements
of R, hence

K(M) =
∑

Γ∈G−RM

∏

st∈Γ

Ust, (2.8)

where the empty product
∏

st∈∅ Ust = 1 by convention. Similarly we define

J(M) =
∑

Γ∈G−R,con
N

∏

st∈Γ

Ust. (2.9)

If M is a single vertex then J(M) = 1. If S is a star-shaped network of degree 1 or 3 then

J(S) =
∑

L∈L(S)

∑

Γ∈Gcon
S :

LΓ=L

∏

st∈Γ

Ust =
∑

L∈L(S)

∏

st∈L

Ust

∑

Γ∈Gcon
S :

LΓ=L

∏

s′t′∈Γ\L
Us′t′

=
∑

L∈L(S)

∏

st∈L

Ust

∑

Γ′⊂C(L)

∏

s′t′∈Γ′
Us′t′ =

∞∑

N=1

∑

L∈LN (S)

∏

st∈L

Ust

∏

s′t′∈C(L)

[1 + Us′t′ ],

(2.10)

where the second to last equality holds since for fixed L, {Γ ∈ Gcon
S : LΓ = L} = {L ∪ Γ′ : Γ′ ⊆ C(L)} by

Lemma 2.6. The last equality holds as in the discussion preceding (2.8) since expanding
∏

s′t′∈C(L)[1 + Us′t′ ]
we obtain for each possible subset of C(L), a product of Ust for st in that subset.

In Section 4 we will have Ust ∈ {−1, 0} whence

|J(S)| ≤
∑

L∈L(S)

∏

st∈L

−Ust

∑

s′t′∈C(L)

[1 + Us′t′ ]. (2.11)

We use (2.5) and (2.6) to bound the contribution to (2.11) from non-minimal laces (containing N ≥ 3 bonds)
as follows,

∑

L∈Le,N (S)

∏

st∈L

−Ust

∏

s′t′∈C(L)

[1 + Us′t′ ] ≤
∑

L∈Le,N−1
min (S)

∏

st∈L

−Ust

∑

ij∈Pe(L)

−Uij

∏

s′t′∈C(L∪{ij})
[1 + Us′t′ ]

≤
∑

L∈Le,N−1
min (S)

∏

st∈L

−Ust

∏

s′t′∈C(L)

[1 + Us′t′ ]
∑

ij∈Pe(L)

−Uij

∏

i′j′∈Pe(L):
i′j′<ij

[1 + Ui′j′ ].

(2.12)

Now using the fact (e.g. see [19]) that

0 ≤
∑

ij∈Pe(L)

−Uij

∏

i′j′∈Pe(L):i′j′<ij

[1 + Ui′j′ ] = 1−
∏

st∈Pe(L)

[1 + Ust] ≤ 1, (2.13)
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the last line of (2.12) is bounded by
∑

L∈Le,N−1
min (S)

∏

st∈L

−Ust

∏

s′t′∈C(L)

[1 + Us′t′ ].

Summing over e ∈ {1, 2, 3}, we see that the contribution to (2.11) from non-minimal laces containing N
bonds is bounded by 3 times the contribution from minimal laces containing N − 1 bonds. This will be
important as we will only need to bound the diagrams arising from minimal laces in Section 4.

2.3.1 Recursion type expression for K(N )

Recall that N = N (α,~n) where α ∈ Σr and ~n ∈ N2r−3, for some r ≥ 2. If r = 2 then let b be the root of N .
Otherwise let b be the branch point neighbouring the root of N . In each case let S−N be the largest connected
subnetwork of N containing b and no vertices that are adjacent to any other branch points of N (S−N could
be empty or a single vertex). Observe that for any graph Γ ∈ G−RN \ Eb

N , the subnetwork Ab(Γ) contains no
branch point of N other than b (if r ≥ 3) and hence is a star shape of degree 0, 1 or 3.

Definition 2.10. If M is a connected subnetwork of N then we define N \M to be the set of vertices of N
that are not in M together with the edges of N connecting them. In general (N \M) ∪M contains fewer
edges than N , and N \M need not be connected. However if M⊂ S−N then N \M has at most 3 connected
components (at most 1 if r = 2) and we write (N \M)i, i = 1, 2, 3 for these components, where we allow
(N \M)i = ∅.

Definition 2.10 allows us to write

K(N ) =
∑

Γ∈G−RN \Eb
N

∏

st∈Γ

Ust +
∑

Γ∈Eb
N

∏

st∈Γ

Ust

=
∑

A⊂S−N :
b∈A

∑

Γ∈Gcon
A

∏

st∈Γ

Ust

3∏

i=1

∑

Γi∈G−R(N\A)i

∏

siti∈Γi

Usiti +
∑

Γ∈Eb
N

∏

st∈Γ

Ust,
(2.14)

where the sum over A is a sum over connected subnetworks of N containing b and no vertices adjacent
to any other branch points of N . Some of the (N \ A)i may be a single vertex or empty and we define∑

Γi∈G∅
∏

siti∈Γi
Usiti = 1. Defining E(b)(N ) =

∑
Γ∈Eb

N

∏
st∈Γ Ust, we have

K(N ) =
∑

A⊂S−N :
b∈A

J(A)
3∏

i=1

K((N \ A)i) + E(b)(N ). (2.15)

Depending on N , the first term of (2.15) may be zero since S−N may be empty. The fact that for any A
contributing to this first term, the subtrees (N \ A)i are of degree ri < r is what allows for an inductive
proof of Theorem 1.14.

If r = 2 then N contains no branch point. In this case we may identify the star-shaped network S1(m)
with the interval [0,m] and (2.14)-(2.15) reduce to

K([0, n]) =
∑

m≤n

J([0, m])K([m + 1, n]), (2.16)

which is the usual relation for the expansion of K(·) on an interval for this notion of connectivity (see for
example [9]). Otherwise b is a branch point of N and we let K(∅) ≡ 1, and Ii = Ii(N ) be the indicator
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function that the branch i is incident to b and another branch point bi. Therefore for a fixed network N
such that S−N is nonempty, ni − 2I2 = ni − 2I2(N ) is equal to either n2 − 2 (if branch 2 is incident to b and
another branch point bi) or ni. Then (2.14)-(2.15) give

K(N ) =
∑

m1≤n1

∑

m2≤n2−2I2
m3≤n3−2I3

J(S~m)
3∏

i=1

K((N \ S~m)i) + E(b)(N ), (2.17)

where S~m is a star-shaped network satisfying

S~m =





{b} , if ~m = ~0
S3

~m , if mi 6= 0 for all i
S[0,mi] , if mi 6= 0, and mj = 0 for j 6= i
S[−mj ,mi] , if j > i, mj 6= 0, mi 6= 0, and mk = 0 for k 6= i, j.

(2.18)

In the case where there is another branch point be that is adjacent to b in N (so that n2 or n3 is 1), the sum
over at least one of m2,m3 in (2.17) is empty. However note that this case contributes to the term E(b)(N ),
as required.

3 The 2-point function

In this section we prove Theorem 1.12 using an extension of the inductive approach to the lace expansion of
[15]. The extension of the induction approach is described and proved in a general setting in [14]. Broadly
speaking there are two main ingredients involved in applying the results of [14]. Firstly we must obtain a
recursion relation for the quantity of interest, the Fourier transform of the 2-point function, and massage
this relation so that it takes the form (1.6), with each fi, gi having continuous second derivative in a
neighbourhood of 0 and f0(k; z) = 1, f1(k; z) = zD̂(k), e1(k; z) = 0. Secondly we must verify the hypotheses
that certain bounds on the quantities fm for 1 ≤ m ≤ n appearing in (1.6) imply further bounds on the
quantities gm, em, for 2 ≤ m ≤ n + 1. This second ingredient consists of reducing the bounds required to
diagrammatic estimates, and then estimating the relevant diagrams.

In Section 3.1 we prove a recursion relation of the form (1.6) for a quantity closely related to the Fourier
transform of the 2-point function. In Section 3.2 we state the assumptions of the inductive approach for a
specific choice of parameters corresponding to our particular model. In Section 3.3 we reduce the verification
of these assumptions to proving a single result, Proposition 3.6. Assuming Proposition 3.6, the induction
approach then yields Theorem 3.7, which we show in Section 3.4 implies Theorem 1.12. The diagrammatic
estimates involved in proving Proposition 3.6 provide the most model dependent aspect of the analysis and
these are postponed until Section 5.

3.1 Recursion relation for the 2-point function

Recall Definitions 1.4, 1.6, and 1.8. Also recall from Definition 1.10 that the two point function is defined as

tn(x; ζ) = ζn
∑

T∈Tn(x)

W (T ).

Now T ∈ Tn(x) if and only if T is the union (as a set of vertices and edges) of an n-step (self-avoiding)
walk ω from o to x together with a collection of mutually avoiding branches Ri ∈ Tω(i), i = 0, 1, . . . , n (see
Figure 11). Let

Ust = U(Rs, Rt) =
{ −1, if Rs ∩Rt 6= ∅

0, otherwise.
(3.1)
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Figure 11: The first figure is of a lattice tree T ∈ Tn(x) for n = 17. The second figure shows the backbone
ω, while the third shows the mutually avoiding lattice trees R0, . . . , Rn emanating from the backbone.

Then
∏

0≤s<t≤n[1 + Ust] is the indicator function that all the Ri avoid each other. Summarising the above
discussion and using the fact that the weight W (T ) of a tree factorises into (bond) disjoint components (see
Definition 1.7) we can write,

tn(x; ζ) = ζn
∑

ω:o→x,
|ω|=n

W (ω)
∑

R0∈Tω(0)

W (R0)
∑

R1∈Tω(1)

W (R1) · · ·
∑

Rn∈Tω(n)

W (Rn)
∏

0≤s<t≤n

[1 + Ust],
(3.2)

where the first sum is over random walk paths of length n from 0 to x. To simplify this expression, we abuse
notation and replace (3.2) with

tn(x; ζ) = ζn
∑

ω:o→x,
|ω|=n

W (ω)
n∏

i=0

∑

Ri∈Tω(i)

W (Ri)
∏

0≤s<t≤n

[1 + Ust] . (3.3)

Recall Definition 2.1 and the discussion following it. The set of vertices [0, n] corresponds to the set of vertices
of N (α, n), where α is the unique shape in Σ2. Since this N contains no branch points, we have R = ∅ and
therefore from Section 2.3 we have

∏
0≤s<t≤n [1 + Ust] = K(N ) = K([0, n]). Hence

tn(x; ζ) = ζn
∑

ω:o→x
|ω|=n

W (ω)
n∏

i=0

∑

Ri∈Tω(i)

W (Ri)K([0, n]). (3.4)

Definition 3.1. For m ≥ 0 we define

πm(x; ζ) = ζm
∑

ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)J([0,m]). (3.5)

Note that for m = 0 this is simply
∑

R0∈T0
W (Ri) = ρ(o), if x = 0, and zero otherwise.

Definition 3.2. The convolution of functions fi, i = 1, . . . n is defined as the function

(f1 ∗ f2 ∗ · · · ∗ fn)(x) =
∑

y1∈Zd

∑

y2∈Zd

· · ·
∑

yn−1∈Zd

f1(y1)
n−1∏

i=2

fi(yi − yi−1)fn(x− yn−1),

at all points x where this converges.
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If f1 ∈ L1 and f2 ∈ Lp for some p ∈ [1,∞], then f1 ∗ f2 exists for all x ∈ Zd. If 1 ≤ p1, p2, r ≤ ∞ and
p−1
1 + p−1

2 = r−1 + 1 with fi ∈ Lpi then f1 ∗ f2 ∈ Lr. Moreover, whenever (f1 ∗ f2 ∗ · · · ∗ fn)(x) exists, it is
invariant under permutations of {1, . . . , n}. See Section 8.2 of [7] for proofs of these results. We often write
f (n)(x) for the n-fold convolution convolution of f with itself, e.g. f (2)(x) = (f ∗ f)(x).

The following recursion relation is the starting point for obtaining a relation of the form (1.6).

Proposition 3.3. For any x at which the convolutions exist, we have

tn+1(x; ζ) =
n∑

m=1

(πm ∗ ζpcD ∗ tn−m)(x; ζ) + πn+1(x; ζ) + ρ(o)(ζpcD ∗ tn)(x; ζ), (3.6)

Proof. The trivial bound tn(x; ζ) ≤ ρ(o)n+1(ζpc)nD(n)(x) obtained by ignoring the mutual avoidance con-
straint of the branches, together with the fact that D ∈ Lp for every p ∈ [1,∞], shows that tn ∈ Lp and
D ∗ tn ∈ Lp for every p ∈ [1,∞]. Similarly, the bound (2.11) and the fact that there are only finitely many
laces on S([0, n]) for each n shows that |πm(x; ζ)| ≤ cmζmD(m)(x) for some cn depending on n but not x.
Thus, all of the convolutions in (3.6) exist for all x.

By definition

tn+1(x; ζ) = ζn+1
∑

ω:o→x,
|ω|=n+1

W (ω)
n+1∏

i=0

∑

Ri∈Tω(i)

W (Ri)K([0, n + 1]). (3.7)

Equation (2.16) gives

K([0, n + 1]) = K([1, n + 1]) +
n∑

m=1

J([0,m])K([m + 1, n + 1]) + J([0, n + 1]). (3.8)

Putting this expression into equation (3.7) gives rise to three terms which we consider separately.

1. The contribution from graphs for which 0 is not covered by any bond: We break the backbone from 0
to x (a walk of length n + 1) into a single step walk and the remaining n-step walk as follows.

ζn+1
∑

ω:o→x,
|ω|=n+1

W (ω)
n+1∏

i=0

∑

Ri∈Tω(i)

W (Ri)K[1, n + 1]

=
∑

R0∈To

W (R0)
∑

y∈ΩD

∑
ω1:o→y,
|ω1|=1

ζW (ω1)
∑

ω2:y→x,
|ω2|=n

ζnW (ω2)
n+1∏

i=1

∑

Ri∈Tω2(i−1)

W (Ri)K([1, n + 1]),

(3.9)

where K[1, n + 1] depends on R1, . . . , Rn+1 but not R0. Therefore using the substitutions R′
j = Rj+1

this is equal to

ρ(o)
∑

y∈ΩD

∑
ω1:o→y,
|ω1|=1

ζW (ω1)
∑

ω2:y→x,
|ω2|=n

ζnW (ω2)
n∏

j=0

∑

R′j∈Tω2(j)

W (R′
j)K([0, n])

=ρ(o)
∑

y∈ΩD

pcζD(y)tn(x− y; ζ) = ρ(o)pcζ(D ∗ tn)(x).

(3.10)

2. The contribution from graphs which are connected on [0, n + 1]:

ζn+1
∑

ω:o→x,
|ω|=n+1

W (ω)
n+1∏

i=0

∑

Ri∈Tω(i)

W (Ri)J([0, n + 1]) = πn+1(x; ζ) (3.11)
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3. The contribution from graphs which are connected on [0,m] for some m ∈ {1, . . . , n}: We break the
backbone from 0 to x (a walk of length n+1) up into three walks, of lengths m, 1 and n−m respectively

ζn+1
∑

ω:o→x,
|ω|=n+1

W (ω)
n+1∏

i=0

∑

Ri∈Tω(i)

W (Ri)
n∑

m=1

J [0,m]K[m + 1, n + 1]

=
n∑

m=1

∑
u

∑
v

∑
ω1:o→u,
|ω1|=m

ζmW (ω1)




m∏

i=0

∑

Ri∈Tω1(i)

W (Ri)


J [0,m]




∑
ω2:u→v,
|ω2|=1

ζW (ω2)


×

∑
ω3:v→x
|ω3|=n−m

ζn−mW (ω3)




n+1∏

i=m+1

∑

Ri∈Tω3(i−(m+1))

W (Ri)


K[m + 1, n + 1].

(3.12)

Now [0,m] and [m+1, n+1] are disjoint, so J([0,m]) and K([m+1, n+1]) contain information about
disjoint subsets of {Ri : i ∈ {0, . . . , n + 1}}. Using the substitutions R′

j = Rj+m+1 this is equal to:

n∑

m=1

∑
u

∑
v

∑
ω1:o→u,
|ω1|=m

ζmW (ω1)




m∏

i=0

∑

Ri∈Tω1(i)

W (Ri)


J [0,m]×

pcζD(v − u)
∑

ω3:v→x
|ω3|=n−m

ζn−mW (ω3)




n−m∏

j=0

∑

R′j∈Tω3(j)

W (Rj)


K[0, n−m]

=
n∑

m=1

∑
u

∑
v

πm(u; ζ)pcζD(v − u)tn−m(x− v; ζ) =
n∑

m=1

(πm ∗ pcζD ∗ tn−m)(x; ζ).

(3.13)

Dividing both sides of (3.6) by ρ(o) and taking Fourier transforms, we get

t̂n+1(k; ζ)
ρ(o)

=
n∑

m=1

π̂m(k; ζ)
ρ(o)

ρ(o)ζpcD̂(k)
t̂n−m(k; ζ)

ρ(o)
+

π̂n+1(k; ζ)
ρ(o)

+ ρ(o)ζpcD̂(k)
t̂n(k; ζ)

ρ(o)
. (3.14)

Definition 3.4. For fixed ζ ≥ 0, define

1) z = ρ(o)ζpc.

2) f0(k; z) = 1, f1(k; z) = g1(k; z) = zD̂(k), and e1(k; z) = 0.

3) For n ≥ 2,

fn(k; z) =
t̂n(k; ζ)

ρ(o)
, gn(k; z) =

π̂n−1(k; ζ)
ρ(o)

zD̂(k)

en(k; z) = gn−1(k; z)

[
t̂1(k; ζ)
ρ(o)

− zD̂(k)

]
+

π̂n(k; ζ)
ρ(o)

.

(3.15)
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We note from (3.14) with n = 0 that since t0(x) = ρ(o)Ix=0, we have t̂0(k) = ρ(o) and

t̂1(k; ζ)
ρ(o)

− zD̂(k) =
π̂1(k; ζ)

ρ(o)
. (3.16)

Therefore for n ≥ 2

en(k; z) = gn−1(k; z)
π̂1(k; ζ)

ρ(o)
+

π̂n(k; ζ)
ρ(o)

. (3.17)

For n ≥ 3 this is

en(k; z) =
π̂n−2(k; ζ)

ρ(o)
zD̂(k)

π̂1(k; ζ)
ρ(o)

+
π̂n(k; ζ)

ρ(o)
.

Lemma 3.5. The choices of fm, gm, em above satisfy (1.6).

Proof. This is an easy exercise using (3.14).

3.2 Assumptions of the induction method

The induction approach to the lace expansion of [15] is extended in [14] with the introduction of two pa-
rameters θ and p∗ and a set B ⊂ [1, p∗]. In this section we apply the extension with the choices θ = d−4

2 ,

p∗ = 2, B = {2} and we define β = L
− d

p∗ = L−
d
2 . We have already shown in Section 3.1 that for our choices

of fm, gm, em as given in Definition 3.4,

fn+1(k; z) =
n+1∑

m=1

gm(k; z)fn+1−m(k; z) + en+1(k; z) (n ≥ 0),

with f0(k; z) = 1. The assumptions of [14] in our lattice trees setting are as follows.
Assumption S. For every n ∈ N and z > 0, the mapping k 7→ fn(k; z) is symmetric under replacement
of any component ki of k by −ki, and under permutations of the components of k. The same holds for
en(·; z) and gn(·; z). In addition, for each n, |fn(k; z)| is bounded uniformly in k ∈ [−π, π]d and z in a
neighbourhood of 1 (which may depend on n). The functions fn and gn have continuous second derivatives
in a neighbourhood of 0 for every n.
Assumption D. As part of Assumption D, we assume that:
(i) D is normalised so that D̂(0) = 1, and has 2 + 2ε moments for some ε ∈ (0, 1 ∧ d−8

2 ), i.e.,
∑

x∈Zd

|x|2+2εD(x) < ∞. (3.18)

(ii) There is a constant C such that, for all L ≥ 1,

‖D‖∞ ≤ CL−d, σ2 = σ2
L ≤ CL2, (3.19)

(iii) Define a(k) = 1− D̂(k). There exist constants η, c1, c2 > 0 such that

c1L
2|k|2 ≤ a(k) ≤ c2L

2|k|2 (‖k‖∞ ≤ L−1), (3.20)

a(k) > η (‖k‖∞ ≥ L−1), (3.21)

a(k) < 2− η (k ∈ [−π, π]d). (3.22)
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For h : [−π, π]d → C, we define

∇2h(k0) =
d∑

j=1

∂2

∂k2
j

h(k)




k=k0

. (3.23)

The relevant bounds on fm, which a priori may or may not be satisfied, are that

‖D̂2fm(·; z)‖2 ≤ K

L
d
2 m

d
4

, |fm(0; z)| ≤ K, |∇2fm(0; z)| ≤ Kσ2m, (3.24)

for some positive constant K. We define
β = L−

d
2 . (3.25)

Assumption E. There is an L0, an interval I ⊂ [1− α, 1 + α] with α ∈ (0, 1), and a function K 7→ Ce(K),
such that if (3.24) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then for that L and z, and
for all k ∈ [−π, π]d and 2 ≤ m ≤ n + 1, the following bounds hold:

|em(k; z)| ≤ Ce(K)βm− d−4
2 , |em(k; z)− em(0; z)| ≤ Ce(K)a(k)βm− d−6

2 .

Assumption G. There is an L0, an interval I ⊂ [1− α, 1 + α] with α ∈ (0, 1), and a function K 7→ Cg(K),
such that if (3.24) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then for that L and z, and
for all k ∈ [−π, π]d and 2 ≤ m ≤ n + 1, the following bounds hold:

|gm(k; z)| ≤ Cg(K)βm− d−4
2 , |∇2gm(0; z)| ≤ Cg(K)σ2βm− d−6

2 ,

|∂zgm(0; z)| ≤ Cg(K)βm− d−6
2 ,

|gm(k; z)− gm(0; z)− a(k)σ−2∇2gm(0; z)| ≤ Cg(K)βa(k)1+ε′m− d−6
2

+ε′ ,

with the last bound valid for any ε′ ∈ [0, ε).

3.3 Verifying assumptions

Assumption S: The quantities fn(k; z), n = 0, 1, . . . are (up to constants) the Fourier transforms of tn(x, ζ),
and hence have all required symmetries since D̂ does. Similarly the πm are symmetric, so that the quantities
gn, en also have the required symmetries. Now f0 = 1 is trivially uniformly bounded in k and z ≤ 2. Recall
that

∑
x tn(x; ζ) ≤ (ζpc)nρ(o)n+1

∑
x D(n)(x) = (ζpc)nρ(o)n+1, where D(n) denotes the n-fold convolution of

D. Then for n ≥ 1, |fn(k, z)| ≤ ρ(o)−1
∑

x tn(x; ζ) ≤ (ζpcρ(o))n = zn so that fn is bounded uniformly in
k ∈ [−π, π]d and z in an n-dependent neighbourhood of 1. Continuity of the second derivatives holds for
each n as the quantities in question are Fourier transforms of functions with finite support. An immediate
consequence of Assumption S is that the mixed partials of fn and gn at k = 0 are all equal to zero.
Assumption D: By Definition 1.4 and Remark 1.5, (3.18) and (3.19) hold trivially. The remaining conditions
(iii) are verified in [15]. We therefore turn our attention to verifying assumptions E and G. Recall from
Definition 3.4 and (3.17) that for n ≥ 2, gn and en could be expressed in terms of the quantities π̂m for
m ≤ n. In Section 5 we will prove the following proposition.

Proposition 3.6 (πm bounds). Suppose the bounds (3.24) hold for some z∗ ∈ (0, 2), K > 1, L ≥ L0 and
every m ≤ n. Then for that K, L, and for all z ∈ [0, z∗], m ≤ n + 1 and q ∈ {0, 1, 2},

∑
x

|x|2q|πm(x; ζ)| ≤ C(K)σ2qβ2− 6ν
d

m
d−4
2
−q

, (3.26)

where ζ = ρ(o)−1p−1
c z, the constant C = C(K, d) does not depend on L, m and z, and ν > 0 is the constant

appearing in Theorem 1.9.
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We choose ν < 1 in (1.4) so that 2− 6ν
d > 1 and therefore β2− 6ν

d ≤ β = L−
d
2 . We now direct our efforts

towards verifying assumptions E and G assuming Proposition 3.6.
Assumption E: Suppose there is some z∗ ∈ (0, 2), K > 1, and L ≥ L0 such that (3.24) holds for all m ≤ n,
and let z ∈ [0, z∗]. Recall that e1(k; z) = 0 and observe from (3.17) that

|e2(k; z)| =
∣∣∣∣zD̂(k)

π̂1(k; ζ)
ρ(o)

+
π̂2(k; ζ)

ρ(o)

∣∣∣∣ ≤ z

∣∣∣∣
π̂1(k; ζ)

ρ(o)

∣∣∣∣ +
∣∣∣∣
π̂2(k; ζ)

ρ(o)

∣∣∣∣ ≤
C ′(K)β2− 6ν

d

2
d−4
2

, (3.27)

where we have applied Proposition 3.6 with |π̂m(k; ζ)| ≤ ∑
x |πm(x; ζ)|, and have also used ρ(o) ≥ 1. Similarly

for 3 ≤ m ≤ n + 1,

|em(k; z)| =
∣∣∣∣π̂m−2(k; ζ)zD̂(k)

π̂1(k; ζ)
ρ(o)2

∣∣∣∣ +
∣∣∣∣
π̂m(k; ζ)

ρ(o)

∣∣∣∣

≤ C(K)β2− 6ν
d

ρ(o)2(m− 2)
d−4
2

zC(K)β2− 6ν
d +

C(K)β2− 6ν
d

ρ(o)m
d−4
2

≤ C ′(K)β2− 6ν
d

m
d−4
2

.

(3.28)

Thus we have obtained the first bound of Assumption E. It follows immediately that for all m ≥ 1,

|em(k; z)− em(0; z)| ≤ |em(k; z)|+ |em(0; z)| ≤ C ′(K)β2− 6ν
d

m
d−4
2

,

for all m ≥ 2. By (3.21) this satisfies the second bound of Assumption E for ‖k‖∞ ≥ L−1. Thus it remains
to establish the second bound of Assumption E for ‖k‖∞ ≤ L−1, for which we use the method of [19].

Let h : Zd → R be finitely supported and symmetric in each coordinate and under permutations of
coordinates. Then ĥ(k) =

∑
x cos(k · x)h(x) and

∣∣∣ĥ(k)− ĥ(0)
∣∣∣ ≤

∣∣∣∣ĥ(k)− ĥ(0)− |k|2
2d
∇2ĥ(0)

∣∣∣∣ +
|k|2
2d

∣∣∣∇2ĥ(0)
∣∣∣

=

∣∣∣∣∣
∑

x

(
cos(k · x)− 1 +

1
2
(k · x)2

)
h(x)

∣∣∣∣∣ +
|k|2
2d

∣∣∣∇2ĥ(0)
∣∣∣ .

(3.29)

There exists a c > 0 such that for all η ∈ [0, 1], | cos(t)− 1 + 1
2 t2| ≤ ct2+2η. Thus

∣∣∣ĥ(k)− ĥ(0)
∣∣∣ ≤ C

∑
x

|(k · x)2+2ηh(x)|+ |k|2
2d

∣∣∣∇2ĥ(0)
∣∣∣ . (3.30)

In particular choosing η = 0 we get
∣∣∣ĥ(k)− ĥ(0)

∣∣∣ ≤ C|k|2
∑

x

|x|2|h(x)|. (3.31)

Now em(k; z)− em(0; z) is equal to

(gn−1(k; z)− gn−1(0; z))
π̂1(k; ζ)

ρ(o)
+ gn−1(0; z)

π̂1(k; ζ)− π̂1(0; ζ)
ρ(o)

+
π̂m(k; ζ)− π̂m(0; ζ)

ρ(o)
.

By (3.31) and Proposition 3.6 with q = 1 we have |π̂m(k; ζ)− π̂m(0; ζ)| ≤ C(K)|k|2σ2β2− 6ν
d m− d−6

2 . Therefore
|em(k; z)− em(0; z)| is bounded above by

|gm−1(k; z)− gm−1(0; z)| |π̂1(k; ζ)|
ρ(o)

+ |gm−1(0; z)|C(K)|k|2 σ2β2− 6ν
d

ρ(o)
+ C(K)|k|2 σ2β2− 6ν

d

ρ(o)m
d−6
2

≤ C(K)β2− 6ν
d

ρ(o)

(
|gm−1(k; z)− gm−1(0; z)|+ |gm−1(0; z)||k|2σ2 +

|k|2σ2

m
d−6
2

)
.

(3.32)
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Recalling that g1(k; z) = zD̂(k) we have

|e2(k; z)− e2(0; z)| ≤ C(K)β2− 6ν
d

ρ(o)

(
za(k) + z|k|2σ2 +

|k|2σ2

2
d−6
2

)
. (3.33)

For m ≥ 3, recall that gm−1(k; z) = π̂m−2(k;ζ)
ρ(o) zD̂(k) which gives

|gm−1(k; z)− gm−1(0; z)| ≤ z

ρ(o)

[
|π̂m−2(k; ζ)− π̂m−2(0; ζ)|D̂(0) + a(k)|π̂m−2(0; ζ)|

]

≤ C(K)|k|2σ2β2− 6ν
d

(m− 2)
d−6
2

+
C(K)a(k)β2− 6ν

d

(m− 2)
d−4
2

.
(3.34)

Therefore for m ≥ 3,

|em(k; z)− em(0; z)| ≤ C(K)β2− 6ν
d

(
|k|2σ2β2− 6ν

d

(m− 2)
d−6
2

+
a(k)β2− 6ν

d

(m− 2)
d−4
2

+
z|k|2σ2β2− 6ν

d

(m− 2)
d−4
2

+
|k|2σ2

m
d−6
2

)
. (3.35)

Both (3.33) for m = 2 and (3.35) for m ≥ 3 are bounded above by C ′(K)a(k)βm− d−6
2 for ‖k‖∞ ≤ L−1 by

(3.20) and the fact that σ2 ∼ L2 (see Remark 1.5).
Assumption G: Suppose there is some z∗ ∈ (0, 2), K > 1 and L ≥ L0 such that (3.24) holds for all m ≤ n,
and let z ∈ [0, z∗]. As for Assumption E, we may apply Proposition 3.6 to obtain for 2 ≤ m ≤ n + 1,

|gm(k; z)| =
∣∣∣∣zD̂(k)

π̂m−1(k; ζ)
ρ(o)

∣∣∣∣ ≤
zC(K)β2− 6ν

d

ρ(o)(m− 1)
d−4
2

≤ C ′(K)β2− 6ν
d

m
d−4
2

, (3.36)

which gives the first bound of Assumption G.
For the second bound we note that by symmetry the first derivatives of π̂m and D̂ vanish at 0. Hence for

m ≥ 2,

|∇2gm(0; z)| =
∣∣∣∣∇2

[
zD̂(k)

π̂m−1(k; ζ)
ρ(o)

]

k=0

∣∣∣∣ =
z

ρ(o)
|∇2π̂m−1(0) + π̂m−1(0)∇2D̂(0)|

≤ z

ρ(o)

(
C(K)β2− 6ν

d σ2

m
d−6
2

+
C(K)β2− 6ν

d

m
d−4
2

σ2

)
≤ C ′(K)β2− 6ν

d σ2

m
d−6
2

.

(3.37)

This verifies the second bound of Assumption G.
Next for m ≥ 2, we have that

gm(k; z) = π̂m−1(k; ζ)
zD̂(k)
ρ(o)

= zm

(
π̂m−1(k; ζ)

zm−1

)
D̂(k)
ρ(o)

where π̂m−1(k;ζ)
zm−1 does not depend on z (or ζ). Therefore

|∂zgm(k; z)| =
∣∣∣∣∣mzm−1

(
π̂m−1(k; ζ)

zm−1

)
D̂(k)
ρ(o)

∣∣∣∣∣ =

∣∣∣∣∣mπ̂m−1(k; ζ)
D̂(k)
ρ(o)

∣∣∣∣∣ ≤
C ′(K)β2− 6ν

d

m
d−6
2

, (3.38)

which proves the third part of assumption G.
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For ‖k‖∞ ≥ L−1, (3.21) applies and we have that for m ≥ 2,

|gm(k; z)− gm(0; z)− a(k)σ−2∇2gm(0; z)| ≤ C ′(K)β2− 6ν
d

m
d−4
2

+
C ′(K)β2− 3ν

d

m
d
4

+ a(k)
C ′(K)β2− 6ν

d

m
d−6
2

≤ a(k)2
C ′

η(K)β2− 6ν
d

m
d−6
2

,

(3.39)

since a(k) > η, and where the constant depends on η. This satisfies the final part of assumption G for
‖k‖∞ ≥ L−1.

For ‖k‖∞ ≤ L−1, we again use the method of [19]. By the triangle inequality we bound |gm(k; z) −
gm(0; z)− a(k)σ−2∇2gm(0; z)| by

∣∣∣∣gm(k; z)− gm(0; z)− |k|2
2d
∇2gm(0; z)

∣∣∣∣ +
∣∣∣∣(a(k)− a(0))σ−2 − |k|2

2d

∣∣∣∣ |∇2gm(0; z)|. (3.40)

Recall that for m ≥ 2, gm(k; z) = z
ρ(o)

̂(πm ∗D)(k). On the first term we apply the analysis of the first term
of (3.29), to the symmetric function πm ∗D. Choosing η = ε′ we see that the first term of (3.40) is bounded
by

zC|k|2+2ε′
∑

x

|x|2+2ε′ |(πm−1 ∗D)(x)|, (3.41)

with the constant independent of ε′. By Hölder’s inequality

∑
x

|x|2+2ε′ |(πm−1 ∗D)(x)| ≤
(∑

x

|(πm−1 ∗D)(x)|
) 1−ε′

2
(∑

x

|x|4|(πm−1 ∗D)(x)|
) 1+ε′

2

. (3.42)

Applying Proposition 3.6 with q = 0 gives

∑
x

|(πm−1 ∗D)(x)| ≤
∑

y

|πm−1(y)|
∑

x

D(x− y) ≤ C(K)β2− 6ν
d

m
d−4
2

. (3.43)

We now apply Proposition 3.6 with q = 0, 2 together with the inequality (a + b)4 ≤ 8(a4 + b4) to get

∑
x

|x|4|(πm−1 ∗D)(x)| ≤8

(∑
y

|y|4|πm−1(y)|
∑

x

D(x− y) +
∑

y

|πm−1(y)|
∑

x

|x− y|4D(x− y)

)

≤C

(∑
y

|y|4|πm−1(y)|+
∑

y

|πm−1(y)|σ4

)

≤σ4C ′(K)β2− 6ν
d

m
d−8
2

.

(3.44)

Note that we have used Remark 1.5 to obtain
∑

x |x|rD(x) ≤ Cσr with the constant independent of L (it
may depend on r). Putting (3.43) and (3.44) back into (3.42) we get

∑
x

|x|2+2ε′ |πm−1(x)| ≤
(

C(K)β2− 6ν
d

m
d−4
2

) 1−ε′
2

(
σ4C(K)β2− 6ν

d

m
d−8
2

) 1+ε′
2

≤ σ2(1+ε′)C(K)β2− 6ν
d

m
d−6
2
−ε′

. (3.45)
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Combining (3.45) with (3.41) gives

∣∣∣∣gm(k; z)− gm(0; z)− |k|2
2d
∇2gm(0; z)

∣∣∣∣ ≤
C(K)β2− 6ν

d (σ2|k|2)1+ε′

m
d−6
2
−ε′

≤ C(K)β2− 6ν
d a(k)1+ε′

m
d−6
2
−ε′

, (3.46)

when ‖k‖ ≤ L−1. This satisfies the required final bound of Assumption G.
It remains to verify this bound for the term inside the second absolute value in expression (3.40). For

this term we write
∣∣∣∣
a(k)
σ2

− |k|2
2d

∣∣∣∣ =
1
σ2

∣∣∣∣D̂(k)− D̂(0)− |k|2
2d
∇2D̂(0)

∣∣∣∣ , (3.47)

and proceed as for the first term to obtain
∣∣∣∣∣
1− D̂(k)

σ2
− |k|2

2d

∣∣∣∣∣ ≤
c|k|2+2ε′

σ2

∑
x

|x|2+2ε′ |D(x)| ≤ c|k|2+2ε′

σ2
L2(1+ε′).

Together with Proposition 3.6 with q = 1 this gives

∣∣∣∣(1− D̂(k))σ−2 − |k|2
2d

∣∣∣∣ |∇2gm(0; z)| ≤ C(K)β2− 6ν
d σ2

m
d−6
2

(|k|2L2)1+ε′

σ2
,

which satisfies the required final bound of Assumption G for ‖k‖ ≤ L−1.
We have now verified that Assumptions S,D,E,G all hold, assuming that Proposition 3.6 holds. Thus

assuming Proposition 3.6, we may apply the induction method of [14] and obtain the following theorem.

Theorem 3.7. Fix d > 8, γ ∈ (0, 1∧ d−8
2 ) and δ ∈ (0, (1∧ d−8

2 )−γ). There exists a positive L0 = L0(d) such
that: For every L ≥ L0 there exist A′, v, zc depending on d and L such that the following statements hold:

(a)

ρ(o)−1t̂n

(
k√

vσ2n
;

zc

ρ(o)pc

)
= A′e−

|k|2
2d

[
1 +O

( |k|2
nδ

)
+O

(
1

n
d−8
2

)]
, (3.48)

with the error estimate uniform in {k ∈ Rd : 1− D̂(k/
√

vσ2n) ≤ γn−1 log n}.
(b)

−
∇2t̂n

(
0; zc

ρ(o)pc

)

t̂n

(
0; zc

ρ(o)pc

) = vσ2n

[
1 +O

(
1

L
d
2 nδ

)]
.

(c) For every p ≥ 1, ∥∥∥∥D̂2t̂n

(
·; zc

ρ(o)pc

)∥∥∥∥
p

≤ C

L
d
p n

d
2p
∧ d−8

2

.

(d) The constants zc, A′ and v are all 1 +O
(
L−

d
2

)
and

1 =
∞∑

m=1

gm(0; zc), A′ =
1 +

∑∞
m=1 em(0; zc)∑∞

m=1 mgm(0; zc)
, v = −

∑∞
m=1∇2gm(0; zc)

σ2
∑∞

m=1 mgm(0; zc)
. (3.49)

In particular the induction method shows that (3.24) holds for all m, provided Proposition 3.6 holds.
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3.4 Proof of Theorem 1.12

In this section we show that Theorem 1.12 follows from Theorem 3.7(a). Comparing the two theorems and
setting A = A′ρ(o) (recall that ζc = zcρ(o)−1p−1

c ), it is clear that to prove Theorem 1.12 it is sufficient to
prove the following two lemmas. The first incorporates the continuous time variable t into the asymptotic
formula (3.48), while the second confirms that our artificially introduced parameter ζ is trivial.

Lemma 3.8. For d, γ, δ and L0 as in Theorem 3.7, there exists a constant C0 = C0(d, γ) > 0 such that

t̂bntc

(
k√

vσ2n
; ζc

)
= Ae−

|k|2
2d

t +O
( |k|2

n

)
+O

( |k|2t1−δ

nδ

)
+O

(
1

(nt ∨ 1)
d−8
2

)
,

with the error estimates uniform in
{
k ∈ Rd : |k|2 ≤ C0t

−1 log(bntc ∨ 1)
}
.

Lemma 3.9. The critical value ζc ≡ zc
ρ(o)pc

= 1.

Proof of Lemma 3.8. The statement is trivial for bntc = 0, so we assume that bntc ≥ 1. Incorporating a time

variable into (3.48) by n 7→ bntc, k 7→ k

√
bntc
n we have that t̂bntc

(
k√

vσ2n
; ζc

)
is equal to

t̂bntc


 k

√
bntc
n√

vσ2bntc ; ζc


 = Ae−

|k|2bntc
2dn

[
1 +O

( |k|2bntc1−δ

n

)
+O

(
1

bntc d−8
2

)]
, (3.50)

where the error estimate is uniform in

Hn,t ≡


k ∈ Rd : 1−D


 k

√
bntc
n√

vσ2bntc


 ≤ γbntc−1 logbntc



 .

We leave it as an exercise to show that there exists a constant C0 such that {k : |k|2 ≤ C0t
−1 log(bntc)} ⊂ Hn,t,

and thus (3.50) holds with the error estimate uniform in {k : |k|2 ≤ C0 log(bntc)}. Since bntc ≤ nt in the
first error term of (3.50), and

∣∣∣∣e−
|k|2bntc

2dn − e−
|k|2t
2d

∣∣∣∣ ≤
|k|2
2d

(
t− bntc

n

)
= O

( |k|2
n

)
,

we have proved Lemma 3.8.
Proof of Lemma 3.9. The susceptibility, χ(z) is

χ(z) ≡
∑

n

fn(0; z) =
∑

n

t̂n(0; ζ)
ρ(o)

=
∑

n

ζn 1
ρ(o)

∑
x

∑

T∈Tn(x)

W (T ) ≡ χ̄(ζ), (3.51)

where ζ = zρ(o)−1p−1
c . By Theorem 3.7 there exists a ζc such that

ζn
c

1
ρ(o)

∑
x

∑

T∈Tn(x)

W (T ) → A, (3.52)

so that 
 1

ρ(o)

∑
x

∑

T∈Tn(x)

W (T )




1
n

→ 1
ζc

.
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Thus the radius of convergence of χ̄(ζ) is ζc > 0 (resp. zc). Since
∑
|x|<M (|x| ∨ 1)a−d ' Ma, it follows from

Theorem 1.9 that χ̄(1) = ∞ which implies that ζc ≤ 1.
Recall from (1.13) that P(T ∈ Tn(x)) = ρ(o)−1

∑
T∈Tn(x) W (T ). Then Theorem 3.7 states that for every

k,

ζn
c

∑
x

e
i k·x√

σ2vnP(T ∈ Tn(x)) → Ae−
|k|2
2d , as n →∞. (3.53)

Setting k = 0 we have
ζn
c

A

∑
x

P(T ∈ Tn(x)) → 1, (3.54)

and dividing (3.53) by (3.54) gives

∑
x

e
i k·x√

σ2vn
P(T ∈ Tn(x))∑
u P(T ∈ Tn(u))

→ e−
|k|2
2d . (3.55)

Let Zn be Zd-valued random variables defined by P(Zn = x) = P(T∈Tn(x))∑
u P(T∈Tn(u)) . Then (3.55) is equivalent

to the statement that Zn√
σ2vn

D−→ Z ∼ N (0, Id), and thus for every R ≥ 0 we have

P
(

Zn√
σ2vn

∈ B(0, R)
)
→ P (Z ∈ B(0, R)) ,

where B(0, R) denotes the ball with centre 0 and radius R in (Rd, |·|). Choose R0 such that P (Z ∈ B(0, R0)) ≥
2
3 . Then there exists an N0 = N0(R0) such that for every n ≥ N0,

∑

|x|≤R0

√
σ2vn

P(T ∈ Tn(x))∑
u P(T ∈ Tn(u))

= P
(
Zn ∈ B(0, R0

√
σ2vn)

)
≥ 1

2
.

Applying (3.54) to the denominator, we find that there exists N1 ≥ N0 such that for every n ≥ N1,

ζn
c

A

∑

|x|≤R0

√
σ2vn

P(T ∈ Tn(x)) ≥ 1
3
, i.e.

∑

|x|≤R0

√
σ2vn

P(T ∈ Tn(x)) ≥ C

ζn
c

. (3.56)

Bounding
∑

T∈Tn(x) W (T ) by ρ(x) =
∑

m

∑
T∈Tm(x) W (T ), it follows that

∑

|x|≤R0

√
σ2vn

ρ(x) ≥ C

ζn
c

. (3.57)

We also have from (1.4) that,

∑

|x|<R0

√
σ2vn

ρ(x) ≤
∑

|x|<R0

√
σ2vn

C(L)
(|x| ∨ 1)d−2

≤ C(L,R0)n. (3.58)

Thus from (3.58) and (3.57), ζc ≥ 1 and we have the result.
Assuming that Proposition 3.6 holds, we have now verified Lemmas 3.8 and 3.9, and hence we have proved

Theorem 1.12. We postpone the proof of Proposition 3.6 to Section 5.
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4 The r-point functions

We have shown Gaussian behaviour (Theorem 1.12) of the 2-point function with appropriate scaling in
Section 3. We now wish to prove the analogous result for r-point functions, Theorem 1.14. The proof is by
induction on r, having already verified the initializing case r = 2 in Section 3. We use the technology of the
lace expansion on a tree [19] as expressed in Section 2, and prove the result assuming certain diagrammatic
bounds. The diagrammatic estimates are postponed until Section 6.

4.1 Preliminaries

Recall from Definitions 1.3 and 1.13 that for fixed r ≥ 2, ñ ∈ Zr−1
+ and x̃ ∈ Rd(r−1), we have

Tñ(x̃) = {T ∈ To : xi ∈ Tni , i = 1, . . . , r − 1}

and
trñ(x̃) =

∑

T∈Tñ(x̃)

W (T ),

where we may have xi = xj and ni = nj for some i 6= j. For T ∈ T (x), let TÃx be the backbone in T from
0 to x.

Definition 4.1 (Bare tree). For ñ ∈ Zr−1
+ and x̃ ∈ Zd(r−1)

+ , a lattice tree B is said to be an (ñ, x̃) bare tree
if B ∈ Tñ(x̃) and ∪r−1

i=1 BÃxi = B. We let B(ñ, x̃) denote the set of (ñ, x̃) bare trees. If B ∈ B(ñ, x̃) then we
write TB = {T ∈ Tñ(x̃) : B ⊆ T} for the set of lattice trees containing B as a subtree.

Since every T ∈ Tñ(x̃) has a unique minimal connected subtree (∪r−1
i=1 TÃxi) connecting 0 to the xi,

i = 1, . . . , r − 1, we have
trñ(x̃) =

∑

B∈B(ñ,x̃)

∑

T∈TB

W (T ). (4.1)

The degree of a vertex x ∈ B is the number of bonds {a, b} ∈ B such that either a = x or b = x.

Definition 4.2 (Branch point). Let B ∈ B(ñ, x̃). A vertex x ∈ B is a branch point of B if there exist i 6= j
such that xi 6= o and xj 6= o are distinct leaves (vertices of degree 1) of B and BÃxi ∩BÃxj = BÃx.

As they are defined in terms of the leaves of B ∈ B(ñ, x̃), branch points of B depend on B but not the
set B(ñ, x̃) of which B is a member. In particular if B is also in B(ñ′, x̃′) then our definition gives rise to
the same set of branch points. By definition, a branch point that is not the origin must have degree ≥ 3. It
is clear that the number of leaves6= o is at least 1 plus the number of branch points, so if B ∈ B(ñ, x̃) for
x̃ ∈ Zd(r−1) then B contains at most r − 2 branch points.

Definition 4.3 (Degenerate bare tree). For fixed r ≥ 3, ñ ∈ Zr−1
+ and x̃ ∈ Rd(r−1), a bare tree B ∈ B(ñ, x̃)

is said to be non-degenerate if B contains exactly r−2 distinct branch points, each of degree 3, none of which
is the origin. Otherwise B is said to be degenerate. We write BD(ñ, x̃) for the set of degenerate trees in
B(ñ, x̃) and set Bc

D(ñ, x̃) = B(ñ, x̃) \BD(ñ, x̃).

Clearly from (4.1) we have

trñ(x̃) =
∑

B∈Bc
D(ñ,x̃)

∑

T∈TB

W (T ) +
∑

B∈BD(ñ,x̃)

∑

T∈TB

W (T ). (4.2)

Definition 4.4. Let B ∈ B(ñ, x̃). Two distinct vertices y, y∗ in B are said to be net-neighbours in B if the
unique path in B from y to y∗ contains no branch points of B other than (perhaps) y, y∗. A net-path in B
is a path in B connecting the origin or a branch point in B to a net-neighbouring branch point or leaf in B.
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Lemma 4.5. Fix r ≥ 3, ñ ∈ Nr−1, x̃ ∈ Zd(r−1).

1. If B ∈ Bc
D(ñ, x̃) then B consists of 2r − 3 net-paths joined together with the topology of α for some

α ∈ Σr.

2. If B ∈ BD(ñ, x̃) then B contains fewer than 2r − 3 nonempty netpaths and fewer than r − 2 branch
points that are not the origin.

Proof. By induction on r. For r = 3, the nondegenerate bare trees satisfy the claim since they contain
exactly one branch point, of degree 3. All degenerate bare trees have fewer netpaths as there can be at most
one branch point and it can only be the origin. Suppose the result holds for all r′ < r.

If B ∈ Bc
D(ñ, x̃) then B contains r − 2 branch points, each of which is of degree 3, none of which is the

origin. This implies that the leaves xj are all distinct and not the origin (otherwise B ∈ B(ñ′, x̃′) for some
ñ′ ∈ Zr−1

+ and x̃′ ∈ Zd(r−2) but has r − 2 branch points). Let x 6= o,xr−1 be the unique branch point in
B net-neighbouring xr−1. Removing the netpath BÃxr−1 \ BÃx, we have that x is a vertex of degree 2 in
B∗ = B \ (BÃxr−1 \ BÃx) and therefore B∗ contains r − 3 branchpoints, each of degree 3, none of which is
the origin. Thus B∗ ∈ B ((n1, . . . , nr−2), (x1, . . . ,xr−2)). By definition of a netpath and the fact that x is
not a branch point of B∗, we see that B∗ contains two fewer netpaths than B. By the induction hypothesis,
B∗ consists of 2(r− 1)− 3 net paths joined together with the topology of α∗ for some α∗ ∈ Σr−1. Therefore
B contained 2r − 3 netpaths joined together with the topology of α ∈ Σr−1, where α is the shape obtained
by adding a vertex to the edge of α∗ corresponding to the unique net-path in B∗ containing x and adding
an edge to that vertex.

Suppose instead that B ∈ BD(ñ, x̃). If any xj = o or xi = xj then B ∈ B(ñ′, x̃′) for some ñ′ ∈ Zr−1
+ and

x̃′ ∈ Zd(r−2) and the result holds by the induction hypothesis. Otherwise we use the same decomposition as
for part 1, and let the degree of the branch point x 6= 0 be l. If l = 3 then B∗ above is a degenerate bare
tree and the result hold by induction. If l > 3 then B∗ contains one fewer netpath and the same number
of branch points as B. By induction B∗ ∈ B ((n1, . . . , nr−2), (x1, . . . ,xr−2)) contains at most 2(r − 1) − 3
netpaths and (r− 1)− 2 = r− 3 branch points that are not the origin. Therefore B contained at most 2r− 4
netpaths and r − 3 branch points that are not the origin.

Definition 4.6. Let M = M(~n) be any network containing l labelled edges joined together with arbitrary
topology with nj − 1 ∈ Z+ vertices being added to edge j for each j ∈ {1, . . . , l}. Let B ∈ B(ñ, x̃). We say
that B has network shape M if B and M are graph isomorphic and for each i the graph isomorphism maps
leaf i of M to xi (where x0 = 0). For ~y = (y1, . . . , y2r−3) ∈ Zdl, we define TM(~y) to be the set of lattice trees
T ∈ To such that there exists x̃, ñ and B ∈ B(ñ, x̃) such that

1. T ∈ TB,

2. B has network shape M, and

3. if the endvertices of netpath Bj are uj , vj ∈ Rd, where BÃuj ⊂ BÃvj then vj − uj = yj, for each
j = 1, . . . , 2r − 3.

We then define
tM(~y) =

∑

T∈TM(~y)

W (T ). (4.3)

By ignoring the interaction between the branches emanating from different net-paths in each B with
network shape M and using Lemma 5.10 with l = 1 and q = 0, it is easy to prove that

∑

~y

tM(~y) ≤ K l. (4.4)
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Figure 12: The seven possible degenerate shapes for r = 3. The second (resp. third) shape is only a possible
candidate for the shape of B ∈ BD(ñ, x̃) if n2 > n1 (resp. n2 < n1).
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Figure 13: A shape α ∈ Σ4 with labelled edges, and a nearest neighbour lattice tree T ∈ TN (α,~n)(~y) for
~n = (3, 5, 7, 7, 2), ~y = ((2,−1), (−2,−3), (2, 3), (3, 4), (2, 0)). Also T ∈ Tñ(x̃) where ñ = (17, 12, 8) and
x̃ = ((7, 6), (6, 2), (0,−4)). Note for example that y1 + y3 + y4 = x1.

We wish to rewrite (4.2) in terms of a sum over underlying network shapes that describe the possible
bare trees connecting the xi and 0. For a fixed shape α ∈ Σr (with fixed but arbitrary edge labelling) and
~n ∈ N2r−3

+ , we let N (α,~n) be the abstract network shape obtained by inserting nj − 1 vertices onto edge j of
α, j = 1, . . . , 2r − 3. Each edge j of α has two vertices j1, j2 in α incident to it. We define branch Nj of N
to be the smallest connected subnetwork of N that contains the vertices j1, j2.

Suppose T ∈ TN (α,~n)(~y), with corresponding x̃, ñ, B as in Definition 4.6. Since B has shape N (α,~n),
we may label the netpaths {B1, . . . , B2r−3} of B according to the edge labels {1, . . . , 2r − 3} of α. Let
Ei = {j : Bj ⊂ BÃxi} denote the set of labels of edges in the unique path in α from the root to leaf i. By
definition we have

∑
j∈Ei

yj = xi and
∑

j∈Ei
nj = ni. See Figure 13 for an illustration of this.

Lemma 4.5 implies that if T ∈ TB for some B ∈ Bc
D(ñ, x̃), then T ∈ TN (α,~n)(~y) for some α ∈ Σr,

~n ∈ N2r−3, ~y ∈ Zd(2r−3) satisfying
∑

j∈Ei
nj = ni,

∑
j∈Ei

yj = xi, i ∈ {1, . . . , r − 1}. On the other hand
suppose T ∈ TN (α,~n)(~y). Let xi be the vertex in T corresponding to leaf i of α, i = 1, . . . , r − 1, and let ni

be the number of edges in TÃxi . Then T ∈ Tñ(x̃) by definition. Choosing B = ∪r−1
i=1 TÃxi , it is easy to see

that B ∈ B(ñ, x̃) and T ∈ TB. Finally since N (α,~n) contains r − 2 distinct branch points, each of degree 3
(of which none are the origin), B must also have this property and thus B ∈ Bc

D(ñ, x̃).
For fixed α ∈ Σr, ñ ∈ Nr−1 and x̃ ∈ Zd(r−1) we write

∑
~n αÃñ to denote the sum over {~n ∈ N2r−3 :∑

j∈Ei
nj = ni, i = 1, . . . , r − 1}, and

∑
~y αÃx̃ to denote the sum over {~y ∈ Zd(2r−3) :

∑
j∈Ei

yj = xi, i =
1, . . . , r − 1}. Then ∑

B∈Bc
D(ñ,x̃)

∑

T∈TB

W (T ) =
∑

α∈Σr

∑

~n αÃñ

∑

~y αÃx̃

∑

T∈TN (α,~n)(~y)

W (T ). (4.5)

Definition 4.7 (Degenerate Shape). For r ≥ 3, let Σr be the set of rooted trees ᾱ such that the root is
labelled 0 and
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1. ᾱ contains fewer than 2r− 3 edges, and fewer than r− 2 branch points (vertices of degree ≥ 3) that are
not the root, and

2. for each i ∈ {0, . . . , r− 1} there exists a vertex in ᾱ with label i, and each leaf (vertex of degree 1) of ᾱ
has labels from the set {0, . . . , r − 1}.

We call ᾱ ∈ Σr a degenerate shape. Clearly there are only finitely many degenerate shapes for each fixed r.
See Figure 12 for the set Σ3.

By Definition (4.3) and Lemma 4.5, if B ∈ BD(ñ, x̃) for some ñ ∈ Zr−1
+ and x̃ ∈ Zd(r−1) then B has the

topology of some ᾱ ∈ Σr. For ᾱ ∈ Σr consisting of l < 2r − 3 edges and ~n ∈ Nl we define D(ᾱ, ~n) to be the
abstract network shape obtained by inserting nj − 1 vertices onto edge j of ᾱ, j = 1, . . . , l. Then

∑

x̃

∑

B∈BD(ñ,x̃)

∑

T∈TB

W (T ) ≤
∑

ᾱ∈Σr

∑

~n ᾱÃñ

∑

x̃

∑

~y ᾱÃx̃

∑

T∈TD(ᾱ,~n)(~y)

W (T )

=
∑

ᾱ∈Σr

∑

~n ᾱÃñ

t̂D(ᾱ,~n)(~0).
(4.6)

Note that for any given ñ ∈ Nr−1 we may have many ᾱ ∈ Σr for which the set {~n : ~n ᾱÃ ñ} is empty.
Recall the definition of ~κ from (1.8). The main result of this section is the following theorem.

Theorem 4.8. Fix d > 8, γ ∈ (0, 1 ∧ d−8
2 ) and δ ∈ (0, (1 ∧ d−8

2 )− γ). There exists L0 = L0(d, γ) À 1 such
that: For each L ≥ L0 there exists V = V (d, L) > 0 such that for every r ≥ 2, α ∈ Σr, ~n ∈ N2r−3, R > 0,
and ~κ ∈ [−R, R](2r−3)d,

t̂N (α,~n)

(
~κ√

σ2vn

)
= V r−2A2r−3

2r−3∏

j=1

e
−κ2

j
2d

(
nj
n

)
+O




2r−3∑

j=1

1

n
d−8
2

j


 +O




2r−3∑

j=1

|κ|2n1−δ
j

n


 , (4.7)

where A and v are the constants appearing in Theorem 1.12 and the constants in the error terms may depend
on r and R.

In view of (4.2) and (4.5) we have that

t̂rñ(k̃) =
∑

x̃

eik̃·x̃ ∑

α∈Σr

∑

~n αÃñ

∑

~y αÃx̃

tN (α,~n)(~y) +
∑

x̃

eik̃·x̃ ∑

B∈BD(ñ,x̃)

∑

T∈TB

W (T )

≡
∑

x̃

eik̃·x̃ ∑

α∈Σr

∑

~n αÃñ

∑

~y αÃx̃

tN (α,~n)(~y) + φ̂r
ñ(k̃).

(4.8)

The following Lemma 4.9 will be used to show that the contribution φ̂ from degenerate trees gives rise to an
error term.

Lemma 4.9. For all k̃ ∈ [−π, π](r−1)d,

|φ̂r
ñ(k̃)| ≤ Cr‖ñ‖r−3

∞ . (4.9)

Proof. Let l = l(ᾱ) be the number of edges in ᾱ. Applying (4.4) to D we obtain

t̂D(ᾱ,~n)(~0) ≤ K l. (4.10)
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Therefore, (4.6) implies that

|φ̂r
ñ(k̃)| ≤

∑

ᾱ∈Σr

∑

~n ᾱÃñ

K l ≤
∑

ᾱ∈Σr

‖ñ‖r−3
∞ K2r−4 ≤ Cr‖ñ‖r−3

∞ . (4.11)

The second inequality holds since
∑

~n ᾱÃñ
is a sum over at most r − 3 temporal locations of branch points

which are not the origin, each of which must be smaller than ‖ñ‖∞ by definition.
Recall that Ej is the set of edges of the unique path in α from 0 to leaf j. Then xj =

∑2r−3
l=1 ylI{l∈Ej}

and
r−1∑

j=1

kj · xj =
r−1∑

j=1

kj ·
2r−3∑

l=1

ylI{l∈Ej} =
2r−3∑

l=1

yl ·
r−1∑

j=1

kjI{l∈Ej} =
2r−3∑

l=1

yl · κl = ~κ · ~y, (4.12)

where κl was defined in (1.8). Thus the first term on the right of (4.8) is equal to
∑

α∈Σr

∑

~n αÃñ

∑

x̃

eik̃·x̃ ∑

~y αÃx̃

tN (α,~n)(~y) =
∑

α∈Σr

∑

~n αÃñ

∑

~y

ei~κ·~ytN (α,~n)(~y) =
∑

α∈Σr

∑

~n αÃñ

t̂N (α,~n)(~κ). (4.13)

This becomes clearer if we consider the case r = 3, for which there is a unique shape α (which we suppress
in the notation for N ), and a single branch point. If we denote the spatial location of the branch point by y
then

t̂3(n1,n2)(k1,k2) =
∑
x1,x2

(n1∧n2)−1∑

n=1

eik1·x1eik2·x2
∑

y

tN (n,n1−n,n2−n)(y,x1 − y,x2 − y)

+ φ̂3
ñ(k̃),

(4.14)

where informally one may think of φ̂3 as consisting of the n = 0 and n = n1 ∧ n2 terms missing from the
sum over n. The first term on the right of (4.14) is equal to

(n1∧n2)−1∑

n=1

∑
x1,x2

∑
y

ei(k1·(x1−y)+k2·(x2−y)+(k1+k2)·y)tN (n,n1−n,n2−n)(y,x1 − y,x2 − y)

=
(n1∧n2)−1∑

n=1

t̂N (n,n1−n,n2−n)(κ1, κ2, κ3).

(4.15)

Recall from (3.2)–(3.3) and the fact that ζc = 1, that we were able to express the critical 2-point function
as

tn(x) =
∑

ω:o→x,
|ω|=n

W (ω)
n∏

i=0

∑

Ri∈Tω(i)

W (Ri)
∏

0≤s<t≤n

[1 + Ust] ,

using the notation
∏n

i=0

∑
Ri∈Tω(i)

W (Ri)
∏

0≤s<t≤n [1 + Ust] to represent

∑

R0∈Tω(0)

W (R0) · · ·
∑

Rn∈Tω(n)

W (Rn)
∏

0≤s<t≤n

[1 + Ust] .

The product
∏

[1+Ust] incorporates the mutual avoidance of the branches Ri emanating from the backbone ω
(which is a random walk), and we analysed this product using the lace expansion. For higher-point functions,
the backbone structure in question may be interpreted as a branching random walk, with the temporal (resp.
spatial) location and ancestry of the branching given by N (~n, α) (resp. ~y).
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Definition 4.10. Fix N (~n, α). We say that ω is an embedding of N into Zd if ω is a map from the vertex
set of N into Zd that maps the root to 0 and adjacent vertices in N to D(·) neighbours in Zd. Let ΩN (~y) be
the set of embeddings ω of N into Zd such that the embedding ωi of branch i has displacement yi.

We now generalise (3.3) to the r-point functions. For a collection of sets of vertices {Rs}s∈N , define

Ust = U(Rs, Rt) =
{ −1, if Rs ∩Rt 6= ∅

0, otherwise.
(4.16)

Recall (Definition 2.1) that EN = {st : s, t ∈ N , s 6= t}. Also recall that a vertex s ∈ N is uniquely described
by a pair (i, mi), where i is an edge in α and mi ≤ ni. We write

∏
s∈N

∑
Rs∈Tω(s)

as shorthand notation for

∑

R0∈Tω(0)

∑

R(1,1)∈Tω(1,1)

∑

R(1,2)∈Tω(1,2)

· · ·
∑

R(2r−3,n2r−3)∈Tω(2r−3,n2r−3)

.

It follows from (4.3) that

tN (α,~n)(~y) =
∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈Tω(s)

W (Rs)
∏

[∈EN

[1 + U[] , (4.17)

since any combination (ω ∈ ΩN (~y), {Rs}s∈ω) such that the Rs are all mutually avoiding lattice trees,
uniquely defines a lattice tree T ∈ TN (α,~n)(~y) and vice versa.

4.2 Application of the Lace Expansion

We now apply the expansion described in Section 2.3. Let

φRN (~y) =
∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)

( ∏

[∈Rc

[1 + U[]

)(
1−

∏

[∈R
[1 + U[]

)
. (4.18)

Then by expressions (2.7) and (4.17) we can write

tN (α,~n)(~y) =
∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)K(N )− φRN (~y), (4.19)

where K(N ) =
∏

[∈Rc [1 + U[]. We will see shortly that φ̂RN (~κ) is an error term. Another such error term
comes from

φb
N (~y) =

∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)
∑

Γ∈Eb
N

∏

[∈Γ

U[, (4.20)

where b is the branch point neighbouring the origin and Eb
N is defined in part 8 of Definition 2.1.

Recall the definition of a branch from the second paragraph of 2.1. Let ~nb = (n1, n2, n3) be the vector of
branch lengths for branches incident to b and let G = G(N ) ⊂ {2, 3} be the set of branch labels for branches
incident to b and another branch point of N . Define H~nb

(N ) ⊂ Z3
+ and H~nb

(N ) ⊂ Z3
+ by

H~nb
= {~m : 0 ≤ mi ≤ ni

3
, i = 1, 2, 3} ∩ {~m : mi ≤ ni − 2, i ∈ G}

H~nb
= ({~m : 0 ≤ mi ≤ ni, i = 1, 2, 3} ∩ {~m : mi ≤ ni − 2, i ∈ G}) \ H~nb

.
(4.21)
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Figure 14: An example of graphs on N (α,~n) with α ∈ Σ5 a shape with edge labels shown at the bottom
and ~n = (3, 4, 4, 3, 6, 4, 3). The first graph contains an edge in R so contributes to φR. The second graph
does not contain such an edge but branch 2 is covered so this graph contributes to φb. In the third graph,
branches 2 and 3 are not covered, but n2 − 2 ≥ m2 = 2 > n2

3 = 4
3 and this graph contributes to φπ.

Note from (2.17) that H~nb
∪ H~nb

= {~m : m1 ≤ n1,m2 ≤ n2 − 2I2,m3 ≤ n3 − 2I3} and that this is empty if
ni = 1 for some i ∈ G. Equations (2.14)–(2.17) give an expansion for K(N ) which yields

tN (~y) =
∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)
∑

~m∈H~nb

J(S∆(~m))
3∏

i=1

K
(
(N \ S∆(~m))i

)

+ φπ
N (~y) + φb

N (~y)− φRN (~y),

(4.22)

where

φπ
N (~y) ≡

∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)
∑

~m∈H~nb

J(S∆(~m))
3∏

i=1

K
(
(N \ S∆(~m))i

)
. (4.23)

See Figure 14 for an illustration of these definitions. In accordance with Definition 2.1, the first term on the
right side of (4.22) does not contribute in cases where b is adjacent to another branch point of N (which
implies that r ≥ 4 and n2 ∧ n3 = 1). For r = 3 there is only one branch point, b, hence φb

N (~y) = φRN (~y) = 0.
Lemma 4.11 below states that in fact for large ~n−∞ ≡ inf1≤j≤2r−3 nj , all the terms φ̂RN , φ̂b

N and φ̂π
N are error

terms, so the main term in (4.22) is

QN (α,~n)(~y) = tN (α,~n)(~y)− φb
N (~y)− φπ

N (~y) + φRN (~y), (4.24)

which is the first term on the right of (4.22). Taking Fourier transforms of (4.22) or (4.24) we obtain

t̂N (~κ) = Q̂N (~κ) + φ̂b
N (~κ) + φ̂π

N (~κ)− φ̂RN (~κ). (4.25)

Lemma 4.11. The error terms defined in (4.18)–(4.23) satisfy

∑

~y

|φRN (~y)| = O



2r−3∑

i=1

1

n
d−8
2

i


 ,

∑

~y

|φb
N (~y)| = O




3∑

i=2

1

n
d−8
2

i


 ,

∑

~y

|φπ
N (~y)| = O




3∑

i=1

1

n
d−8
2

i


 , (4.26)

where the constants implied by the O notation depend on r.

The proof of Lemma 4.11 involves estimating diagrams and is postponed until Section 6.

34



4.3 Decomposition of QN

In this section we show that QN can be expressed as a convolution of a function π ~M and functions tNj , where
the Nj are network shapes with αj ∈ Σrj and rj < r for j = 1, 2, 3. This permits analysis by induction on r

and ultimately we prove that Q̂N can be expressed as a Gaussian term plus some error terms.
We first define the quantity π ~M (~u) and then the constant V appearing in Theorem 1.14. We then

state some bounds on the function π ~M (~u) in Proposition 4.13 that are the main ingredient for the proof of
Theorem 1.14. The proof of Proposition 4.13 is postponed until Section 6. The convolution expression for
QN (~y) appears in Lemma 4.14, and the corresponding expression for the Fourier transform appears in (4.39).
Finally we express Q̂N as a Gaussian term plus some error terms in (4.40). These error terms are bounded
in Section 4.4.

Definition 4.12. Suppose S ~M is a star-shaped network of degree ∆ ∈ {1, 3} defined by branch lengths ~M as
in (2.18). Let ~u ∈ Zδd. We define

π ~M (~u) =
∑

ω∈ΩS ~M
(~u)

W (ω)
∏

i∈S ~M

∑

Ri∈Tω(i)

W (Ri)J(S ~M ), (4.27)

where S[−Mi,Mj ](~u) is empty if uk 6= o (k 6= i, j) and otherwise is the set of embeddings of S[−Mi,Mj ]
into Zd such that the first, (Mi + 1)st, and last vertices of S[−Mi, Mj ] are mapped to ui, the origin and
uj respectively. Similarly S[0, Mi](~u) is empty if uj 6= o or uk 6= o (j, k 6= i) and otherwise is the set of
embeddings of S[0,Mi] into Zd such that the first and last vertices of S[0,Mi] are mapped to the origin and
ui respectively. Finally S~0(~u) is empty if any ui 6= o and otherwise is the map of the single vertex S~0 to the
origin (whence π~0(~u) = ρ(o)I{~u=~o}).

By (2.10) we can write

J(S∆
~M
) =

∞∑

N=1

∑

L∈LN (S∆
~M

)

∏

[∈L

U[

∏

[′∈C(L)

[1 + U[′ ]

=
∞∑

N=1

(−1)N
∑

L∈LN (S∆
~M

)

∏

[∈L

(−U[)
∏

[′∈C(L)

[1 + U[′ ],

(4.28)

so that for ~M 6= ~0, π ~M (~u) =
∑∞

N=1 (−1)N πN
~M
(~u) where

πN
~M
(~u) ≡

∑

L∈LN (S∆
~M

)

∑

ω∈ΩS∆
~M

(~u)

W (ω)
∏

i∈S∆
~M

∑

Ri∈T (ω(i))

W (Ri)
∏

[∈L

(−U[)
∏

[′∈C(L)

[1 + U[′ ]. (4.29)

Note that πN
~M
(~u) ≥ 0 since −U[ ≥ 0. We also define

V ≡
∑

~M∈Z3
+

∑

~u∈Z3d

∑

~v∈Z3d

π ~M (~v)
3∏

i=1

pcD(ui − vi) = p3
c

∑

~M

∑

~v

π ~M (~v). (4.30)

The following Proposition is proved in Section 6 and is the main ingredient for the proof of Theorem 4.8.

Proposition 4.13. There exist C > 0 (independent of L) and BN ( ~M) such that for N ≥ 1 and q ∈ {0, 1},
∑

~u∈Z3d

|uj |2qπN
~M
(~u) ≤ (N2σ2‖ ~M‖∞)qBN ( ~M), (4.31)
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where ~u = (u1, u2, u3),
∞∑

N=1

∑

~M :Mj≥nj

BN ( ~M) ≤ (Cβ2− 8ν
d )1/2

[nj ]
d−8
2

, j = 1, 2, 3, and

∞∑

N=1

N2
∑

~M≤~n

‖ ~M‖∞BN ( ~M) ≤ C

{
‖~n‖

10−d
2
∨0

∞ , if d 6= 10
log ‖n‖∞, if d = 10.

(4.32)

Given ~M ∈ H~nb
(such that S ~M ⊂ N ), ~y ∈ Z(2r−3)d and ~v ∈ Z3d we define N−

i = N−
i ( ~M) = (N \ S ~M )i

(see Definition 2.10). We write BN−
i

for the set of labels of branches in N−
i ⊂ N that were not incident to

the branchpoint b neighbouring the root in N , and ~yi for the vector of yj such that j ∈ BN−
i

. Then we define

~yvi = (yi − vi, ~yi). (4.33)

Lemma 4.14. For ~y ∈ Z(2r−3)d and ~n ∈ N2r−3,

QN (α,~n)(~y) =
∑

~M∈H~nb

∑

~u

π ~M (~u)
3∏

i=1

pc

∑
vi

D(vi − ui)tN−
i

(~yvi). (4.34)

Proof. First from (4.22) and (4.24) we have

QN (α,~n)(~y) =
∑

~M∈H~nb

∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈Tω(s)

W (Rs)J(S∆( ~M))
3∏

i=1

K(N−
i ). (4.35)

However, as in the proof of (3.6) for the two point function, we may split up the branching random walk
ω ∈ ΩN (~y) into 4 branching random walks (some of which may be empty) to obtain

∑

ω∈ΩN (~y)

W (ω) =
∑

~u

∑

ω∈ΩS ~M
(~u)

W (ω)
3∏

i=1

∑
vi

pcD(vi − ui)
∑

ωi∈ΩN−
i

(~yvi )

W (ωi). (4.36)

Trivially,
∏

s∈N

∑

Rs∈Tω(s)

W (Rs) =
∏

s∈S ~M

∑

Rs∈Tω(s)

W (Rs)
3∏

i=1

∏

si∈N−
i

∑

Rsi∈Tωi(si)

W (Rsi), (4.37)

where the products of the form s ∈ N− are products over vertices in the network shape N−.
Since by definition, N−

i and S ~M are vertex disjoint (i.e. have no vertex in common), equations (4.35)–
(4.37) show that QN (α,~n)(~y) is equal to




∑

~M∈H~nb

∑

~u

∑

ω∈ΩS ~M
(~u)

W (ω)
∏

s∈S ~M

∑

Rs∈Tω(s)

W (Rs)J(S ~M )


 ×




3∏

i=1

∑
vi

pcD(vi − ui)
∑

ωi∈ΩN−
i

(~yvi )

W (ωi)
∏

si∈Ni

∑

Rsi∈Tωi(si)

W (Rsi)K(N−
i )




=
∑

~M∈H~nb

∑

~u

π ~M (~u)
3∏

i=1

pc

∑
vi

D(vi − ui)tN−
i

(~yvi),

(4.38)

as required.
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Given ~κ ∈ [−π, π]2r−3 we let ~κb = (κ1, κ2, κ3), and ~κ∗j denote the vector of κi, for branches i of N−
j (labels

inherited from N ). Then

ei~κ·~y = ei~κb·~u
3∏

j=1

eiκj ·(vj−uj)ei~κ∗j ·~yvj .

It follows from Lemma 4.14 that

Q̂N (~κ) =
∑

~M∈H~nb

π̂ ~M

(
~κb

) 3∏

j=1

pcD̂(κj)t̂Nj (~κ
∗
j ). (4.39)

Finally we write

Q̂N (~κ) = V r−2
2r−3∏

i=1

Ae−
κ2

i
2d

niσ
2v + ED

~n (~κ) + E~0
~n(~κ) + E ind

~n (~κ) + EV
~n (~κ), (4.40)

where the E ·~n are defined by

ED
~n (~κ) ≡

∑

E⊂{1,2,3}
E 6=∅

(∏

l∈E

(D̂(κl)− 1)

)
p3

c

∑

~M∈H~nb

π̂ ~M (~κb)
3∏

j=1

t̂Nj (~κ
∗
j ),

E~0
~n(~κ) = p3

c

∑

~M∈H~nb

(
π̂ ~M (~κb)− π̂ ~M (~0)

) 3∏

j=1

t̂Nj (~κ
∗
j ),

E ind
~n (~κ) = p3

c

∑

~M∈H~nb

π̂ ~M (~0)




3∏

j=1

t̂N−
j

(~κ∗j )− V r−3
2r−3∏

l=1

Ae−
κ2

l
2d

nlσ
2v


 ,

EV
~n (~κ) = V r−3

2r−3∏

l=1

Ae−
κ2

l
2d

nlσ
2vp3

c

∑

~M /∈H~nb

π̂ ~M (~0).

(4.41)

The first term is obtained by writing D̂(κj) =
(
1 + (D̂(κj)− 1)

)
, the second is obtained by writing π̂ ~M (~κb) =(

π̂ ~M (~0) + (π̂ ~M (~κb)− π̂ ~M (~0))
)

and so on.

4.4 Bounds on the E•
In this section we prove bounds on the quantities (4.41), as stated in Lemma 4.15. All of these terms will
turn out to be error terms in our analysis and in general rely on estimates for π̂ ~M (~κ) such as those appearing
in Proposition 4.13. Each term except E ind will also use naive bounds of the form appearing in (4.4).

Using (4.32) with nj = 1,

∑

~M 6=~0

|π̂ ~M (~κb)| =
∞∑

N=1

∑

~M 6=~0

∑

~u

πN
~M
(~u) ≤

∑

N

∑

~M

BN ( ~M) ≤ Cβ2− 8ν
d , (4.42)

where the constant C is independent of L. In particular since π̂~0(~0) = ρ(o), this proves that V = ρ(o)p3
c +

O(β2− 8ν
d ).
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Lemma 4.15 (E•~n bounds). For all ~κ,

ED
~n (~κ) = O


L2

3∑

j=1

κ2
j


 , EV

~n (~κ) = O



3∑

j=1

1

n
d−8
2

i


 (4.43)

E~0
~n(~κ) =




O

(
|~κb|2σ2‖~nb‖( 10−d

2
∨0)

∞
)

, if d 6= 10

O (|~κb|2σ2 log ‖n‖∞
)
, if d = 10,

(4.44)

Proof. For l /∈ E we bound
∏3

j=1 t̂Nj (~κ
∗
j ) and

∑
~M π̂ ~M (~κb) by constants using (4.4) and (4.42). This leaves

us with
|ED

~n (~κ)| ≤ C
∑

E⊂{1,2,3}
E 6=∅

∏

j∈E

a(κj).

For each nonempty E we may bound all but one of the a(κi) by 2, giving |ED
~n (~κ)| ≤ C

∑3
j=1 a(κj). In

particular since a(κj) ≤ 2 this quantity is also bounded by a constant C ′. If ‖κj‖∞ ≥ L−1, then there exists
a constant c > 0 depending only on C ′ such that C ′ ≤ c‖~κb‖2L2 as required. If ‖κj‖∞ ≤ L−1, this bound is
obtained from (3.20). This proves the first claim of the Lemma.

For the second claim, we bound each exponential in the definition of EV (4.41) by a constant, leaving

|EV
~n (~κ)| ≤ C

∑

~M /∈H
~nb

|π̂ ~M (~0)|.

Next we observe that ~M ∈ H~nb only if Mj ≥ nj

3 for some j ∈ {1, 2, 3}, or nj ≤ 2 for some j. In the latter
case, the required bound is trivial, while in the former case it follows from Proposition 4.13.

For the last claim, we bound the t̂N by a constant and apply (3.31) (with 3d rather than d) with
~κb = (κ1,1, . . . , κ1,d, κ2,1, . . . , κ2,d, κ3,1, . . . , κ3,d) to bound the difference π̂ ~M (~0) − π̂ ~M (~κb). In doing so we
obtain ∣∣∣π̂ ~M (~0)− π̂ ~M (~κb)

∣∣∣ ≤ C|~κb|2
∑

~u∈Z3d

|uj |2
∣∣π̂ ~M (~u)

∣∣ . (4.45)

This gives us

|E~0
~n(~κ)| ≤ C

∑

~M≤~nb

|~κb|2
∑

~u∈Z3d

|uj |2
∣∣π̂ ~M (~u)

∣∣ . (4.46)

Applying Proposition 4.13 we obtain
∣∣∣E~0

~n(~κ)
∣∣∣ ≤ C

∑

~M≤~nb

|~κ|2σ2‖ ~M‖∞N2BN ( ~M) ≤ Cβ2− 8ν
d

{
|~κb|2σ2‖~nb‖( 10−d

2
∨0)

∞ if d 6= 10
|~κb|2σ2 log ‖~nb‖∞, if d = 10,

(4.47)

as required.
It follows immediately from Lemma 4.15 that

ED
~n (~κ)

(
~κ√

vσ2n

)
= O

(
L2

∑3
j=1 κ2

j

σ2n

)
= O

(∑3
j=1 κ2

j

n

)
, (4.48)

and

E~0
~n

(
~κ√

vσ2n

)
=





O
(
|~κb|2‖~nb‖(

10−d
2 ∨0)

∞
vn

)
, if d 6= 10,

O
( |~κb|2 log ‖~nb‖∞

vn

)
, if d = 10.

(4.49)
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4.5 Proof of Theorem 4.8.

We prove Theorem 4.8 by induction on r (or equivalently on the number of branches 2r− 3 in N ). For r = 2
recall that A = A′ρ(o), so (as in the proof of Theorem 1.12) we have by Theorem 3.7 and Lemma 3.9 that

t̂n1

(
κ√

vσ2n

)
= Ae−

κ2

2d
n1
n +O

(
κ2 n1

n

nδ
1

)
+O


 1

n
d−8
2

1


 , (4.50)

with the error terms uniform in {κ ∈ Rd : |κ|2 ≤ C0 log n1}. This yields the required result for r = 2.
Now fix r and N = N (α,~n) with α ∈ Σr and ~n ∈ N2r−3, and assume the theorem holds for all ri < r.

By (4.25) and Lemma 4.11, we have that

t̂N

(
~κ√

vσ2n

)
= Q̂N

(
~κ√

vσ2n

)
+O




2r−3∑

l=1

1

n
d−8
2

l


 .

Next from (4.40), (4.48)–(4.49) and (4.43), we have that Q̂N
(

~κ√
vσ2n

)
is equal to V r−2

∏2r−3
l=1 Ae−

κ2
l

2d

nl
n plus

the error term (4.49) plus

E ind
~n

(
~κ√

vσ2n

)
+O

(∑3
j=1 κ2

j

n

)
+O




3∑

j=1

1

n
d−8
2

j


 .

Since δ < d−8
2 ∧ 1 in the statement of Theorem 4.8 we have 10−d

2 ∨ 0 < 1 − δ and these error terms satisfy

the error bounds of the Theorem. It therefore remains to show that E ind
~n

(
~κ√

vσ2n

)
is an error term of the

required type.
From (4.41) we have

E ind
~n

(
~κ√

vσ2n

)
= p3

c

∑

~M∈H~nb

π̂ ~M (~0)




3∏

j=1

t̂N−
j

(
~κ∗j√
vσ2n

)
− V r−3

2r−3∏

l=1

Ae−
κ2

l nl
2dn


 . (4.51)

If H~nb
= ∅ then E ind

~n = 0. By the induction hypothesis applied to rj < r, we have

t̂N−
j

(
~κ∗j√
vσ2n

)
=V rj−2A2rj−3

∏

l∈BN−
j

e−
κ∗2jl n∗jl

2dn +O




∑

l∈BN−
j

1

n
∗ d−8

2
jl


 +O




∑

l∈BN−
j

|~κ∗j |2n∗(1−δ)
jl

n


 , (4.52)

where the sums and products are over branch labels of branches in N−
j . For ~M ∈ H~nb

, for every j ∈ {1, 2, 3}
we have 2nl

3 ≤ njl ≤ nl. This enables us to replace njl by nl if necessary in the error terms of (4.52).
Additionally since ~M ∈ H~nb

we have r =
∑3

i=1(ri − 1), or equivalently
∑3

i=1 ri = r + 3 (see Figure 15) and

3∏

j=1

t̂N−
j

(
~κ∗j√
vσ2n

)
=V r−3A2r−3

2r−3∏

l=4

e−
κ2

l nl
2dn

3∏

j=1

e−
κ2

j (nj−Mj)

2dn +O



2r−3∑

l=1

1

n
d−8
2

l


 +O

(
2r−3∑

l=1

|~κ|2n(1−δ)
l

n

)
.

(4.53)

Thus,
∏3

j=1 t̂Nj

(
~κ∗j√
vσ2n

)
− V r−3

∏2r−3
l=1 Ae−

κ2
l nl
2dn is equal to
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0 b

Figure 15: An illustration of the relation
∑3

i=1 ri = r + 3 resulting from the decomposition of a network N
into Ni, when ~M ∈ H~nb

. The 3 extra vertices generated by this decomposition are indicated.

V r−3A2r−3
2r−3∏

l=4

e−
κ2

l nl
2dn




3∏

j=1

e−
κ2

j (nj−Mj)

2dn −
3∏

j=1

e−
κ2

j nj

2dn


 +O




2r−3∑

l=1

1

n
d−8
2

l


 +O

(
2r−3∑

l=1

|~κ|2n(1−δ)
l

n

)
. (4.54)

Next using a telescoping sum and the inequality e−a − e−b ≤ C(b− a) for b ≥ a ≥ 0 we see that



3∏

j=1

e−
κ2

j (nj−Mj)

2dn −
3∏

j=1

e−
κ2

j nj

2dn


 =

3∑

l=1


∏

j<l

e−
κ2

j nj

2dn




[
e−

κ2
l (nl−Ml)

2dn − e−
κ2

l nl
2dn

]
∏

j>l

e−
κ2

j (nj−Mj)

2dn




≤ C
3∑

l=1

κ2
l

2dn
[nl − (nl −Ml)] = C

3∑

l=1

κ2
l Ml

2dn
.

(4.55)

Collecting terms and applying Proposition 4.13 we have

∣∣∣∣E ind
~n

(
~κ√

vσ2n

)∣∣∣∣ ≤p3
c

3∑

l=1

κ2
l

2dn

∑

N

∑

~M∈H~nb

π̂N
~M
(~0)Ml +O




2r−3∑

l=1

1

n
d−8
2

l


 +O

(
2r−3∑

l=1

|~κ|2n(1−δ)
l

n

)

=O



3∑

l=1

|~κ|2n
10−d

2
∨0

l

n


 +O




2r−3∑

l=1

1

n
d−8
2

l


 +O

(
2r−3∑

l=1

|~κ|2n(1−δ)
l

n

)
.

(4.56)

Since 1− δ > 10−d
2 ∨ 0 these are all error terms of the required form, and the proof is complete.

4.6 Proof of Theorem 1.14.

From (4.8) and Lemma 4.9 we have

t̂
(r)

bnt̃c

(
k̃√

σ2vn

)
=

∑

α∈Σr

∑

~n αÃbnt̃c
t̂N (α,~n)

(
~κ√

σ2vn

)
+ φ̂r

bnt̃c

(
k̃√

σ2vn

)

=
∑

α∈Σr

∑

~n αÃbnt̃c
t̂N (α,~n)

(
~κ√

σ2vn

)
+ nr−2O

(‖t̃‖r−3∞
n

)
,

(4.57)
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with ~κ = ~κ(α, k̃) as defined in (1.8). Theorem 4.8 may be applied to the first term, giving

t̂
(r)

bnt̃c

(
k̃√

σ2vn

)
=

∑

α∈Σr

∑

~n αÃbnt̃c:
~n∈N2r−3


V r−2A2r−3

2r−3∏

j=1

e
−κ2

j
2d

(
nj
n

)
+O




2r−3∑

j=1

1

n
d−8
2

j


 +O




2r−3∑

j=1

|~κ|2n1−δ
j

n







+ nr−2O
(‖t̃‖r−3∞

n

)
.

(4.58)

Considering the first error term, note that

∑

~n αÃbnt̃c

1

n
d−8
2

j

=
∑

~n αÃbnt̃c:
nj≤ ‖bnt̃c‖∞

2

1

n
d−8
2

j

+
∑

~n αÃbnt̃c:
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‖bnt̃c‖∞
2

1

n
d−8
2

j

≤
∑

m≤ ‖bnt̃c‖∞
2

∑

~n αÃbnt̃c:
nj=m

1

n
d−8
2

j

+
C

‖bnt̃c‖
d−8
2∞

∑

~n αÃbnt̃c:
nj>

‖bnt̃c‖∞
2

1

≤
∑

m≤ ‖bnt̃c‖∞
2

1

m
d−8
2

∑

~n αÃbnt̃c:
nj=m

1 + ‖bnt̃c‖r−2− d−8
2∞ ≤ C‖bnt̃c‖( 10−d

2
∨0)

∞ ‖bnt̃c‖r−3
∞ + ‖bnt̃c‖r−2− d−8

2∞ ,

(4.59)

where if d = 10 we interpret the quantity ‖bnt̃c‖( 10−d
2
∨0)

∞ as log(bnt̃c). In the last step we used the fact that
since bnt̃c is fixed, the sum over ~n αÃ bnt̃c : nj = m is a sum over temporal locations of r− 3 branch points.
Since |Σr| is a finite quantity depending only on r, the first error term in (4.58) is

nr−2O
(

1
nδ

)

where the constant in the error term depends on r and ~t.
The second error term in (4.58) is

∑

α∈Σr

∑

~n αÃbnt̃c
O

(
|~κ|2n1−δ

j

n

)
= nr−2O

(
|k̃|2‖t̃‖r−1−δ∞

nδ

)
, (4.60)

where we have used (1.8) with κ2
j ≤ (r − 1)

∑r−1
j=1

(
kjIl∈Ej

)2.
The third error term is already of the form nr−2O (

n−δ
)

where the constant depends on t̃. Thus it
remains to show that for each α ∈ Σr,

∣∣∣∣∣∣∣∣∣

∑

~n αÃbnt̃c:
~n∈N2r−3

2r−3∏
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e
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j
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(
nj
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)
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∫
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e−
κ2

j sj

2d d~s

∣∣∣∣∣∣∣∣∣
= O

(
1
nδ

)
, (4.61)

where the constant depends on t̃, r and ~κ. We rewrite the left hand side as

nr−2

∣∣∣∣∣∣∣∣∣

1
nr−2

∑

~n αÃbnt̃c:
~n∈N2r−3

2r−3∏

j=1

e
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j
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(
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)
−

∫

Rt̃(α)
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e−
κj(α)2sj

2d d~s

∣∣∣∣∣∣∣∣∣
. (4.62)
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Observe that the left hand term inside the absolute value is the Riemann sum approximation to the integral
on the right, with the approximation breaking Rt̃(α) into cubes of side 1

n , and the error in the approximation
arising from boundary cubes. The set Rt̃(α) is a convex r−2 dimensional subset of R2r−3. As such there are
at most C1n

r−3 boundary cubes in the discrete approximation, each of volume 1
nr−2 , where C1 is a constant

depending on ~t and r. Since the integrand (and summand) is uniformly bounded by 1, the contribution to
the left hand side of (4.62) from the boundary terms is O (

1
n

)
where the constant depends on ~t and r. Within

each cube of side 1
n we have, for all ~s in that cube,

∣∣∣∣e
−κ2

j
2d

nj
n − e−

κ2
j sj

2d

∣∣∣∣ ≤
κ2

j

2d

∣∣∣sj − nj

n

∣∣∣ = O
(

κ2
j

n

)
.

By a telescoping sum representation (as in (4.55)) we see that for all ~s in that cube,

2r−3∏

j=1

e
−κ2

j
2d

(
nj
n

)
−

2r−3∏

j=1

e−
κ2

j sj

2d = O
( |~κ|2

n

)
.

Using κ2
j ≤ (r − 1)

∑r−1
j=1

(
kjIl∈Ej

)2, this verifies (4.61) and hence proves the Theorem.

5 Diagrams for the 2-point function

Proposition 3.6 was needed to advance the induction argument for the 2-point function in Section 3. In this
section we estimate various diagrams arising from the lace expansion on an interval (star-shaped network of
degree 1) and prove a more detailed result, Proposition 5.1. We first introduce some definitions and notation
that will be used throughout this section, and prove various lemmas giving bounds on the building blocks of
the diagrams for the r-point functions. In Section 5.1 we prove Proposition 5.1 assuming Lemmas 5.4, 5.6,
and 5.7. Lemmas 5.6, 5.7 and 5.4 are then proved in subsequent sections. Throughout the remainder of this
paper, unless otherwise specified, C denotes a constant that depends on d and K but not on L, m, z, or N .
It may change from place to place without explicit comment.

Let πm(x; ζ) be defined by (3.5), with Ust given by (3.1). Recall that π0(x; ζ) = ρ(o)Ix=0, and writing
Ust = (−1)(−Ust) in (2.10) we have for m ≥ 1,

πm(x; ζ) =ζm
∞∑

N=1

(−1)N
∑

L∈LN ([0,m])

∑
ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)
∏

st∈L

[−Ust]
∏

s′t′∈C(L)

[1 + Us′t′ ]. (5.1)

The sum over N is finite, since a lace on [0, m] can contain at most m bonds. We define

πN
m(x; ζ) =ζm

∑

L∈LN ([0,m])

∑
ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)
∏

st∈L

[−Ust]
∏

s′t′∈C(L)

[1 + Us′t′ ], (5.2)

and from (5.1) we have for m ≥ 1 that πm(x; ζ) =
∑∞

N=1(−1)NπN
m(x; ζ) and hence |πm(x; ζ)| ≤ ∑

N πN
m(x; ζ).

Therefore, when β is sufficiently small, Proposition 3.6 follows immediately (by summing over N) from the
following Proposition.

Proposition 5.1. Suppose the bounds (3.24) hold for some z∗ ∈ (0, 2), K > 1, L ≥ L0 and every m ≤ n.
Then for that K,L, and for all z ∈ [0, z∗], m ≤ n + 1 and q ∈ {0, 1, 2},

∑
x

|x|2qπN
m(x; ζ) ≤

σ2q
(
Cβ2− 6ν

d

)N

m
d−4
2
−q

, (5.3)
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Figure 16: Feynman diagrams for M
(1)
m (a, b, x, y), Am1,m2(a, b, x, y) and Am1,0(a, b, x, y). A jagged line be-

tween two vertices u and v represents a quantity hmi(v − u). A straight line between two vertices u and v
represents the quantity ρ(v − u).

where ζ = z(ρ(o)pc)−1, the constant C = C(K, d) does not depend on L, m, z, N , and where ν > 0 is the
constant appearing in Theorem 1.9.

Define hm(u) = hm(u; ζ) by

hm(u) =





ζ2p2
c(D ∗ tm−2 ∗D)(u), if m ≥ 2

ζpcD(u), if m = 1
I{u=o}, if m = 0,

(5.4)

where t0(u) = ρ(o)I{u=o}.

Definition 5.2. For q ∈ {0, 1}, m ∈ Z+ we define sm,q(x) = |x|2qhm(x). For l ≥ 1 we define s
(l)

~m(l),~q(l)(x) to
be the l-fold spatial convolution of the smi,qi.

Definition 5.3. For r ∈ {0, 1}, let φr(x) = |x|2rρ(x). For l ∈ {1, 2, 3, 4}, let φ
(l)

~r(l)(x) denote the l-fold spatial
convolution of the φri (whenever this exists for all x), and define φ(0)(x) = I{x=o}.

Lemma 5.4. Let l ≥ 1, and k ∈ {0, 1, 2, 3, 4}. Let ~m(l) ∈ Zl
+ and m =

∑l
i=1 mi. If the bounds (3.24) hold for

1 ≤ m ≤ n and z ∈ [0, 2] then for all m ≤ n+1 and z ∈ [0, 2], and for all ~r ∈ {0, 1}k such 2(k+
∑k

i=1 ri) ≤ 8,

‖s(l)

~m(l),~q(l) ∗ φ
(k)

~r(k)‖∞ ≤ m
∑

qi+
∑

rjσ2(
∑

qi+
∑

rj)
Clβ

2− 2kν
d

m
d−2k

2

, and ‖s(l)

~m(l),~q(l)‖1 ≤ Clm
∑

qiσ2
∑

qi . (5.5)

Definition 5.5. Let

M (1)
m (a, b, x, y) ≡ hm(x− a)ρ(2)(x + y − b), (5.6)

and

Am1,m2(a, b, x, y) ≡
{

hm1(y − a)hm2(x− y)ρ(2)(b− x), m2 6= 0,

hm1(x− a)ρ(y − x)ρ(2)(b− y), m2 = 0.
(5.7)

We recursively define

M
(N)
~m (a, b, x, y) ≡

∑
u,v

Am1,m2(a, b, u, v)M (N−1)
(m3,...,m2N−1)(u, v, x, y). (5.8)

The diagrammatic representation of these quantities appears in Figures 16 and 17.
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Figure 17: An example of an “opened” Feynman diagram, M
(7)
~m (a, b, x, y) arising from the lace expansion.

The jagged path from 0 to x represents the backbone.

Lemma 5.6. Set u0 = a and u2N−1 = x. For every N ≥ 2,

M
(N)
~m (a, b, x, y) =

∑
u1

· · ·
∑

u2N−2

[
2N−1∏

i=1

hmi(ui − ui−1)

] ∑
v1,...,vN

ρ(v1 − b)ρ(vN − (x + y))×

 ∏

l≥2:ml=0

∑
wl

ρ(wl − ul−1)ρ(v l+2
2
− wl)ρ(v l

2
− wl)


×

∏

1≤l≤2N−2:
ml,ml+1 6=0

(
ρ(v l

2
− ul)I{l even} + ρ(v l+3

2
− ul)I{l odd}

)

=
∑
u,v

M
(N−1)
(m1,...,m2N−3)(a, b, u, v)Am2N−1,m2N−2(x, y, u, v).

(5.9)

We also make use of the following notation. Let

HN
m =

{
~m ∈ Z2N−1

+ :
2N−1∑

i=1

mi = m, m2j ≥ 0,m2j−1 > 0

}
. (5.10)

For general N ≥ 2 we let

EN
m =

{
~m ∈ HN

m : m2 + m1 ≤ 2m

3

}
, FN

m =
{

~m ∈ HN
m : m2N−2 + m2N−1 ≤ 2m

3

}
, (5.11)

and for N = 2 we also define

G2
m =

{
~m ∈ H2

m : (m1 ∨m3) ≤ m2

}
. (5.12)

Note that for N ≥ 3, EN
m ∪ FN

m = HN
m and for N = 2, E2

m ∪ F 2
m ∪G2

m = H2
m.

Lemma 5.7. For q ∈ {0, 1, 2} and N ≥ 1,
∑

x

|x|2qπN
m(x; ζ) ≤

∑

~m∈HN
m

∑
x

|x|2qM
(N)
~m (0, 0, x, 0). (5.13)

Observe that there are two disjoint paths in the diagram M
(N)
~m (a, a, x, 0) from a to x (each having

displacement x − a), corresponding to taking the uppermost path and the lowest path. In the opened
diagram M

(N)
~m (a, b, x, y), the corresponding uppermost path may be from b to x or from b to x+y depending
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on ~m. Similarly the right endpoint of the lowest path depends on ~m. We define z = z(~m, x, b, y) and
z = z(~m, x, a, y) by

z =

{
x− b , if #{m2j : m2j 6= 0} is odd
x + y − b , if #{m2j : m2j 6= 0} is even

, z =

{
x + y − a , if #{m2j : m2j 6= 0} is odd
x− a , if #{m2j : m2j 6= 0} is even.

(5.14)

5.1 Proof of Proposition 5.1

In this section we prove Proposition 5.1, assuming Lemmas 5.4 and 5.7. We prove the three cases q = 0, 1, 2
separately.

Case 1: q = 0. Our induction hypothesis is that

∑

~m∈HN
m

sup
a,b,y

∑
x

M
(N)
~m (a, b, x, y) ≤ (Cβ2− 6ν

d )N

m
d−4
2

. (5.15)

In view of Proposition 5.7 with q = 0, this clearly implies Proposition 5.1 with q = 0.
For N = 1 note that

sup
a,b,y

∑
x

M (1)
m (a, b, x, y) = sup

a,b,y

∑
x

hm(x− a)ρ(2)(x + y − b)

= sup
a,b,y

∑
x

hm(x)ρ(2)(x + y − b + a) = sup
z

∑
x

hm(x)ρ(2)(x + z).
(5.16)

Applying (5.5) with l = 1, k = 2 and all qi = rj = 0, this is bounded by Cβ2− 4ν
d

m
d−4
2

as required.

For general N , we consider separately the contributions to (5.15) from EN
m and FN

m , and in the case
N = 2 also the contribution from G2

m. By (5.8) we have
∑

~m∈EN
m

sup
a,b,y

∑
x

M
(N)
~m (a, b, x, y) =

∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

∑

~m′∈HN−1
m−(m1+m2)

sup
a,b

∑
u,v

Am1,m2(a, b, u, v)

× sup
y

∑
x

M
(N−1)
~m′ (u, v, x, y)

=
∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

Am1,m2(a, b, u, v)

×
∑

~m′∈HN−1
m−(m1+m2)

sup
u′,v′,y

∑
x

M
(N−1)
~m′ (u′, v′, x, y)

≤
∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

Am1,m2(a, b, u, v)
(Cβ2− 6ν

d )N−1

(m− (m1 + m2))
d−4
2

,

(5.17)

where we have applied the induction hypothesis in the last step. Since m1 + m2 ≤ 2m
3 in the range we are

summing over, the last line of (5.17) is bounded by

3
d−4
2

(Cβ2− 6ν
d )N−1

m
d−4
2

∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

Am1,m2(a, b, u, v). (5.18)
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Finally we split the sum over m2 into the two cases m2 = 0, m2 > 0 to get
∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

Am1,m2(a, b, u, v) =
∑

m1≤ 2m
3

sup
a,b

∑
u,v

hm1(u− a)ρ(v − u)ρ(2)(b− v)

+
∑

m1≤ 2m
3

∑

0<m2≤ 2m
3
−m1

sup
a,b

∑
u,v

hm1(v − a)hm2(u− v)ρ(2)(b− u)

≤
∑

m1≤ 2m
3

Cβ2− 6ν
d

m
d−6
2

1

+
∑

m1≤ 2m
3

∑

0<m2≤ 2m
3
−m1

Cβ2− 4ν
d

[m1 + m2]
d−4
2

≤ Cβ2− 6ν
d ,

(5.19)

where we have applied (5.5) with all qi = rj = 0 in the penultimate step and the fact that d > 8 in the last
step . Combining (5.17)–(5.19), we get the desired bound

∑

~m∈EN
m

sup
a,b,y

∑
x

M
(N)
~m (a, b, x, y) ≤ (Cβ2− 6ν

d )N

m
d−4
2

. (5.20)

Similarly using the symmetry of M
(N)
~m (in the form of the second equality of (5.9)) and writing n1 for

m2N−1 and n2 for m2N−2 we get
∑

~m∈F N
m

sup
a,b,y

∑
x

M
(N)
~m (a, b, x, y) =

∑

n1≤ 2m
3

∑

n2≤ 2m
3
−n1

∑

~m′∈HN−1
m−n1−n2

sup
u′,y

∑
x,v

An1,n2(x, y, u′, v)×

sup
a,b,v′

∑
u

M
(N−1)
~m′ (a, b, u, v′).

(5.21)

Using translation invariance of An1,n2(x, y, u′, v) we proceed as in (5.17)–(5.19) to get

∑

~m∈F N
m

sup
a,b,y

∑
x

M
(N)
~m (a, b, x, y) ≤ (Cβ2− 6ν

d )N

m
d−4
2

,

as required.
It remains to prove the bound (5.15) for the sum over ~m ∈ G2

m. Note that in this case m2 6= 0 and so
M

(2)
~m (a, b, x, y) is equal to

∑
u,v

ρ(2)(b− v)hm1(u− a)hm−(m1+m3)(v − u)hm3(x− v)ρ(2)(x + y − u). (5.22)

We break the sum over ~m ∈ G2
m according to which of m1 and m3 is larger and note that m2 = m−(m1+m3).

By symmetry of M
(2)
~m (a, b, x, y) and translation invariance we have

∑

~m∈G2
m

sup
a,b,y

∑
x

M
(2)
~m (a, b, x, y) ≤2

∑

m3< m
2

∑

m1≤m3:
m−m1≥m3

sup
a,b,y

∑
x

M
(2)
~m (a, b, x, y)

≤2
∑

m3< m
2

∑

m1≤m3:
m−m1≥m3

sup
b,y

∑
u,v

ρ(2)(b− v)hm1(u)hm−(m1+m3)(v − u)×

sup
u′,v′

∑
x

hm3(x− v′)ρ(2)(x + y − u′),

(5.23)
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where in the last step we have subtracted a from each vertex and correspondingly changed variables (i.e. we
have used translation invariance). This is bounded by

2
∑

m3< m
2

∑

m1≤m3:
m−m1≥m3

(
sup

b

∑
u,v

ρ(2)(b− v)hm1(u)hm−(m1+m3)(v − u)

)(
sup

y,u′,v′

∑
x

hm3(x− v′)ρ(2)(x + y − u′)

)
.

(5.24)

Applying (5.5) to both terms in the brackets, (5.24) is bounded by

∑

m3< m
2

∑

m1≤m3:
m−m1≥m3

Cβ2− 4ν
d

(m−m3)
d−4
2

Cβ2− 4ν
d

m
d−4
2

3

≤ (Cβ2− 4ν
d )2

m
d−4
2

∑

m3< m
2

∑

m1≤m3

1

m
d−4
2

3

≤ (Cβ2− 4ν
d )2

m
d−4
2

∑

m3< m
2

1

m
d−6
2

3

, (5.25)

and we have the desired bound since d > 8. This completes the proof of Proposition 5.1 for q = 0.
Case 2: q = 1. Our induction hypotheses are that

∑

~m∈HN
m

sup
a,b,y

∑
x

|z|2M (N)
~m (a, b, x, y) ≤ σ2(Cβ2− 6ν

d )N

m
d−6
2

, and

∑

~m∈HN
m

sup
a,b,y

∑
x

|z|2M (N)
~m (a, b, x, y) ≤ σ2(Cβ2− 6ν

d )N

m
d−6
2

.

(5.26)

In view of Lemma 5.7 with q = 1, these clearly imply Proposition 5.1 with q = 1.
For N = 1, the first statement of (5.26) is

sup
a,b,y

∑
x

|x + y − b|2hm(x− a)ρ(2)(x + y − b) ≤ σ2(Cβ2− 6ν
d )N

m
d−6
2

. (5.27)

Writing ρ(2)(x + y − b) =
∑

u ρ(u− b)ρ(x + y − u) and using |x + y − b|2 ≤ 2(|u− b|2 + |x + y − u|2), (5.27)
is bounded by

2 sup
a,b,y

∑
x

φ1(u− b)ρ(x + y − u)hm(x− a) + 2 sup
a,b,y

∑
x

ρ(u− b)φ1(x + y − u)hm(x− a). (5.28)

Applying (5.5) to each term with l = 1, k = 2, q1 = 0 and exactly one rj = 1, (5.28) is bounded by
σ2(Cβ2− 4ν

d )m− d−6
2 as required. The second statement for N = 1 is

sup
a,b,y

∑
x

|x− a|2hm(x− a)ρ(2)(x + y − b) ≤ σ2(Cβ2− 6ν
d )N

m
d−6
2

, (5.29)

which follows immediately by applying (5.5) with l = 1, k = 2, q1 = 1 and all rj = 0.
For the inductive step, for each statement of (5.26) we break up the sum over ~m ∈ HN

m into sums
over ~m ∈ EN

m , ~m ∈ FN
m , and when N = 2, also ~m ∈ G2

m. For the contribution from ~m ∈ EN
m we write

|z|2 ≤ 2(|zA|2 + |zM |2) where

(zM , zA) =





(x− u, u− b) , if #{m2j : m2j 6= 0} is odd and m2 > 0
(x + y − u, u− b) , if #{m2j : m2j 6= 0} is even and m2 > 0
(x− v, v − b) , if #{m2j : m2j 6= 0} is odd and m2 = 0
(x + y − v, v − b) , if #{m2j : m2j 6= 0} is even and m2 = 0.

(5.30)
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Thus
∑

~m∈EN
m

sup
a,b,y

∑
x

|z|2M (N)
~m (a, b, x, y) ≤2

∑

~m∈EN
m

sup
a,b,y

∑
x,u,v

|zA|2Am1,m2(a, b, u, v)M (N−1)
~m′ (u, v, x, y)

+ 2
∑

~m∈EN
m

sup
a,b,y

∑
x,u,v

Am1,m2(a, b, u, v)|zM |2M (N−1)
~m′ (u, v, x, y).

(5.31)

As in (5.17) the first term on the right of (5.31) is equal to

2
∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

|zA|2Am1,m2(a, b, u, v)
(Cβ2− 6ν

d )N−1

(m− (m1 + m2))
d−4
2

≤C
(Cβ2− 6ν

d )N−1

m
d−4
2

∑

m1≤ 2m
3

∑

m2≤ 2m
3
−m1

sup
a,b

∑
u,v

|zA|2Am1,m2(a, b, u, v).

(5.32)

We now proceed exactly as in (5.18)–(5.20) except that we use (5.5) with exactly one rj = 1 (instead of all
rj = 0 as we did in (5.19). This yields an upper bound on (5.32) of σ2m(Cβ2− 6ν

d )Nm− d−4
2 .

For the second term on the right of (5.31) note that by definition, zM is either z′ or z′, the displacement
of the upper or lower path of M (N−1)(u, v, x, y). We proceed exactly as in (5.17)–(5.19) except that the
induction hypotheses give a bound

∑

~m′∈Hm−(m1+m2),N−1

sup
u′,v′,y

∑
x

|zM |2M (N−1)
~m′ (u′, v′, x, y) ≤ σ2 (Cβ2− 6ν

d )N−1

(m− (m1 + m2))
d−6
2

≤ σ2m
(Cβ2− 6ν

d )N−1

(m− (m1 + m2))
d−4
2

,

(5.33)

which contains an extra factor of σ2m compared to that appearing in (5.17). We now proceed exactly as in
(5.18)–(5.20) to get a bound on the second term on the right hand side of (5.31) of σ2m(Cβ2− 6ν

d )Nm− d−4
2 .

This verifies the induction step for the first bound of the induction hypothesis (5.26).
As in the q = 0 case of Proposition 5.1, the bound

∑

~m∈F N
m

sup
a,b,y

∑
x

|z|2M (N)
~m (a, b, x, y) ≤ σ2(Cβ2− 6ν

d )N

m
d−6
2

, (5.34)

follows by symmetry.
When N = 2, the contribution to (5.26) from ~m ∈ G2

m is easily bounded as in (5.23) by applying (5.5)
with exactly one of the qi or rj = 0. This gives the desired bound of σ2(Cβ2− 4ν

d )2m− d−6
2 as required. By

induction, the proof of Proposition 5.1 for q = 1 is complete.
Case 3: q = 2. Our induction hypothesis is that

∑

~m∈HN
m

sup
a,b,y

∑
x

|z|2|z|2M (N)
~m (a, b, x, y) ≤ σ4(Cβ2− 6ν

d )N

m
d−8
2

. (5.35)

In view of Proposition 5.7 with q = 2, this clearly implies Proposition 5.1 with q = 2. The proof of (5.35) is
very similar to the proof of (5.26) so we just present the main ideas.
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The N = 1 case follows from (5.5) with l = 1, k = 2, q1 = 1 and exactly one ri = 1. To bound
∑

~m∈EN
m

sup
a,b,y

∑
x

|z|2|z|2M (N)
~m (a, b, x, y), (5.36)

we use the expansions |z|2 ≤ 2(| · |2 + | · |2) and |z|2 ≤ 2(| · |2 + | · |2) yielding 4 terms instead of the two in
(5.31). One such term is

4
∑

~m∈EN
m

sup
a,b,y

∑
x,u,v

|zA|2|zA|2Am1,m2(a, b, u, v)M (N−1)
~m′ (u, v, x, y), (5.37)

on which we use the q = 0 case of Proposition 5.1, and (5.5) with q1 = 1 and exactly one of the rj = 1. For
two of the remaining three terms arising from (5.36) we use the q = 1 case of Proposition 5.1 and (5.5) with
exactly one of q1 = 1 or some rj = 1. The remaining term arising from (5.36) is

4
∑

~m∈EN
m

sup
a,b,y

∑
x,u,v

Am1,m2(a, b, u, v)|z′|2|z′|2M (N−1)
~m′ (u, v, x, y), (5.38)

which we bound using the induction hypothesis and (5.5) with all qi, rj = 0. Collecting the 4 terms we obtain
the bound

∑

~m∈EN
m

sup
a,b,y

∑
x

|z|2|z|2M (N)
~m (a, b, x, y) ≤ σ4(Cβ2− 4ν

d )2

m
d−8
2

. (5.39)

The contribution from ~m ∈ FN
m also obeys the bound (5.39) by symmetry, while the contribution from

~m ∈ G2
m when N = 2 is handled as for the q = 1 case of Proposition 5.1 except that we have exactly two of

the qi, rj equal to 1 when we apply (5.5). This completes the proof of Proposition 5.1 for q = 2, and hence
completes the proof of Proposition 5.1.

5.2 Proof of Lemma 5.6

For the first equality of (5.9), we prove the result by induction on N and leave the reader to verify the easiest
case, N = 2 (consider the two cases m2 > 0, m2 = 0).

For N ≥ 3, if m2 > 0 then by inserting (5.9) for N − 1 into (see (5.8),

M
(N)
~m (a, b, x, y) =

∑
u2,u1

Am1,m2(a, b, u2, u1)M
(N−1)
(m3,...,m2N−1

(u2, u1, x, y)

we see that M
(N)
~m (a, b, x, y) is equal to

∑
u1,u2

(
hm1(u1 − a)hm2(u2 − u1)

∑
v1

ρ(v1 − b)ρ(v 2
2
− u2)

)(∑
u3

· · ·
∑

u2N−2

[
2N−1∏

i=3

hmi(ui − ui−1)

]
×

∑
v2,...,vN

ρ(v 1+3
2
− u1)ρ(vN − (x + y))


 ∏

l≥4:ml=0

∑
wl

ρ(wl − ul−1)ρ(v l+2
2
− wl)ρ(v l

2
− wl)


×

∏

3≤l≤2N−2:
ml,ml+1 6=0

(
ρ(v l

2
− ul)I{l even} + ρ(v l+3

2
− ul)I{l odd}

))
.

(5.40)

Reordering the sums and using the fact that m2 > 0, this is precisely the right hand side of the first equality
of (5.9) in the case m2 > 0.
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If m2 = 0 then by inserting (5.9) for N − 1 into,

M
(N)
~m (a, b, x, y) =

∑
u1,w2

Am1,m2(a, b, u1, w2)M
(N−1)
(m3,...,m2N−1)(u1, w2, x, y)

we have that M
(N)
~m (a, b, x, y) is equal to

∑
u1,w2

∑
u2

(
hm1(u1 − a)h0(u2 − u1)

∑
v1

ρ(v1 − b)ρ(w2 − u1)ρ(v 2
2
− w2)

)
×

(∑
u3

· · ·
∑

u2N−2

[
2N−1∏

i=3

hmi(ui − ui−1)

]
×

∑
v2,...,vN

ρ(v 2+2
2
− w2)ρ(vN − (x + y))


 ∏

l≥4:ml=0

∑
wl

ρ(wl − ul−1)ρ(v l+2
2
− wl)ρ(v l

2
− wl)


×

∏

3≤l≤2N−2:
ml,ml+1 6=0

(
ρ(v l

2
− ul)I{l even} + ρ(v l+3

2
− ul)I{l odd}

))
.

(5.41)

Reordering the sums and using the fact that m2 = 0, this is precisely the right hand side of the first equality of
(5.9) in the case m2 = 0. The second equality is the same by symmetry of the expression for M

(N)
~m in the first

equality, by considering the cases m2N−2 > 0 and m2N−2 = 0 and separating the terms l = 2N−1, 2N−2.

5.3 Proof of Proposition 5.7

We prove the stronger result that

πN
m(x; ζ) ≤

∑

~m∈HN
m

M
(N)
~m (0, 0, x, 0). (5.42)

Recall the definition of πN
m(x; ζ) from (5.2).

For N = 1 there is only one lace L = {0m} on [0, m] and every other bond is compatible with {0m}, so
by (5.2)

π1
m(x; ζ) =ζm

∑
ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)[−U0m]
∏

[6=0m

[1 + U[]

=
∑

R0∈T0

W (R0)
∑

Rm∈Tx

W (Rm)[−U0m]
(
ζm

∑
ω:o→x
|ω|=m

W (ω)
m−1∏

i=1

∑

Ri∈Tω(i)

W (Ri)
∏

[6=0m

[1 + U[]
)
.

(5.43)

Note that everything in this expression is non-negative. Now −U0m = I{R0∩Rm 6=∅} so π1
m(x; ζ) is nonzero if

and only if there exists v ∈ Zd such that v ∈ R0 ∩Rm and therefore
∑

R0∈T0

W (R0)
∑

Rm∈Tx

W (Rm)[−U0m] ≤
∑

v

∑

R0∈T0(v)

W (R0)
∑

Rm∈Tx(v)

W (Rm) =
∑

v

ρ(v)ρ(v − x). (5.44)

If m = 1 then the term in brackets in the last line of (5.43) is ζpcD(x) as required. For m ≥ 2,
∏

[ 6=0m[1+U[] ≤∏
1≤s<t≤m−1[1 + Ust] and letting y1 (resp. y2) be the location of the walk ω after 1 step (resp. m− 1 steps)
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0 x

1v

Figure 18: The Feynman diagram corresponding to the lace containing one bond. The jagged line represents
the quantity hm(x), while straight line between 0 (resp. x) and v1 represents the quantity ρ(v1) (resp.
ρ(x− v1)).
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w4

w12
u  =u3  4

0

Figure 19: An example of the Feynman diagrams arising from the lace expansion. A jagged lines from ui−1

to ui represents the quantity hmi(ui−ui−1) (derived from the backbone from 0 to x). A straight line between
two vertices u and v represents the quantity ρ(v−u) (derived from intersections of branches emanating from
the backbone).

we have

ζm
∑

ω:o→x
|ω|=m

W (ω)
m−1∏

i=1

∑

Ri∈Tω(i)

W (Ri)
∏

[6=0m

[1 + U[] ≤
∑
y1

∑
y2

ζpcD(y1)ζpcD(x− y2)×

ζm−2
∑

ω′:y1→y2

|ω′|=m−2

W (ω′)
m−2∏

j=0

∑

Rj∈Tω′(j)

W (Rj)
∏

[

[1 + U[]

=hm(x).

(5.45)

Combining (5.43)–(5.45) gives the desired result for N = 1. See Figure 18 for the diagrammatic representation
of this bound.

For N ≥ 2 the reader should refer to Figure 19 to help understand the following derivation. Firstly
L ∈ LN ([0,m]) if and only if L = {s1t1, . . . , sN tN} where s1 = 0, tN = m and for each i, si+1 ≤ ti and
si+1 − ti−1 > 0. Hence from (5.2), πN

m(x; ζ) is equal to

ζm
∑

{s1t1,...sN tN}
∈LN ([0,m])

∑
ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)
N∏

i=1

[−Usiti ]
∏

[∈C(L)

[1 + U[]. (5.46)

Everything in this expression is nonnegative, and every bond [ = st such that s1 < s < t < s2, or tN−1 <
s < t < tN , or si+1 < s < t < ti, or ti < s < t < si+2, is compatible with L = {s1t1, . . . , sN tN}. Therefore
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(5.46) is bounded above by

ζm
∑

{s1t1,...sN tN}
∈LN ([0,m])

∑
ω:o→x
|ω|=m

W (ω)
m∏

i=0

∑

Ri∈Tω(i)

W (Ri)
N∏

i=1

[−Usiti ]×

∏

[∈(s1,s2)

[1 + U[]
∏

[∈(tN−1,tN )

[1 + U[]
N−1∏

i=1

∏

[∈(si+1,ti)

[1 + U[]
N−2∏

j=1

∏

[∈(tj ,sj+2)

[1 + U[],

(5.47)

where for [ = st we are using the notation [ ∈ (a, b) to mean a < s < t < b.
For L = {s1t1, . . . , sN tN} ∈ LN ([0, m]) we define ~m(L) ∈ Z2N−1

+ by

m1 = s2 − 0, m2N−1 = m− tN−1, m2i = ti − si+1, m2i−1 = si+1 − ti−1. (5.48)

Then m2i ≥ 0, m2i−1 > 0 and
∑2N−1

i=1 mi = m, so ~m ∈ HN
m. Similarly for any ~m ∈ HN

m we define
L(~m) = {s1t1, . . . , sN tN} ∈ G([0,m]) by

s1 = 0, tN = m, ti =
2i∑

j=1

mj , i = 1, . . . , N − 1, sl =
2l−1∑

j=1

mj , l = 2, . . . N. (5.49)

Then for each i, si+1 ≤ ti and si+1 − ti−1 > 0 so that L(~m) ∈ LN ([0,m]). Thus (5.48)–(5.49) defines a
bijection between LN ([0, m]) and HN

m.
We break up the sum over walks ω in (5.47) according to the subintervals defined by {s1t1, . . . , sN tN}

and obtain
∑

ω:o→x
|ω|=m

W (ω) =
∑

u1,...,u2N−1

∑
ω1:o→u1
|ω|=s2−s1

W (ω1)
∑

ω2N−1:u2N−2→x
|ω|=s2−s1

W (ω2N−1)×

N−1∏

i=1

∑
ω2i:u2i−1→u2i

|ω2i|=ti−si+1

W (ω2i)
N−2∏

j=1

∑
ω2j+1:u2j→u2j+1

|ω2j+1|=sj+2−tj

W (ω2j+1).
(5.50)

Then under this scheme,
∏m

i=0

∑
Ri∈Tω(i)

W (Ri) becomes

∑

R0∈To

W (R0)
∏

1≤i≤2N−1:
mi 6=0


 ∑

Ri,mi
∈Tωi(mi)

W (Ri,mi)
mi−1∏

j=1

∑

Ri,j∈Tωi(j)

W (Ri,j)


 , (5.51)

where ωi(mi) = ui, (ω2N−1(m2N−1) = x) and the product over i ensures that if some sl = tl−1 then we do
not count the tree emanating from this vertex twice. Similarly the term

∏N
i=1[−Usiti ] =

∏N
i=1 I{Rsi∩Rti 6=∅}

becomes (
I{mi 6=0} + I{mi=0}I{Ri,mi

=Ri−1,mi−1
}
)
×

I{R0∩R2,m2 6=∅}I{R2N−3,m2N−3
∩R2N−1,m2N−1

6=∅}
N−2∏

l=1

I{R2l−1,m2l−1
∩R2l+2,m2l+2

6=∅}.
(5.52)

Note that (5.52) contains no information about Ri,j for 0 < j < mi. Lastly we have that the second line of
(5.47) becomes

2N−1∏

i=1


 ∏

1≤s<t≤mi−1

I{Ri,s∩Ri,t=∅}


 . (5.53)
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Combining (5.47) with (5.50)–(5.53), and writing u0 = 0, u2N−1 = x we have that (5.47) is equal to

∑

~u

∑

~m∈HN
m

∑

R0∈To

W (R0)
∏

1≤i≤2N−1:
mi 6=0


 ∑

Ri,mi
∈Tui

W (Ri,mi)




(
I{mi 6=0} + I{mi=0}I{Ri,mi

=Ri−1,mi−1
}
)
×

I{R0∩R2,m2 6=∅}I{R2N−3,m2N−3
∩R2N−1,m2N−1

6=∅}
N−2∏

l=1

I{R2l−1,m2l−1
∩R2l+2,m2l+2

6=∅}×

2N−1∏

i=1


ζmi

∑
ωi:ui−1→ui

|ωi|=mi

W (ωi)
mi−1∏

j=1

∑

Ri,j∈Tωi(j)

W (Ri,j)


 ∏

1≤s<t≤mi−1

I{Ri,s∩Ri,t=∅}





 .

(5.54)

The last line of (5.54) is
∏2N−1

i=1 hmi(ui − ui−1) by definition.
For any collection of trees {Ri,mi : 1 ≤ i ≤ 2N − 1} for which (5.52) is nonzero we choose vi ∈ Zd, i =

1, . . . , N as follows.

(a) I{R0∩R2,m2 6=∅} = 1 if and only if there exists a v1 ∈ Zd such that v1 ∈ R0 ∩ R2,m2 . This means that
R0 ∈ To(v1) and R2,m2 ∈ Tu2(v1).

(b) Similarly I{R2N−3,m2N−3
∩R2N−1,m2N−1

6=∅} = 1 if and only if there exists a vN ∈ Zd such that vN ∈
R2N−3,m2N−3

∩R2N−1,m2N−1
. This means that R2N−3,m2N−3

∈ Tu2N−2(vN ) and R2N−1,m2N−1
∈ Tx(v1).

(c) For each i ∈ {3, . . . , 2N−5} such that i is odd, I{Ri,mi
∩Ri+3,mi+3

6=∅} = 1 if and only if there exists v i+3
2
∈

Zd such that v i+3
2
∈ Ri,mi ∩Ri+3,mi+3 . This means that Ri,mi ∈ Tui(v i+3

2
) and Ri+3,mi+3 ∈ Tui+3(v i+3

2
)

where i + 3 is even.

Now if ml = 0 (in particular this forces i to be even) then hml
(ul − ul−1) in (5.54) is nonzero if and only if

ul = ul−1. In addition I{Rl,ml
=Rl−1,ml−1

} = 1 if and only if Rl,ml
= Rl−1,ml−1

. By the above construction we
have that v l

2
∈ Rl,ml

, and v l+2
2
∈ Rl−1,ml−1

, i.e. v l
2
, v l+2

2
, ul ∈ Rl,ml

. For T = Rl,ml
let TulÃv l

2

and TulÃv l+2
2

denote the backbones in T joining the specified vertices. Then there exists a unique wl ∈ T such that

TulÃv l
2

∩ TulÃv l+2
2

= TulÃwl
. (5.55)

Collecting the above statements we have that

∑

R0∈To

W (R0)
∏

1≤i≤2N−1:
mi 6=0


 ∑

Ri,mi
∈Tui

W (Ri,mi)




(
I{mi 6=0} + I{mi=0}I{Ri,mi

=Ri−1,mi−1
}
)
×

I{R0∩R2,m2 6=∅}I{R2N−3,m2N−3
∩R2N−1,m2N−1

6=∅}
N−2∏

l=1

I{R2l−1,m2l−1
∩R2l+2,m2l+2

6=∅}

≤
∑

~v

∑

R0∈To(v1)

W (R0)
∑

R2N−1,m2N−1
∈Tx(vN )

W (R2N−1,m2N−1
)

∏

l:ml=0

∑

Rl,ml
∈Tul

(v l
2

,v l+2
2

)

W (Rl,ml
)×

∏

l:ml 6=0
ml+1 6=0







∑

Rl,ml
∈Tul

(v l
2
)

W (Rl,ml
)


 I{l even} +




∑

Rl,ml
∈Tul

(v l+3
2

)

W (Rl,ml
)


 I{l odd}


 .

(5.56)
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Now observe that
∑

R∈Ty1(y2) W (R) = ρ(y2 − y1) and
∑

Rl,ml
∈Tul

(v l
2

,v l+2
2

)

W (Rl,ml
) ≤

∑
wl

∑

R1∈Tul
(wl)

W (R1)
∑

R2∈Twl
(v l

2
)

W (R2)
∑

R3∈Twl
(v l+2

2
)

W (R3)

=
∑
wl

ρ(wl − ul)ρ(v l
2
− wl)ρ(v l+3

2
− wl).

(5.57)

This completes the proof of (5.42), and hence Proposition 5.7.

5.4 Diagram pieces

In this section we first prove Lemma 5.4 assuming the following two lemmas, which we prove later in this
section.

Lemma 5.8. Let k ∈ {1, 2, 3, 4} and ~r(k) ∈ {0, 1}k be such that k +
∑k

i=1 ri ≤ 4, then there exists C > 0,
which may depend on k, ~r and d, such that

∑

0≤|x|≤√mL

φ
(k)

~r(k)(x) ≤ Cmk+
∑

rjσkν+2
∑

rj , and sup
|x|>√mL

φ
(k)

~r(k)(x) ≤ Cσ2
∑

rjβ2− 2kν
d

m
d−2k−2

∑
rj

2

. (5.58)

Let [x] = |x| ∨ 1. In order to prove Lemma 5.8, we will need the following convolution result which is
proved in [9].

Proposition 5.9 ([9] Prop. 1.7(i)). If functions f, g on Zd satisfy |f(x)| ≤ [x]−a and |g(x)| ≤ [x]−b with
a ≥ b > 0, then there exists a constant C depending on a, b, d such that

|(f ∗ g)(x)| ≤
{

C[x]−b, if a > d

C[x]d−a−b, if a < d and a + b > d.
(5.59)

Lemma 5.10. Suppose the bounds (3.24) hold for 1 ≤ m ≤ n and z ∈ [0, 2]. Then for all z ∈ [0, 2], l ≥ 1,
~q ∈ {0, 1}l and ~m(l) ∈ Zl

+ such that
∑

mi = m ≤ n + 1, there exists C > 0 which may depend on l, ~q and d
such that

‖s(l)

~m(l),~q(l)‖∞ ≤ Cσ2
∑

qiβ2m
∑

qi

m
d
2

, and ‖s(l)

~m(l),~q(l)‖1 ≤ Cσ2
∑

qim
∑

qi . (5.60)

5.4.1 Proof of Lemma 5.4

Clearly in view of Lemma 5.10 we need only prove the first inequality with k ≥ 1.
By definition ‖s(l)

~m(l),~q(l) ∗ φ
(k)

~r(k)‖∞ is equal to supx

∑
u s

(l)

~m(l),~q(l)(x− u)φ(k)

~r(k)(u) which is equal to

sup
x

∑

|u|>√mL

s
(l)

~m(l),~q(l)(x− u)φ(k)

~r(k)(u) + sup
x

∑

|u|≤√mL

s
(l)

~m(l),~q(l)(x− u)φ(k)

~r(k)(u)

≤ sup
|u′|>√mL

φ
(k)

~r(k)(u
′)

∑

|u|>√mL

s
(l)

~m(l),~q(l)(x− u) + sup
x′

s
(l)

~m(l),~q(l)(x
′)

∑

|u|≤√mL

φ
(k)

~r(k)(u)

≤Cσ2
∑

rjβ2− 2kν
d

m
d−2k−2

∑
rj

2

Cσ2
∑

qim
∑

qi +
Cσ2

∑
qiβ2m

∑
qi

m
d
2

Cmk+
∑

rjσkν+2
∑

rj ,

(5.61)

where we have applied Lemma (5.8) and Lemma (5.10) in the last step. Collecting terms we get the result.
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5.4.2 Proof of Lemma 5.8

We first prove by induction on k ≥ 1 that for k and ~r as in the lemma,

φ
(k)

~r(k)(x) ≤
k∑

j=0

C

Lj(2−ν)[x]d−2j−2
∑

ri
. (5.62)

For k = 1 (5.62) for ~r(1) ∈ {0, 1} follows easily from (1.4). For k > 1 we write

φ
(k)

~r(l)(x) =
∑

u

φ(1)
r1

(u)φ(k−1)
(r2,...,rk)(x− u) ≤

1∑

j=0

k−1∑

n=0

C

L(j+n)(2−ν)

C

[x]d−2(j+n)−2
∑k

i=1 ri

, (5.63)

using the induction hypothesis with Proposition 5.9 and the fact that k +
∑

ri < 4 in the last step. With a
different constant, (5.63) is bounded by

k∑

j=0

C

Lj(2+ν)[x]d−2j−2
∑k

i=1 ri

as required.
Therefore we have

∑

0≤|x|≤√mL

φ
(k)

~r(k)(x) ≤
k∑

j=0

∑

0≤|x|≤√mL

C

Lj(2−ν)[x]d−2j−2
∑

ri
≤

k∑

j=0

C (
√

mL)2j+2
∑

ri

Lj(2−ν)
≤ Cmk+

∑
riσkν+2

∑
ri

(5.64)

which proves the first bound of Lemma 5.8. Similarly,

sup
|x|>√mL

φ
(k)

~r(k)(x) ≤
k∑

j=0

sup
|x|>√mL

C

Lj(2−ν)[x]d−2j−2
∑

ri
≤

k∑

j=0

C

Lj(2−ν) (
√

mL)d−2j−2
∑

ri
≤ Cσ2

∑
rjβ2− 2kν

d

m
d−2k−2

∑
rj

2

,

(5.65)

which proves the second bound of Lemma 5.8.

5.4.3 Proof of Lemma 5.10.

We prove the result by induction on l.
For l = 1 we use induction on m. For l = 1 and m = 1 we have h1(x) = ζpcD(x) and hence

‖h1‖∞ ≤ C

Ld
= Cβ2, ‖h1‖1 ≤ C.

Using the fact that D(x) = 0 for |x|2 > dL2,

sup
x
|x|2h1(x) ≤ CL2 1

Ld
≤ Cσ2β2,

and by (3.19) ∑
x

|x|2h1(x) ≤ C
∑

x

|x|2D(x) ≤ Cσ2.
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This proves the result for the case l = 1, m = 1.
The cases l = 1 and m ≤ 6 are dealt with as follows

hm(x) =
∑
u,v

D(u)D(v − u)tm−2(x− v) ≤ CL−d
∑

u

D(u)
∑

v

tm−2(x− v) ≤ Cβ2 ≤ Cβ2

m
d
2

|x|2hm(x) =
∑
u,v

|x|2D(u)D(v − u)tm−2(x− v)

≤CL2
∑
u,v

D(u)D(v − u)tm−2(x− v) + CL−d
∑
u,v

D(u)|x− v|2tm−2(x− v) ≤ Cσ2β2

m
d
2

,

(5.66)

where we have used the assumed bounds (3.24) and the fact that m ≤ m0 = 6 in the last step in each case.
Similarly using the assumed bounds (3.24) we have for all m ≤ n + 1,

∑
x

hm(x) =
∑

u

D(u)
∑

v

D(v − u)
∑

x

tm−2(x− v) ≤ K

∑
x

|x|2hm(x) ≤C
∑
u,v

D(u)D(v − u)

[
L2

∑
x

tm−2(x− v) +
∑

x

|x− v|2tm−2(x− v)

]
≤ Cσ2m.

(5.67)

For l = 1 and 2m ≥ 6 we write

h2m(x) ≤ C(hm ∗ hm)(x) ≤ C‖hm‖2
2 = C‖ĥm‖2

2 ≤
Cβ2

(2m)
d
2

, (5.68)

where we have used Parseval’s equality and the assumed bounds (3.24). Similarly for l = 1 and 2m + 1 ≥ 7
we write h2m+1(x) ≤ C(D ∗ hm ∗ hm)(x) and proceed as in (5.68). This establishes the result for l = 1, and
all m ≤ n + 1 when q = 0. Using this result with (3.24) it follows that

|x|2h2m(x) ≤ C
∑

u

|u|2hm(u)hm(x− u) + C
∑

u

hm(u)|x− u|2hm(x− u) ≤ Cβ2

(2m)
d
2

Kσ2m, (5.69)

and similarly for |x|2h2m+1(x). This completes the proof for l = 1.
For l ≥ 2 we have s

(l)

~m(l),~q(l) =
∑

u s
(1)
m1,q1(u)s(l−1)

(m2,...,ml),(q2,...ql)
(x− u). If m1 ≥ m

2 ,

‖s(l)

~m(l),~q(l)‖∞ ≤ ‖s(1)
m1,q1

‖∞‖s(l−1)
(m2,...,ml),(q2,...ql)

‖1 ≤ Cσ2q1β2mq1

m
d
2

Cσ2
∑l

i=2 qim
∑l

i=2 qi ≤ Cσ2
∑

qim
∑

qiβ2

m
d
2

,

(5.70)

as required. Similarly if m1 < m
2 ,

‖s(l)

~m(l),~q(l)‖∞ ≤ ‖s(1)
m1,q1

‖1‖s(l−1)
(m2,...,ml),(q2,...ql)

‖∞ ≤ Cσ2q1mq1 Cσ2
∑l

i=2 qiβ2m
∑l

i=2 qi

m
d
2

≤ Cσ2
∑

qim
∑

qiβ2

m
d
2

,

(5.71)

as required. This completes the proof of the first bound of Lemma 5.10 for all l.
For the second bound of Lemma 5.10, we have

‖s(l)

~m(l),~q(l)‖1 ≤ ‖s(1)
m1,q1

‖1‖s(l−1)
(m2,...,ml),(q2,...ql)

‖1 ≤ Cσ2q1mq1Cσ2
∑l

i=2 qim
∑l

i=2 qi ≤ Cσ2
∑l

i=1 qim
∑l

i=1 qi , (5.72)

as required. This completes the proof of the second bound of Lemma 5.10, and thus completes the proof of
Lemma 5.10.
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5.5 Diagrams with an extra vertex.

We say that a diagram B has an extra vertex (than A) on some ρ if A and B are the same diagram except
that one component ρ(z) in diagram A is replaced with ρ(2)(z) in B. We say that a diagram B has an extra
vertex (than A) on some hm if A and B are the same diagram except that one component hmj (z) in diagram
A is replaced with hm′ ∗hmj−m′(z) in B. When we consider the diagrams arising from the lace expansion on
a star-shape of degree 3 we will encounter diagrams with an extra vertex on some ρ or hm. We bound the
contribution from all such diagrams by repeating the inductive analysis used in the proof of Proposition 5.1.
We do not show all the details but the main ideas are as follows.

We let n denote the location along the branch where the extra vertex is located. If n =
∑j

i=1 mi for some
1 ≤ j ≤ 2N − 2 then the extra vertex is on the ρ emanating from the backbone at n, or a ρ incident to that
ρ (of which there are at most two). If n = 0 (resp. n = m) then the extra vertex is on the first ρ (resp. last
ρ) in the diagram, or the ρ incident to it. Otherwise the extra vertex is at position n on the backbone (i.e.
on some hmi). Given M

(N)
~m (a, b, x, y), let M

(N),n
~m (a, b, x, y) denote the corresponding diagram with an extra

vertex at n.
We prove by induction on N that

∑

~m∈HN
m

∑

n≤m

sup
a,b,y

∑
x

M
(N),n
~m (a, b, x, y) ≤ (Cβ2− 8ν

d )N

m
d−6
2

, (5.73)

For N = 1 the left hand side of (5.73) is
∑

0<n<m

sup
a,b,y

∑
x

(hn ∗ hm−n)(x− a)ρ(2)(x + y − b) + 2 sup
a,b,y

∑
x

hm(x− a)ρ(3)(x + y − b). (5.74)

Using (5.5) with l = 2, k = 2 and all qi, rj = 0, the first term in (5.74) is bounded by

∑

0<n<m

Cβ2− 4ν
d

m
d−4
2

≤ Cβ2− 4ν
d

m
d−6
2

.

Similarly using (5.5) with l = 2, k = 3 and all qi, rj = 0, the second term is bounded by Cβ2− 6ν
d m− d−6

2 .
Adding these together we get a bound of Cβ2− 6ν

d m− d−6
2 which satisfies the first bound of the induction

hypothesis with N = 1.
For general N ≥ 2 we bound

∑

~m∈EN
m

∑

n≤m

sup
a,b,y

∑
x

M
(N),n
~m (a, b, x, y),

by using (5.8), and splitting the sum over n ≤ m into sums over n ≤ m1 + m2 : n 6= m1, and n > m1 + m2,
and the final case n = m1. In each case the extra vertex is either on Am1,m2 or M

(N−1)
~m′ . In the former case

we use the q = 0 result in the proof of Proposition 5.1 on the M
(N−1)
~m′ part and (5.5) (increasing k or l by

one due to the extra vertex) on the An
m1,m2

part. In the latter case we use the induction hypothesis on the

M
(N−1),n
~m′ part and (5.5) on the Am1,m2 part. The contributions from ~m ∈ FN

m and ~m ∈ G2
m are dealt with

as usual.
Similarly we prove

∑

~m∈HN
m

∑

n≤m

sup
a,b,y

∑
x

|x− a|2M (N),n
~m (a, b, x, y) ≤ σ2(Cβ2− 8ν

d )N

m
d−8
2

. (5.75)

57



Note the factor |x − a|2 in (5.75) rather than |z| or |z|. This is to avoid the situation that could arise of
having a convolution of four ρ’s with one of them having an extra factor |u|2 on the same diagram piece.
This would violate the condition k +

∑k
i=1 ri ≤ 4 in Proposition 5.4. Using |x− a|2 instead, we will use the

path along the backbone from a to x rather than the top path or bottom path, and the induction argument
goes through as before.

6 Diagrams for the 3-point function

In this section we bound the diagrams arising from minimal laces on a star shape S ~M of degree 3, in order
to bound the left hand side of (4.31) when q = 0. In an attempt to minimize the size of an already large
paper, we do not give as many details as in Section 5. As in the case of the two-point function, one can prove
an explicit upper bound for the contribution to (4.29) from minimal laces in terms of diagrams consisting of
convolutions of ρ and hmi using the definition of a lace L and the fact that any bond b1 /∈ L that is covered
by a bond b2 ∈ L is compatible with L. The formula is long and the notation becomes messy, so that such
a formula is not particularly informative. For fixed N , fixed N1 and N2 (the number of bonds strictly on
branch 1 and 2 respectively) and fixed topology of bonds covering the branchpoint (plus one extra bond in
some cases), minimal laces are in 1-1 correspondence with collections ~ml, ~mt, ~mr. The ~m indicate vertices
along the backbones of each branch at which there are lattice trees intersecting the lattice trees emanating
from other such vertices.

The essential idea that one should take from this section is that there is a finite collection of basic diagrams
D

(j)
~M

, such that all diagrams arising from laces on S ~M can be described recursively by connecting (to some

D
(j)
~M

) subdiagrams of the form A·,·(·, ·, ·, ·) as in (5.7–5.8). These basic diagrams are the “opened diagrams”
obtained from laces where all bonds cover the branch point of S ~M (such laces therefore contain at most 3
bonds), and sometimes those laces with one extra bond. Therefore the majority of this section is devoted to
the bounding of the so-called basic diagrams contributing to (4.29), using decompositions of the diagrams
into subdiagrams. One can of course decompose a given diagram in many different ways, obtaining many
different bounds. We saw in Section 5 that the usefulness of a particular decomposition/bound depends on
the relative sizes of the mi of the hmi in a given diagram. Therefore the relevant decompositions of the basic
diagrams are different depending on the topology of the lace and on the specific location of the endpoints of
the bonds in each lace. They are done in such a way that the same decomposition can easily be extended
to general diagrams with the same topology of bonds covering the branch point, usually due to the existing
bounds that we obtained from diagrams arising from the lace expansion on an interval in Section 5.

We now proceed to estimate the diagrams arising from the lace expansion, with N , N1, N2 and the
topology of bonds covering the branchpoint all assumed to be fixed (hence N3 is also fixed).

6.1 (Minimal) Acyclic laces with two bonds covering the branch point

Without loss of generality we may assume that branch 3 is a special branch for which the bond s3t3 in L
associated to branch 3 has s3 on branch 1 and is not the bond in L associated to any other branch. We first
consider the diagrams arising from acyclic laces consisting of only two bonds (see Figure 20).
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Figure 20: The two topologies of acyclic laces with 2 bonds, their corresponding diagrams and decomposition.

The decomposition of the first diagram depends on the relative size of M1 −m1 and M2 as follows:
∑

m1<M1

∑
u

hm1(u)
(
hM2(x2) ∗ ρ(2) ∗ hM1−m1

)
(u)

(
hM3 ∗ ρ(2)

)
(u)

≤
∑

m1<M1

(
hm1 ∗ ρ(2) ∗ hM3

)
(0) sup

u′

(
hM2 ∗ ρ(2) ∗ hM1−m1

)
(u′)

≤
∑

m1<M1

(
hm1 ∗ ρ(2) ∗ hM3

)
(0)

{
supu′

∑
x1

hM1−m1(x1 − u′) supx′1

(
hM2 ∗ ρ(2)

)
(x′1), M2 ≥ M1 −m1

supu′
∑

x2
hM2(x2) supx′2

(
hM2 ∗ ρ(2) ∗ hM1−m1

)
(x′2 − u′), M2 < M1 −m1

≤
∑

m1<M1

Cβ2− 4ν
d

[m1 + M3]
d−4
2

K
Cβ2− 4ν

d

[M2 ∨ (M1 −m1)]
d−4
2

,

(6.1)

by using Lemma 5.4 three times.
The decomposition of the second diagram depends on the relative size of M2 and M3. When M2 ≥ M3

we use
∑

u

(hM1 ∗ ρ) (u)
(
hM2 ∗ ρ(2)

)
(u)

(
hM3 ∗ ρ(2)

)
(u) ≤

(
hM1 ∗ ρ(3) ∗ hM3

)
(0) sup

u′

(
hM2 ∗ ρ(2)

)
(u′)

≤Cβ2− 4ν
d

M
d−4
2

2

Cβ2− 6ν
d

(M1 + M3)
d−6
2

≤ Cβ2− 4ν
d

[M2 + M3]
d−4
2

Cβ2− 6ν
d

M
d−6
2

1

,
(6.2)

by using Lemma 5.4 twice.
For general acyclic laces with only two bonds covering the branch point, there may be a bond strictly on

branch 1 which strictly covers, or has an endpoint the same as, one or more of the bonds covering the branch
point. This gives rise to a number of different possible diagrams. We select three laces whose diagrams and
associated decompositions illustrate the idea in Figure 21. When this bond exists but does not cover the
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Figure 21: Three examples of acyclic laces with 2 bonds covering the branch point and more than two bonds
in total and their diagrams (only one of the two topologically distinct possible diagrams for the third lace is
shown).

endpoint on branch 1 of the bond associated to branch 3 (e.g. see the first diagram in Figure 21 and the
first column of Figure 22), the decomposition is the same as the first diagram of Figure 20 except that we
use the bounds on diagrams in Section 5 rather than just using Lemma 5.4. In doing so we obtain a bound
on the contribution from such laces of

∑

m1<M1

(Cβ2− 4ν
d )N3+1

[m1 + M3]
d−4
2

K(Cβ2− 4ν
d )N2

(Cβ2− 4ν
d )N1+1

[M2 ∨ (M1 −m1)]
d−4
2

≤ (Cβ2− 4ν
d )N

(M1 + M3)
d−4
2 M

d−6
2

2

+
(Cβ2− 4ν

d )N

M
d−6
2

3 (M2 + M1)
d−6
2

,

(6.3)

when M1 − m1 ≥ M2 (see the first diagram of Figure 22), and the same bound (but with N2 and N1

switched) when M1 −m1 < M2. Note that we have broken the sum over m1 into the regions m1 ≥ M1/2
and M1 −m1 ≥ M/2 to obtain the last expression.

When there is a bond strictly on branch 1 that strictly covers endpoints of both bonds covering the
branchpoint (e.g. see the second diagram in Figure 21 and the second column of Figure 22), the decomposition
changes slightly, where it now depends on the relative size of M2 and M3. This decomposition gives the bound

(Cβ2− 4ν
d )N

[M2 ∨M3]
d−4
2

∑

m1≤M1

1

[M1 + (M2 ∧M3)]
d−4
2

≤ (Cβ2− 4ν
d )N

[M2 ∨M3]
d−4
2

1

M
d−6
2

1

, (6.4)

where N = N2 + 1 + (N1 + N3 + 1) = N3 + 1 + (N1 + N2 + 1).
When there is a bond strictly on branch 1 that shares an endpoint with one or both of the bonds covering

the branch point, the corresponding diagrams can all be decomposed in a similar fashion. The decompositions
give rise to subdiagrams that are exactly one of those arising from laces on an interval, or such a diagram
with an extra vertex on some ρ. Since we have appropriate bounds on such diagrams this brings no new
difficulties and therefore we do not present all cases. An example of this is the third lace of Figure 21, which
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Figure 22: The first (resp. second, third) column shows the decompositions of the first (resp. second third)
diagram of Figure 21. Apart from the second column, these are the same as the decompositions in Figure
20.

is decomposed according to whether M2 or M3 is larger as in the third column of Figure 22. This gives a
bound of

(Cβ2− 4ν
d )N

[M2 ∨M3]
d−4
2

1

[M1 + (M2 ∧M3)]
d−6
2

≤ (Cβ2− 4ν
d )N

[M2 ∨M3]
d−4
2

1

M
d−6
2

1

, (6.5)

where N = N2 + 1 + (N1 + N3 + 1) = N3 + 1 + (N1 + N2 + 1) and we have used the bounds for a diagram
with an extra vertex on some ρ as in Section 5.5. In general our bound on the diagrams arising from acyclic
laces consisting of N bonds (with N1 and N2 fixed) with two bonds covering the branchpoint, is a sum over
permutations of branch labels and of all the bounds listed above, with precisely N factors of Cβ2− 8ν

d .

6.2 (Minimal) Acyclic laces with 3 bonds covering the branch point

Figure 23 shows the topologies of the (minimal) acyclic laces consisting of exactly 3 bonds covering the
branch point, while Figure 24 shows the diagrams arising from these acyclic laces.

Figure 25 shows the decomposition of the first diagram in Figure 24. The diagram is decomposed into
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Figure 23: The 5 different topologies (exhaustive up to permutations of branch labels) for acyclic laces with
3 bonds covering the branch point.
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Figure 24: The three different diagrams for acyclic laces with 3 bonds (at least two strictly) covering the
branch point (see the top row of Figure 23), followed by the diagram arising from the acyclic laces with 3
bonds (exactly one strictly) covering the branch point (bottom left lace of Figure 23) and the two diagrams
arising when all three bonds meet at the branch point (bottom right lace of Figure 23).

62



M

M

M

M

MM 0

1

3

−m

m

m*1

1

1 1−m*

m22 −m2

M M

M

M

M

M1−m1 1−m*

M

M

M
M

M

M

0

1−m

m

m*1

1

1 1−m*

m22 −m2
0

3

0
3

m

m*1

1

m22 −m2

1−m1 1−m*

2 −m2

1m

0
0

m2

m*1

3

1−m1 1−m*

2 −m2
0

3

1m*

0
m2

m1

1

3

−m1 1−m*

m22 −m2

0

m*1

m1

0

Figure 25: The decomposition of the first diagram in Figure 24 into subdiagrams depending on which of M3,
M2 −m2, m2, M1 −m1 −m∗

1, m∗
1 or m1 is large.

subdiagrams depending on which of the Mi (and mi, m∗
i ) are largest.

M3 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m1≤M1

(Cβ2− 6ν
d )2

[M1 + M2]
d−4
2

,

M2 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m2≤M2/2

∑

m∗
1≤M1

A(2)(M1,m2,M3)

+
Cβ2

[M ]
d
2

∑

m2≥M2/2

∑

m1,m∗
1≤M1

Cβ2− 4ν
d

[m1 + M3]
d−4
2

Cβ2− 8ν
d

[M2 −m2 + M1 −m1 −m∗
1]

d−8
2

,

M1 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m≤2M1/3

∑

m2≤M2

A(2)(m,M2,M3)

+
Cβ2

[M ]
d
2

∑

m∗
1≥M1/3

∑

m1≤M1

∑

m2≤M2

Cβ2− 4ν
d

[m1 + M3]
d−4
2

Cβ2− 8ν
d

[M1 −m1 −m∗
1 + M2 −m2]

d−8
2

+
Cβ2

[M ]
d
2

∑

m1≥M1/3

∑

m∗
1≤M1

∑

m2≤M2

Cβ2− 4ν
d

[m∗
1 + m2 + M3]

d−4
2

Cβ2− 8ν
d

[M1 −m1 −m∗
1 + M2 −m2]

d−8
2

.

(6.6)

Here (and elsewhere in this section), A(2)(m1, m2,m3) denotes the bound on diagrams arising from acyclic
laces on S~m containing exactly two bonds.

Figure 26 shows the decomposition of the second diagram in Figure 24. The diagram is decomposed into
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Figure 26: The decomposition of the second diagram in Figure 24 into subdiagrams depending on which of
M3, M2 −m2, m2, M1 −m1 −m∗

1, m∗
1 or m1 is largest.

subdiagrams depending on which of the Mi (and mi, m∗
i ) are largest.

M3 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m∗
1≤M1

(Cβ2− 6ν
d )2

[M1 + M2]
d−4
2

,

M2 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m2≤M2/2

∑

m1≤M1

A(2)(M1,m2,M3)

+
Cβ2

[M ]
d
2

∑

m2≥M2/2

∑

m1,m∗
1≤M1

Cβ2− 4ν
d

[m1 + M3]
d−4
2

Cβ2− 8ν
d

[M2 −m2 + M1 −m1]
d−8
2

,

M1 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m≤2M1/3

∑

m2≤M2

A(2)(m,M2,M3)

+
Cβ2

[M ]
d
2

∑

m∗
1≥M1/3

∑

m1≤M1

∑

m2≤M2

Cβ2− 4ν
d

[m1 + M2]
d−4
2

Cβ2− 8ν
d

[M1 −m1 −m∗
1 + M3]

d−8
2

+
Cβ2

[M ]
d
2

∑

m1≥M1/3

∑

m∗
1≤M1

∑

m2≤M2

Cβ2− 4ν
d

[m2 + M3]
d−4
2

Cβ2− 8ν
d

[M1 −m1 −m∗
1 + M2 −m2]

d−8
2

.

(6.7)

Figure 27 shows the decomposition of the third diagram in Figure 24. The diagram is decomposed into
subdiagrams depending on which of the Mi (and mi) are largest. When m1 is the largest we choose a
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Figure 27: The decomposition of the third diagram in Figure 24 into subdiagrams depending on which of
M3, M2 −m2, m2, M1 −m1, or m1 is largest.
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Figure 28: The decomposition of the fourth, fifth and sixth diagrams in Figure 24 into subdiagrams.

decomposition depending on which of M3 or M1 −m1 is larger.

M3 largest :
Cβ2− 4ν

d

[M ]
d−4
2

(Cβ2− 6ν
d )2

[M1 + M2]
d−6
2

M2 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m2≤M2/2

∑

m1≤M1

Cβ2− 4ν
d

[M3]
d−6
2

Cβ2− 4ν
d

[M1 + m2]
d−4
2

+
Cβ2

[M ]
d
2

∑

m2≥M2/2

∑

m1≤M1

Cβ2− 6ν
d

[m1 + M3]
d−6
2

Cβ2− 8ν
d

[M2 −m2 + M1 −m1]
d−8
2

,

M1 largest :
Cβ2− 4ν

d

[M ]
d−4
2

∑

m1≤M1

∑

m2≤M2

A(2)(m1,M2, M3)

+
Cβ2− 2ν

d

[M ]
d−2
2

∑

m1≥M1/2:
M1−m1≥M3

∑

m2≤M2

Cβ2− 4ν
d

[M1 −m1]
d−4
2

Cβ2− 8ν
d

[M2 + M3]
d−8
2

+
Cβ2− 4ν

d

[M ]
d−4
2

∑

m1≥M1/2:
M1−m1≤M3

∑

m2≤M2

Cβ2− 4ν
d

[M3]
d−4
2

Cβ2− 6ν
d

[M2 −m2]
d−6
2

.

(6.8)

Figure 28 shows the decomposition of the fourth, fifth and sixth diagrams in Figure 24. The resulting
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bounds are

fourth diagram,
Cβ2− 4ν

d

[M2]
d−4
2

∑

m1≤M1

Cβ2− 6ν
d

[M1 −m1]
d−6
2

Cβ2− 4ν
d

[M3 + m1]
d−4
2

,

fifth and sixth diagrams,
Cβ2− 4ν

d

[M3]
d−4
2

Cβ2− 6ν
d

[M2]
d−6
2

Cβ2− 6ν
d

[M1]
d−6
2

.

(6.9)

The same decompositions above extend immediately to all minimal acyclic laces with 3 bonds covering
the branchpoint. This is due to the fact that any bond strictly on branch i can only cover one endpoint of
one bond covering the branchpoint (the bond associated to branch i), and on each branch there is at most
one such bond (it exists precisely when Ni > 0). In most cases the decomposition gives rise to subdiagrams
which are either diagrams that we already bounded for the two-point function, such diagrams with an extra
vertex, or diagrams that we already bounded for the (acyclic) laces with only two bonds covering the branch
point. The exceptions to this rule are the decompositions of the diagrams when m2, m1, or m∗

1 are largest.
For the acyclic laces consisting of only 3 bonds (each covering the branchpoint), one of the subdiagrams
arising from the decomposition was of the form supa hMi−mi ∗ hMj−mj ∗ ρ(4)(a), where we used Lemma 5.4

to bound this by Cβ2− 8ν
d [Mi −mi + Mj −mj ]−

d−8
2 . For the general (minimal) acyclic laces with 3 bonds

covering the branchpoint, one must show that this bound can be generalized when one adds Ni and Nj bonds
strictly on branches i and j to obtain a bound (Cβ2− 8ν

d )N1+N2+1[Mi −mi + Mj −mj ]−
d−8
2 . This is easily

done either directly by induction on N1 and N2 (e.g. as in the proof of Proposition 5.1) or by decomposing
the resulting larger diagram into further subdiagrams appearing in Section 5 (in some cases containing an
extra vertex on some ρ).

In general our bound on the diagrams arising from (minimal) acyclic laces consisting of N bonds (with
N1 and N2 fixed), with three bonds covering the branchpoint, is a sum over permutations of branch labels
and of all the bounds listed above, with precisely N factors of Cβ2− 8ν

d .

6.3 (Minimal) Cyclic laces

Figure 29 shows the topology and decomposition of the diagram arising from the cyclic laces (with exactly
3 bonds). Without loss of generality, we may assume that M = M1, and we obtain the bound

Cβ2− 4ν
d

[M ]
d−4
2

∑

m1≤M1/2

∑

m2≤M2

A(2)(m1,M2,M3)+

Cβ2

[M ]
d
2

∑

m1≥M1/2

∑

m2≤M2

∑

m3≤M3

Cβ2− 4ν
d

[m2 + M3]
d−4
2

Cβ2− 8ν
d

[M1 −m1 + M3 −m3]
d−8
2

.

(6.10)

As for the (minimal) acyclic laces with 3 bonds covering the branchpoint, the decompositions of the diagrams
of general (minimal) acyclic laces do not change. In the case of m1 ≥ M1/2 we must again use the additional
diagrammatic estimate discussed near the end of Section 6.2.

In general our bound on the diagrams arising from cyclic laces consisting of N bonds, is a sum over
permutations of branch labels and of the bounds listed above, with precisely N factors of Cβ2− 8ν

d .

6.4 Proof of Proposition 4.13

We prove the result first for q = 0. Recall (4.29) and that (from Section 2.3) the contribution to (4.29) from
nonminimal laces containing N ≥ 3 bonds is bounded by a constant times the contribution from minimal
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Figure 29: The topology of the minimal cyclic lace with 3 bonds, it’s corresponding diagram, and the
decomposition, with M1 assumed to be large.

laces containing N − 1 bonds. Since 3N/4 − 1 ≥ 1/2 when N ≥ 3, and using a small factor (Cβ2− 8ν
d )N/4

(when β is sufficiently small) to perform the sum over N , it is enough to prove the bounds of Proposition
4.13 (with (Cβ2− 8ν

d )N instead of (Cβ2− 8ν
d )1/2) for the contribution from minimal laces containing exactly N

bonds. Keeping N fixed and summing over the possible values of N1 and N2 gives a factor of at most N2,
which can be absorbed into the constant multiplying β since N2 ≤ 2N . We may therefore assume that N1

and N2 (and hence N3) are fixed. As we discussed at the beginning of Section 6, the contribution to π̂N
~M
(~0)

from minimal laces with N1 and N2 fixed, is bounded by a sum over diagrams that we estimated in Sections
6.1-6.3. Since N ≥ 1, we have M = M1 ∨M2 ∨M3 > 0.

When some Mi = 0 (w.l.o.g. M3 = 0), the laces are all laces on an interval of length M1 + M2 and
therefore our bounds of Section 5 give an upper bound on the contribution to the left hand side of (4.31)
from such laces of at most (Cβ2− 6ν

d )N [M1 ∨M2]−
d−4
2 . Now observe that by symmetry

∑

~M :Mj≥nj

1

[M1 ∨M2]
d−4
2

≤ 2
∑

M1≥nj

∑

M2≤M1

1

M
d−4
2

1

≤ 2
∑

M1≥nj

1

M
d−6
2

1

≤ 1

n
d−8
2

j

, (6.11)

so this contribution satisfies the first bound of (4.32). The second bound of (4.32) holds since

∑

~M≤~n

M1 ∨M2

[M1 ∨M2]
d−4
2

≤ 2
∑

M1≤‖~n‖∞

∑

M2≤M1

1

M
d−6
2

1

≤ C
∑

M1≤‖~n‖∞

1

M
d−8
2

1

≤ C

{
‖~n‖

10−d
2
∨0

∞ , d 6= 10
log ‖~n‖∞, d = 10.

(6.12)

When all Mi > 0, for fixed N , N1, N2 and topologies of the bonds covering the branchpoint, we estab-
lished bounds (that depend on N and the topology, but not on N1 and N2) on diagrams arising from the
corresponding laces, each with N factors of (Cβ2− 8ν

d ). The contribution to the left hand side of (4.31) from
(acyclic) laces with N , N1, N2 fixed, and with only two bonds covering the branch point, is bounded by a
summing (6.3) and (6.4) (and summing the result over permutations of labels (1, 2, 3)), which are equivalent
up to constants and permutations of branch labels since (Mi ∨Mj) ≤ Mi + Mj ≤ 2(Mi ∨Mj). The finite
sums over permutations of branch labels can also be absorbed into the constant multiplying β. Now observe
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that
∑

~M :Mj≥nj

1

[M1 ∨M2]
d−4
2

1

M
d−6
2

3

≤ 2
∑

M1≥nj

∑

M2≤M1

1

M
d−4
2

1

∑

M3≤M1

1

M
d−6
2

3

+ 2
∑

M3≥nj

1

M
d−6
2

3

∑

M1≤M3

∑

M2≤M1

1

M
d−4
2

1

,

(6.13)
whence the bounds (4.32) hold for the acyclic laces with only two bonds covering the branchpoint.

When all Mi > 0, for the contribution to the left hand side of (4.31) from minimal acyclic laces with N ,
N1, and N2 fixed and with three bonds covering the branchpoint, one must show that all of the diagrammatic
bounds in Section 6.2 also satisfy (4.32). Indeed our decompositions were chosen precisely so that this is
the case. We show that the result is true for the collection (6.7). The first bound of (6.7) is at most

M
− d−6

2
3 (M1 + M2)−

d−4
2 which we have already considered above. Using the bounds (6.3) and (6.4) that we

obtained for the acyclic laces containing only two bonds, the second bound is at most

1

M
d−6
2

2

∑

m2≤M2


 1

[M1 ∨m2]
d−4
2 M

d−6
2

3

+
1

[M3 ∨m2]
d−4
2 M

d−6
2

1

1

[M1 ∨M3]
d−4
2 m

d−6
2

2


+

1

M
d−4
2

2

∑

m1≤M1

1

(m1 + M3)
d−4
2

,

(6.14)

from which we easily obtain (4.32) as above. The third bound of (6.7) is the same up to permutations of
the labels (1, 2, 3) and thus we have the result for the collection of diagrammatic bounds (6.7). The proof
that the remaining bounds obtained for the minimal acyclic laces with three bonds covering the branch point
satisfy (4.32) is similar, as is the corresponding proof for minimal cyclic laces. This completes the proof of
Proposition 4.13 when q = 0.

It remains to consider the case q = 1. If uj is the displacement of the backbone of branch j, then
it can be written as uj = y1 + y2 + · · · + yZ where the yi are the displacements of the subwalks of the
backbone of branch j, and Z = Z(j, L) ≤ 2N − 1 depends on the lace L. Then |uj |2 ≤ Z

∑Z
i=1 |yi|2, and

as in the proof of Proposition 5.1 we obtain the bound on
∑

~u |uj |2πN
~m(~u) by using the same diagrammatic

estimates, except that one component hmj,i(yi) of each diagram is replaced by |yi|2hmj,i(yi). Using the same
decompositions as already done previously in this section, and proceeding as usual to bound subdiagrams,
the subdiagram containing the replacement piece |yi|2hmj,i(yi) is bounded by at most Cσ2‖M‖∞ times the
bound obtained from the original diagram. Thus

∑
~u |uj |2πN

~m(~u) ≤ C(2N − 1)
∑2N−1

i=1 σ2‖M‖∞
∑

~u πN
~m(~u),

and we have verified Proposition 4.13 for q = 1.

6.5 Proof of Lemma 4.11

In this section we prove the three bounds of Lemma 4.11. Fix a skeleton network N (α,~n), with α ∈ Σr

and recall Definition 2.1, where b is the branch point neighbouring the root of N . Let M ⊆ N (α,~n). If
Ust ∈ {−1, 0} for each st, then trivially for any finite collection of disjoint sets Gi ⊂ EM,

∏

st∈EM

[1 + Ust] ≤
∏

i

∏

st∈Gi

[1 + Ust]. (6.15)

We will use this bound frequently, often without explicit reference.

6.5.1 Proof of the first bound of Lemma 4.11

Recall the definition of φRN (~y) ≥ 0 in (4.18), where R was defined in Definition 2.1 and Ust is given by (4.16).
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Let Ne denote the branch of N corresponding to edge e of α and let Re,e′ = {st ∈ R : s ∈ Ne, t ∈ Ne′}.
We claim that when Ust ∈ {−1, 0} for all st,

1−
∏

st∈R
[1 + Ust] ≤

∑

e,e′∈BN :
Ne∩Ne′=∅


1−

∏

st∈Re,e′
[1 + Ust]


 ≤

∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

−U e,e′
me,m′

e
, (6.16)

where the sum over e, e′ is a sum over pairs of edges of α that do not have an endvertex in common (which
can be expressed as Ne ∩Ne′ = ∅). To verify (6.16), observe that each of the quantities

1−
∏

st∈R
[1 + Ust] , 1−

∏

st∈Re,e′
[1 + Ust] , −U(e,me),(e′,m′

e)
,

are either zero or one. Suppose the left hand side of (6.16) is non-zero. Then there exists some st ∈ R with
Ust = −1. By definition of R, st covers two branch points of N so that st ∈ Re,e′ for some e, e′ that do not
have a common endvertex. For this e and e′, we have 1 −∏

st∈Re,e′ [1 + Ust] = 1 and the first inequality is
verified. Now for fixed e, e′, if 1−∏

st∈Re,e′ [1 + Ust] is non-zero then there exists st ∈ Re,e′ with Ust = −1.
But s = (e,me), t = (e′,me′) for some me ≤ ne, me′ ≤ ne′ so that for this me and me′ , −U(e,me),(e′,m′

e)
= 1.

This proves the second inequality.
Examining the second quantity in (2.7) when Ust ∈ {−1, 0} for all st we have,

0 ≤
∏

st∈EN \R
[1 + Ust]

(
1−

∏

st∈R
[1 + Ust]

)
≤

∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

[−U e,e′
me,m′

e
]

∏

st∈EM\R
[1 + Ust]

≤
∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

[−U e,e′
me,m′

e
]

∏

f 6=e,e′

∏

s,t∈Nf :
0<s<t<nf

[1 + Ust]
∏

s,t∈Ne:
0<s<t<me

[1 + Ust]
∏

s,t∈Ne:
me<s<t<ne

[1 + Ust]

×
∏

s,t∈Ne′ :
0<s<t<me′

[1 + Ust]
∏

s,t∈Ne′ :
me<s<t<ne′

[1 + Ust] ,

(6.17)

where we have used (6.15) in the final step. Let Ne→e′ denote the minimal subnetwork of N connecting
branch e to e′, which is nonempty by definition of Re,e′ .

Breaking up ω in (4.18) at every branch point and at (e,me) and (e′,me′) and applying inequality (6.17)
we obtain

∑

~y

φRN (~y) ≤ρ(o)2r−2
∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′


 ∏

f ′ /∈({e,e′}∪Ne→e′ )

∑
yf ′

hnf ′ (yf ′)





 ∏

f∈Ne→e′

∑
yf

hnf
(yf )


×

∑
ue,ue′

hme(ue)hme′ (ue′)ρ(2)
(
ue + ue′ +

∑

f∈Ne→e′

yf

)∑
ye

hne−me(ye − ue)
∑
ye′

hne′−me′ (ye′ − ue′)

≤ρ(o)2r−2K2r−4
∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

∏

f∈Ne→e′

∑
yf

hnf
(yf )

∑
ue,ue′

hme(ue)hme′ (ue′)ρ(2)
(
ue + ue′ +

∑

f∈Ne→e′

yf

)

=ρ(o)2r−2K2r−4
∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

(
hme ∗ hme′ ∗ ρ(2) ∗

f∈Ne→e′
hnf

)
(0),

(6.18)
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where the sums over displacements have become a convolution, by change of variables. For every f ∈ Ne→e′ ,
this is bounded by

ρ(o)2r−2K2r−4
∑

e,e′∈BN :
Ne∩Ne′=∅

∑

me≤ne
me′≤ne′

Cβ2− 4ν
d

[me + me′ + nf ]
d−4
2

≤ Cr

∑

e,e′∈BN :
Ne∩Ne′=∅

Cβ2− 4ν
d

n
d−8
2

f

≤ Cr

2r−3∑

i=1

Cβ2− 4ν
d

n
d−8
2

i

,

by Lemma 5.4 with k = 2 and l = 2 + #Ne→e′ . This completes the proof of the first bound of Lemma
4.11.

6.5.2 Proof of the third bound of Lemma 4.11

Recall the definition of φπ
N (~y) in (4.23), where H~nb

was defined in (4.21). As in Lemma 4.14, |φπ
N (~y)| is

bounded by

C

∣∣∣∣∣∣∣

∑

~m∈H~nb

∑

~u

π~m(~u)
∑

~y

3∏

i=1

∑
vi

D(vi − ui)tN−
i

(~yvi)

∣∣∣∣∣∣∣

≤ C

∞∑

N=1

∑

~m∈H~nb

∑

~u

πN
~m(~u)

∑

~y

3∏

i=1

∑
vi

D(vi − ui)tN−
i

(~yvi),

(6.19)

where N−
i = (N \ S∆

~m), and ~yvi denotes the vector of displacements associated to the branches of N−
i

(determined by ~v, ~y, and the labelling of the branches of N ).
Summing over the vi and ~y and using (4.4) this is bounded by

C
∞∑

N=1

∑

~m∈H~nb

∑

~u

πN
~m(~u)

3∏

i=1

K#N−
i ≤ C

∞∑

N=1

3∑

j=1

∑

~m:mj≥
nj
3

BN (~m) ≤
3∑

j=1

(Cβ2− 8ν
d )

1
2

n
d−8
2

j

, (6.20)

applying Proposition 4.13 in the last line. This verifies the third bound of Lemma 4.11.

6.5.3 Proof of the second bound of Lemma 4.11

It follows immediately from the definition of φb
N (~y) in (4.20) that

|φb
N (~y)| =

∑

ω∈ΩN (~y)

W (ω)
∏

s∈N

∑

Rs∈T (ω(s))

W (Rs)

∣∣∣∣∣∣
∑

Γ∈Eb
N

∏

[∈Γ

U[

∣∣∣∣∣∣
, (6.21)

where Eb
N is defined in Definition 2.1 and is only nonempty if N contains more than 1 branch point (r ≥ 4).

In particular recall that graphs in Eb
N contain no bonds in R. We use an approach similar to that of [20] to

analyse φb
N (~y).

Let G(N ) ⊂ {2, 3} be the set of labels of branches of N incident to b and another branch point of N .
For F ⊂ G and e ∈ F , let be be the other branch point in N incident to branch Ne. Let

Eb
F,N = {Γ ∈ Eb

N : for every e ∈ F, Ab(Γ) contains a nearest neighbour of be}.
Then, ∑

Γ∈Eb
N

∏

st∈Γ

Ust =
∑

Γ∈Eb
{2},N

∏

st∈Γ

Ust +
∑

Γ∈Eb
{3},N

∏

st∈Γ

Ust −
∑

Γ∈Eb
{2,3},N

∏

st∈Γ

Ust,
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Figure 30: An illustration of the construction of a lace from a graph on some N in the case b1, b2 ∈ AN (Γ).
The first figure shows a graph Γ on a network N . The remaining figures highlight the subnetworks SF (Γ)
for F = {2}, {3}, {2, 3}.

where some of these sums could be empty if G 6= {2, 3}. Thus,

∣∣∣∣∣∣
∑

Γ∈Eb
N

∏

st∈Γ

Ust

∣∣∣∣∣∣
≤

∑

F⊂G(N )
F 6=∅

∣∣∣∣∣∣∣

∑

Γ∈Eb
F,N

∏

st∈Γ

Ust

∣∣∣∣∣∣∣
. (6.22)

Note that if r = 4 then one of Eb
{2},N or Eb

{3},N is empty and Eb
{2,3},N is empty. This may also be true for

r > 4, depending on the shape α.
Recall Definition 2.2 and for Γ ∈ Eb

F,N define ΓF ⊂ Γ to be the set of bonds st ∈ Γ such that

• st is the bond in Γ associated to e at b for some e ∈ F , or

• st is the bond in Γ associated to e at be for some e ∈ F and be ∈ Ab(Γ), or

• s, t ∈ Ne for some e ∈ F .

Let SF (Γ) be the largest subnetwork of N covered by ΓF ⊂ Γ. Clearly Γ|SF (Γ) = ΓF is a connected graph
on SF (Γ).

For each e ∈ F , SF (Γ) by definition contains a nearest neighbour of be in N , and may contain be itself.
Since ΓF contains at most one bond that covers be, if be ∈ SF (Γ) then it is not a branch point of SF (Γ).
Moreover if F = {2} or F = {3} then b is also not a branch point of MF (Γ), and hence SF (Γ) is a network
with no branch point (of course it contains at least one branch point of N , namely b). If F = {2, 3} then
SF (Γ) may be a star-shaped network of degree 3.

Fix N and F ⊂ G(N ). Write S @F N , if S ⊂ N is a star-shaped network with the following properties:

(a) for every e ∈ F , S contains a vertex v that is adjacent to the branch point be of N , and

(b) S contains no branch points of N other than b and be, e ∈ F .

Such star-shaped networks are exactly those for which there exists Γ ∈ G−RN such that S = SF (Γ). For
S @F N , define LF

S to be the set of laces L on S such that

1. For each e in F , if be ∈ S then there is exactly one bond sete ∈ L covering be.
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2. If F = {2} or F = {3} then there is exactly one bond in L∗S covering b, while if F = {2, 3} there are at
most 2 bonds in L∗S covering b.

3. L contains no elements of R (i.e. no bonds which cover ≥ 2 branch points of N ).

Then recalling the definition of LΓ from Definition 2.4 we have

∑

Γ∈Eb
F,N

∏

st∈Γ

Ust =
∑

S⊂N

∑

Γ∈Eb
F,N :

SF (Γ)=S

∏

st∈Γ

Ust =
∑

S@FN

∑

L∈LF
S

[ ∏

st∈L

Ust

][ ∑

Γ∈Eb
F,N :

SF (Γ)=S,LΓF
=L

∏

s′t′∈Γ\L
Us′t′

]

=
∑

S@FN

∑

L∈LF
S

[ ∏

st∈L

Ust

][ ∑

Γ∈G−R,con
S :

LΓ=L

∏

st∈Γ\L
Ust

]


∑

Γ′∈G−RN\S

∏

st∈Γ′
Ust




∑

Γ∗∈G−RS,N\S :

SF (L∪Γ∗)=S

∏

st∈Γ∗
Ust,

(6.23)

where
G−RS,N\S = {Γ ∈ G−R : for every st ∈ Γ, [s ∈ S, t ∈ N \ S] or [t ∈ S, s ∈ N \ S]}.

Let LN,F
S be the set of laces in LF

S consisting of exactly N bonds. Now observe that if H is the power set of
a finite set B∗ (i.e. the set of all subsets of B) then

∑
Γ∈H

∏
[∈Γ U[ =

∏
{[}∈B∗ [1 + U[]. Applying this to the

set B∗ of bonds on N \ S (excluding R) and similarly for the final sum of (6.23), we see that (6.23) is equal
to

∞∑

N=1

(−1)N
∑

S@FN

∑

L∈LN,F
S

[ ∏

st∈L

−Ust

]
 ∏

st∈C(L)

[1 + Ust]







∏

st∈EN\S
st/∈R

[1 + Ust]




[ ∏

s∈S,t∈N\S:
SF (L∪st)=S,st/∈R

[1 + Ust]

]
.

(6.24)

If Ust ∈ {−1, 0} for each st, then each quantity involving Ust in (6.24) is nonnegative and we have

∣∣∣∣∣∣
∑

Γ∈EF
N

∏

st∈Γ

Ust

∣∣∣∣∣∣
≤

∞∑

N=1

∑

S@FN

∑

L∈LN∗
S

[ ∏

st∈L

−Ust

]
 ∏

st∈C(L)

[1 + Ust]




∆N\S∏

i=1




∏

st∈E(N\S)i

st/∈R

[1 + Ust]


 , (6.25)

where ∆N\S is the number of disjoint components (N \S)i of N \S. This quantity is bounded above by the
sum of four terms (corresponding to the 4 possible branches incident to b2 and b3 if F = {2, 3}) each of the
form

∞∑

N=1


∏

e∈F

ne+(ne′−1)∑

me=ne−1




n1∑

m1=0


 ∏

e∈{2,3}\F

ne∑

me=0


 ∑

L∈LN

S∆
~m

[ ∏

st∈L

−Ust

]
 ∏

st∈C(L)

[1 + Ust]


×

∆N\S∆
~m∏

i=1

∏

e∈(N\S∆
~m

)′i




∏

s,t∈((N\S∆
~m)′i)e:

0<s<t<ne(~m)′i)

[1 + Ust]


 ,

(6.26)
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where e′ denotes one of the two branches (other than e) incident to be, S∆
~m is the star-shaped network defined

by (2.18), and (N \ S∆
~m)′i denotes the fact that part of branch Ne′ is being removed if me ≥ ne. In addition

ne(~m)′i is the length of branch e of (N \ S∆
~m)′i. Since the analysis does not depend on the e′, we ignore the

fact that there are 4 such terms from this point on.
Combining (6.22), (6.25) and (6.26) we have that

∣∣∣∑Γ∈Eb
N

∏
st∈Γ Ust

∣∣∣ is bounded by a constant times

∑

F⊂G(N )
F 6=∅

∞∑

N=1


∏

e∈F

ne+(ne′−1)∑

me=ne−1




n1∑

m1=0


 ∏

e∈{2,3}\F

ne−1∑

me=0


×

∑

L∈LN

S∆
~m

[ ∏

st∈L

−Ust

]
 ∏

st∈C(L)

[1 + Ust]




∆N\S∆
~m∏

i=1

∏

e∈(N\S∆
~m

)′i




∏

s,t∈((N\S∆
~m)′i)e:

0<s<t<ne(~m)′i

[1 + Ust]


 .

(6.27)

Putting this back into (6.21), the sum over laces on the star-shaped network gives rise to the quantity π~m(·)
and the final product gives rise to at most a constant times hne(~m)′i(·), with displacements summed over. We
use Lemma 5.10) with l = 1, q = 0 to bound ‖hne(~m)′i‖1 by a constant and we obtain an upper bound on
(6.21) of a constant times

∑

F⊂G(N )
F 6=∅

∞∑

N=1


∏

e∈F

ne+(ne′−1)∑

me=ne−1




n1∑

m1=0


 ∏

e∈{2,3}\F

ne−1∑

me=0


∑

~u

πN
~m(~u)

∆N\S∆
~m∏

i=1

∏

e∈(N\S∆
~m)′i

K. (6.28)

By Proposition 4.13 this is bounded above by

C
∑

F⊂G(N )
F 6=∅

∞∑

N=1


∏

e∈F

ne+(ne′−1)∑

me=ne−1




n1∑

m1=0


 ∏

e∈{2,3}\F

ne−1∑

me=0


BN (~m) ≤ C

∑

F⊂G(N )
F 6=∅

∑

e∈F

Cβ2− 8ν
d

n
d−8
2

e

. (6.29)

Since the remaining sums are finite, this establishes the second bound of Lemma 4.11, and hence completes
the proof of Lemma 4.11.
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