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Abstract

A vertex v of a graph G is a boundary vertez if there exists a vertex
u such that the distance in G from u to v is at least the distance from
u to any neighbour of v. We give the best possible lower bound, up
to a constant factor, on the number of boundary vertices of a graph
in terms of its minimum degree (or maximum degree). This settles a
problem introduced by Hasegawa and Saito.

1 Introduction

Let G = (V, E) be a graph. For every vertex v € V, let N(v) :== {u € V :
uv € E} be the neighbourhood of v. A vertex v € V' is a boundary vertex of
G if there exists a vertex u € V such that dist(u,v) > dist(u,w) for every
w € N(v). Such a vertex u is a witness for v. The boundary of G is the set
B(G) of boundary vertices of G.

The notion of boundary was introduced by Chartrand et al. [1, 2] and
further studied by Hasegawa and Saito [3]. They proved that for every graph

: 5(G) < r ((’B(G;| - 1) ) 4) | (1)
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where 0(G) is the minimum degree of G. The right-hand side of (1) is the

1B(G)[-1

5 ) * 4), that is the smallest integer

(multicoloured) Ramsey number r ((

n such that each colouring of the edges of K, with (lB(G;'*l) colours yields
a monochromatic copy of K4. As shown by Xiaodong et al. [4], the Ramsey
number 7(k  4) is Q (5%). Therefore, the lower bound on the number of
boundary vertices yielded by (1) cannot be better than

1B(G)] = Q(v/10g(6(G)))-

The following result is a significant improvement.

Theorem 1. For every graph G of mazimum degree A,
1B(G)| > logy(A +2).

The bound provided by Theorem 1 is sharp up to a multiplicative factor
smaller than 3logs(2) ~ 1.89.

Theorem 2. For every positive integer n, there exists a graph G, of mini-
mum degree 8, := 3""! and mazimum degree A,, := 3"+n—1 with |B(G,,)| =

3n. Thus, |B(G,)| = 3 (logs(d,) + 1) < 3logs(A,).

In particular, we deduce that the lower bound on the size of the boundary
in terms of the minimum degree implied by Theorem 1 is essentially best
possible, which answers a question of Hasegawa and Saito [3].

As it happens the vertex-connectivity of the graph G, in Theorem 2 is
also 3", which shows that being highly vertex-connected is not a sufficient
condition for having a large boundary.

2 Upper bound on the maximum degree

Throughout this section, let G = (V, E) be a graph. The endvertices of a
path P of G are the two vertices of degree 1 in P. A shortest path of G is
a path whose length is precisely the distance in G between its endvertices.
Given a shortest path P, an extension of P is a shortest path () containing
P. If @ is an extension of P, we say that P extends to (). The proof of
Theorem 1 relies on the following observation.

Lemma 3. Fach shortest path of G extends to a shortest path between two
boundary vertices.



Proof. Let P be a shortest path of G. If one of its endvertices is not a
boundary vertex, then P extends to a longer path (which is also a shortest
path between its endvertices), by the definition of a boundary vertex. As the
graph G is finite, we eventually obtain an extension of P whose endvertices
are boundary vertices. O

For every vertex v € V, let C, : N(v) — 25(%) be the mapping defined by
Cy(u) :={b € B(G) : dist(b, u) < dist(b,v)}.
The proof of the following lemma relies on Lemma 3.

Lemma 4. Let v € V. For each pair (u,u') of neighbours of v, C,(u) #
Cy,(u'). Moreover, Cy,(u) is neither empty nor the whole set B(G).

Proof. By Lemma 3 there exists a path P containing the vertices u and u’
that is a shortest path between two boundary vertices b and o'. We may
assume that u is closer to b than u'. Let r := dist(u, b) and s := dist(v/, v').

First suppose that uu’ € E. In this case we may assume that v belongs to
P. Since P is a shortest path, dist(v, b) = r+1 = dist(u/, b)—1. Consequently,
be Cy(u)\ Cyu).

Assume now that uu’ € E. Since dist(v,b) + dist(v,d) > dist(b, V') =
r+s+1, it follows that dist(v,b) > r+1 or dist(v, V') > s+ 1. By symmetry,
assume that dist(v,b) = r 4+ 1. Since P is a shortest path between b and ¥/,
we deduce that dist(u’,b) = r + 1, and therefore b € C,(u) \ Cy(u').

Since the edge uv extends to a shortest path between two boundary ver-
tices, we infer that C,(u) is neither empty nor the whole set B(G), which
concludes the proof. O

Proof of Theorem 1. Let v be a vertex of G of degree at least 2. By Lemma 4,
there exists an injective mapping from N (v) to 25(%\ {0, B(G)}. Therefore
the degree of v is at most 218 — 2 which yields the desired result. O

3 Construction of the graph G,

Fix a positive integer n. Let the vertex-set of the graph G, be V := AU B
where

A:={0,1,2}", B:={b:je{l,...,n}and i€ {0,1,2}}.
Let the edge-set of the graph G,, be
E:={uw:uveA}U U {vbl :v e Aand (v); =i}.
i€{0,1,2}
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The vertex bz- is joined to exactly those vertices v € A whose j-th coordinate
is 7. Notice that the vertices of A have degree 3" + n — 1, and those of B
have degree 3", So it only remains to establish that B(G,,) = B.

Note that the diameter of G is 3. For every two indices i # i/, and
every j € {1,2,...,n}, the path bivwb? is a shortest path of length 3, where
v,w € A with (v); = ¢ and (w); = i’. Since every pair of vertices that are
not both in B lie on such a shortest path, it follows that B(G) = B.
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