Bounding the boundary by the minimum and maximum degree

Tobias Müller* Attila Pór^{†‡} Jean-Sébastien Sereni^{†§}

Abstract

A vertex v of a graph G is a boundary vertex if there exists a vertex u such that the distance in G from u to v is at least the distance from u to any neighbour of v. We give the best possible lower bound, up to a constant factor, on the number of boundary vertices of a graph in terms of its minimum degree (or maximum degree). This settles a problem introduced by Hasegawa and Saito.

1 Introduction

Let G = (V, E) be a graph. For every vertex $v \in V$, let $N(v) := \{u \in V : uv \in E\}$ be the neighbourhood of v. A vertex $v \in V$ is a boundary vertex of G if there exists a vertex $u \in V$ such that $dist(u, v) \geq dist(u, w)$ for every $w \in N(v)$. Such a vertex u is a witness for v. The boundary of G is the set $\mathcal{B}(G)$ of boundary vertices of G.

The notion of boundary was introduced by Chartrand $et\ al.\ [1,\ 2]$ and further studied by Hasegawa and Saito [3]. They proved that for every graph G,

$$\delta(G) \le r\left(\binom{|\mathcal{B}(G)| - 1}{2} * 4\right),\tag{1}$$

^{*}EURANDOM, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: t.muller@tue.nl. This author would like to thank the Department of Applied Mathematics of Charles University for its hospitality during his stay in Prague when this research was conducted.

[†]Institute for Theoretical Computer Science (ITI) and Department of Applied Mathematics (KAM), Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 118 00 Prague 1, Czech Republic. E-mails: {por,sereni}@kam.mff.cuni.cz.

[‡]This author is supported by the Hungarian National Foundation Grant T 046246.

[§]This author is supported by the European project IST FET AEOLUS.

where $\delta(G)$ is the minimum degree of G. The right-hand side of (1) is the (multicoloured) Ramsey number $r\left(\binom{|\mathcal{B}(G)|-1}{2}*4\right)$, that is the smallest integer n such that each colouring of the edges of K_n with $\binom{|\mathcal{B}(G)|-1}{2}$ colours yields a monochromatic copy of K_4 . As shown by Xiaodong $et\ al.\ [4]$, the Ramsey number r(k*4) is $\Omega\left(5^k\right)$. Therefore, the lower bound on the number of boundary vertices yielded by (1) cannot be better than

$$|\mathcal{B}(G)| = \Omega(\sqrt{\log(\delta(G))}).$$

The following result is a significant improvement.

Theorem 1. For every graph G of maximum degree Δ ,

$$|\mathcal{B}(G)| \ge \log_2(\Delta + 2).$$

The bound provided by Theorem 1 is sharp up to a multiplicative factor smaller than $3\log_3(2) \approx 1.89$.

Theorem 2. For every positive integer n, there exists a graph G_n of minimum degree $\delta_n := 3^{n-1}$ and maximum degree $\Delta_n := 3^n + n - 1$ with $|\mathcal{B}(G_n)| = 3n$. Thus, $|\mathcal{B}(G_n)| = 3(\log_3(\delta_n) + 1) < 3\log_3(\Delta_n)$.

In particular, we deduce that the lower bound on the size of the boundary in terms of the *minimum* degree implied by Theorem 1 is essentially best possible, which answers a question of Hasegawa and Saito [3].

As it happens the vertex-connectivity of the graph G_n in Theorem 2 is also 3^{n-1} , which shows that being highly vertex-connected is not a sufficient condition for having a large boundary.

2 Upper bound on the maximum degree

Throughout this section, let G = (V, E) be a graph. The endvertices of a path P of G are the two vertices of degree 1 in P. A shortest path of G is a path whose length is precisely the distance in G between its endvertices. Given a shortest path P, an extension of P is a shortest path Q containing P. If Q is an extension of P, we say that P extends to Q. The proof of Theorem 1 relies on the following observation.

Lemma 3. Each shortest path of G extends to a shortest path between two boundary vertices.

Proof. Let P be a shortest path of G. If one of its endvertices is not a boundary vertex, then P extends to a longer path (which is also a shortest path between its endvertices), by the definition of a boundary vertex. As the graph G is finite, we eventually obtain an extension of P whose endvertices are boundary vertices.

For every vertex $v \in V$, let $C_v : N(v) \to 2^{\mathcal{B}(G)}$ be the mapping defined by

$$C_v(u) := \{ b \in \mathcal{B}(G) : \operatorname{dist}(b, u) < \operatorname{dist}(b, v) \}.$$

The proof of the following lemma relies on Lemma 3.

Lemma 4. Let $v \in V$. For each pair (u, u') of neighbours of v, $C_v(u) \neq C_v(u')$. Moreover, $C_v(u)$ is neither empty nor the whole set $\mathcal{B}(G)$.

Proof. By Lemma 3 there exists a path P containing the vertices u and u' that is a shortest path between two boundary vertices b and b'. We may assume that u is closer to b than u'. Let $r := \operatorname{dist}(u, b)$ and $s := \operatorname{dist}(u', b')$.

First suppose that $uu' \notin E$. In this case we may assume that v belongs to P. Since P is a shortest path, $\operatorname{dist}(v,b) = r+1 = \operatorname{dist}(u',b)-1$. Consequently, $b \in C_v(u) \setminus C_v(u')$.

Assume now that $uu' \in E$. Since $\operatorname{dist}(v,b) + \operatorname{dist}(v,b') \geq \operatorname{dist}(b,b') = r+s+1$, it follows that $\operatorname{dist}(v,b) \geq r+1$ or $\operatorname{dist}(v,b') \geq s+1$. By symmetry, assume that $\operatorname{dist}(v,b) = r+1$. Since P is a shortest path between b and b', we deduce that $\operatorname{dist}(u',b) = r+1$, and therefore $b \in C_v(u) \setminus C_v(u')$.

Since the edge uv extends to a shortest path between two boundary vertices, we infer that $C_v(u)$ is neither empty nor the whole set $\mathcal{B}(G)$, which concludes the proof.

Proof of Theorem 1. Let v be a vertex of G of degree at least 2. By Lemma 4, there exists an injective mapping from N(v) to $2^{\mathcal{B}(G)} \setminus \{\emptyset, \mathcal{B}(G)\}$. Therefore the degree of v is at most $2^{|\mathcal{B}(G)|} - 2$, which yields the desired result.

3 Construction of the graph G_n

Fix a positive integer n. Let the vertex-set of the graph G_n be $V := A \cup B$ where

$$A := \{0, 1, 2\}^n$$
, $B := \{b_j^i : j \in \{1, \dots, n\} \text{ and } i \in \{0, 1, 2\}\}$.

Let the edge-set of the graph G_n be

$$E := \{uv : u, v \in A\} \cup \bigcup_{\substack{j \in \{1, \dots, n\}\\i \in \{0, 1, 2\}}} \{vb_j^i : v \in A \text{ and } (v)_j = i\}.$$

The vertex b_j^i is joined to exactly those vertices $v \in A$ whose j-th coordinate is i. Notice that the vertices of A have degree $3^n + n - 1$, and those of B have degree 3^{n-1} . So it only remains to establish that $\mathcal{B}(G_n) = B$.

Note that the diameter of G is 3. For every two indices $i \neq i'$, and every $j \in \{1, 2, ..., n\}$, the path $b_j^i vw b_j^{i'}$ is a shortest path of length 3, where $v, w \in A$ with $(v)_j = i$ and $(w)_j = i'$. Since every pair of vertices that are not both in B lie on such a shortest path, it follows that $\mathcal{B}(G) = B$.

References

- [1] G. Chartrand, D. Erwin, G. L. Johns, and P. Zhang. Boundary vertices in graphs. *Discrete Math.*, 263(1-3):25–34, 2003.
- [2] G. Chartrand, D. Erwin, G. L. Johns, and P. Zhang. On boundary vertices in graphs. *J. Combin. Math. Combin. Comput.*, 48:39–53, 2004.
- [3] Y. Hasegawa and A. Saito. Graphs with small boundary. *Discrete Math.*, 307:1801–1807, 2007.
- [4] X. Xiaodong, X. Zheng, G. Exoo, and S. P. Radziszowski. Constructive lower bounds on classical multicolor Ramsey numbers. *Electron. J. Combin.*, 11(1):Research Paper 35, 24 pp. (electronic), 2004.