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Abstract

We consider a discrete-time random walk on Zd, d = 1, 2, . . . in a random envi-
ronment with Markov evolution in time. We complete and extend to all dimension
d ≥ 1 the results obtained in [2] on the time decay of the correlations of the “envi-
ronment from the point of view of the random walk”.
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1 Introduction. Description of the model and state-

ment of the results.

Random walks on Zd, d = 1, 2 . . ., in a time-dependent random environment with Markov
evolution have been recently studied by several authors [1] [3] [4] [5] [8]. In the paper [2]
we considered the time decay of the correlations of the jumps of the random walk in
dimension d = 1. Under some standard assumptions we proved that if the random term
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is small enough the time correlations fall off as e−κt√
t

, where κ is the spectral gap of the

Markov process that describes the evolution of the environment (κ = − ln |µ1|, µ1 being
the first eigenvalue of the stochastic operator). This result was previously known only
for dimension d ≥ 3. In the paper [2] it is also shown that, under some particular
circumstances, the fall-off can become of the type e−κ1t, with 0 < κ1 < κ.

The aim of the present paper is to complete the results of [2] and to extend them to
any dimension d > 1.

The model is a Markov chain consisting of a pair (ξt, Xt), t = 0, 1, . . ., where ξt is a
random field ξt = {ξ(t, x) : x ∈ Zd}, t = 0, 1, . . . and Xt is a random walk on the integer
lattice Zd. The field at each site x ∈ Zd evolves as an independent copy of an ergodic
Markov chain with finitely many states, and the conditional transition probabilities for
the random walk depend locally on the values of the field.

For such models it was proved that if the stochastic term is small enough, then, in all
dimension d ≥ 1, the annealed random walk is diffusive, i.e., the Central Limit Theorem
(CLT) holds as t →∞ for the distribution of Xt induced by the field [3]. The “”quenched“
almost-sure CLT, i.e., the CLT for almost-all evolutions of the environment was proved
for d ≥ 3 in [6], and, quite recently, for all dimensions [8].

The correlations of the jumps of the r.w. can be reduced, as in [2], to those of the
”environment from the point of view of the r. w.” ηt, t = 0, 1, . . . (to be defined below, see
eq. (1.4)). In [5] it was shown in all dimension d ≥ 1 that, under some assumptions, ηt

tends weakly, as t →∞ to a stationary distribution which is absolutely continuous with
respect to the equilibrium distribution of the product Markov chain ξt. It was also shown,
only for d ≥ 3, that the time correlations of ηt decay as t−

d
2 e−κt, where κ is, as we said

above, the spectral gap.

The case of odd dimension is a rather straightforward generalization of the results
in [2], so we will mainly consider the even case d = 2s + 2, s = 0, 1, . . ., which requires
different estimates.

In this paper we assume for simplicity that the local field takes two values ξ(t, x) = ±1,
and denote by Ω = {−1, 1}Zd

the space of the environment configurations ξt at a given
time t ≥ 0. For the pair (ξt, Xt), t = 0, 1, . . . we take conditional independence, i.e., for
any fixed choice of ξt ∈ Ω and Xt ∈ Zd, the conditional distributions of Xt+1 and ξt+1 are
independent, and given by the formulas

P (Xt+1 = x + u|Xt = x, ξt = ξ̄) = P (u) + ac(u)ξ̄(x) (1.1)

P (ξ(t + 1, x) = s|ξt = ξ̄) = q(ξ̄(x), s), x ∈ Zd, ξ̄ ∈ Ω, s = ±1. (1.2)

Here P is a non-degenerate random walk on Zd, a ∈ (0, 1) is a fixed number such that
P (u) ± ac(u) ∈ [0, 1) for all u ∈ Zd, and

∑
u c(u) = 0. Q = {q(s, s′) : s, s′ = ±1}, is the

transition matrix of an ergodic Markov chain (“local Markov chain“), which we suppose
for simplicity to be symmetric, so that the invariant measure is π = (1

2
, 1

2
). Taking the

points of the state space as labels of the components, the eigenvectors are e0(s) ≡ 1,
e1(s) = s, s = ±1, with corresponding eigenvalues µ0 = 1 and µ1 ∈ (−1, 1). We assume
µ1 6= 0 to avoid trivialities.

The environment distribution at time t is a probability measure on the measurable
space (Ω,S), where S is the σ-algebra of subsets of Ω generated by the cylinder sets. If Π0
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is the initial distribution, ℘Π0 will denote the corresponding distribution of the trajectories
of the product Markov chain {ξt : t ≥ 0} with initial measure Π0. ℘Π0 is a measure on

Ω̂ = {−1, 1}Zd+1
+ , where Zd+1

+ = {(t, x) ∈ Zd+1 : t ≥ 0}, with the usual σ-algebra.
In the papers [3], [4], [5] the local Markov chain was a general ergodic Markov chain

with finitely many states. The generalization of the results of the present paper in that
sense is straightforward.

The pair (ξt, Xt), t ≥ 0, with transition probabilities (1.1), (1.2) is also a Markov
chain. We assume that the random walk starts at the origin: X0 = 0. The probability
measure on the trajectories of the chain with initial measure δX0,0×Π0 is denoted ℘Π0,0.

For the transition probabilities we assume exponential decay: i.e., P (u) + |c(u)| ≤
Cq̄|u|, for all u ∈ Zd, for some constants C > 0, q̄ ∈ (0, 1). Moreover we take P (u) even
in u and c(u) either even or odd.

The Fourier transforms p̃0(λ) =
∑

u P (u)ei〈λ,u〉, c̃(λ) =
∑

u c(u)ei〈λ,u〉 are analytic in
the complex neighborhood Wq̄ = {λ = λ(1) + iλ(2) : λ(1) ∈ T d, λ(2) ∈ Rd, |λ(2)| < − ln q̄}
of the d-dimensional torus T d, and, moreover p̃0(λ) is real and even. (Here and in the
following we use the norm |λ| = |λ1|+ |λ2|+ · · ·+ |λd| for λ ∈ Rd.)

In analogy with condition VIII* of [5] we need that min{p̃0(λ) : λ ∈ T d} > 0, so that

the Fourier coefficients r(u) =
∫

T
e−i〈λ,u〉
p̃0(λ)

dm(λ) exist. ( dm(λ) = dλ
(2π)d is the Haar measure

on T d.) We in fact assume the following condition (which implies minλ p̃0(λ) > |µ1|):

|µ1|
∑

u

|r(u)| < 1. (1.3)

The environment from the point of view of the particle (hereafter ”e.p.v.” for short)
is the field ηt = {η(t, x) : x ∈ Zd} ∈ Ω defined by the relation

η(t, x) = ξ(t,X(t) + x), t = 0, 1, · · · (1.4)

ηt is a Markov chain, and its transition probabilities, for t ≥ 1, A ∈ S, η̄ ∈ Ω, are

P (ηt ∈ A|ηt−1 = η̄) =
∑

y

(P (y) + a c(y) η̄(0)) P (ηt ∈ τyA|η̄) =: P̂ (A|η̄). (1.5)

Here τy denotes the translation operator: (τyη)(x) = η(x− y), and τyA = {τyη, η ∈ A}.
As X0 = 0, the initial measure for ηt and ξt are the same. The distribution on the

space of the trajectories of ηt with initial measure Π0 is denoted ℘̂Π0 : it is a kind of
projection of the full distribution ℘Π0,0 under the application which maps the trajectories
of the full Markov chain {(ξt, Xt) : t ≥ 0} on the trajectories of the chain {ηt : t ≥ 0}.

Let f, g be two functions on the state space {−1, 1} and x, y any two points on Zd.
We consider the correlation

〈f(ηt(x)), g(η0(y))〉℘̂Π0
= 〈f(ηt(x))g(η0(y))〉℘̂Π0

− 〈f(ηt(x))〉℘̂Π0
〈g(η0(y))〉℘̂Π0

(1.6)

(The angular brackets 〈·〉m denote expectations with respect to the measure m.) 〈·〉.
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Theorem 1.1 Under the assumptions above, the correlation (1.6) has the following asymp-
totics, as t →∞.

i) If a < a0, with a0 > 0 small enough, we have

〈f(ηt(x)), g(η0(y))〉℘Π0,0
= C0µ

t
1t
− d

2 (1 +O( log t
t

)) d even

〈f(ηt(x)), g(η0(y))〉℘Π0,0
= C0µ

t
1t
− d

2 (1 +O(1
t
)) d odd.

(1.7)

ii) if some conditions on the parameters, to be specified later, hold, then there is some
ā > a0 and an open set I ⊂ (a0, ā) such that for a ∈ I

〈f(ηt(x)), g(η0(y))〉℘̂Π0
= e−α1t

m∑

k=1

pk(t) cos(θkt)
(
1 +O(e−δ1t)

)
. (1.8)

Here 0 < α1 < − ln |µ1|, θk ∈ (0, π
2
), pk(t) is a polynomial of order k = 0, . . . , m− 1, and

the constant δ1 > 0, and m ≥ 0 depend only on the transition probabilities (1.1), whereas
the coefficients of the polynomials pk(t) and the constant C0 depend also on f, g, x, y, and
on the initial distribution Π0.

Let ∆t = Xt − Xt−1 denote the increment (jump) of the random walk at time t. If
f1, f2 are bounded functions on Zd, we consider the correlation

〈f2(∆t), f1(∆1)〉℘Π0,0
. (1.9)

We state the result on the correlations of the jumps (1.9) as a second theorem. We
will however only prove Theorem 1.1, because it is not hard to see that the correlation of
the jumps can be reduced to the correlation of the e.p.v. (1.6), and behave in the same
way (see [2], end of §2).

Theorem 1.2 The asymptotics of the correlation (1.9) has again the form (1.7 ) (1.8),
under the same conditions.

The constants α1, δ1,m, θk, k = 0, . . . ,m − 1 are the same. The constant C0 and the
polymomials pk(t) are replaced by a constant C̄0 and polynomials qk, k = 0, . . . ,m − 1,
which, in analogy with the previous ones, also depend on Π0, and the functions f1, f2.

The starting point for the proofs is a representation of the correlations based on
transfer matrix techniques. This part is independent of dimension and is carried out in
detail in [2]. We repeat in §2 some of the results, without proofs, for convenience of the
reader. The main part of the paper is the analysis of the final representation leading to
the asymptotics, which depends on dimension, and is carried out in Sec. 3, 4.

2 Recalling some preliminary facts.

We start with some preliminary constructions which are carried out in detail in [2]. In
what follows C and q may denote different positive constants, always with q ∈ (0, 1).
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Consider the Hilbert space H = L2(Ω, Π), where Π = πZ
d

is the invariant measure of
the product Markov chain ξt. The transfer matrix T of the chain {ηt : t = 0, 1, . . .} is a
linear operator on H, which acts as

(T φ)(η̄) =

∫

Ω

φ(η)P̂ (dη|η̄), η̄ ∈ Ω, φ ∈ H, (2.1)

where the measure P̂ (·|η̄) is given by (1.5).

As shown in [4, Th. 3.1], H is decomposed into a direct sum of subspaces, which are
invariant with respect to T ,

H = H0 +H1 +H2, (2.2)

where H0 is the one-dimensional space of the constants, and the properties of Hi, i =
1, 2 are described later. Correspondingly the correlation 〈φ1(ηt), φ2(η0)〉℘̂Π0

of any two
functions φ1, φ2 on Ω can be represented as

〈φ1(ηt), φ2(η0)〉℘̂Π0
= 〈(T tφ1)(η0), φ2(η0)〉Π0 = 〈(T t

1 φ
(1)
1 )(η0), φ2(η0)〉Π0

+〈(T t
2 φ

(2)
1 )(η0), φ2(η0)〉Π0

(2.3)

where Tj = T |Hj
, j = 1, 2, and φ

(1)
1 , φ

(2)
1 are the components of φ1 in the expansion

φ1 = φ
(0)
1 + φ

(1)
1 + φ

(2)
1 , with φ

(0)
1 ∈ H0, φ

(1)
1 ∈ H1, and φ

(2)
1 ∈ H2. In [2] it is shown that if

φ is a function of the e.p.v. at some site x, φ(η) = g(η(x)), η ∈ Ω, then

‖T t
1 φ‖H1 ≥ K1(φ)(|µ1|minλ p̃0(λ) +O(a))t,

‖T t
2 φ‖H2 ≤ K2(φ)(µ2

1 +O(a))t,
(2.4)

for some constants K1, K2 depending on φ. So if φ1 is such a function the first term on
the right in (2.3) is the leading one, if a is small.

Furthermore in the space H1 one can find a basis {hy : y ∈ Zd} on which T1 acts as

T1hz =
∑

y

(T1)z,yhy (T1)z,y = p̄(z − y) + S(z, y), (2.5)

with p̄(z) = µ1P (z) + d(z), satisfying, for some q ∈ (0, 1), the inequalities

|S(z, y)| ≤ C a2 q|z|+|y|, |d(u)| ≤ C a2 q|u|. (2.6)

Moreover S and d are even: S(z, y) = S(−z,−y), d(−z) = d(z) and such that

∑
z

d(z) = 0,
∑

z

S(z, y) = 0 for all y ∈ Zd. (2.7)

Expanding φ
(1)
1 in the basis {hy}, as φ

(1)
1 =

∑
y cyhy, by (2.5) one can see that

〈T t
1 φ

(1)
1 (η0), φ2(η0)〉Π0 =

∑
y

cy(T (t)
1 )y,z〈hz, φ2〉Π0 =

∑
y

cy(T (t)
1 )y,zDz (2.8)
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where Dz = 〈hz, φ2〉Π0 . Moreover |cy| < Cq|y|, |Dz| < Cq|z|, C > 0, q ∈ (0, 1). Therefore
the Fourier transforms

ϕ(λ) =
∑

y

cye
i〈λ,y〉, ψ(λ) =

∑
z

Dze
i〈λ,z〉, λ ∈ T d (2.9)

are analytic in the complex neighborhood Wq = {λ = λ(1) + iλ(2) : λ(1) ∈ T d, λ(2) ∈
Rd, |λ(2)| < − ln q} of the torus T d. Moreover the right side of (2.8) has the form

∫

T d

∫

T d

ϕ(λ)T̃ (t)
1 (λ, µ)ψ(µ)dm(λ)dm(µ) (2.10)

where T̃ (t)(λ, µ) is the Fourier transform of T (t)
y,z .

T t
1 is represented in terms of the resolvent RT1(z) = (T1 − zE)−1 as

T t
1 =

1

2πi

∫

γ

ztRT1(z)dz, (2.11)

where the integration is over a contour γ in the complex plane z, which goes around the
spectrum of T1. The kernel Rz(λ, µ) of RT1(z) is (see [5]).

Rz(λ, µ) =
δ(λ− µ)

p̃(λ)− z
− D(λ, µ; z)

∆(z)(p̃(λ)− z)(p̃(µ)− z)
. (2.12)

Here δ is the Dirac δ-function, p̃ is the Fourier transform of p̄, and ∆(z) and D(λ, µ; z)
are given by the series

∆(z) = 1 +
∞∑

n=1

1

n!

∫

T d

· · ·
∫

T d

Kn(λ(1), . . . , λ(n))∏n
i=1[p̃(λ(i))− z]

dm(λ(1)) . . . dm(λ(n)), (2.13)

D(λ, µ; z) = S̃(λ, µ) +
∞∑

n=1

1

n!

∫

T d

· · ·
∫

T d

K̃n(λ, µ; λ(1), . . . , λ(n))∏n
i=1[p̃(λ(i))− z]

dm(λ(1)) . . . dm(λ(n)),

(2.14)
with Kn(λ(1), . . . , λ(n)) = det {S̃(λ(i); λ(j))}, K1(λ

(1)) = S̃(λ(1), λ(1)), and

K̃n(λ, µ; λ(1), . . . , λ(n)) =

∣∣∣∣∣∣∣∣∣∣

S̃(λ, µ) S̃(λ, λ(1)) . . . . . . S̃(λ, λ(n))

S̃(λ(1), µ) S̃(λ(1), λ(1)) . . . . . . S̃(λ(1), λ(n))
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

S̃(λ(n), µ) S̃(λ(n), λ(1)) . . . . . . S̃(λ(n), λ(n)).

∣∣∣∣∣∣∣∣∣∣

(2.15)

S̃(λ, µ) is the Fourier transforms of S in (2.5). As p̄(y) and S(x, y) are even, p̃(λ) and
S̃(λ, µ) are real and even. Moreover, by (2.7), S̃(0, µ) ≡ 0.

Therefore the main term in the correlation (2.3) is, by (2.12)

∫

γ

ztdz

[∫

T d

ϕ(λ)ψ(λ)

p̃(λ)− z
dm(λ)−

∫

T d

∫

T d

D(λ, µ; z)ϕ(λ)ψ(µ)

∆(z)(p̃(λ)− z)(p̃(µ)− z)
dm(λ)dm(µ)

]
. (2.16)

The proof of Theorem 1.1 is based on the analysis of the integral (2.16), which we will
carry out in the next paragraph.
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3 Asymptotics of the integral (2.16).

By (2.5), we have p̃(λ) = µ1p̃0(λ)+ d̃(λ), where d̃(λ) =
∑

x d(x)ei(λ,x). From the preceding

paragraph (see (2.6), (2.7) ) we have, d̃(λ) = O(a2), d̃(0) = 0 and d̃(λ) = d̃(−λ). Hence
if a is small enough, if µ1 > 0, then κ0 := maxλ p̃(λ) = µ1 and

κ1 := min
λ

p̃(λ) > µ1 min p̃0(λ)− const a2

will also be positive for small a. For µ1 < 0 the range of p̃(λ) is obtained by reflecting the
corresponding range with the opposite eigenvalue −µ1 > 0 and the same choice of P, c
and a. We will only consider the case µ1 > 0.

Let Σ ⊂ C denote the complex plane with a cut along the real interval [κ1, κ0]. ∆(z),
and the two functions

β(z) =

∫

T d

ϕ(λ)ψ(λ)

p̃(λ)− z
dm(λ), Γ(z) =

∫

T d

∫

T d

D(λ, µ; z)ϕ(λ)ψ(µ)

(p̃(λ)− z)(p̃(µ)− z)
dm(λ)dm(µ) (3.1)

are analytic in Σ. We now formulate a general result concerning the representation of the
functions ∆(z), β(z) and Γ(z) in a neighborhood of the point z = κ0 for even dimension
d = 2s + 2, s = 0, 1 . . .. The case of odd dimension is briefly discussed at the end of the
paper.

Let Aδ
κ0

be the class of functions that are analytic in the region Uδ(κ0) ∩ Σ, where
Uδ(κ0) is a circle with center κ0 and some (appropriately small) radius δ, and can be
represented in the form

g(z) =
∞∑

k=0

[(z − κ0)
s+1 log(z − κ0)]

k hk(z) (3.2)

where hk(z), k = 0, 1, . . . are analytic bounded functions in Uδ(κ0) and log(z − κ0) is the
branch that is real on the real axis for z > κ0.

The representation (3.2) for the functions ofAδ
κ0

is unique, andAδ
κ0

is a Banach algebra
of functions with respect to the usual addition and multiplication, and with norm

‖g‖δ =
∞∑

k=0

sup
z∈Uδ(κ0)

|hk(z)|. (3.3)

Moreover if δ is small enough we have

sup
z∈Uδ(κ0)

|g(z)| < ‖g‖δ. (3.4)

We recall that, by (2.6), p̃(λ) is an analytic function in Wq, is positive for real λ, and has
a non-degenerate maximum κ0 = p̃(0) ∈ (0, 1) at λ = 0. S̃(λ, µ) is analytic in Wq ×Wq,
and for real λ, µ is real and satisfies a bound |S̃(λ, µ)| ≤ C∗a2 for some C∗ > 0. Moreover
the range [κ1, κ0] of p̃(λ) is contained in the positive real axis.
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Lemma 3.1 Under the assumptions above, for d = 2s+2, s ≥ 0, one can find ā > 0 and
0 < δ < κ0 − κ1, such that for all a ∈ (0, ā) the functions β(z), ∆(z) and Γ(z) have the
following representation for z ∈ Uδ(κ0) ∩ Σ:

i)
β(z) = h(z)(z − κ0)

s log(z − κ0) + H(z); (3.5)

ii)
∆(z) = 1 + ψ(z), ψ ∈ Aδ

κ0
; (3.6)

iii)

Γ(z) = H̃(z) +
∞∑

n=1

1

n!
(z − κ0)

(ns+n−1)[log(z − κ0)]
n · h̃n(z). (3.7)

The functions h(z), H(z), H̃(z) and h̃n(z) are analytic in Uδ(κ0).
iv) Moreover the zeroes of the function ∆(z) are always in finite number, and if a is

small enough, they cannot lie in the regions Re z > κ0− δ
2

and {z : minλ∈T d |z−p̃(λ)| > δ
2
} .

Lemma 3.1 is proved in the last section.

Proof of Theorem 1.1 Assume first that ∆(z) 6= 0 for all z ∈ Σ . Then, if h(κ0) 6= 0,
where h appears in (3.5), by the results of Lemma 3.1, the function in the square brackets
of (2.16) , if δ is small enough, has, in the region Uδ(κ0) ∩ Σ the following representation

F (z) := β(z)− Γ(z)

∆(z)
= H∗(z) +

∞∑
n=1

1

n!
(z − κ0)

(ns+n−1)[log(z − κ0)]
n · h∗n(z), (3.8)

where H∗ and h∗n are analytic functions in Uδ(κ0). The representation (3.8) is obtained
by expanding 1/∆(z) in (3.6) in power series of ψ, which is possible for a small.

We write F (z) in the form

F (z) = H∗(z) + h∗1(z)(z − κ0)
s log(z − κ0) + (z − κ0)

2s+1 log2(z − κ0)Φ̂(z), (3.9)

where Φ̂(z) = Ĥ(z) +
∑∞

k=1[(z − κ0)
s+1 log(z − κ0)]

kĥk(z) ∈ Aδ
κ0

and ‖Φ̂‖δ ≤ Ca2.
As one can see from (2.12) and assertion iv) of Lemma 3.1, for small a the spectrum

of T1, i.e., the singularities of the resolvent, consist in the cut [κ1, κ0] on the real axis
and some possible poles in the region Rez < κ0 − δ

2
, at a distance smaller than δ

2
from

the cut. Therefore we take the contour γ as made of two parts, γ = γ1 ∪ γ2, where γ1 is
“degenerate“ and made of two segments, [κ0− δ

2
, κ0] above the cut and (κ0− δ

2
, κ0) below

the cut, and γ2 is a circle with center at the origin and radius r = κ0 − δ
2

(see Fig. 1).
Clearly ∣∣∣∣

∫

γ2

ztF (z)dz

∣∣∣∣ ≤ C (κ0 − δ

2
)t.

As for the integral over γ1, which will give the leading term, observe that the analytic
function H∗ in (3.9) gives no contribution, as its jump over the cut vanishes. For the
second term, as the jump of the logarithm over the cut is 2πi, the contribution is

(−1)s

∫ κ0

κ0−δ

(κ0 − z)sh∗1(z)ztdz.
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r = κ − δ/2

κ1

γ2

γ1

Re = κ0

Re = κ0 − δ/2

Figure 1: The contour γ is made of two parts, γ = γ1 ∪ γ2

We set z = κ0(1− w
t
) and consider the asymptotics of this integral as t →∞:

(−1)s κt
0

ts+1
κs+1

0

∫ tδ
κ0

0

ws(1− w

t
)th∗(κ0(1− w

t
)) dw ∼ C0

κt
0

ts+1

with C0 = (−1)s(κ0)
s+1h∗(κ0)

∫∞
0

wse−wdw. As κ0 = µ1, we get the leading term of the
asymptotics (1.7).

For the next term in (3.9) , denoting by Φ̂±(z) the values of the function Φ̂ computed
above and below the cut, respectively (i.e., for log(z − κ0) = log |z − κ0| ± iπ), we find

that the difference across the cut is (z − κ0)
2s+1∆̂(z) with

∆̂(z) = (log2 |z − κ0| − π2)(Φ̂+(z)− Φ̂−(z)) + 4iπ log |z − κ0|(Φ̂+(z) + Φ̂−(z)).

Changing variables as before, the contribution of the integral over γ1 is

κd
0

2πi

κt
0

td

∫ tδ
κ0

0

w2s+1(1− w

t
)t∆̂

(
κ0(1− w

t
)
)

dw.

Observe that z = log u + iπ = ρeiφ, with ρ =
√

log2 u + π2 and φ = sin−1(π
ρ
), so that

|φ| ≤ π2

2ρ
) and we get |(log u + iπ)k − (log u− iπ)k| ≤ π2kρk−1. Therefore, setting Φ̂+(z)−

Φ̂−(z) = 2ig(z), we find, for some constant C > 0

|g(z)| ≤ Ca2|κ0 − z|s+1

∞∑

k=1

k|hk(z)|[| log |κ0 − z|+ iπ|(κ0 − z)s+1]k−1 ≤ Ca2(z − κ0)
s+1.

The series converges and is small for a and δ small enough. Hence the contribution of

the first term of ∆̂ to the integral over γ1 is bounded by C
κt
0 log2 t

t
3d
2

, for some C > 0. In a

similar way one can see that the second term of ∆̂ is of the order κt
0

log t
td

.
This proves assertion i) of Theorem 1.1.
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As for assertion ii), observe that for values of a ∈ (0, ā), for which the representations
i), ii), iii) of Lemma 3.1 hold, a finite number of zeroes of ∆(z) may appear in the half-
plane Re z > κ0. Suppose that this is the case. Clearly only zeroes of ∆ which are in the
spectrum of T1 matter, and they are inside the unit sphere. Since moreover ∆(κ0) = 1,
we can find δ1 > 0 such that the contours γ1 and γ2 can be taken as before, except that
δ
2

is replaced by δ1, and we have to add a third contour γ3 which goes around the zeroes
of ∆ with Re z > κ0. Such zeroes can only be a finite number of complex conjugate pairs
(z1, z̄1), . . . , (zm, z̄m), m ≥ 1, with Im zj ≥ 0, and Re zj = αj, j = 1, . . . , m.

The integral over γ3 is a sum of contributions: each pair (zk, z̄k), k = 1, . . . , m, con-
tributes a quantity e−αktqk(t) cos(θkt), where θk is the argument of zk and the order of the
polynomial qk(t) is nk − 1, where nk is the order of the zero zk. As the remaining part of
the spectrum is to the left of κ0 − δ1, we get the assertion (1.8).

Theorem 1.1 for d even is proved.

Sketch of the proof of Theorem 1.1 for d odd. If d = 2s + 1, s > 0, the
fundamental Lemma 3.1, as it is easy to check, following the proof in [2], is modified by
replacing the assertions by the following.

i’) β(z) = h(z)(z − κ0)
s− 1

2 + H(z).

ii’) ∆(z) = 1 + h̄(z)(z − κ0)
s+ 1

2 + H̄(z).

iii’) Γ(z) = H̃(z) + (z − κ0)
s− 1

2 h̃(z).
The functions h,H, h̄, H̄, h̃, H̃ are analytic in U δ(κ0). Assertion iv) of Lemma 3.1 is

unchanged, and the smallness of the term H̄(z) for small a also holds.
For assertion i), following the steps of [2] we see that (3.8) is replaced by

F (z) = h(z)(z − κ0)
s− 1

2 + H(z).

The proof then follows as in [2] (see also [7]). Assertion ii) is proved in the same way as
for even dimension.

4 Proof of Lemma 3.1.

Proof of i) If f(λ) is analytic in Wq for some q ∈ (0, 1), and such that f(0) 6= 0, then,
following [7], we consider the integral

F (z) :=

∫

T d

f(λ)

p̃(λ)− z
dm(λ) = − 1

κ0

∫

T d

f(λ)
z
κ0
− 1− p̃(λ)

κ0
+ 1

dm(λ) = (4.1)

= − 1

κ0

(∫

u2(λ)<δ

f(λ)

β + u2(λ)
dm(λ) +

∫

u2(λ)≥δ

f(λ)

β + u2(λ)
dm(λ)

)
.

Here u2(λ) = 1 − p̃(λ)
κ0

and β = z
κ0
− 1, and δ is so small that in the region u2(λ) < δ we

can apply the Morse Lemma. The second term is analytic for |β| < δ, and bounded for
|β| < δ′ < δ. Following [7], the first integral in the second line of (4.1) is represented as

∫

u2(λ)<δ

f(λ)

β + u2(λ)
dm(λ) = g(β)βs log β + G(β), (4.2)
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where g, G are analytic for |β| < δ. The coefficients of the expansion of g at β = 0 are a
simple expression of the coefficients of the Taylor expansion of f and the jacobian J(u)
of the transformation λ = (λ1, . . . , λd) → u = (u1 . . . , ud), with the variables u1, . . . , ud

being such that u2 = u2
1 + . . .+u2

d = u2(λ). In particular, g(0) = (−1)s+1ωd

2(2π)d f(0)J(0), where

ωd is the measure of the surface of the unit sphere in Rd. It follows that

∫

T d

f(λ)

p̃(λ)− z
dm(λ) = h(z)(z − κ0)

s log(z − κ0) + H(z) (4.3)

where h,H are analytic in Uδ(κ0) for some δ > 0, and h(κ0) = (−1)s f(0)J(0)

2κs+1
0 (2π)d , and, as

shown in [7], J(0) =
√

det C−1, where C is the matrix of the second derivatives of the
function κ−1

0 p̃(λ) at λ = 0, which is positive definite for small a.
Taking f(λ) = φ(λ)ψ(λ), this proves assertion i).

Remark. If f(0) = 0, then, as shown in [7], we have, instead of (4.3),

F (z) =

∫

T d

f(λ)

p̃(λ)− z
dm(λ) = h(z)(z − κ0)

s+1 log(z − κ0) + H(z). (4.4)

h,H have the same properties as before, except for a different expression of h(0), which
now depends on the second derivatives of f at λ = 0. It is not hard to see that

sup
z∈Uδ(κ0)

|h(z)| + sup
z∈Uδ(κ0)

|H(z)| ≤ Rδ sup
λ∈Wq

|f(λ)|, (4.5)

where Rδ depends on δ and p̃ only. (A similar inequality holds for (4.3 ).) In fact such
inequality is obvious for the second integral in the second line of (4.1). For the first
integral we refer to our paper [7] in which the coefficients of the power series for g(β)
and G(β) in (4.2) are given explicitely in terms of the derivatives of the function f(λ) at
λ = 0. Such derivatives, as f(λ) is analytic, are estimated in terms of supλ∈Wq

|f(λ)|.
Proof of ii). As S̃(0, λ) ≡ 0 the second term in the series (2.13) defining ∆(z) is

Φ1(z) :=

∫

T d

S̃(λ, λ)

p̃(λ)− z
dm(λ) = h1(z)(z − κ0)

s+1 log(z − κ0) + H1(z) ∈ Aδ
κ0

, (4.6)

and the norm, by (4.5), is ‖Φ1(z)‖δ ≤ RδC∗a2. For an estimate of the generic term it is
convenient to consider different values of z for each variable, i.e., to study the function

Φn(z1, . . . , zn) :=

∫

T d

∫

T d

· · ·
∫

T d

K(λ(1), · · · , λ(n))∏n
i=1[p̃(λ(i))− zi]

dm(λ(1)) . . . dm(λ(n)). (4.7)

Clearly K(λ(1), · · · , λ(n)) = 0 whenever λ(j) = 0 for at least one j = 1. . . . , n, and,
by the Hadamard lemma sup(λ(1),...,λ(n))∈W n

d
|K(λ(1), · · · , λ(n))| ≤ (C∗a2)nn

n
2 . Therefore

integrating over λ(1) we see, by (4.5), (4.6), that

Φn(z1; λ
(2), . . . , λ(n)) :=

∫

T d

K(λ(1), · · · , λ(n))

[p̃(λ(1))− z1]
dm(λ(1)) ∈ Aδ

κ0
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and ‖Φn(z1; λ
(2), . . . , λ(n))‖δ ≤ Rδ(C∗a2)nn

n
2 . Integrating now over λ(2) we get a function

Φn(z1, z2; λ
(3), . . . , λ(n)) which belongs to the Banach algebra (Aδ

κ0
)2, i.e., the algebra of

the functions of (z1, z2) ∈ Uδ(κ0)× Uδ(κ0) that can be written as series

g(z1, z2) =
∞∑

k1,k2=0

[(z1 − κ0)
s+1 log(z1 − κ0)]

k1 [(z2 − κ0)
(s+1) log(z2 − κ0)]

k2hk1,k2(z1, z2),

(4.8)
where hk1,k2 are analytic and bounded in U2

δ (κ0), with norm

‖g‖(2)
δ =

∞∑

k1,k2=0

max
(z1,z2)∈U2

δ

|hk1,k2(z1, z2)|.

For this one has to integrate over dm(λ(2)) the two terms which come out of the first
integration. The norm is bounded by

‖Φn(z1, z2; λ
(3), . . . , λ(n))‖(2)

δ ≤ 2R2
δ(C∗a

2)nn
n
2 . (4.9)

Integrating over λ(3), . . . , λ(n), with obvious definitions of the Banach algebras (Aδ
κ0

)j,

j = 1, 2, . . . , n, with norms ‖ · ‖(j)
δ , we get a function Φn(z1, . . . , zn) ∈ (Aδ

κ0
)n with norm

‖Φn(z1, . . . , zn)‖(n)
δ ≤ 2n−1Rn

δ (C∗a2)nn
n
2 .

Clearly Φn(z) := Φn(z, . . . , z) ∈ Aδ
κ0

and ‖Φn(z)‖δ ≤ ‖Φn(z1, . . . , zn)‖(n)
δ . Hence for a

small the series (2.13) converges and ii) is proved.

Proof of iii). The proof follows immediately along the same lines as for the proof of
assertion ii), with due care for the fact that φ(0) and ψ(0) do not necessarily vanish.

Proof of iv). For a < ā we have by assertion ii) of Lemma 3.1 that

|∆(z)−∆(κ0)| = |∆(z)− 1| ≤ C1a
2g(|z|), g(r) = r

√
log2 r + π2, r > 0

where C1 is a constant independent of a. Hence if a is so small that C1a
2g( δ

2
) < 1, then

∆(z) 6= 0 for all z ∈ Kδ, the circle with center κ0 and radius δ
2
. On the other hand if z ∈

Eδ := {z : minλ∈T |p̃(λ) − z| > δ
2
}, then, by the inequality |Kn(λ1, . . . , λn)| < (C∗a2)nn

n
2

we find that |∆(z)− 1| ≤ C̄1
a2

δ
, for some other constant C̄1. Hence if C̄1

a2

δ
< 1 there is no

zero of ∆(z) in the region Eδ. This implies that ∆(z) 6= 0 in the half-plane Rez > κ0− δ
2
,

and the first assertion of iv) is proved.
If a is large enough some zeroes of ∆(z) which belong to the spectrum of T1 may

appear in the half-plane Re z > κ0. They are always in finite number, because analytic
functions can only have a finite number of zeroes in a compact connected region, and such
zeroes cannot lie, as we have seen, near κ0, or outside the unit sphere.
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