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Abstract: In this paper we investigate one factor models that extend the classical Gaussian
copula model for pricing CDOs. The proposed models are very tractable and perform signif-
icantly better than the classical Gaussian copula model. Moreover, we introduce the concept
of Lévy base correlation. The obtained Lévy base correlation curve is much flatter than the
corresponding Gaussian one. This indicates that the models do fit the observed data much bet-
ter. Additionally, flat base correlation curves are also much more reliable for pricing of bespoke
tranches.
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1 Introduction

Collateralized Debt Obligations (CDOs) have become very popular credit instruments, which
transfer the credit risk on a reference portfolio of assets to the protection sellers. A standard
feature of a CDO structure is the tranching of credit risk. Credit tranching refers to creating
multiple tranches of securities which have varying degrees of seniority and risk exposure: The
equity tranche is the first to be affected by losses in the event of one or more defaults in the port-
folio. If losses exceed the value of this tranche, they are absorbed by the mezzanine tranche(s).
Losses that have not been absorbed by the other tranches are sustained by the senior tranche
and finally by the super-senior tranche. In such a way, each tranche protects the ones senior to
it from the risk of loss on the underlying portfolio. The CDO investors take on exposure to a
particular tranche, effectively selling credit protection to the CDO issuer, and in turn collecting
premiums (spreads).

The standard model for pricing CDOs is the Gaussian Copula model (see e.g. Vasicek [11]). It
is basically a one-factor model with an underlying multivariate normal distribution. Actually,
a very simple multivariate normal distribution is employed: all correlation between different
components are taken equal. The one-factor Gaussian copula model is well-known not to fit
simultaneously the prices of the different tranches of a CDO, leading to the correlation smile. In
order to deal with this problem, the base correlation concept was initiated. Similarly, to implied
volatility in an equity setting, one uses a different base correlation for each tranche to be priced.

Recently, other one-factor models based on different distributions have been proposed. Moos-
brucker [7] used a one-factor Variance Gamma model, Kalemanova et al. [6] and Guégan and
Houdain [5] worked with a NIG factor model and Baxter [3] introduced the B-VG model. A
generic Lévy model approach was described in Albrecher, Ladoucette, and Schoutens [2]. These
models bring more flexibility into the dependence structure and allow tail dependence.

In this paper we investigate and compare some of these Lévy models and moreover introduce
the concept of Lévy base correlation. The use of this Lévy base correlation is completely anal-
ogous as in the Gaussian case. We illustrate this by pricing tranchlets. Additionally, we will
illustrate by a historical study that the Lévy base correlation curve is always much flatter than
the Gaussian counterpart. This indicates that indeed the Lévy models do much better from a
fitting point of view. Moreover, because of an reduction of the interpolation error such a flatter
base correlation curve leads also to a more stable pricing of bespoke tranches.

2 Generic One-Factor Lévy Model

2.1 Lévy Process

Suppose ¢(z) is the characteristic function of a distribution. If for every positive integer n, ¢(z)
is also the nth power of a characteristic function, we say that the distribution is infinitely divisi-
ble. One can define for any infinitely divisible distribution a stochastic process, X = {X;,t > 0},
called a Lévy process, which starts at zero, has independent and stationary increments and such
that the distribution of an increment over [s,s + t], s,t > 0, i.e. X5 — X, has (¢(2))" as
characteristic function.

The function t(z) := log ¢(z) is called the characteristic exponent and it satisfies the following



Lévy-Khintchine formula (see Bertoin [4]):

2 +oo
P(z) = iyz — %zg +/ (exp(izz) — 1 — iza:]l{‘xkl}) v(de), zé€R, (1)

where v € R, ¢2 > 0 and v is a measure on R\{0} with fjoooo min (1,2%) v(dz) < co. From the
Lévy-Khintchine formula, one sees that, in general, a Lévy process consists of three independent
parts: a linear deterministic part, a Brownian part, and a pure jump part. We say that our
infinitely divisible distribution has a triplet of Lévy characteristics [y, <2, v(dz)]. The measure
v(dx) is called the Lévy measure of X and it dictates how the jumps occur. Jumps of sizes
in the set A occur according to a Poisson process with parameter [,v(dz). If ¢? = 0 and

jll |z| v(dz) < oo, it follows from standard Lévy process theory (e.g., Bertoin [4], Sato [9]),
that the process is of finite variation. For more details about the applications of Lévy processes
in finance, we refer to Schoutens [10].

2.2 Generic One-Factor Lévy Model

We are going to model a portfolio of n obligors such that all of them have equal weights in the
portfolio. We will work for simplicity with a situation where each obligor i, i € {1,2,...,n},
has the same recovery rate R in case of default and some individual default probability term
structure p;(t), t > 0, which is the probability that obligor ¢ will default before time t.

Let us first fix T'. For the modeling, let us start with a mother infinitely divisible distribution L.
Let X = {Xt,t € [0,1]} be a Lévy process based on that infinitely divisible distribution, such
that X; follows the law L. Note that we will only work with Lévy processes with time running
over the unit interval. Denote the cumulative distribution function of X; by Hy, t € [0, 1], and
assume it is continuous. Assume further that the distribution is standardized in the sense that
E[X1] = 0 and Var[X;] = 1. In terms of ¢ this means that ¢/(0) = 0 and ¢”(0) = —1. Then, it
is not that hard to prove that Var[X;] = t.

Let X = {X,,t € [0,1]} and X® = {X” ¢+ € [0,1]}, i = 1,2,...,n be independent and identi-
cally distributed Lévy processes (so all processes are independent of each other and are based
on the same mother infinitely divisible distribution L).

Next, we propose the generic one-factor Lévy model. Let 0 < p < 1. We assume that the asset
value of obligor ¢ is of the form

Ai=X,+ X", i=1...n (2)

FEach A; has by the stationary and independent increments property the same distribution as
the mother distribution L with distribution function H;. Indeed, adding an increment of the
process over a time interval of length p and an independent increment over a time interval of
length 1 — p follows the distribution of an increment over an interval of unit length, i.e. is
following the law L. As a consequence, E[A;] = 0 and Var[4;] = 1. Note that then for i # j, we
have that Corr[A;, A;] = p. Indeed:

E[4;4;] — E[A]E[4)]
\/V&I‘[AZ] \/Var[Aj]

So, starting from any mother standardized infinitely divisible law, we can set up a one-factor
model with the required correlation.

COI‘I‘[AZ‘, AJ] =

=E[4;4;] =E[X]] = p.




We say that the ith obligor defaults at time T if the firm value A;(t) falls below some preset
barrier K;(t): A;(t) < K;(t). In order to match default probabilities under this model with
default probabilities p;(t) observed in the market, we have to set

K; = K;(t) = H{ Y(p(1)).
Indeed, then P(4; < K;) = P(A; < H V(p;(1)) = Hy (H Y (0:(1))) = pi(2).

Note that conditional on the common factor X, the asset values and, hence, the default proba-
bilities of different obligors are independent. Let us denote by p;(y;t) the conditional probability
that the firm’s value A; is below the barrier K;(t), given that the systematic factor X, takes the
value y. In other words p;(y;t) is the conditional default probability of firm i on a realization
of the common factor {X, = y}.

Now:

pi(yit) = P(A4 < K[X,=y)
= P(X,+ X\, <Ki(t)|X, =y)
= P(x\ <Ki(t)-y)

1-p
= Hlfp(Ki(t) - y).

Further, let us denote with by wa(t) the probability to have k defaults out of group of n
firms conditional on the market factor y at time ¢t. Then we have the classical recursive loss
distribution formula

H'?H—l,y(t) = H?z,y(t)(l_pn+1(y; t))
0,0y = I (O~ posa (50) + I (Opnsa (50), =1L,
) () = I (e (u3t),

together with the initial condition that H87y (t) =1.
Then finally, we have that the unconditional probability to have k defaults out of group of n
firms, denoted by II¥ is given by

" _ +o0 L _
Wit = [ I,0dH,y), k=0.1,....n. (3)

oo

The expected value of the loss fraction L;, on the portfolio notional at time ¢ is

(1-R) <
BLyn] = S 3 kTS0
k=1
and the expected value of the loss fraction on the CDO tranche with attachment points K; and
K5 at time ¢ is
E [min{L; , Ko}] — E [min{Ly ., K1 }]

E[Lin(Ki, Ky)] = e . (4)




3 Examples

3.1 The Shifted Gamma-Model

The density function of the Gamma distribution Gamma(a, b) with parameters a > 0 and b > 0

is given by
a
a

) _ -1 _
fGamma(T;a,b) = T(a) " exp(—xb), x> 0.

Let us denote the corresponding cumulative distribution function by Hg(z;a,b). The charac-
teristic function is given by

(Z)Gamma(u; a, b) = (1 - iU/b)ia, u € R.

Clearly, this characteristic function is infinitely divisible. The Gamma-process X (¢) = {Xt(G) >
0} with parameters a,b > 0 is defined as the stochastic process which starts at zero and has
stationary, independent Gamma-distributed increments. More precisely, the time enters in the
first parameter: Xt(G) follows a Gamma(at, b) distribution.

The properties of the Gamma(a, b) distribution given in Table 1 can easily be derived from the
characteristic function.

Gamma(a, b) | Gamma(a, \/(a))
mean a/b Va

variance a/b? 1
skewness 2/va 2/\/a
kurtosis | 3(1+ 2/a) 3(1+2/a)

Table 1: Mean, variance, skewness and kurtosis of the Gamma distribution.

Note also that we have the following scaling property: if X is Gamma(a,b) then for ¢ > 0, ¢X
is Gamma(a, b/c).

Let us start with a unit variance Gamma-process G = {Gy,t > 0} with parameters a > 0 and
b = y/a. The mean of the process is then y/a. As driving Lévy process, we then take

X =+Vat — Gy, tel0,1].

The interpretation in terms of firm value is that there is a deterministic up trend (y/at) with
random downward shocks (G¢).
The one-factor shifted Gamma-Lévy model is:

Ai=X,+x{" .
Here X,, X @ = 1,...,n are independent shifted Gamma-processes.

1-p»

The cumulative distribution function H;(x;a) of Xy, t € [0, 1], can easily be obtained from the
Gamma cumulative distribution function

Hi(z;a) =P(Vat—Gy <) = 1-P(Gy < Vat—z) = 1—Hg(Vat—z;at,\/a), z € (—oo,at).

For the inverse function, we have the following relation for ¢t € [0, 1]

Ht[_l](y; a) = +at — H[(;H(l —y;at,Va), ye€[0,1].



Let us set the Gamma parameter b = /a and denote the mean by p = y/a. In order to compute
the integral in Equation 3, we can apply a Gauss-Laguerre scheme. Indeed, we actually have

pp
Hfl = / H]Z,nyG(y; ap, bnup)dy7

where the density of the Shifted Gamma distribution is given by

a

fsa(y,a,b, 1) = faamma(pt — y,a,b) = ') (k—y) " Texp(—(n—y)b), y<p

Hence we can write

k He k ber ap—1
I, = Hn,ym(up —y)*" " exp(—(up — y)b)dy,

= z exp(—zb)dz,
0 n,(np—2) '(ap) P

+00 1
= I~ W) L exp(—u)du,
L et gy 0 exp()

where the last integral can be calculated by applying the Gauss-Laguerre quadrature.

3.2 The Shifted IG-Model

The Inverse Gaussian 1G(a, b) law with parameters a > 0 and b > 0 has characteristic function

¢16(u;a,b) = exp (—a(\/ —2iu+ b? — b)> , ueR.

The IG-distribution is infinitely divisible and we define the IG-process I = {I;,t > 0} with
parameters a,b > 0 as the process which starts at zero, has independent and stationary IG-
distributed increments, and such that

Elexp(iul)] = ¢1c(u;at,b) = exp (—at(\/ —2iu + b2 — b)) , uel,
meaning that [; follows an IG(at, b) distribution.
The density function of the 1G(a,b) law is explicitly known

fra(w:a,b) = —— explab) 2~/ exp(—(a%a L + H22)/2), @ > 0.

a
V2T

The characteristics given in Table 2 can easily be obtained from the characteristic function.

1G(a,b) IG(a, a'/?)
mean a/b a3
variance a/b? 1
skewness 3/Vab 3a=2/3
kurtosis | 3(14 5(ab)~1) | 3(1 4 5a=4/3)

Table 2: Mean, variance, skewness and kurtosis of the Inverse Gaussian distribution.



Let us start with a unit variance IG-process I = {I;,t > 0} with parameters a > 0 and b = a!/3.
In our model, we then take
Xt:/ﬂf—[t, te [0,1],

where in this case u = a?/3. We hence have again a deterministic up-trend and negative shock

that now are coming from an inverse Gaussian process.
The one-factor shifted I1G-Lévy model is:

Ai=X,+x{ .

Here Xp,X@ % = 1,...,n are independent shifted IG-processes. In order to compute the
unconditional probabilities II¥ one can rely on numerical integration schemes using the density

of the IG processes or apply Fourier inversion methods starting from the characteristic function.

3.3 The Shifted CMY Model

The CMY (C, M,Y) distribution with parameters C' > 0, M > 0, and Y < 2 has characteristic
function

pomy (u; C, M,Y) = exp {CT(-Y) [(M —iw)" — MY]}, ueR

The CMY distribution is infinitely divisible and we can define the CMY Lévy process X (CMY) —
(CMY)

{X; ,t > 0} that starts at zero and has stationary and independent CMY-distributed incre-
ments, i.e., Xt(CMY) follows a CMY (Ct, M, Y) distribution. The properties of the CMY (C, M,Y’)
distribution given in Table 3 can be derived from its characteristic function.
CMY(C, M,Y) CMY(C, (CT(2 - Y))T7 ,Y)
T
mean CMY~'T(1-Y) (CTA-Y)(1-Y)' 1)=¥
variance | CMY2T'(2-Y) 1
CMY =3I (3-Y) Y_3\ 73
skewness YTy ) (CTB-Y)2-Y) 3)v=2 1
: CMY 4T(4-Y —4)v—=2
kurtosis | 3+ SH—TEH, [(CF(4 CY))2(3-Y)2-Y))Y 4} v

Table 3: Mean, variance, skewness and kurtosis of the CMY distribution.

Note that CMY(C, M, Y) reduces to Gamma(C, M) when Y = 0.

Let us start with a unit CMY-process C = {C,t > 0} with parameters C' > 0, Y < 2, and

1
M= (CT(2 - Y))ﬁ, so that the mean of the process is 1 := (CT(1 = Y)(1 —Y)¥~1)2¥ and
the variance is equal to one. As driving Lévy process we take

X = pt — Cy, tE[O,l].

The interpretation in terms of firm value is, again, that there is a deterministic up trend with
random downward shocks coming now from a CMY process.

The one-factor shifted CMY-Lévy model is

Ai=X,+x{" .

where X,, X fz_) p» @ =1,...,n, are independent shifted CMY-processes.
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Figure 1: Sensitivity of Gamma model parameters on different tranche prices
Since the cumulative distribution function Hepy (2;C, M,Y) of a CMY distribution can not be
derived in a closed form, we numerically invert its Laplace transform, given by

exp {CT(-Y) [(M +w)¥ — MY]}

)

Howry (w; C,M,Y) = "
in order to calculate values of Heopy (2;C, M,Y). In particular, we employ the numerical
inversion procedure described in Abate and Whitt [1], which uses the Bromwich integral, the
Poisson summation formula, and Euler summation.

4 Parameters Sensitivity

Next, we investigate the sensitivity of different parameters of the above proposed models. The
underlying default probabilities are taken from the CDSs of the iTraxx (Series 4) on May 4,
2006.

4.1 The Shifted Gamma Model

In this subsection, we investigate the sensitivity of different parameters of the Gamma model.
From Figure 1(b), we clearly see that the protection seller of the equity tranche is long corre-
lation. From Figure 1(a), we observe that varying the a parameter (for a fixed p) has almost
no effect on the equity-tranche price. This means that the equity tranche protection seller is
neutral on a or in other words neutral to changing tail behavior of the firm. However, a seller
of protection of a non-equity tranche is short a. Fatter tail behavior (higher kurtosis), decreases
a, so one could say mezzanine and senior tranche protection sellers are long kurtosis. All this
is quite useful, certainly in respect of situations like the May 2005 Credit crisis, where we have
witnessed averse movements in equity and mezzanine tranches. One could say that this situation
is corresponding to a joint movement is p and a, the move in p affects the equity tranche and
the move in a affects all the tranches, but equity tranche can move in different directions then
the other tranches.
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Figure 2: Sensitivity of Inverse Gaussian model parameters on different tranche prices
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Figure 3: Sensitivity of CMY model parameters on different tranche prices

4.2 The Shifted IG

Next, we investigate the sensitivity of different parameters of the Inverse Gaussian Lévy model.
In Figure 2 one can see an almost similar sensitivity as in the Gamma situation.

4.3 The Shifted CMY model

In this subsection, we investigate the sensitivity of different parameters of the CMY Lévy model.
On Figure 3(a) we observe that varying the C' parameter (for fixed values of the parameters Y
and p) has almost no effect on the equity-tranche price. This means that the equity tranche
protection seller is neutral on C' or in other words neutral to changing tail behavior of the firm.
However, a seller of protection of a non-equity tranche is short C. Fatter tail behavior (higher
kurtosis), decreases C, so one could say mezzanine and senior tranche protection sellers are long
kurtosis. This situation is the same as for the Gamma parameter a since the CMY distribution is
a generalization of the Gamma. On Figure 3(b) we can see that the investors into the mezzanine



tranches are short Y while equity and senior tranche protection sellers are neutral on Y.

100
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Figure 4: Sensitivity of p-parameter on different tranche prices for C =1, Y = 0.6

As for the Gamma model, the protection seller of the equity tranche is long correlation while
the protection sellers of other tranches are short (see Figure 4).

5 Global Calibration

We report on a calibration exercise of the newly proposed Gamma-model and IG-model. We
calibrate the model to a time-series of weekly iTtraxx (series 4) data from the 10th of November
2005 until the 4th of May 2006. For a particular date we take into account the prices of the
0-3, 3-6, 6-9, 9-12, 12-22, 22-100 percent tranches. The quote of the equity 0-3 tranche is the
upfront quote (in percentages) with 500 bp running.

The calibration was done under a weighted least-squared regime. First an optimal p parameter
was determined based on the equity tranche. Second we determined on the equity tranche and
the mezzanine 3 — 6-tranche the optimal a parameter in combination with the fixed p parameter
coming from the equity tranche calibration. Finally, with these p and a parameters as starting
values, we fine tune on all the tranches by a weighted least-squared direct search algorithm.
The highest weights are given to the equity and the mezzanine tranche and are decreasing along
seniority. The evolution of the total absolute calibration errors for the Lévy models is plotted
in Figure 5.

We observe that the Lévy models clearly outperform the Gaussian model. The total bp error
is reduced by more than a factor 3. Not really one particular Lévy model is outperforming
then others. On the one hand, the CMY model, as a generalization of the Gamma model and
IG mode, obviously always leads to a better fit. On the other hand, the CMY model requires
more computational time, since one has to rely on a number of inversion procedures. One can
advocate that the Shifted Gamma model is a good balance between accuracy and tractability.

10
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Figure 5: Calibration Error evolution - iTraxx data

6 Lévy Base Correlation

In this section, we introduce and illustrate the concept of Lévy Base Correlation. We work out
the material for the Gamma model, for the other models the situation is completely analogous.
For the definition and discussion of the Gaussian base correlation we refer to O’Kane and
Livesey [8].

6.1 Bootstrapping Lévy Correlation Calibration

In order to define a Lévy base correlation curve, we need to fix first all the distribution param-
eters. In for example, the Shifted Gamma case, we need to fix first the a-parameter. One has
several choices to fix this parameter.

One could for example, take the parameter coming out of the global calibration. The advantage
of doing this is that typically in the Lévy models, the junior mezzanine tranche is under these
parameters also perfectly matched with the market. This will lead later on to a flat base corre-
lation curve at the mezzanine level. However, as market quotes vary from day to day, also these
parameters will vary from day to day, leading to a different base correlation construction.

Alternatively, one can fix just the distributional parameters to some value once and leave these
unchanged over time. We will then not have a flat curve at the junior tranches, but have a stable
procedure over time. For the gamma case, we fix the parameter a and set it equal to one. We
have several reasons to motivate this choice. A historical global calibration study shows that
indeed the a parameter is fluctuating around this value. Secondly, the base-correlation curve
is still much flatter than the Gaussian version. Equivalently, the fit of the model is still much
better than the Gaussian model. Finally, the gamma distribution reduces for this value to an
exponential distribution. We hence could speak about a pure exponential tail behavior. The
logarithm of the density then decays linearly, in contrast with the Gaussian situation, where one
has a quadratic decay. It was exactly the too light-tailed behavior that led to the inability of
the Gaussian model to fit reality. In the sequel, we will follow this procedure and illustrate the
Ezxponential Lévy Base Correlation concept.

11



Let us fix a = 1 and construct the Lévy base correlation curve for this setting. We solve for
the Lévy base correlation using a recursive technique called bootstrapping. We start with the
equity tranche, the [0% — 3%]| tranche and solve for the p parameter, such that the model prices
matches the market quote. The p obtained, say pjoy_3%) is the so-called equity base correlation.

In the calculation of the fair spread of the [3% — 6%] tranche, we need to calculate the expected
loss of the [3% — 6%] tranche. The expected loss of the [3% — 6%] tranche can be written as
the expected loss of the [0% — 6%] tranche and the [0% — 3%] tranche, in a way similar to
Equation (4). The expected loss of the [0% — 3%)] tranche was calculated on the previous step
when we found the equity base correlation. Now, we solve for the Lévy base correlation pjgy_6%)
of the [0% — 6%] tranche, so that the [3% — 6%)] tranche calculated under the model matches
the market spread. Further, we proceed in the same manner through the higher tranches. In
Figure 6, one sees a comparison of the Gaussian and the Lévy Base correlation curves.

Base Correlation: Gaussian vs Gamma 04—May—2006

0.7 | —@— Gaussian -
—_—— Gamma

be

0.03 0.06 0.09 0.12 0.22
tranche

Figure 6: Gaussian versus Lévy base correlation - iTraxx data 2006-05-04

In Figure 7, one finds a comparison of the steepness of the Gaussian and the Lévy Base correlation
curves. We plot the difference between the maximum and the minimum base correlation value.
A low value means the curve is flat, the higher the difference between maximum and maximum,
the more steep the curve is.

6.2 Pricing Non Standardized Tranches

Lévy base correlation enables a simple mechanism for pricing non-standard strikes on the stan-
dard indices which is more reliable than the Gaussian base correlation procedure. The underlying
reason is that the Lévy base correlation is much flatter than the Gaussian base correlation curve
and thus much less sensitive to interpolation errors.

Consider the following example. Suppose we want to price a [5% — 10%] tranche of the iTraxx
portfolio. With the base correlation methodology, this requires a base correlation value for the
[0% — 10%] tranche and for the [0% — 5%)] tranche. However, the market information only gives

12
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Figure 7: Gaussian versus Lévy base correlation - iTraxx data 2006-05-04

us the base correlations for the [0% — 3%], [0% — 6%)], [0% — 9%], [0% — 12%] and [0% — 22%]
tranches. For example, for 2006-05-04 the market implied base correlations are as in Table 4
and as in Figure 6.

model | [0% —3%] | [0% —6%] | [0% —9%] | [0% — 12%] | [0% — 22%)
Gaussian | 0.13883347 | 0.25701861 | 0.34281792 | 0.41341533 | 0.59564758
Lévy | 0.13153939 | 0.13266463 | 0.14472385 | 0.16021431 | 0.23188058

Table 4: Gaussian base correlation versus Lévy base correlation - iTraxx data 2006-05-04

Then using linear interpolation between these values, the Gaussian base correlation for a [0% —
5%] tranche is

(Gaussian)

Plo%—3%] T 3 %

(Gaussian)

1
=3 X Pl0%—6%)

Plo%—5% ~ 3

(Gaussian) __

1 2
=3 x 0.13883347 + 3 % 0.25701861 = 0.21762356.

However for the Lévy case we actually have

(Lévy) 1 (Gaussian)

Plove—5%) = 3 X Plo%—3%] T 3 %

(Gaussian)

1 2
Plo%—6% = 3 x 0.13153939 + 3 x 0.13266463 = 0.13228955.

The base correlation for the [0% — 10%] tranche is for the Gaussian situation

(Gaussian) 2

~ 1 ; 2 1
_ (Gaussian) (Gaussian) __ _—
Plo%—10%) = 3 X Plov—9%] + 3 X Plo%—12%] = 3 x 0.34281792 + 3 % 0.41341533 = 0.36635039,

and for the Lévian one

(Lévy) 2

(Lévy) (Lévy)
Plo%—10% ~ 3

1 2 1
X 0l g + 5 X Pl o = g % 0-14472385 + 5 x 0.16021431 = 0.149887336.

The Gaussian case leads to a price of 12.47 bp whereas the Lévy model prices its much higher
at 14.74 bp.
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Note that the procedure is also sensitive to the interpolation scheme. A spline interpolation,
gives

Ploa = 0.22221267
Plon syy = 0.13062478
Pl iony = 0.36758164
Plos 0wy = 014965830

This combination leads to a price of 14.00 bp and 14.13 bp under Gaussian and Lévy respectively.
In Figure 8, we price tranchlets [K% — (K + 1)%], for K = 3,4,...,12, and compare the
prices obtained under Gaussian and Lévy base correlation procedure. We observe slight price
difference.

Tranchlets pricing: Gausssian versus Lévy base correlation — iTraxx 2006—05-04
80 T T T T T T T T
Gaussian

20% —_—@— Lévy |

price (in bp)

o Il Il Il Il Il Il
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
tranchlets

Figure 8: Tranchlets pricing: Gaussian versus Lévy base correlation - iTraxx data 2006-05-04

7 Conclusions

In this paper, we have investigated one-factor Lévy models for pricing CDOs. The study has
shown evidence for improvements of Lévy models with respect to the classical Gaussian copula
model, e.g. significant reduction of the total pricing error. No single Lévy model, however,
outperforms the others. Hence we recommend the Gamma model as it is the most tractable
one. We have also introduced the concept of Lévy base correlation and applied it to price non-
standardized tranches of a CDO. The Lévy base correlation appears to be much flatter than the
Gaussian, which once again seems indicative of the better preformance for the Lévy models for
pricing CDOs tranches, both standard and bespoke.

14



References

1]

2]

Abate J., Whitt, W. (1995) Numerical Inversion of Laplace Transforms of Probability
Distributions. ORSA Journal on Computing, Vol. 7, No. 1, 38-43.

Albrecher, H., Ladoucette, S. and, Schoutens, W. (2007) A generic one-factor Lévy model
for pricing synthetic CDOs. In: Advances in Mathematical Finance, R.J. Elliott et al.
(eds.), Birkhaeuser.

Baxter, M. (2006). Dynamic modelling of single-name credits and CDO tranches. Working
Paper - Nomura Fixed Income Quant Group.

Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge
University Press, Cambridge.

Guégan, D. and Houdain, J. (2005). Collateralized Debt Obligations pricing and fac-
tor models: a new methodology using Normal Inverse Gaussian distributions. Note de
Recherche IDHE-MORA No. 007-2005, ENS Cachan.

Kalemanova, A., Schmid, B. and Werner, R. (2005). The Normal Inverse Gaussian distri-
bution for synthetic CDO pricing. Technical Report.

Moosbrucker, T. (2006). Pricing CDOs with Correlated Variance Gamma Distributions.
Research Report, Department of Banking, University of Cologne.

O’Kane, D., Livasey, M. (2004) Base Correlation Explained. Quantative Credit Research.
Lehman Brothers. Vol. 2004-Q3/4.

Sato, K. (2000). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies
in Advanced Mathematics 68. Cambridge University Press, Cambridge.

Schoutens, W. (2003). Lévy Processes in Finance - Pricing Financial Derivatives. Wiley,
Chichester.

Vasicek, O. (1987). Probability of loss on loan portfolio. Technical Report, KMV Corpo-
ration.

15



