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Abstract

This study shows that time-dependent Palm probabilities of a non-
stationary process are expressible as integrals of a certain stochastic in-
tensity process. A consequence is a characterization of a Poisson process in
terms of time-dependent Palm probabilities. These two results are anal-
ogous to results of Papangelou and Mecke, respectively, for stationary
point processes. Included is a new proof of Watanabe’s characterization
of a Poisson process. Next, using stochastic intensities of time-dependent
Palm probabilities, we present conditions under which the distribution of
a stochastic process (e.g., a queueing process) at a fixed time is equal
to its Palm probability distribution conditioned on a jump at that time.
This result is a time-dependent analogue of an ASTA property (arrivals
see time averages) for stationary processes. Another result is that, for an
asymptotically stationary process, a Palm probability Pt conditioned on a
point at a time t converges weakly to a Palm probability for a stationary
process as t → ∞. We also present formulas for time-dependent Palm
probabilities of Markov processes, and Little laws for queueing systems
that relate queue-length processes to time-dependent Palm probabilities
of sojourn times of the items in the system.

1 Introduction

Consider a point process N on < that is stationary (N(B) denotes the number
of points in a set B, and the joint distribution of its increments is invariant
under shifts in time). Let P 0 denote the Palm probability of N conditioned
that N has a point at 0. Papangelou [19] proved that the absolute continuity
P 0 << P on F0− is equivalent to the existence of a stochastic intensity of N
with respect to its σ-field history Ft. He showed how the intensity is related
to the Radon-Nikodym derivative dP 0/dP . This result can be used to prove
Mecke’s theorem [14] that the stationary process N is a Poisson process if and
only if P 0 = P on F0−.

This study presents analogous theorems and queueing applications for pro-
cesses that need not be stationary. To describe the results, suppose that N is a
point process on < that need not be stationary, and assume the mean measure
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µ(B) = E[N(B)] is locally finite. Let Pt denote the Palm probability of N con-
ditioned that it has a point at t. Such time-dependent Palm probabilities were
introduced by Ryll-Nardzewski [22] and developed further by Kallenberg [12].
Also, see Nieuwenhuis [18] and the queueing studies of Rolski [21] and Riaño
[20].

Our study sheds more light on the similarity of the structural relationship
between P 0 and P for a stationary system and the relationship between Pt and
P for non-stationary systems. The first result is a Papangelou-type theorem
that says Pt << P on Ft− for µ-a.e. t if and only if N has a stochastic intensity
λ(t). In this case, dPt/dP = λ(t)/E[λ(t)] µ-a.e. t. We present a related result
using a novel type of stochastic intensity, motivated by ideas in [15] and [6],
that is weaker than the usual stochastic intensity.

Next, we prove that N is an Ft-Poisson process with deterministic rate
function λ if and only if Pt = P on Ft− for µ-a.e. t, and µ(B) =

∫
B

λ(t)dt,
B ∈ B. Each of these statements is equivalent to Watanabe’s [27] condition
that N(s, t]−

∫ t

s
λ(s)ds, for t > s, is an Ft-martingale for any fixed s.

Many of our results are for a stochastic process X(t) on a general space that
is related to N . This process satisfies transient ASTA at time t if

Pt(X(t−) ∈ ·) = P (X(t−) ∈ ·).

Using the Papangelou-type theorem, we show that if N has a X(t)-stochastic
intensity λ(t) (in our weak sense), then transient ASTA at time t is equivalent
to E[λ(t)|X(t−)] = E[λ(t)] (a lack of bias condition). Hence transient ASTA is
satisfied for all t if N is a Poisson process with a deterministic rate function. Our
time-dependent ASTA results are analogous to those for stationary queueing
processes such as in Brémaud [5], and for limiting averages of non-stationary
processes such as in Melamed and Whitt [15, 16].

A summary of the rest of the study is as follows. Section 6 describes condi-
tions under which a Palm probability Pt(A) is the limit of a probability condi-
tioned that n has a point in [t, v], where v ↓ t. Section 7 shows that when X and
N are asymptotically stationary, the Palm probability Pt converges as t → ∞
to a Palm probability for a stationary system. Section 8 gives formulas for Palm
probabilities for Markov and Semi-Regenerative processes; this involves gener-
alizations of Lévy’s classical formula for expectations of functions of Markov
processes. Finally, Section 9 presents time-dependent Little laws for queueing
systems in which the distribution of a queue-length process is related to the
Palm probability distribution of the sojourn times of items in the system.

2 Preliminaries

We will use the following notation throughout the paper. Let N = {N(B) :
B ∈ B} denote a point process on < defined on a probability space (Ω,F , P ),
where N(B) is the number of points in B and B is the family of Borel sets in
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<. That is,
N(B) =

∑
n

1(Tn ∈ B), B ∈ B,

where . . . ≤ T−2 ≤ T−1 ≤ T0 ≤ 0 < T1 ≤ T2 ≤ . . . are the point locations.
Also, N(s, t] denotes the number of points in the interval (s, t]. Assume the
mean measure µ(B) = E[N(B)] is σ-finite.

The main focus of our study are time-dependent Palm probabilities of N ;
see [22, 12]. For the following definition, assume that Ω is a complete, separable
metric space, and F is its associated Borel sets. Then there exists a (µ-a.e.
unique) probability kernel Pt(A) such that

E
[
N(B)1(ω ∈ A)

]
=

∫
B

Pt(A)µ(dt), A ∈ F , B ∈ B. (1)

This is proved in [9, 12]. Here 1(·) is the indicator function that is 1 or 0
according as the statement (·) is true or false.

Definition 1 The collection Pt for µ-a.e. t defined by (1) is the family of time-
dependent Palm probabilities induced by the point process N . The expectation
under Pt is denoted by Et.

A major tool for dealing with Palm probabilities is the following Campbell-
Mecke formula, which is a consequence of (1).

Theorem 2 For any measurable f : <× Ω → <+,∫
Ω

∫
<

f(t, ω)N(dt)P (dω) =
∫
<

∫
Ω

f(t, ω)Pt(dω)µ(dt). (2)

Motivated by the following result, Pt(A) is called the probability of A, given
that N has a point at time t (an event that may have probability 0).

Proposition 3 If N is a simple point process (its points are distinct a.s.), then

Pt(N({t}) = 1) = 1, µ-a.e. t.

Proof This follows since by (2), for B ∈ B,∫
B

Pt(N({t}) = 1)µ(dt) = E
[ ∫

B

1(N({t}) = 1)N(dt)
]

= E
[ ∑

n

1(Tn ∈ B)
]

= µ(B).

Note that Pt is defined on the underlying probability space (Ω,F , P ), which
may be the home for random elements other than N . On this probability space,
suppose that X = {X(t) : t ∈ <} is a measurable stochastic process that takes
values in a complete, separable metric space IE with paths in the set D(<) of
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functions on IE that are right-continuous and have left-hand limits. The process
X is a vehicle for expressing time-dependent Palm probabilities for events in F
that may or may not depend on N .

For now, we make no assumptions on the dependency between N and X. In
some applications, X is the primary process and N represents times at which
certain events of X occur such as the event that X has a jump (then N is a
function of X). On the other hand, N may be the primary process and X may
represent auxiliary events or functions of processes that interact with N .

The Campbell-Mecke formula for any real-valued process Y (t) is

E
[ ∫

<
Y (t)N(dt)

]
=

∫
<

Et[Y (t)]µ(dt), (3)

provided the expectations exist. For instance, Y (t) = g(N,X, t) where g is a
real-valued function (all functions in this study are assumed to be measurable).
Then by the definition of a Radon-Nikodym derivative,

Et[Y (t)] =
E[Y (t)N(dt)]

µ(dt)
. (4)

Next, we show that when the processes N and X are jointly stationary, the
Palm probabilities Pt of events for these processes can be represented by a single
Palm probability. Let St denote the time-shift operator such that

StN = {N(B + t) : B ∈ B}, StX = {X(s + t) : s ∈ <}.

The pair (N,X) is stationary if (StN,StX) d= (N,X), t ∈ <. In that case, the
mean measure µ is a multiple of the Lebesgue measure.

For this stationary system, let P 0 denote the Palm probability conditioned
that N has a point at 0; see for instance [1, 9, 12, 23]. Under this Palm proba-
bility, the distribution of (N,X) is given by∫

B

P 0((N,X) ∈ ·)µ(dt) = E
[ ∫

B

1((StN,StX) ∈ ·)N(dt)
]
, B ∈ B. (5)

In particular, using the derivative λ = µ′(t) and B = (0, 1],

P 0((N,X) ∈ ·) = λ−1E
[ ∫

(0,1]

1((StN,StX) ∈ ·)N(dt)
]
.

Furthermore, the Pt are all equal to P 0 in the following sense.

Proposition 4 If (N,X) is stationary, then

Pt(St(N,X) ∈ ·) = P 0((N,X) ∈ ·), µ-a.e. t.

Proof This follows since (2) and (5) yield∫
B

Pt(St(N,X) ∈ ·)µ(dt) = E
[ ∫

B

1(St(N,X) ∈ ·)N(dt)
]

=
∫

B

P 0((N,X) ∈ ·)µ(dt).
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3 Palm Probabilities Described by Stochastic
Intensities

In this section, we present a Papangelou-type theorem relating time-dependent
Palm probabilities of a point process to its stochastic intensity. In addition
to the usual stochastic intensity based on the entire history, we consider an
intensity based only on present information.

Suppose that N and X are the processes defined above with the additional
property that they are adapted to a filtration Ft, t ∈ <. Assume, for each
rational number s, that Fs is countably generated by a π-system Cs (a collection
of subsets that is closed under finite intersections — if two finite measures agree
on a π-system, they agree on the σ-field generated by that π-system [11]). This
assumption is automatically satisfied by the filtration generated by (X, N).

We will use the following terminology for a measurable function f : <×Ω →
<. The f is Ft-adapted if f(t, ·) is Ft-measurable, for each t. The f is Ft-
progressive if, for any a < t, the set {(s, ω) ∈ [a, t] × Ω : f(s, w) ∈ A} ∈
B[a, t]×Ft. Finally, f is Ft-predictable if

{(t, ω) ∈ < × Ω : f(t, ω) ∈ B} ∈ P(Ft), B ∈ B,

where P(Ft) is the σ-field generated by the rectangles (s, t] × A, for s ≤ t,
A ∈ Fs.

We first consider the usual time-dependent randomized intensity for N based
on the information contained in the Ft.

Definition 5 An Ft-progressive function λ : <×Ω → <+ is an Ft-intensity of
N (under P ) if

E[N(a, b]|Fa] = E
[ ∫

(a,b]

λ(t)dt
∣∣∣Fa

]
, (a, b] ∈ B.

Here is a key property of an intensity [4]; it is analogous to the Campbell-
Mecke formula.

Theorem 6 If λ is an Ft-intensity of N and Y (t) is a nonnegative predictable
process, then

E
[ ∫

<+

Y (t)N(dt)
]

=
∫
<+

E[Y (t)λ(t)]dt. (6)

We will now present a Papangelou-type theorem that gives necessary and
sufficient conditions for Pt << P on Ft−, for µ-a.e. t. This is non-stationary
generalization of Papangelou’s result, which states that for a stationary point
process N on the real line, P 0 << P on F0− if and only if the point process
has an Ft-intensity. Brémaud later extended this result to histories that aren’t
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necessarily the history induced by the point process. His proof includes a lemma
that all predictable processes on the line have a nice form, and he uses this form
along with a stationarity invariance of P to prove the result.

Our approach is different. We show that when enough σ-fields are countably
generated, a well-known martingale approximation of Radon-Nikodym deriva-
tives yields an intensity that’s Ft-predictable. To be precise, we will assume
that Ft is generated by a countable collection of sets Ct, for each rational t. It
can be further assumed that each Ct is a π-system, since the system is closed
under only a finite number of intersections.

Theorem 7 For the point process N with intensity measure µ, the following
statements are equivalent:

(a) N has an Ft-intensity.
(b) Pt << P on Ft−, µ-a.e. t and µ << L (Lebesgue measure) .

The following proof constructs an Ft-intensity λ that is Ft-predictable, when
Pt << P on Ft−. The Palm probabilities are related to λ by

dPt

dP
=

λ(t)
E[λ(t)]

.

Consequently, for any real-valued process Y (t),

Et[Y (t)] =
E[Y (t)λ(t)]

E[λ(t)]
, (7)

provided the expectations exist. This formula is a special case of (4) when N
has a stochastic intensity.
Proof (a) ⇒ (b). If N has an Ft-intensity λ, then clearly µ(B) =

∫
B

E[λ(t)]dt,
and so µ << L. Next, choose A ∈ F and define tA = inf{t : A ∈ Ft} and

Y A(t, ω) = 1(ω ∈ A)1(t > tA).

It is clear that Y A is predictable. Therefore, by the Campbell-Mecke formula
and (6), ∫

B

Et[Y A(t)]µ(dt) = E[
∫

B

Y A(t)N(dt)]

=
∫

B

E[Y A(t)λ(t)]dt, B ∈ B.

From this and µ(dt) = E[λ(t)]dt, it follows that, for any set A that belongs to
one of the π-systems Cr, where r is rational,

Et[Y A(t)] =
E[Y A(t)λ(t)]

E[λ(t)]
, µ-a.e. t.
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Fix a t in the set of points that satisfy this equality for all sets contained
in ∪rCr. In particular, the equality holds for all sets A ∈ Cr, for any rational
number r < t. Therefore, by a well-known monotone class argument

Pt(A) =
∫

A

λ(t)
E[λ(t)]

dP, A ∈ Fr.

By using the same type of monotone class argument, we see that this expression
is true for all A ∈ Ft−. This proves Pt << P on Ft−, µ-a.e. t, which finishes
the proof that (a) ⇒ (b).

(b) ⇒ (a) Assume (b) is true, and let h denote the density of µ. Then by
the Campbell-Mecke formula,∫

A

N(a, b]dP = E
[
N(a, b]1(ω ∈ A)

]
=

∫
(a,b]

Pt(A)h(t)dt, A ∈ Fa. (8)

Suppose for now that there is a Ft-progressive nonnegative function f(t, w) such
that

Pt(A) =
∫

A

f(t, ω)P (dω). (9)

Then from (8),∫
A

N(a, b]dP =
∫

A

∫
(a,b]

f(t, ω)h(t)dtP (dω)

=
∫

A

E[
∫

(a,b]

f(t, ω)h(t)dt|Fa]P (dω).

Hence, N has a stochastic intensity.
It remains to define a Ft-progressive nonnegative function f(t, w) that sat-

isfies (9). Consider the function

f(t, ω) = lim sup
n→∞

r0,n∑
m=1

Pt(Bn
0,m)

P (Bn
0,m)

1(ω ∈ Bn
0,m)1(t ∈ [0,

1
2n

])

+
22n∑
k=1

rk,n∑
m=1

Pt(Bn
k,m)

P (Bn
k,m)

1(ω ∈ Bn
k,m)1(t ∈ (

k

2n
,
k + 1
2n

]),

where {Bn
k,m}m is the (k, n)th finite partition of Ω that consists of F k

2n
-measurable

sets, and rk,n represents the number of sets in the (k, n)th partition that have
positive P -measure. We assume that for any fixed dyadic rational k0

2n0 , the se-
quence of partitions {Bn0+p

k02p,m}m becomes finer and finer as p increases, and it
also generates F k0

2n0
. We further refine our partitions so that {Bn

k,m}m becomes

finer and finer as k increases (for fixed n). Notice that f is Ft-predictable, which
implies that it is also Ft-progressive. Finally, we can conclude from a martingale
approximation of Radon-Nikodym derivatives (see Application (VIII) of Section
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9.5 of [8]) that for each t, f(t) is the Radon-Nikodym derivative of Pt with re-
spect to P on Ft−, since for any fixed t, the resulting sequence of partitions
must generate Ft−. To see this, notice that for any fixed t, the corresponding
sequence of partitions generate Fs, for every dyadic rational s < t, which implies
that the sequence also generates Ft−. Thus, f satisfies (9).

The preceding proof shows that, for any Ft-intensity λ of N ,

Pt(A) =
∫

A

λ(t)
E[λ(t)]

dP, A ∈ Ft−

for all t ∈ Nλ such that µ(Nλ) = 0 (note the dependence of Nλ on the intensity
λ). However, this may not necessarily be the Radon-Nikodym derivative, since
the integrand may not necessarily be Ft−-measurable. What we have shown is
that there exists an Ft-intensity that satisfies this Radon-Nikodym property.

The rest of this section contains another version of Theorem 7 based on
another type of stochastic intensity, which is used in the ASTA results presented
shortly.

Definition 8 A measurable process λ(t) is an X(t)-intensity for N if

E[N(a, b]|X(a)] = E
[ ∫

(a,b]

λ(s)ds
∣∣∣X(a)

]
, a < b.

Clearly, an Ft-intensity of N is also an X(t)-intensity of N , provided X(t)
is Ft-measurable. What’s nice about an X(t)-intensity is that it only requires
information about the marginal distributions of X under Pt, instead of the entire
history of X up to time t.

The proof of Theorem 7 did not make explicit use of the entire history of the
processes, and so here we are able to use a similar proof for an X(t)-intensity.

Theorem 9 If N has an X(t)-intensity λ(t), then Pt << P on σ(X(t−)), and
µ << L. In particular, µ(·) =

∫
(·) E[λ(s)]ds and

Pt(A) =
∫

A

λ(t)
E[λ(t)]

dP, A ∈ σ(X(t−)), µ-a.e.t. (10)

Proof For simplicity, we prove this for real-valued X. Consider a countable
collection of continuous functions fn,s : < → [0, 1], for n ∈ {1, 2, ...} and rational
s ∈ <, defined by

fn,s(t) =

 1 t ≤ s− 1/n,
−n(t− s) s− 1/n < t < s,
0 t ≥ s.

Clearly limn→∞ fn,s(t) = 1(t < s).
Define Yn,s,u(t, ω) = fn,s(X(u))1(t > u). Then for any B ∈ B,
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∫
B

Et[Yn,s,u(t, ω)]µ(dt) = E[
∫

B

Yn,s,u(t)N(dt)]

= E[fn,s(X(u))N(B ∩ (u,∞))]

= E[
∫

B

fn,s(X(u))λ(t)1(t > u)dt].

Therefore, for each integer n, and each rational pair (s, u),

Et[fn,s(X(u))]1(t > u) =
E[fn,s(X(u))λ(t)]1(t > u)

E[λ(t)]
.

Fix a t that satisfies this equality for all choices of n, s, u above. Then, if tn is
a sequence that approaches t from below, the dominated convergence theorem
implies

Et[fn,s(X(t−))] =
E[fn,s(X(t−))λ(t)]

E[λ(t)]
.

Taking limits as n → ∞, another application of the dominated convergence
theorem yields

Pt(X(t−) < s) =
E[1(X(t−) < s)λ(t)]

E[λ(t)]

for any rational s, which proves the result. Our use of the dominated conver-
gence theorem is valid, in spite of the change of measure, because the limits
exist for each fixed ω, due to the fact that our sample paths are in the space
D(<).

There are other types of intensities in the literature. Melamed and Whitt
[15] define a conditional intensity of N as a process λ∗(t) that satisfies

lim
h↓0

E[N(t, t + h]|X(t)] = λ∗(t).

It is not immediately clear how this relates to an X(t)-intensity. However, if an
X(t)-intensity λ(t) is right-continuous, bounded, and such that λ(t) is σ(X(t))-
measurable, then clearly λ(t) = λ∗(t). The analysis in [15] assumes uniform
integrability to move limits inside of expectations when needed. Conditional
intensities are also defined in [16] as E[λ(t)|X(t)], where λ(t) is the Ft-intensity
of N .

In [6], a conditional intensity is defined as a process µ(X(t)) that satisfies

λNE0
N [f(X(0))] = E[f(X(0))µ(X(0))].
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When N has an Ft-intensity λ(t), this is just µ(X(t)) = E[λ(t)|X(t)]. To
prove that such intensities can exist without assuming existence of a stochastic
intensity, they consider an example where X only has jumps at points of N ,
and they use the inversion formula to show that this type of intensity exists.
An X(t)-intensity satisfies the same equality found in Papangelou’s result, and
it looks similar to the one found in [15].

4 Characterization of Poisson Processes

We now apply our non-stationary version of Papangelou’s theorem for time-
dependent Palm probabilities to characterize Poisson processes.

Using the notation above, the point process N on < is an Ft-Poisson process
with mean measure µ if, for any a ≤ b, and k ≥ 0,

P (N(a, b] = k|Fa) = e−µ(a,b](µ(a, b])k/k!.

In case µ(a, b] =
∫ b

a
λ(t)dt, we say N is an Ft-Poisson process with rate function

λ(t).
Mecke showed that a stationary point process N is Ft-Poisson if and only

if P 0 = P on F0−. This is an immediate consequence of Brémaud’s version of
Papangelou’s theorem. The following result is an analogue for time-dependent
Palm probabilities. It also contains Watanabe’s well-known martingale charac-
terization of Poisson processes, which is statement (b).

Theorem 10 The following statements are equivalent for a locally integrable
function λ : < → <.

(a) N is an Ft-Poisson process with rate function λ.
(b) N(s, t]−

∫ t

s
λ(s)ds, for t > s, is an Ft-martingale for any fixed s.

(c) Pt = P on Ft− for µ-a.e. t, and µ(B) =
∫

B
λ(t)dt, B ∈ B.

Proof (a) ⇒ (b). If N is Ft-Poisson with deterministic rate function λ(t), then
clearly (b) is true.

(b) ⇒ (c). The hypothesis tells us that E[N(s, t]|Fs] =
∫
(s,t]

λ(u)du for any
s < t, and from this we conclude that N has a deterministic Ft-intensity λ(t).
From Theorem 7, we conclude (c).

(c) ⇒ (a). To prove (a), it suffices by properties of conditional expectations
to show that, for each A ∈ Fs, s ∈ < and n ≥ 0,

P (A,N(s, t] = n|Fs) = P (A)
( ∫

(s,t]

λ(u)du
)n

e
−

∫
(s,t]

λ(u)du
/n!, t ≥ s.

(11)
We first consider the case n = 0. Since P (N [t, t] = 0) = 1 for all t,

P (A,N [s, t] ≥ 1) = E[1A

∫
(s,t]

1(N [s, u) = 0)N(du)]
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=
∫

(s,t]

Pu(A,N [s, u) = 0)µ(du)

=
∫

(s,t]

P (A,N [s, u] = 0)λ(u)du

so we end up with the integral equation

P (A)− P (A,N [s, t] = 0) =
∫

(s,t]

P (A,N [s, u] = 0)λ(u)du.

From what is known about solutions to integral equations (see, e.g. [10]), we
conclude that the solution is of the form (11) with n = 0.

To prove (11) for n ≥ 1, all that is needed is to generate an infinite system
of integral equations by applying the Campbell-Mecke formula in the same way
as mentioned above to P (A,N [s, t] ≥ n + 1), for n ≥ 1. In other words, for
n ≥ 1,

P (A)− P (A,N [s, t] ≤ n) =
∫ t

s

P (A,N [s, u] = n)λ(u)du.

But from this, we obtain

P (A,N [s, t] = n) =
∫ t

s

P (A,N [s, u] = n− 1)λ(u)du

−
∫ t

s

P (A,N [s, u] = n)λ(u)du.

After using induction on n, and the result in [10], we see that this system is
equivalent to the system found when one wants to prove that N is a nonhomo-
geneous Poisson process with rate function λ(t) if and only if N has independent
increments, P (N(t, t + h] = 1) = λ(t)h + o(h), and P (N(t, t + h] ≥ 2) = o(h).
Therefore, we obtain (11) for n ≥ 1, and this completes the proof.

Note that the proof above also provides yet another proof of Watanabe’s
result that (a)⇔(b). At no point do we use the fact that (b) ⇒ (a). We
should however point out that a similar type of argument is given in [1] to prove
Watanabe’s result, where they use a similar trick with stochastic integrals to
compute the Laplace transform of N(a, b] (the difference in the proofs involves
the use of the Campbell-Mecke formula).

5 Arrivals See Time Averages

A basic issue for a queueing process is to determine the distribution of the queue
length at the time of a customer arrival. For many queues, the distribution in
equilibrium is the same as the distribution of the process at any arbitrary time
(regardless of an arrival). That is, arrivals see time averages (ASTA). In this
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section, we address the ASTA issue for the Ft-adapted processes N and X on
the real line. The focus is on the distribution of X(t−) when N has a point at
time t. Although these are abstract processes, we interpret a point of N as the
time of an “arrival” of an event related to X.

Here is our main result.

Theorem 11 If N has an X(t)-intensity λ, then the following statements are
equivalent.
(a) Transient ASTA: Pt(X(t−) ∈ ·) = P (X(t−) ∈ ·), µ-a.e. t.
(b) Lack of Bias: E[λ(t)|X(t−)] = E[λ(t)], µ-a.e. t.
Hence if N is an Ft-Poisson process with deterministic rate function λ(t), then
transient ASTA holds.

Proof First note that from (10) it follows that, for any bounded continuous
function f : IE → <,

Et[f(X(t−))]E[λ(t)] = E[f(X(t−))λ(t)], µ-a.e. t. (12)

Now if (a) holds, then (12) is true with Et replaced by E. Moreover, the resulting
statement also holds for all bounded measurable f (by a standard approximation
argument), and hence (b) holds.

Conversely, if (b) holds, then (a) follows since by (12),

Pt(X(t−) ∈ ·)E[λ(t)] = E
[
1(X(t−) ∈ ·)E[λ(t)|X(t−)]

]
= P (X(t−) ∈ ·)E[λ(t)], µ-a.e. t.

Finally, if N is an Ft-Poisson process with deterministic rate function λ(t),
then (b) obviously holds, which implies the transient ASTA property.

Recall from Proposition 4 that Pt(St(N,X) ∈ ·) = P 0((N,X) ∈ ·) for µ-
a.e. t, when (N,X) is stationary. In light of this, the following ASTA result
for stationary processes, which was proved in Bremaud [5] (assuming N has an
Ft-intensity), is an immediate consequence of Theorem 11.

Corollary 12 If (N,X) is stationary and N has an X(t)-intensity λ, then the
following statements are equivalent.
(a) Stationary ASTA: P 0(X(0−) ∈ ·) = P (X(0−) ∈ ·).
(b) Lack of Bias: E[λ(0)|X(0−)] = E[λ(0)].

Next, we describe a conditional ASTA property for non-stationary processes,
which is analogous to that for stationary queueing processes with Poisson ar-
rivals in van Doorn and Regterschot [26]. Their results involve analyzing sample
path averages in the spirit of [28], and therefore they did not use Palm prob-
abilities. The result is stated in the stationary case through the use of Palm
probabilities in [1], and we will now show how these results carry over to the
non-stationary setting.

As in [1], suppose N has an Ft-intensity of the form g(Y (t)), where Y is a
Ft-predictable process that takes values in a space IE∗, and g : IE∗ → <+. We

12



are interested in the points of N when the process Y is equal to a fixed value
x ∈ IE∗. For simplicity, assume that P (Y (t) = x) > 0, for all t > 0. Then the
points of N when Y (t) = x are represented by the point process Nx defined by

Nx(A) =
∫

A

1(Y (t) = x)N(dt).

Let P x
t denote the Palm probabilities induced by the point process Nx.

Theorem 13 Under the preceding conditions,

P x
t (X(t−) ∈ ·) = P (X(t−) ∈ ·|Y (t) = x). (13)

Proof For any bounded Ft-predictable process C(t),

E
[ ∫

<
C(t)Nx(dt)

]
= E

[ ∫
<

C(t)1(Y (t) = x)N(dt)
]

= E
[ ∫

<
C(t)1(Y (t) = x)g(x)dt

]
.

Therefore, 1(Y (t) = x)g(x) is an Ft-intensity for Nx. Using this and (7),

P x
t (X(t−) ∈ ·) =

E [1(X(t−) ∈ · , Y (t) = x)g(x)]
g(x)P (Y (t) = x)

= P (X(t−) ∈ ·|Y (t) = x),

which completes the proof.

Remark 14 The preceding result can be extended to the X(t)-intensity setting
as follows. Assume there exists a measurable function g such that g(Y (t−)) is
an (X(t), Y (t))-intensity of N . Then we can apply Theorem 9 to show that for
a < b,

∫
(a,b]

P x
t (X(t−) ∈ ·)µ(dt) = E

∫
(a,b]

1(X(t−) ∈ ·)1(Y (t−) = x)N(dt)

= E

∫
(a,b]

1(X(t−) ∈ ·)1(Y (t−) = x)g(x)dt

so it follows as before that, for µ-a.e. t,

P x
t (X(t−) ∈ ·) = P (X(t−) ∈ ·|Y (t−) = x).

6 Palm Probabilities as Limits

This section characterizes Palm probabilities for the processes N and X as limits
of conditional probabilities.
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The fact that the Palm probability Pt is 1 that N has a point at time t
suggests that Palm probabilities should have the limiting property (15). This
type of limit is indeed true under the weak condition (14) on N . Similar limits
are true for Palm probabilities of nicely behaved functions of X.

Theorem 15 Suppose µ(·) =
∫
(·) λ(t) dt and

lim
v↓t

(v − t)−1E
[
N(t, v]1(N(t, v] ≥ 2)

]
= 0, t ∈ <. (14)

Then, for each t ∈ < and A ∈ F ,

Pt(A) = lim
v↓t

P (A|N(t, v] ≥ 1). (15)

Furthermore, if f : <×D(<) → < is bounded and

lim
v↓t

(v − t)−1P (N(t, v] = 1, f(u, X) 6= f(t, X)for some u ∈ (t, v]) = 0, (16)

then
Et[f(t, X)] = lim

v↓t
E

[
f(t, X)

∣∣∣N(t, v] ≥ 1
]
, t ∈ <. (17)

Proof Since E[N(·)] =
∫
(·) λ(t) dt, we have for a.e. t

lim
v↓t

(v − t)−1E[N(t, v]] = λ(t).

In addition,
lim
v↓t

(v − t)−1P (N(t, v] ≥ 1) = λ(t). (18)

This follows since

E[N(t, v]] = P (N(t, v] ≥ 1) + E
[
(N(t, v]− 1)1(N(t, v] ≥ 2)

]
and assumption (14) implies that the last expectation is o(v − t).

Next, note that by (3), for a.e. t

Et[f(t, X)]λ(t) = lim
v↓t

(v − t)−1

∫ v

t

Eu[f(u, X)]λ(u) du

= lim
v↓t

(v − t)−1E
[ ∫ v

t

f(u, X)N(du)
]
. (19)

Consider the decomposition

E
[ ∫ v

t

f(u, X)N(du)
]

= E
[
f(t,X)1(N(t, v] = 1)

]
(20)

+E
[
1(N(t, v] = 1)

∫ v

t

[f(u, X)− f(t, X)]N(du)
]

+E
[
1(N(t, v] ≥ 2)

∫ v

t

f(u, X)N(du)
]
.
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Since f is bounded, the last two expectations are o(v − t) by assumptions (14)
and (16), respectively. Also, the expectation on the right-hand side of (20)
equals

E
[
f(t, X)1(N(t, v] ≥ 1)

]
− E

[
f(t, X)1(N(t, v] ≥ 2)

]
= E

[
f(t, X)|N(t, v] ≥ 1

]
P (N(t, v] ≥ 1) + o(v − t).

Applying these observations to (19) along with (18), we have

Et[f(t, X)]λ(t) = lim
v↓t

E
[
f(t, X)

∣∣∣(N(t, v] ≥ 1
]
λ(t).

This proves (17). Also, (17) implies (15), since assumption (16) is not needed
in the preceding argument when f(t, X) does not depend on t.

Example 16 Limiting ASTA. Kleinrock [13] considered a queueing process
with Poisson arrivals in which the queue length process X(t) has a limiting
distribution p(n). His aim was to give a plausible argument that p(n) was the
long run fraction of time that an arrival to the system sees n customers in the
system.

He begins by showing that

P (X(t−) = n) = lim
v↓t

P (X(t−) = n|N(t, v] ≥ 1), (21)

and conjectured that this is the distribution of the queue length an arrival would
see at time t. Then letting t →∞ in (21) and using p(n) = limt→∞ P (X(t−) =
n), he concludes that p(n) should be the probability an arrival in equilibrium
sees n customers in the system.

Because of our Theorem 15, we now know that his conjecture was correct.
Indeed, by Theorem 15, whose assumptions are satisfied by N and X, the right-
hand side of (21) is Pt(X(t−) = n). Then letting t →∞ yields

p(n) = lim
t→∞

Pt(X(t−) = n),

which is what he wanted to prove.

7 Asymptotic Stationarity

We saw in Proposition 4 that if (N,X) is stationary, then Pt is equal to the
stationary Palm probability P 0 in that

Pt(St(N,X) ∈ ·) = P 0((N,X) ∈ ·), µ-a.e. t.

This suggests that if (N,X) behaves in the distant future like a stationary pro-
cess (N̄ , X̄), then Pt(St(N,X) ∈ ·) should converge in some sense to P 0((N̄ , X̄) ∈
·) as t →∞.

We will use the following type of long-run stationarity. Here w→ and v→
denote weak and vague convergence of measures [11].
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Definition 17 The process (N,X) is asymptotically stationary with limit (N̄ , X̄)
if

St(N,X) d→ (N̄ , X̄),

µt(·) = E[StN(·)] v→ µ̄(·) = E[StN̄(·)], as t →∞.

The first condition refers to the convergence of the process (N,X) over the
“entire” real time axis shifted over a time that tends to ∞. The second con-
dition is an analogous convergence of the mean measure. The limit (N̄ , X̄) is
necessarily stationary, and so the mean measure µ̄ for N̄ is a constant mul-
tiple of Lebesgue measure. Many processes that have a limiting distribution
are asymptotically stationary; examples include regenerative processes, ergodic
Markov processes and processes that are functionals of stationary processes.
These and other properties of asymptotic stationarity were developed by Szc-
zotka [24]; also see [7, 25].

The first result describes the convergence of Pt when N has a stochastic
intensity.

Theorem 18 Suppose N has an Ft stochastic intensity λ(t), and (N,X, λ) is
asymptotically stationary with limit (N̄ , X̄, λ̄). Assume Y (t) is an Ft-predictable
process of the form Y (t) = g(St(N,X)) for some continuous g : D(<)2 → IE.
Then

Pt(Y (t) ∈ ·) w→ P 0(g(N̄ , X̄) ∈ ·), for µ-a.e. t →∞.

Proof Because of the asymptotic stationarity and the form of Y (t), it follows
that (Y (t), λ(t)) d→ (g(N̄ , X̄), λ̄(0)). Then applying (7), we have as µ-a.e. t →
∞,

Pt(Y (t) ∈ ·) =
E[1(g(St(N,X)) ∈ ·)λ(t)]

E[λ(t)]

w→ E[1(g(N̄ , X̄) ∈ ·)λ̄(0)]
E[λ̄(0)]

= P̄ 0(g(N̄ , X̄) ∈ ·).

Example 19 Let X denote the queue-length process of a GI/G/c queue, and
let N denote its renewal arrival process. For simplicity, suppose the inter-arrival
time distribution has a density that’s directly Riemann integrable. Assume the
joint process (X, N) regenerates at the beginning of each busy period so that
the process is regenerative and has a limiting distribution. We know from [4]
that λ(t) = h(t− TN(t)) is an Ft-intensity of N , where h is the hazard function
of the interarrival times. By the renewal theorem it follows that (N,X, λ) is
asymptotically stationary with a limit (N̄ , X̄, λ̄). Then Theorem 18 tells us that

Pt(X(t−) = k) → P 0(X̄(0−) = k) a.e. t →∞. (22)
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In case N does not have a stochastic intensity, the Palm probabilities, which
are Radon-Nikodym derivatives, are generally ill-behaved as t varies, and may
not converge in a conventional sense. It is natural, however, to consider conver-
gence in a local neighborhood of t as t → ∞. To this end, we will use a local
type of convergence that is a slight variation of that in [12].

Let C denote the set of continuous functions f : < → <+ with compact
support. A local f-mixture Pt,f of the measures Pt at t is defined by

Pt,f (·) =

∫
< Pt+u(St+u(N,X) ∈ ·)f(u)µt(du)∫

< f(u)µt(du)
, f ∈ C,

where µt(B) = µ(B + t). An f -mixture P̄ 0
f of the stationary Palm measure P̄ 0

for (N̄ , X̄) is

P̄ 0
f (·) =

∫
< P̄0(Su(N̄ , X̄) ∈ ·)f(u) du∫

< f(u) du
, A ∈ F , f ∈ C.

The convergence of Pt in (23) below is a local convergence of Ps for all s
near t, as t →∞.

Theorem 20 If (N,X) is asymptotically stationary with limit (N̄ , X̄), then

Pt,f (·) w→ P̄ 0
f (·), for µ-a.e. t →∞ , for each f ∈ C. (23)

Proof By the definition of Pt,f and (3),

Pt,f (·) =
E

[ ∫
< 1(St+u(N,X) ∈ ·)f(u)StN(du)

]
∫
< f(u)µt(du)

.

Now, under the asymptotic stationarity of (N,X), we have∫
< 1(St+u(N,X) ∈ ·)f(u)StN(du)∫

< f(u)µt(du)

d→
∫
< 1(Su(N̄ , X̄) ∈ ·)f(u)N̄(du)∫

< f(u)µ(du)
.

Applying this limit to the first display yields

Pt,f (·) w→
E

[ ∫
< 1(Su(N̄ , X̄) ∈ ·)f(u)N̄(du)

]
∫
< f(u)µ̄(du)

= P̄ 0
f (·).
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8 Markov and Semi-Regenerative Processes

We now present a general framework for deriving Palm probabilities for a
Markov jump process X associated with a point process consisting of a sub-
set of its jump times. This is followed by a factorization of Palm probabilities
for semi-regenerative processes.

For the first part of this discussion, suppose that X is a Markov jump process
on the time axis < with state space IE and transition-rate kernel q(x,A). Let N
denote the point process of its jump times Tn, n ∈ ZZ . For simplicity, assume
Ft is the σ-field generated by (X(s) : s ≤ t). Also, for each n, define

Xn = X(Tn), ξn = Tn − Tn−1, Fn = FTn
.

Being a Markov jump process means the sequence (Xn, ξn) is a Markov chain
with transition probabilities

P (Xn+1 ∈ A, ξn+1 > t|Fn) = q(Xn, A)e−tq(Xn), (24)

where q(x) = q(x, IE).
In referring to sample paths of X, we sometimes write X = (X−(t), X+(t)),

for t ∈ <, where

X−(t) = {X(s) : s < t}, X+(t) = {X(s) : s ≥ t},

which are the sample paths of X before t and ≥ t, respectively. These random
paths are in the respective Skorohod spaces D(<−) and D(<+), where <− =
(−∞, 0). We also write f(t, X) = f(t, X−(t), X+(t)). In addition, let p(x,A)
denote the “future-path” probability kernel from IE to D(<+) such that

P (X+(Tn) ∈ A|Fn−1, Xn) = p(Xn, A). (25)

The main tool for deriving Palm probabilities for Markov processes is as
follows. We will prove it after some discussion.

Theorem 21 Under the preceding assumptions, for f : <×D(<) → <+,

E
[ ∫

<
f(t, X)N(dt)

]
(26)

=
∫
<

∫
D(<+)

∫
IE

E
[
f(t,X−(t), z)q(X(t), dx)

]
p(x, dz)dt,

provided the expectations are finite.

A special case is the classical Lévy formula: For h : <× IE× IE → <+,

E
[ ∫

<
h(t,X(t−), X(t))N(dt)

]
= E

[ ∫
<

∫
IE

h(t, X(t), x)q(X(t), dx)dt
]
.

There are a variety of Palm probabilities of Markov processes associated
with certain subsets of their jump times. As an example, for a Jackson network
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process in equilibrium, the mean time for an item to move from one sector to
another sector involves Palm probabilities for jump times at which an item in
the network begins a journey between the two sectors [23]. Examples like this
involve exploiting the structure of the special jump times, which may depend
on the future as well as the past of the process. It is not practical to formulate
Palm probabilities for all such contingencies. However, the following general
procedure and example illustrate how one can use Theorem 21 to derive Palm
probabilities for Markov processes.

Remark 22 General Procedure. A subprocess of jump times of X has the form

Ñ(B) =
∫

B

Y (t)N(dt) =
∑

n

Y (Tn)1(Tn ∈ B), B ∈ B,

where Y (t) is a process that takes values 0 or 1. Let P̃t and Ẽt denote the Palm
probabilities and expectations associated with (X, Ñ). These probabilities are
determined as follows.

For any bounded f : <+ × D(<) → <+, use Theorem 21 to determine
functions g and h that satisfy

E
[ ∫

B

f(t, X)Ñ(dt)] = E
[ ∫

<
f(t, X)Y (t)N(dt)

]
=

∫
B

g(t)dt,

E[Ñ(B)] = E
[ ∫

B

Y (t)N(dt)
]

=
∫

B

h(t)dt, B ∈ B.

Then it follows that

Ẽt[f(t, X)] =
g(t)
h(t)

, a.e. t.

Example 23 Consider the jump times of X at which its states before and after
the jump are in a fixed set A ∈ E2. These times are depicted by the point process

Ñ(B) =
∫

B

1
(
(X(t−), X(t)) ∈ A

)
N(dt), B ∈ B.

For any bounded f : <+ ×D(<) → <+, Theorem 21 yields

E[Ñ(B)] = E
[ ∫

<
1
(
(X(t−), X(t)) ∈ A, t ∈ B

)
N(dt)

]
=

∫
B

E
[ ∫

IE

1((X(t−), x) ∈ A)q(X(t), dx)
]
dt

=
∫

B

E[q(X(t), AX(t))]dt,

E
[ ∫

B

f(t, X)Ñ(dt)] = E
[ ∫

<
f(t, X)1

(
(X(t−), X(t)) ∈ A, t ∈ B

)
N(dt)

]
=

∫
B

g(t)dt,
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where for each y ∈ IE, Ay = {x ∈ IE : (y, x) ∈ E2}, and

g(t) = E
[ ∫

AX(t)

( ∫
D(R+)

f(t, X−(t), z)p(y, dz)
)
q(X(t), dy)

]
.

Then by the preceding General Procedure,

Ẽt[f(t,X)] =
g(t)

E[q(X(t), AX(t))]
, a.e. t (27)

One can obtain additional properties of Ñ in the preceding example by using
the techniques above. For instance, q(X(t−), AX(t−)) is an Ft-stochastic inten-
sity for Ñ . This implies the classical result that q(X(t−)) is an Ft-stochastic
intensity of N . Indeed, Ñ = N when A = IE2. Here is a limiting property of Ñ .

Remark 24 In the setting of Example 23, suppose that X is an ergodic Markov
process and let (N̄ , X̄) denote a stationary version of (N,X) with Palm proba-
bility P̄ 0. Then

Pt(StX ∈ ·) w→ P̄ 0(X̄ ∈ ·), for a.e. t →∞

This follows by taking the limit of (27), with f(t, X) = 1(StX ∈ ·), as t →∞.

We are now ready to prove Theorem 21. A key step in the proof uses the fol-
lowing property of exponential random variables. This follows by writing the ex-
pectations as integrals of the exponential density, and using e−λt = λ

∫∞
t

e−λudu
and interchanging integrals.

Proposition 25 If ξ is an exponential random variable with rate λ, then for
any h : <+ → <,

E[h(ξ)] = λE
[ ∫ ξ

0

h(u)du
]
,

provided the expectations exist.

Proof of Theorem 21 First note that the Markov property (24) implies that
Xn is a Markov chain and

P (Xn ∈ A|Fn−1) = q(Xn−1, A)/q(Xn−1), (28)
P (ξn > u|Fn−1, Xn) = e−q(Xn−1)u. (29)

Now, conditioning on Gn(x, z) = (Fn−1, Xn = x,X+(Tn) = z),

E
[ ∫

<
f(t, X)N(dt)

]
=

∑
n

E[f(Tn, X)] (30)

= E
[ ∑

n

∫
IE

∫
D(<+)

E[f(Tn, X)|Gn(x, z)]

×P (Xn ∈ dx|Fn−1)P (X+(Tn) ∈ dz|Fn−1, Xn = x)
]
.
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Using X = (X−(Tn), X+(Tn)), Tn = Tn−1 + ξn, expression (29), Proposition 25
and the change-of-variable t = Tn−1 + u, we have

E[f(Tn, X)|Gn(x, z)] = E[f(Tn−1 + ξn, X−(Tn−1 + ξn), z)|Gn(x, z)]

= q(Xn−1)E
[ ∫ ξn

0

f(Tn−1 + u, X−(Tn−1 + u), z)du|Gn(x, z)
]

= q(Xn−1)E
[ ∫ Tn

Tn−1

f(t, X−(t), z)dt|Gn(x, z)
]
.

Also, by (28) and (25) the last line in (30) equals q(Xn−1, dx)q(Xn−1)−1p(x, dz).
Substituting this and the last display into (30) yields

E
[ ∫

<
f(t, X)N(dt)

]
= E

[ ∑
n

∫ Tn

Tn−1

∫
IE

∫
D(<+)

f(t, X−(t), z)q(Xn−1, dx)p(x, dz)dt
]
.

The last expression equals the right-hand side of (26) since X(t) = Xn−1 for
t ∈ (Tn−1, Tn). This completes the proof of (26).

We end this section with a factorization of Palm probabilities for semi-
regenerative processes. Instead of X being Markovian, assume it is semi-
regenerative with respect to N in the sense that, for any integer n,

P (X(Tn)+ ∈ A|FTn
) = p(X(Tn), A), A ∈ E , (31)

where p(x, A) is a probability kernel from IE to D(<+).

Proposition 26 In the preceding context,

Pt(X(t)+ ∈ A) =
∫

IE

p(x,A)Pt(X(t) ∈ dx), A ∈ E, µ-a.e. t.

Proof Using (3) twice and the semi-regenerative property, for B ∈ B,∫
B

Pt(X(t)+ ∈ A)µ(dt) = E

[∫
B

1(X(t)+ ∈ A)N(dt)
]

= E

[∑
n

P (X(Tn)+ ∈ A, Tn ∈ B|FTn)

]

= E

[∑
n

p(X(Tn), A)1(Tn ∈ B)

]

=
∫

B

Et[p(X(t), A)]µ(dt)

=
∫

B

∫
IE

p(x,A)Pt(X(t) ∈ dx)µ(dt).

The third equality follows since Tn is FTn
-measurable.
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Example 27 GI/M/1 Queue. Suppose that X is the queue-length process of
an GI/M/1 queue with FIFO discipline, and that N denotes the arrival process.
Assume X is stable, and so it is regenerative. Let W (t) denote the waiting time
of the last customer to enter the system at or before time t. Then Pt(W (t) ≤ w)
is the waiting time distribution of an arrival at time t. Using Proposition 26,
the Laplace transform of this distribution is

Et[e−αW (t)] =
∞∑

n=1

E[e−αW (t)|X(t) = n]Pt(X(t) = n)

=
∞∑

n=1

φ(α)nP (X(t−) = n− 1)

= φ(α)E
[
φ(α)X(t)

]
.

Here φ(α) is the Laplace transform of the service times. From this expression,
it follows that

Et[W (t)] = η(E[X(t)] + 1), a.e. t, (32)

where η is the mean service time.

9 Time-Dependent Little Laws

For this discussion, consider a queueing system in which the point process N
denotes the arrival times Tn, which are assumed to be distinct (N is simple).
Let X(t) denote the number of items in the system at time t, let Wn denote
the sojourn time in the system of the nth job that arrives at time Tn, and let
W (t) denote the sojourn time of the last item that arrived before or at time t.
If (N,X) is stationary, the mean queue length is related to the mean sojourn
time by the well-known Little law

E[X(0)] = λE0[W (0)].

Here λ = E[N(0, t]] is the rate of arrivals, and E0 is the Palm expectation given
an arrival at time 0.

In this section, we present several Little laws for relating the time-dependent
queue length to the Palm probabilities of the waiting times. Bertsimas and
Mourtzinou [2] obtain results like some of ours, using probabilities that can be
intuitively interpreted as Palm probabilities and sample path arguments. This
approach requires additional assumptions on the existence of relevant limits and
assumes the mean measure of the arrival process has an intensity. The Palm
calculus approach lays bare the relation between queue lengths and waiting
times and yields results that are not amenable to sample path arguments.

For simplicity, we consider the queueing process on <+ and assume X(0) = 0.
The results are easily extendable to the case X(0) > 0. Keep in mind that there
are no assumptions on the order in which the items are processed and the service
times; such assumptions, however, would typically be needed for computations.
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Here is a result that is well-known for M/G/∞ systems, where Palm prob-
abilities are not needed.

Proposition 28 For the queueing system described above,

E[X(t)] =
∫

(0,t]

Ps(W (s) > t− s)µ(ds), t ≥ 0.

Proof This follows by applying the Campbell-Mecke formula to

X(t) =
∑

n

1(Tn + Wn > t, Tn ≤ t) =
∫

(0,t]

1(W (s) > t− s)N(ds). (33)

This was proved in Riaño [20], where the main interest was in controlling
the input process to achieve a desired output process. A sample-path version of
the result is in [2].

In many queues, the entire distribution of X(t) has the following nice relation
with its sojourn times.

Theorem 29 (Distributional Little Law) Suppose the queueing discipline
is overtake-free (the output order is the same as the input order). Then

P (X(t) ≥ n) =
∫ t

0

Ps(W (s) > t− s,N(s, t] = n− 1)µ(ds). (34)

If in addition, W (s) is independent of N under Ps on the interval (s,∞), for
µ-a.e.s, then

E[zX(t)] = 1 + (z − 1)
∫ t

0

Ps(W (s) > t− s)Es[zN(s,t]]µ(ds). (35)

Proof Assertion (34) follows by applying the Campbell-Mecke formula to

1(X(t) ≥ n) =
∫

(0,t]

1(W (s) > t− s,N(s, t] = n− 1)N(ds).

Next, note that under the independence assumption, (34) becomes

P (X(t) ≥ n) =
∫ t

0

Ps(W (s) > t− s)Ps(N(s, t] = n− 1)µ(ds).

The generating function of X(t) can now be easily derived with simple algebra.

Formula (34) was proved in [2] under the additional assumption that future
arrivals do not influence the service times of all customers currently in the
overtake-free system. In the Palm context, this is the same as the independence
assumption for (34).
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We end by showing how to use Palm probabilities given that N has multiple
points at certain locations. For a two-point case, under our assumptions on F ,
there exists a (µ2-a.e. unique) probability kernel Pt(A) such that

E[N(B1)N(B2)1(ω ∈ A)] =
∫

B1

∫
B2

P(t1,t2)(A)µ2(d(t1, t2))

where µ2(B1 × B2) = E[N(B1)N(B2)]. One can interpret P(t1,t2)(A) as the
probability of A, given that N has points at t1 and t2. Furthermore, it’s clear
that this idea can be carried further to construct Palm probabilities Pt that
condition on the locations t = (t1, . . . , tn) of n ≥ 1 points based on

µn(B1 ×B2 × · · · ×Bn) = E[
n∏

k=1

N(Bk)], Bk ∈ B.

Theorem 30 (Little Law for Moments) For any n ≥ 1,

E[X(t)n] =
∫

(0,t]n
Ps(W (s1) > t−s1,W (s2) > t−s2, ...,W (sn) > t−sn)µn(ds).

Proof For simplicity, we will prove the assertion for n = 2, which is

E[X(t)2] =
∫

(0,t]2
Ps (W (s1) > t− s1,W (s2) > t− s2)µ2(ds). (36)

The more general formula follow similarly. From the representation (36),

X(t)2 =
∫

(0,t]2
1(W (s1) > t− s1)1(W (s2) > t− s2)N(ds1)N(ds2).

Then (36) follows by repeated applications of the Campbell-Mecke formula and
Lemma 11.2 in [12].
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