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tWe introdu
e a non-parametri
 mass preserving estimator for the intensity fun
tion of aPoisson point pro
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ation: 60G55, 62M30.1. Preliminaries and notationLet � be a Poisson point pro
ess observed in a bounded open Borel subset ; 6= W � R 2of the plane with lo
ally �nite intensity fun
tion � : R 2 ! [0;1). If no spe
i�
 parametri
model is assumed, it is natural to apply ideas from kernel estimation theory to the problemof estimation of �(�) as proposed by Berman and Diggle [1℄:\�BD(x0) := N(b(x0; h) \W )jb(x0; h) \W j ; x0 2W: (1.1)Here b(x0; h) denotes the open ball around x0 with radius h > 0, and, for Borel sets A, N(A)denotes the number of points of � falling in A, jAj its area. The 
hoi
e of bandwidth hdetermines the amount of smoothing. Note that as W is open, one never divides by zero. Infa
t, a stronger statement 
an be made. The fun
tion x 7! jb(x; h) \W j is 
ontinuous andattains its minimum on the 
losure �W . Sin
e any point on the boundary �W always has aneighbour within distan
e h in W , infx2W jb(x; h) \W j > 0. Further details may be founde.g. in [2, 3, 5℄.Although (1.1) is a natural estimator, it does not ne
essarily preserve the total mass in W ,nor is it based on a generalised weight fun
tion [4℄. The purpose of this paper is to proposean alternative estimator that does possess these two properties.The plan of this paper is as follows. In Se
tion 2, we introdu
e a non-parametri
, masspreserving estimator for the intensity fun
tion of an inhomogeneous Poisson pro
ess, showit 
an be interpreted as a generalised weight fun
tion estimator, and 
ompute its mean andvarian
e. In Se
tion 3, we give upper bounds on the di�eren
e in absolute bias and varian
ebetween the new and 
lassi
 estimator, and present examples to show that neither of the two



2. Intensity fun
tion estimation 2estimators is universally better than the other in terms of integrated mean squared error. InSe
tion 4, we quantify the bias in total mass of the 
lassi
 estimator. A dis
ussion se
tion
on
ludes the paper.2. Intensity fun
tion estimationThe Berman{Diggle estimator (1.1) may be written as\�BD(x0) = Xx2�\W 1fjjx� x0jj < hgjb(x0; h) \W j :
Hen
e, ea
h point x 2 b(x0; h)\W is assigned a weight 1=jb(x0; h)\W j. If x0 is 
lose to theboundary of W , the weight may be higher than h�2=� to 
ompensate the relative shortageof h-
lose points x 2 � \W . A, perhaps, more natural way to 
orre
t for su
h edge e�e
tsis to assign a weight 1=jb(x; h) \W j to ea
h x 2 W with jjx� x0jj < h, as in the de�nitionbelow.De�nition 1. Let � be a Poisson point pro
ess observed in a bounded open Borel subset W ofthe plane with lo
ally �nite intensity fun
tion � : R 2 ! [0;1), and de�ne a non-parametri
estimator by\�(x0) := Xx2�\W 1fjjx� x0jj < hgjb(x;h) \W j ; x0 2W: (2.1)
Note that (2.1) is well-de�ned. Moreover, if b(x0; 2h) � W , the Berman{Diggle estimatorand the estimator of De�nition 1 
oin
ide, as there is no need for edge 
orre
tion of any kind.At the other extreme, if h is larger than the diameter ofW , jb(x; h)\W j = jW j for all x 2W ,and again there is no di�eren
e between the estimators.In 
ontrast to (1.1), (2.1) preserves the total mass and is based on a weight fun
tion. Tosee this, note thatZW 1fjjx� x0jj < hgjb(x; h) \W j dx0 � 1

for all x 2 W , that is, d�(�) is a generalised weight fun
tion estimator. Furthermore, for anyrealised point pattern ' \W in W ,ZW
24 Xx2'\W 1fjjx� x0jj < hgjb(x;h) \W j 35 dx0 = Xx2'\W ZW 1fjjx� x0jj < hgjb(x;h) \W j dx0 = #f'\Wg (2.2)

is equal to the number of points in ' \W .In order to assess the quality of the new estimator (see Se
tion 3 below), we pro
eedto 
ompute its mean and varian
e. Re
all that for (1.1), sin
e N(b(x0; h) \W ) is Poissondistributed,E h \�BD(x0)i = �(b(x0; h) \W )jb(x0; h) \W j ; (2.3)Var h \�BD(x0)i = �(b(x0; h) \W )jb(x0; h) \W j2 ; (2.4)



3. Comparison of intensity fun
tion estimators 3where � is the �rst order moment measure of �, that is, for Borel subsets A � W , �(A) =RA �(x) dx <1.Theorem 1. The estimator of De�nition 1 has mean and varian
eE h\�(x0)i = Zb(x0;h)\W �(x)jb(x; h) \W j dx; (2.5)
Var h\�(x0)i = Zb(x0;h)\W �(x)jb(x; h) \W j2 dx: (2.6)The integrals (2.5){(2.6) are �nite and should be 
ompared to (2.3){(2.4).Proof: By the Campbell{Me
ke theorem (see e.g. [2, 5℄),E h\�(x0)i = ZW 1fjjx� x0jj < hgjb(x; h) \W j �(x) dx = Zb(x0;h)\W �(x)jb(x; h) \W j dx:Regarding the se
ond moment, note that
E �\�(x0)2� = E 8<: 6=Xx;y2� �1W (x)1W (y)1fjjx� x0jj < hgjb(x; h) \W j 1fjjy � x0jj < hgjb(y; h) \W j �9=;+

+ E (Xx2� �1W (x)1fjjx� x0jj < hgjb(x; h) \W j2 �) :
Sin
e the se
ond order produ
t density �2(x; y) exists and is equal to �(x)�(y) for a Poissonpro
ess [5℄, the 
ross term on the right hand side is equal toZW ZW 1fjjx� x0jj < hgjb(x; h) \W j 1fjjy � x0jj < hgjb(y; h) \W j �(x)�(y) dxdy = �E h\�(x0)i�2 :Another appeal to the Campbell{Me
ke theorem yields

E (Xx2� �1W (x)1fjjx� x0jj < hgjb(x; h) \W j2 �) = Zb(x0;h)\W �(x)jb(x; h) \W j2 dx:Hen
e,E �\�(x0)2� = �E h\�(x0)i�2 + Zb(x0;h)\W �(x)jb(x; h) \W j2 dx;from whi
h (2.6) follows. �
3. Comparison of intensity fun
tion estimatorsAs noted in the previous se
tion, for x0 and h su
h that b(x0; 2h) �W , the estimators de�nedby (1.1) and (2.1) are identi
al. The aim of this se
tion is to quantify the di�eren
e betweenthem for arbitrary x0 2W and h > 0.



3. Comparison of intensity fun
tion estimators 4Theorem 2. Let � be a Poisson point pro
ess observed in a bounded Borel subset W of theplane with lo
ally �nite intensity fun
tion � : R 2 ! [0;1). Then, for �xed x0 2 W , theabsolute di�eren
e in absolute bias between (1.1) and (2.1) is bounded from above byZb(x0;h)\W ���� 1jb(x0; h) \W j � 1jb(x; h) \W j �����(x) dx:The absolute di�eren
e in varian
e is bounded byZb(x0;h)\W ���� 1jb(x0; h) \W j2 � 1jb(x; h) \W j2 �����(x) dx:The upper bounds are �nite in both 
ases.Proof: Fix x0 2W . Write bBD(x0) = E h \�BD(x0)� �(x0)i for the bias of (1.1), bM (x0) forthat of the estimator of De�nition 1. By (2.3),bBD(x0) = �(b(x0; h) \W )jb(x0; h) \W j � �(x0) = Zb(x0;h)\W � �(x)jb(x0; h) \W j � �(x0)jb(x0; h) \W j� dx:The right hand side 
an be rewritten asZb(x0;h)\W �� �(x)jb(x; h) \W j � �(x0)jb(x0; h) \W j�+� �(x)jb(x0; h) \W j � �(x)jb(x; h) \W j�� dx;whi
h, by Theorem 1, is equal tobM (x0) + Zb(x0;h)\W � �(x)jb(x0; h) \W j � �(x)jb(x; h) \W j� dx:ConsequentlyjbBD(x0)j = �����bM (x0) + Zb(x0;h)\W � �(x)jb(x0; h) \W j � �(x)jb(x; h) \W j� dx������ jbM (x0)j+ Zb(x0;h)\W ���� �(x)jb(x0; h) \W j � �(x)jb(x; h) \W j ���� dx:Similarly,jbM(x0)j � jbBD(x0)j+ Zb(x0;h)\W ���� �(x)jb(x0; h) \W j � �(x)jb(x; h) \W j ���� dx;whi
h 
ompletes the proof of the upper bound on the di�eren
e in absolute bias.Next turn to the varian
e. Write �2BD(x0) for the varian
e of (1.1), �2M (x0) for that of(2.1). Now, by (2.4),�2BD(x0) = Zb(x0;h)\W �(x)jb(x0; h) \W j2 dx= �2M (x0) + Zb(x0;h)\W � �(x)jb(x0; h) \W j2 � �(x)jb(x; h) \W j2� dx



3. Comparison of intensity fun
tion estimators 5by Theorem 1, and similar arguments as for the absolute bias 
omplete the proof. �A widely used 
riterion to assess the quality of an estimator is the integrated mean squarederror (MISE)ZW E �h\�(x0)� �(x0)i2� dx0 = ZW hVar(\�(x0)) + bias2(\�(x0))i dx0; (3.1)whi
h balan
es bias and varian
e.Theorem 3. Let � be a Poisson point pro
ess observed in a bounded Borel subset W ofthe plane with lo
ally �nite intensity fun
tion � : R 2 ! [0;1). Then, the estimator ofDe�nition 1 has smaller MISE than the Berman{Diggle estimator (1.1) if and only ifZW �(b(x; h) \W ) + �2(b(x; h) \W )jb(x; h) \W j2 dx >
> ZW

8<: �(x)jb(x; h) \W j + "Zb(x;h)\W �(x0)jb(x0; h) \W j dx0#29=; dx: (3.2)
Proof: For both estimators,ZW �(x0)E h\�(x0)i dx0 = ZW ZW �(x)�(x0)jb(x; h) \W j1fjjx� x0jj < hg dxdx0(by (2.3) and (2.5)). Hen
e a 
omparison in integrated mean squared error (3.1) is equivalentto a 
omparison inZW �Var(\�(x0)) + hE\�(x0)i2� dx0 = ZW E �\�(x0)2� dx0:By (2.3){(2.4) and Theorem 1, the Berman{Diggle estimator has larger integrated meansquared error than (2.1) if and only if inequality (3.2) holds. �The inequality (3.2) involves the unknown intensity fun
tion, the bandwidth h, and thegeometry of the observation window W . Indeed, neither of the two estimators we are inter-ested in is universally better than the other. To substantiate this 
laim, we pro
eed to givespe
i�
 examples.3.1 Global edge 
orre
tion leads to small MISELet � be a homogeneous Poisson pro
ess with intensity � > 0. Re
all that under the assump-tion of homogeneity, the usual estimator �̂� = N(W )=jW j is unbiased with varian
e �=jW j.In the absen
e of su
h information, a non-parametri
 estimator must be used.The integrated varian
e of both (1.1) and (2.1) is equal to � RW jb(x; h) \ W j�1dx. Itis interesting to observe that the expression is de
reasing in h. Moreover, for all h > 0,jb(x; h) \W j � jW j, so the non-parametri
 estimators never outperform �̂�.



4. Estimation of the moment measure 6The bias of the Berman{Diggle estimator is zero, whereas by (2.5) the integrated squaredbias of (2.1) is given by�2 ZW �ZW 1fjjx� x0jj < hgjb(x; h) \W j dx� 1�2 dx0 � 0with equality if and only if Rb(x0;h)\W jb(x; h) \W j�1dx � 1 for almost all x0 2W .In summary, the two types of edge 
orre
tion are indistinguishable in integrated varian
e.If Rb(x0;h)\W jb(x; h) \ W j�1dx 6= 1 for x0 in a non-null set, (1.1) has smaller integratedsquared bias, but, as we shall see in Example 1 below, at the 
ost of a higher varian
e for its
umulative 
ounterpart.3.2 Lo
al edge 
orre
tion leads to small MISELet � be a Poisson pro
ess on W with intensity fun
tion �(x) = � jb(x; h) \W j; for some� > 0. Then, the estimator of De�nition 1 is unbiased with integrated varian
e � jW j.Writeg(x0) := Zb(x0;h)\W jb(x; h) \W jjb(x0; h) \W j2 dx:Note that g(x0) � jW j=jb(x0; h)\W j is �nite for all x0 in the open set W , and depends onlyon the geometry of W and the bandwidth parameter h. Now, the mean (2.3) of the Berman{Diggle estimator evaluated at x0 2 W 
an be expressed as �(x0)g(x0), so its integratedsquared bias is zero if and only if g(x0) � 1 for almost all x0 2W . Its integrated varian
e is� RW g(x0) dx0; whi
h redu
es to �jW j if g(x0) � 1 for almost all x0 2 W . Thus, under this
ondition, the two estimators are indistinguishable. Otherwise, the estimator of De�nition 1outperforms the Berman{Diggle estimator in integrated mean squared error. To see this,note thatZW g(x0) dx0 = jW jE "� jb(X;h) \W jjb(X0; h) \W j�2# � jW jE 2 � jb(X;h) \W jjb(X0; h) \W j� = jW j;where the expe
tation is taken with respe
t to the probability distribution de�ned by itsdensity p(x; x0) := 1fjjx� x0jj < hg=(jW j jb(x; h) \W j) on W � W . In other words, theintegrated varian
e of (1.1) is at least as large as that of (2.1). As the latter is unbiased, thesame remark is true for the integrated mean squared error.4. Estimation of the moment measureA natural estimator for the total mass �(W ) pla
ed in W based on observation of a pointpro
ess � in W is N(W ). Under the Poisson assumption, the estimator is unbiased withvarian
e �(W ), see for example [2, 3, 5℄. From (2.2), we know that N(W ) = RW\�(x0) dx0 isequal to the integrated estimated intensity fun
tion. An alternative estimator based on (1.1)may be de�ned as\�BD(W ) := ZW \�BD(x0) dx0 = Xx2�\W ZW 1fjjx� x0jj < hgjb(x0; h) \W j dx0: (4.1)
As an aside, upon integration over A �W rather than W for some Borel set A, an estimatorfor �(A) is obtained.



4. Estimation of the moment measure 7Theorem 4. Let � be a Poisson point pro
ess observed in a bounded open Borel subset Wof the plane with lo
ally �nite intensity fun
tion � : R 2 ! [0;1). Then,E h \�BD(W )i = ZW f(x)�(x) dx;Var h \�BD(W )i = ZW f2(x)�(x) dx;where the fun
tion f :W ! (0;1) is de�ned byf(x0) := Zb(x0;h)\W jb(x; h) \W j�1 dx: (4.2)
Note that (4.2) is a measurable fun
tion that depends on the geometry of W and thebandwidth h only. In parti
ular, b(x0; 2h) �W implies f(x0) = 1.Proof: By the Campbell{Me
ke theorem,E h \�BD(W )i = ZW �ZW 1fjjx� x0jj < hgjb(x0; h) \W j dx0��(x) dx = ZW f(x)�(x) dx:To 
ompute the varian
e, observe that
E � \�BD(W )2� = E 24 6=Xx;y2�\W f(x) f(y)35+ E " Xx2�\W f(x)2# :

Sin
e the se
ond order produ
t density �2(x; y) exists and is equal to �(x)�(y) for a Poissonpro
ess [5℄, the 
ross term on the right hand side is equal toZW ZW f(x)f(y)�(x)�(y) dxdy = �ZW f(x)�(x) dx�2 = �E h \�BD(W )i�2 :Another appeal to the Campbell{Me
ke theorem yields
E " Xx2�\W �ZW 1fjjx� x0jj < hgjb(x0; h) \W j dx0�2# = ZW f2(x)�(x) dx:

Consequently, the varian
e of \�BD(W ) is given by RW f2(x)�(x) dx; and the proof is 
om-plete. �
Corollary 1. De�ne W+ := fx0 2W : f(x0) > 1g and W� := fx0 2W : f(x0) < 1g. Then1. \�BD(W ) is unbiased if and only if RW+ [f(x)� 1℄�(x) dx = RW� [1� f(x)℄�(x) dx;or, equivalently, if and only if Cov(f(U); �(U) = 0 where U is a uniformly distributedrandom variable on W .2. If RW+ �f(x)2 � 1��(x) dx � RW� �1� f(x)2��(x) dx; the 
ount estimator N(W ) is atleast as good as (4.1) in terms of varian
e and mean squared error.



5. Dis
ussion 8The 
onverse statement of 2. with respe
t to the mean squared error is not ne
essarilytrue in the 
ase that f is not identi
ally 1 almost everywhere, as 
an be seen by 
onsidering�(x) = 
 1fx 2W�g for 
 above or below RW�(1� f2(x)) dx �RW�(1� f(x)) dx��2 :Example 1. Let � be a homogeneous Poisson pro
ess with intensity � > 0, and f be given by(4.2). Then, as RW f(x) dx = jW j, Theorem 4.1 implies that \�BD(W ) is unbiased. Moreover,�ZW �f2(x)� 1� dx = �ZW [f(x)� 1℄2 dx � 0;
hen
e, by Theorem 4.2, the varian
e of \�BD(W ) is at least as large as that of N(W ), withequality if and only if Rb(x0;h)\W jb(x; h) \W j�1dx = 1 for almost all x0 2 W . Re
all this isexa
tly the 
ondition for (2.1) to have zero integrated squared bias, 
f. Se
tion 3.1.Example 2. Consider the intensity fun
tion of Se
tion 3.2. Then, by Theorem 4,E h \�BD(W )i = ZW f(x)�(x) dx = �ZW ZW jb(x; h) \W jjb(x0; h) \W j 1fjjx� x0jj < hg dxdx0:Now, write W �W as the union of three disjoint sets on whi
h jb(x; h) \W j is less than,equal, or larger than jb(x0; h) \W j, and use a symmetry argument as well as the fa
t thaty + 1=y > 2 for positive y 6= 1 to obtainE h \�BD(W )i � �ZW ZW 1fjjx� x0jj < hg dxdx0 = �ZW jb(x0; h) \W j dx0 = �(W )
with equality if only if jb(x0; h)\W j is 
onstant for almost all x0 2W . Otherwise, \�BD(W )overestimates �(W ). The varian
e Var( \�BD(W )) = RW f2(x)�(x) dx 
an be expressed as�(W ) E � �f2(X)� where the expe
tation is with respe
t to the normalised intensity fun
tion.Sin
e E � �f2(X)� � [E �f(X)℄2 = 1�(W )2 E 2 h \�BD(W )i � 1;
the varian
e of \�BD(W ) ex
eeds that of the 
ount estimator N(W ).5. Dis
ussionAs the distribution of a heterogeneous Poisson point pro
ess is 
ompletely determined by theintensity fun
tion �, provided it exists, we have fo
used on this model. However, most of thework presented here 
an be 
arried over to the 
ase of a lo
ally �nite point pro
ess whose�rst order moment measure exists and allows for a Radon{Nikodym derivative with respe
tto Lebesgue measure. Kernel estimators for this intensity fun
tion may be de�ned exa
tly asfor the Poisson 
ase, (2.2) remains valid, and the equations for the mean 
arry over verbatim.Regarding the varian
e, we must assume that a se
ond order produ
t density �(2) exists [5℄.Doing so, the varian
e of (2.1) 
an be expressed asZb(x0;h)\W Zb(x0;h)\W �(2)(x; y)� �(x)�(y)jb(x; h) \W j jb(y; h) \W j dxdy + Zb(x0;h)\W �(x)jb(x; h) \W j2 dx



Referen
es 9with a similar adaptation for (1.1). Generalisation to R d is straightforward.The estimators dis
ussed in this paper involve a bandwidth parameter h; the larger h,the smoother the estimated intensity fun
tion. For spe
i�
 models, h may be 
hosen byoptimisation of the (integrated) mean squared error [3℄. In pra
ti
e, Diggle [3℄ re
ommendsto 
hoose h proportional to n�1=2, where n is the observed number of points.Referen
es1. M. Berman and P. J. Diggle. Estimating weighted integrals of the se
ond-order intensityof a spatial point pro
ess. J. Roy. Statist. So
. Ser. B, 51:81{92, 1989.2. N. A. C. Cressie. Statisti
s for spatial data. John Wiley and Sons, New York, 1991.Revised edition, 1993.3. P. J. Diggle. Statisti
al analysis of spatial point patterns. A
ademi
 Press, London, 1983.Revised edition, 2003.4. B. W. Silverman. Density estimation for statisti
s and data analysis. Chapman and Hall,London, 1986.5. D. Stoyan, W. S. Kendall, and J. Me
ke. Sto
hasti
 geometry and its appli
ations. JohnWiley and Sons, Chi
hester, 1987. Revised edition, 1995.


