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Abstract

We introduce a non-parametric mass preserving estimator for the intensity function of a
Poisson point process. The new estimator’s (integrated) mean squared error is compared to
that of the classic Berman—Diggle estimator, both pointwise and cumulatively.
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1. PRELIMINARIES AND NOTATION

Let ® be a Poisson point process observed in a bounded open Borel subset (§ # W C R2
of the plane with locally finite intensity function A : R — [0, 00). If no specific parametric
model is assumed, it is natural to apply ideas from kernel estimation theory to the problem
of estimation of A(-) as proposed by Berman and Diggle [1]:

——  N(b(zo, k)W)
ABp(20) == |b(zo, h) N W]’

xo € W. (1.1)

Here b(x, h) denotes the open ball around xy with radius h > 0, and, for Borel sets A, N(A)
denotes the number of points of ® falling in A, |A| its area. The choice of bandwidth h
determines the amount of smoothing. Note that as W is open, one never divides by zero. In
fact, a stronger statement can be made. The function z — [b(z, h) N W| is continuous and
attains its minimum on the closure W. Since any point on the boundary W always has a
neighbour within distance h in W, inf,cw |b(x, h) N W| > 0. Further details may be found
e.g. in [2, 3, 5].

Although (1.1) is a natural estimator, it does not necessarily preserve the total mass in W,
nor is it based on a generalised weight function [4]. The purpose of this paper is to propose
an alternative estimator that does possess these two properties.

The plan of this paper is as follows. In Section 2, we introduce a non-parametric, mass
preserving estimator for the intensity function of an inhomogeneous Poisson process, show
it can be interpreted as a generalised weight function estimator, and compute its mean and
variance. In Section 3, we give upper bounds on the difference in absolute bias and variance
between the new and classic estimator, and present examples to show that neither of the two
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estimators is universally better than the other in terms of integrated mean squared error. In
Section 4, we quantify the bias in total mass of the classic estimator. A discussion section
concludes the paper.

2. INTENSITY FUNCTION ESTIMATION
The Berman-Diggle estimator (1.1) may be written as

Aep(@o) = ||z — zol| < h}

scorw [P0 R) O]

Hence, each point z € b(zg, h) N W is assigned a weight 1/|b(zg, h) N W|. If z¢ is close to the
boundary of W, the weight may be higher than h~2 /7 to compensate the relative shortage
of h-close points © € ® N W. A, perhaps, more natural way to correct for such edge effects
is to assign a weight 1/|b(z, h) N W] to each z € W with ||x — zo|| < h, as in the definition
below.

Definition 1. Let ® be a Poisson point process observed in a bounded open Borel subset W of
the plane with locally finite intensity function X : R? — [0,00), and define a non-parametric
estimator by

EVZURY H||z — xol| < h}

A = E W. 2.1

(o) |b(x h) "W | o € (2.1)
zePNW ?

Note that (2.1) is well-defined. Moreover, if b(zq,2h) C W, the Berman—Diggle estimator
and the estimator of Definition 1 coincide, as there is no need for edge correction of any kind.
At the other extreme, if h is larger than the diameter of W, |b(z, h)NW| = |W| for all z € W,
and again there is no difference between the estimators.

In contrast to (1.1), (2.1) preserves the total mass and is based on a weight function. To
see this, note that

||z — zol| < h}
drog =1
/W b(z, ) nw| 0

—_

for all x € W, that is, A(-) is a generalised weight function estimator. Furthermore, for any
realised point pattern ¢ "W in W,

1l — woll < 1} Wl —woll <h}
/W Z |b(z,h) N W| Z / b(z.h) N W] dro = #{eNW} (2.2)

zepenNW zepenNW

is equal to the number of points in o N W.

In order to assess the quality of the new estimator (see Section 3 below), we proceed
to compute its mean and variance. Recall that for (1.1), since N (b(zo, h) N W) is Poisson
distributed,

A(b(zo, B) NW)

E[A;(?O)} = b(zo. k)N W] (23)
volpio] = Ahon)
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Where A is the first order moment measure of ®, that is, for Borel subsets A C W, A(A) =
[4 M) dz < oo

Theorem 1. The estimator of Definition 1 has mean and variance

2] = BB =
e[S = [ TR T @0

The integrals (2.5)—(2.6) are finite and should be compared to (2.3)-(2.4).

Proof: By the Campbell-Mecke theorem (see e.g. [2, 5]),

—— [ Yl ol < B} B A(z)
Epmﬂik|wwmw“”“‘Ammwwwmwﬂm

Regarding the second moment, note that

— . 1{||2 = mo|| < h} 1{|ly = mo|| < b}
E |:/\(370) :| = E m%q) |:1W('73)1W(y) |b(m,h)oﬂ W| ‘b(y,h)oﬁ W| +

{llz - soll < h)
+E%gﬂm*”wwmng}}

Since the second order product density p?(z,y) exists and is equal to A(z)A(y) for a Poisson
process [5], the cross term on the right hand side is equal to

Jo L s o = e ]

Another appeal to the Campbell-Mecke theorem yields

Wz — ol <h}| | _ A(z)
8 {% {1W(m) b(z,h) N W2 ] } B /b(mo,h)nw b(z, ) N W2 dz.

Hence,
E|Xzo) | = (E [z +/ ) g
|: ( 0) :| ( [ ( 0)}> b(zo,h)NW |b($,h)ﬁW‘2
from which (2.6) follows. 0

3. COMPARISON OF INTENSITY FUNCTION ESTIMATORS

As noted in the previous section, for zg and A such that b(zg, 2h) C W, the estimators defined
by (1.1) and (2.1) are identical. The aim of this section is to quantify the difference between
them for arbitrary xzo € W and h > 0.
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Theorem 2. Let ® be a Poisson point process observed in a bounded Borel subset W of the
plane with locally finite intensity function X : R2 — [0,00). Then, for fired xo € W, the
absolute difference in absolute bias between (1.1) and (2.1) is bounded from above by

1 1
— Mz) dx.
/bm,mw Wao, )W o A )

The absolute difference in variance is bounded by

Az) dx.

1 1
/b(mo,h)ﬁW [b(zo, h) "W > [b(z, h) N W|?
The upper bounds are finite in both cases.

Proof: Fix zo € W. Write bpp(z¢) = E [A;(\aﬁg) - A((EO)} for the bias of (1.1), bys(zg) for
that of the estimator of Definition 1. By (2.3),

_ A(b(wo,h) N W) _ A=) Alzo)
bep(@0) = e Ty M) = /b( W { b(wo, h) VW[ Jb(aog, h) N W } o

The right hand side can be rewritten as

/bwo,h)mw H b(w,Aff)mgw Wi |b(m:(ff)ozw 4 } " { b(ﬂfof\’(g)ﬁ Wl Ib(m,/\h()m 21 g H o

which, by Theorem 1, is equal to

A(z) Az) }
by (x +/ { - dz.
M (o) b(zomyw LIb(zo, W) N W] [b(z, h) N W]
Consequently
A(z) Az) }
b = b +/ { - d
(o)l = oarl@o) + J e Uboo, ) AW~ G hy nw | &
A(z) Az) ‘
< |bpm(z +/ ‘ - dz.
b2z (o) b(ao,myow | 1B(z0, ) VW[ [b(z, h) N W]
Similarly,

A(z) Az) ‘
b < b +/ ‘ - "
|baz(w0)| < [bBD(70)] b(zo.p)w | [B(z0, B) "W |b(z, h) N W| ’

which completes the proof of the upper bound on the difference in absolute bias.
Next turn to the variance. Write 0%, (z0) for the variance of (1.1), o%,(zo) for that of
(2.1). Now, by (2.4),

A(x)
2 _ R S A,
oBp(®0) = /b(mo,h)mw b0, h) N2

) A(z) A=)
oh(@o) + /b(mo,h)ﬂW { |b(z0, h) N W |2 - b(z, h) N W|? } &

dz




3. Comparison of intensity function estimators 5
by Theorem 1, and similar arguments as for the absolute bias complete the proof. O

A widely used criterion to assess the quality of an estimator is the integrated mean squared
error (MISE)

/W IE{ [Xzo) — Mao)] 2} dzo = /W [Var(X(z0)) + bias (A (a0) | o, (3.1)

which balances bias and variance.

Theorem 3. Let ® be a Poisson point process observed in a bounded Borel subset W of
the plane with locally finite intensity function X\ : R? — [0,00). Then, the estimator of
Definition 1 has smaller MISE than the Berman—Diggle estimator (1.1) if and only if

dr >

A(b(z, h) N W) + A2(b(z, h) N W)
/w b(z, k) N W2

> / M)
Proof: For both estimators,

A d 1 — h} dxd
[ Moo [Naw) oo = [ [ ORI 1o a0l < ) dodao

(by (2.3) and (2.5)). Hence a comparison in integrated mean squared error (3.1) is equivalent
to a comparison in

/W {Var(@) + [E®]2} o = /WE [@Q] dzo.

By (2.3)—(2.4) and Theorem 1, the Berman-Diggle estimator has larger integrated mean
squared error than (2.1) if and only if inequality (3.2) holds. O

(o)
—  —  _dx dz. 3.2
/b(m,mw B0, k) N 7] 420 (3.2)

The inequality (3.2) involves the unknown intensity function, the bandwidth h, and the
geometry of the observation window W. Indeed, neither of the two estimators we are inter-
ested in is universally better than the other. To substantiate this claim, we proceed to give
specific examples.

3.1 Global edge correction leads to small MISE
Let ® be a homogeneous Poisson process with intensity A > 0. Recall that under the assump-
tion of homogeneity, the usual estimator \* = N(W)/|W| is unbiased with variance \/|W|.
In the absence of such information, a non-parametric estimator must be used.

The integrated variance of both (1.1) and (2.1) is equal to A [, |b(z,h) N W| 1dz. It
is interesting to observe that the expression is decreasing in h. Moreover, for all h > 0,
b(z, h) N W| < |W]|, so the non-parametric estimators never outperform \*.
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The bias of the Berman—Diggle estimator is zero, whereas by (2.5) the integrated squared
bias of (2.1) is given by

1{||z — h 2
)\2/ V Uz =2l <h} o 1] doe >0
w LJw  |b(z, h) N W]
with equality if and only if fb(mo oW |b(z,h) "W | ldx = 1 for almost all 2o € W.
In summary, the two types of edge correction are indistinguishable in integrated variance.
If fb(mo maw 10(@,h) N W] tdz # 1 for 2o in a non-null set, (1.1) has smaller integrated

squared bias, but, as we shall see in Example 1 below, at the cost of a higher variance for its
cumulative counterpart.

3.2 Local edge correction leads to small MISE
Let ® be a Poisson process on W with intensity function A(z) = A |b(z, h) N W], for some

A > 0. Then, the estimator of Definition 1 is unbiased with integrated variance A |W/|.
Write

Ib(z, ) N W]
g(xg) = - dx.
(o) /b(zo,mw b0, ) (W2

Note that g(z¢) < |W|/|b(xo, h) N W] is finite for all o in the open set W, and depends only
on the geometry of W and the bandwidth parameter h. Now, the mean (2.3) of the Berman—
Diggle estimator evaluated at g € W can be expressed as A(zg)g(zo), so its integrated
squared bias is zero if and only if g(zo) = 1 for almost all o € W. Its integrated variance is
A [y 9(o) dg, which reduces to A|W| if g(xzo) = 1 for almost all 29 € W. Thus, under this
condition, the two estimators are indistinguishable. Otherwise, the estimator of Definition 1
outperforms the Berman—Diggle estimator in integrated mean squared error. To see this,
note that

B b(X,h) W] ° bX,h)NW|T
J e deo= [(m) ] > W [ iy — !

where the expectation is taken with respect to the probability distribution defined by its
density p(z,zo) = 1{||z — zol| < h}/(|W]|b(xz,h) NW]|) on W x W. In other words, the
integrated variance of (1.1) is at least as large as that of (2.1). As the latter is unbiased, the
same remark is true for the integrated mean squared error.

4. ESTIMATION OF THE MOMENT MEASURE

A natural estimator for the total mass A(W) placed in W based on observation of a point
process ® in W is N(W). Under the Poisson assumption, the estimator is unbiased with
variance A(W), see for example [2, 3, 5]. From (2.2), we know that N(W fW zo) dxg is
equal to the integrated estimated intensity function. An alternative estlmator based on (1.1)
may be defined as

App(W) ;:/ Asp(zo) dzg = Y / 1{Hx_x0”<h} dzo. (4.1)

‘b g, h ﬂW|
zedNW

As an aside, upon integration over A C W rather than W for some Borel set A, an estimator

for A(A) is obtained.
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Theorem 4. Let ® be a Poisson point process observed in a bounded open Borel subset W
of the plane with locally finite intensity function X : R? — [0,00). Then,

E[Azn(W)| = Az)d
850 = [ f@)a@ .
Var [Agp(W)| = 2(2)\(z) d
w[0pp)] = [ @)@ ds,
where the function f: W — (0,00) is defined by
f(xo) ::/ lb(z, h) N W |~ da. (4.2)
b(zo,h)NW

Note that (4.2) is a measurable function that depends on the geometry of W and the
bandwidth A only. In particular, b(zg,2h) C W implies f(zg) = 1.

Proof: By the Campbell-Mecke theorem,

E [A;(\VV)} = /W {/W 1{|b|(:;;;f)()m;/h} dxo] AMz)dz = /W f(z) AM(z) dz.

To compute the variance, observe that

—_— 2 7
E[ABD(M}:E S f@) fy)| +E

z,yedNW

> f(:v)2] :

ze®dNW

Since the second order product density p?(z,vy) exists and is equal to A(z)\(y) for a Poisson
process [5], the cross term on the right hand side is equal to

— 2

[ [ sos@nm iy = ([ s = (5[ammm)])"

Another appeal to the Campbell-Mecke theorem yields

Wle—aoll <) . N [
ELG;W (/W |b(zo, h) N W| dxo) ] /Wf (z) A(z) dz.

Consequently, the variance of A];(\VV) is given by [y, f2(x) M(z) dz, and the proof is com-
plete. O

Corollary 1. Define W+ :={zg € W: f(z0) > 1} and W~ :={zg € W : f(zo) < 1}. Then

1. A;(\VV) is unbiased if and only if [y, [f(x) —1Nz) dz = [;- [1 - f(z)] Mz) d,
or, equivalently, if and only if Cov(f(U),\(U) = 0 where U is a uniformly distributed
random vartable on W.

2. If [+ [f(@)? — 1] X(z) dz > [, [1 — f(2)*] M(z) d=, the count estimator N(W) is at
least as good as (4.1) in terms of variance and mean squared error.
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The converse statement of 2. with respect to the mean squared error is not necessarily
true in the case that f is not identically 1 almost everywhere, as can be seen by considering

M) = c1{z € W} for c above or below [, (1 — f*(z))dz [[,—(1— f(=)) d:c]72

Example 1. Let ® be a homogeneous Poisson process with intensity A > 0, and f be given by
(4.2). Then, as [y, f(x)dx = |W/|, Theorem 4.1 implies that App(W) is unbiased. Moreover,

/\/ [f2(z) — 1] dz = A/ [f(z) — 1]*dz > 0,

w w

hence, by Theorem 4.2, the variance of A;(\VV) is at least as large as that of N(W), with
equality if and only if fb(mg AW |b(z,h) N W|~'dx = 1 for almost all o € W. Recall this is

exactly the condition for (2.1) to have zero integrated squared bias, cf. Section 3.1.

Example 2. Consider the intensity function of Section 3.2. Then, by Theorem 4,

|b(z,h) N W|
)\ 1 — h} dxdxg.
o)) = [ s@ra = [ [ ST e ] <k dedag

Now, write W x W as the union of three disjoint sets on which |b(xz,h) N W| is less than,
equal, or larger than |b(zg,h) N W|, and use a symmetry argument as well as the fact that
y+1/y > 2 for positive y # 1 to obtain

E [Am)} > /\/W /W 1|z — zo|| < h} dadzo = /\/W Ib(z0, h) N W| dzo = A(W)

with equality if only if |b(xg, h) N W| is constant for almost all a:o € W. Otherwise, AB/DW/)
overestimates A(W). The variance Var(App(W)) = [, f* z)dz can be erpressed as

A(W)Ey [f2(X)] where the expectation is with respect to the normahsed intensity function.
Since

1

A (X)) > [Ef(X))? = "

? [Asp(W)] > 1.

the variance of A;(\VV) exceeds that of the count estimator N (W).

5. D1ScussION

As the distribution of a heterogeneous Poisson point process is completely determined by the
intensity function A, provided it exists, we have focused on this model. However, most of the
work presented here can be carried over to the case of a locally finite point process whose
first order moment measure exists and allows for a Radon—Nikodym derivative with respect
to Lebesgue measure. Kernel estimators for this intensity function may be defined exactly as
for the Poisson case, (2.2) remains valid, and the equations for the mean carry over verbatim.
Regarding the variance, we must assume that a second order product density p(2) exists [5].
Doing so, the variance of (2.1) can be expressed as

(2) _
PN (x,y) — Mx)M(y) / Az)
dady + A 7 S
/b(mo,h)mw /b(zo,h)ﬁW |b(z, h) N W| [b(y, h) N W| b(zo,h)w |0(T, h) N W |2
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with a similar adaptation for (1.1). Generalisation to R is straightforward.

The estimators discussed in this paper involve a bandwidth parameter h; the larger h,
the smoother the estimated intensity function. For specific models, h may be chosen by
optimisation of the (integrated) mean squared error [3]. In practice, Diggle [3] recommends

-1/2

to choose h proportional to n , where n is the observed number of points.
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