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1 Introdu
tion
A 
lassi
al problem in image analysis is that of segmenting the data into relatively homoge-neous areas (see e.g. Rosenfeld & Kak (1982)). It is often the �rst step in further analysis.Given the 
entrality of the problem, it is not surprising that a myriad of segmentationmethods has been proposed, both deterministi
 and sto
hasti
 in nature. Indeed, the �rstseminal papers in statisti
al image analysis (Besag (1986), Geman & Geman (1984)) 
on-
erned this problem. The authors proposed using Markov random �elds { sometimes alsoreferred to as Gibbs distributions or �elds { to favour spatially 
oherent image partitionsover more noisy ones. More pre
isely, a graph is formed by taking the pixel latti
e asverti
es, joining nearby pixels by an edge between them, and assigning high probability toimages in whi
h pixels sharing an edge have similar values. A more re
ent a

ount of thisapproa
h 
an be found in the volume edited by Chellapa & Jain (1993), or the textbooksby Gimel'farb (1999) and Winkler (2003).The approa
h des
ribed above uses models that operate on the pixel level. Alternativemethods fo
us on the partition of the image that is the out
ome of a segmentation. Green(1995) and M�ller & Skare (2001) propose Voronoi based models, and Ni
holls (1998)suggests triangulations. In previous work, Klusz
zy�nski et al. (2005, 2007) advo
atedthe use of polygonal �eld models (introdu
ed in a range of papers by Arak, Cli�ord &Surgailis (1989, 1991, 1993)), an idea entertained by Cli�ord & Middleton (1989). In
ontrast to Markov random �elds, the 
oloured Arak & Surgailis �elds take as starting
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point not the pixel latti
e but the Poisson line pro
ess. Any realisation of this pro
essindu
es a tessellation, whi
h is then 
oloured. The boundaries between di�erent-
olouredregions form the edges of a graph. Arak & Surgailis (1989) showed that a 
areful 
hoi
eof Hamiltonian for a Gibbs �eld on the set of (admissible) 
oloured graphs gives rise to
onsistent polygonal �elds that enjoy remarkable properties whi
h make them eminentlysuitable for simulation. Building on the 
on
ept of disagreement loops (S
hreiber, 2005),Monte Carlo algorithms were developed that allowed for more global updates than thelo
al ones proposed by Cli�ord & Ni
holls (1994). It was found that the method wasrobust with respe
t to noise and able to 
apture the topology and large- or medium-sizedimage 
omponents well and rapidly; �ne details may be lost though, see Klusz
zy�nski etal. (2005, 2007).The purpose of the present paper is to introdu
e a 
lass of Gibbs-Markov random�elds that 
an be understood as dis
rete versions of polygonal �elds. Our 
onstru
tion istwo-staged: �rst a 
olle
tion of lines indu
ing a tessellation of the image is �xed, then apolygonal �eld is 
onstru
ted on this tessellation, that is to say, the edges of the �eld 
onsistof (possibly multiple) segments of the tessellation and the verti
es of the �eld are a subsetof the 
olle
tion of nodes of the tessellation. The generi
 examples of the tessellation-generating 
olle
tion of lines are realisations of the Poisson line pro
ess as well as the linesets 
orresponding to the regular planar latti
e, but it is important to stress that these arenot the only valid 
hoi
es. One might for instan
e pre-pro
ess the image to extra
t thelines a
ross whi
h the gradient 
hanges rapidly. Not every line is equally desired to turn upin the �nal segmentation. This is taken into a

ount by as
ribing a likelihood parameter toea
h line, re
e
ting the potential utility of the line in segmentation. For example, lines indense regions may be down-weighted to give sparse regions a fair 
han
e; alternatively, afterpre-pro
essing, the image gradient may guide the 
hoi
e of weight. As in our previous work,Klusz
zy�nski et al. (2005, 2007), the regions of the tessellation are 
oloured so that thepolygonal boundaries of the �eld 
oin
ide with the interfa
es separating di�erent 
olours.Thus, the edges of the �eld are the maximal linear segments that form the boundariesbetween di�erent 
oloured regions, whereas the �eld verti
es are the interse
tion pointsbetween these boundary segments. Note that ea
h edge of the �eld may 
ontain manytessellation nodes, i.e. interse
tion points of the tessellation lines.The analogy with 
ontinuum polygonal Markov �elds is exploited to de�ne Hamiltoni-ans that are su
h that desirable properties of these pro
esses (
onsisten
y, Markovianity,
2



expli
it expressions for the partition fun
tion) 
an be 
arried over to the dis
rete 
ontext.Moreover, the analogy gives rise to new attra
tive sampling s
hemes 
omplementing theusual lo
al Gibbs and Metropolis methods employed for Gibbs �elds on �nite graphs.The plan of this paper is as follows. In Se
tion 2, we 
onstru
t a family of admissible
oloured polygonal 
on�gurations built on regular tessellations, and introdu
e the 
on
eptof a dis
rete polygonal �eld. The spe
ial 
lass of 
onsistent polygonal �elds is treated indetail in Se
tion 3 with emphasis on its dynami
 representation. Invariant birth-and-deathpro
ess dynami
s for su
h 
onsistent polygonal �elds are derived in Se
tion 4 exploitingthe notion of a disagreement loop. A simple modi�
ation for general polygonal �elds isthe topi
 of Se
tion 5. More general dynami
s are introdu
ed in Se
tion 6 whi
h leadnaturally to the path 
reation and annihilation dynami
s that form the topi
 of Se
tion 7.In Se
tion 8, the image analysis task of foreground-ba
kground separation is re
ast as astatisti
al inferen
e problem for a dis
rete polygonal �eld model. Examples are presentedin Se
tion 9. We 
on
lude with a 
riti
al dis
ussion of our approa
h and indi
ate sometopi
s that merit further resear
h.
2 Polygonal �elds on regular linear tessellations
By a regular linear tessellation of the plane we shall understand a 
ountable family T ofstraight lines in R 2 su
h that no three lines of T interse
t at one point and su
h that abounded subset of R 2 is hit by at most a �nite number of lines from T ; that is to say, Tis lo
ally �nite. Even though we will admit T random in the sequel, it is assumed to bedeterministi
 in this se
tion, an assumption that does not lead to any loss of generalitybe
ause in 
ase of random T the 
onstru
tion below 
an be verbatim repeated realisation-wise.For a bounded open 
onvex set D � R 2 the tessellation T indu
es a partition of D intoa �nite 
olle
tion DT of regions of polygonal shapes, possibly 
hopped o� by the boundary.Below, we shall always assume that �D 
ontains no nodes of T ; de�ned here as interse
tionpoints of lines from T : We shall also require that the interse
tion of ea
h l 2 T with �D
onsists of exa
tly two points, i.e. there are no segments of �D along lines of T . Considerthe set �̂D(T ) of all possible 
olourings of the regions in DT into bla
k and white enjoyingthe additional property that two regions of the same 
olour 
an share a node only if eitherthey share a segment or there is a third region of the same 
olour sharing segments with
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both of them. In other words, there are no regions of the same 
olour 
onne
ted onlyby 
orners. The family �D(T ) of admissible polygonal 
on�gurations in D built on T isde�ned to 
onsist of all planar graphs 
 in D := D[�D arising as interfa
es between bla
kand white regions of 
olourings 
̂ 2 �̂D(T ): Note that in the sequel we shall 
onsistentlyuse the �̂ notation for 
oloured elements of �̂D(T ) whereas omitting the ^ will stand for the
orresponding 
olourless 
ontour 
on�guration in �D(T ): Observe that the family �D(T )
ould equivalently be de�ned to 
onsist of all planar graphs 
 in D [ �D su
h that� all edges of 
 lie on the lines of T ;� all interior verti
es of 
; i.e. those lying in D; are of degree 2;� all boundary verti
es of 
; i.e. those lying on �D; are of degree 1;see also Arak & Surgailis (1989). In other words, the elements of �D(T ) are 
olle
tionsof disjoint polygonal 
ontours built on T ; possibly nested and possibly 
hopped o� bythe boundary. Note that by an edge of 
 we mean a maximal union of 
onne
ted 
o-lineartessellation segments in 
; likewise by a vertex of 
 we mean a point where two non-
o-linearedges of 
 meet. Thus, the nodes of T lying in the interior of edges of 
 are not 
onsideredas verti
es of 
; likewise the segments of T whi
h are not maximal in 
 are not edges of
: To avoid possible ambiguities in the sequel, we shall always use the notions of verti
esand edges in the 
ontext of the polygonal 
on�gurations built on T ; whereas the respe
tiveterms nodes and segments will be reserved for T : When dis
ussing the relations betweenpolygonal �elds and general Gibbs �elds below, we will also need a notation for the statespa
e of the latter, whi
h is 
̂D(T ), standing for the 
olle
tion of all possible bla
k-white
olourings of DT without the additional requirement of having no 
orner-only 
onne
tions.The 
orresponding family 
D(T ) of 
olour-blind 
ontour 
olle
tions is a superset of �D(T );as it admits also interior verti
es of degree 4:Assume now that �xed probability parameters �l 2 (0; 1) are as
ribed to the straightlines l 2 T : For a fun
tion HD : �̂D(T ) 7! R [ f+1g the (dis
rete) polygonal �eld ÂHDwith Hamiltonian HD is de�ned to be the random element in �̂D(T ) su
h that
P �ÂHD = 
̂� = exp(�HD(
̂))Qe2E(
) �l[e℄Z[HD℄ ; (1)

where E(
) stands for the 
olle
tion of edges of 
 
onsidered here to be open, i.e. not to
ontain their verti
es, for formal 
onvenien
e below, whereas l[e℄ 2 T is the straight line4




ontaining e, and
Z[HD℄ := X�̂2�̂D(T ) exp(�HD(�̂)) Ye2E(�) �l[e℄ (2)

is the 
orresponding partition fun
tion. Re
alling that the Gibbs �eld Ĝ	D on 
̂D(T ) withHamiltonian 	D : 
̂D(T ) 7! R [ f+1g is given by
P �Ĝ	D = 
̂� = exp(�	D(
̂))P�̂2
̂D(T ) exp(�	D(�̂)) ; (3)

we easily see that the polygonal �eld ÂHD 
oin
ides in law with Ĝ	D regarded as a �̂D(T )-valued random element for
	D(
̂) := � HD(
̂)�Pe2E(
) log �l[e℄; 
̂ 2 �̂D(T );+1; otherwise. (4)

In spite of this apparent redundan
y there are good reasons for 
onsidering the notionof a dis
rete polygonal �eld though, one of them being that, unlike (3), the de�nition(1) admits a natural 
ontinuum version and in fa
t it is the 
ontinuum set-up where ithas originally arisen, see Arak (1982), Arak & Surgailis (1989) and Arak et al. (1993).It should also be emphasised that for suitable natural 
hoi
es of Hamiltonian in (1) theresulting �eld exhibits striking properties, as will be dis
ussed in Se
tion 3. There isanother important reason for introdu
ing (1), however, whi
h is 
ru
ial for the purposesof the present paper: there are simulation te
hniques available for 
ontinuum polygonal�elds, see S
hreiber (2005) and Klusz
zy�nski et al. (2007), whose dis
rete adaptations 
anbe used to provide new attra
tive simulation algorithms for dis
rete Gibbs �elds. In the
ontext of image segmentation, the Hamiltonian will in
lude terms that quantify how wella 
oloured 
ontour 
olle
tion des
ribes the data (see Se
tion 8 below). To pro
eed withthe presentation of these ideas, we shall begin with a dis
ussion of the so-
alled 
onsistentpolygonal �elds and their dynami
 representations in Se
tion 3 below.To 
omplete the present se
tion, we remark that formula (1) 
an be regarded as thedis
rete equivalent of the line-based representation for polygonal �elds as developed in Arak& Surgailis (1989). It is natural to ask whether an alternative point-based representationin the spirit of Arak et al. (1993) is available as well. This is indeed the 
ase, but, unlikein the 
ontinuum set-up, this alternative representation arises by a simple re-arrangementof the line-indexed produ
t Qe2E(
) �l[e℄ as �Qv(l1;l2)2V (
)\Dp�l1�l2� �Qv(l)2V (
)\�Dp�l�
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with v(l1; l2) standing for verti
es of 
 falling into D and arising at the interse
tion of linesl1; l2 2 T ; and with v(l) ranging through boundary verti
es of 
 in �D lying on l 2 T :Thus, in sharp 
ontrast to the 
ontinuum 
ase, here the point-based representation doesnot seem to o�er a relevant alternative to the line-based setting.
3 Consistent polygonal �elds on regular tessellations
In the seminal papers Arak (1982) and Arak & Surgailis (1989), it was observed thatfor some parti
ular 
hoi
es of the Hamiltonian the 
orresponding polygonal �elds enjoyremarkable properties whi
h make them very well suited for simulation { these spe
ialpro
esses are the so-
alled 
onsistent polygonal �elds. In the present se
tion, we shalladopt to the dis
rete 
ase of polygonal �elds on regular tessellations the argument of Arakand Surgailis originally developed mainly in the 
ontinuum setting (with some ex
eptionsthough, see e.g. model D in Surgailis (1991)).To pro
eed 
onsider the Hamiltonian�D(
̂) := � Xe2E(
) Xl2T ; l�e log(1� �l) + Xn(l1;l2)2
 log(1� �l1�l2); 
̂ 2 �̂D(T ); (5)
with n(l1; l2) 2 
 ranging through all nodes of the tessellation T arising as interse
tionpoints of l1; l2 2 T and lying on 
; that is to say, either lying on the edges of 
 or 
oin
idingwith one of its verti
es. Here and in the sequel, l � e means that the line l interse
ts ebut is not 
o-linear with it. The polygonal �eld Â�D is a 
onsistent polygonal �eld in thesense made pre
ise by the following theorem.Theorem 1 The polygonal �eld Â�D with Hamiltonian �D enjoys the following properties:Consisten
y: For bounded open 
onvex D0 � D � R 2, the �eld Â�D\D0 
oin
ides in lawwith Â�D0 : By in
reasing D " R 2 this allows us to 
onstru
t the whole plane extensionof the pro
ess Â� su
h that Â�D 
oin
ides in law with Â� \D for all bounded open
onvex D � R 2 :Linear se
tions: For a straight line l 
ontaining no nodes of T ; the interse
tion pointsand interse
tion dire
tions of l with the edges of the polygonal �eld Â� 
oin
ide indistribution with those with the line �eld �T de�ned to be the random sub-
olle
tionof T where ea
h straight line l� 2 T is 
hosen to belong to �T with probability �l�1+�l�and reje
ted otherwise, and all these 
hoi
es are made independently.6



Solvability: An expli
it formula is available for the partition fun
tion:
Z[�D℄ = 20� Yn(l1;l2)2D(1� �l1�l2)1A�10� Yl2T ; l\D 6=; 1(1 + �l)

1A�1 : (6)
Markov property: For a smooth 
losed 
urve � � R 2 
ontaining no nodes of T , the
onditional distribution of Â� in the interior of � depends on the 
on�guration outside� only through the interse
tion points and interse
tion dire
tions of � with the edgesof the polygonal �eld and through the 
olouring of the �eld along �:
Proof The proof of Theorem 1 is based on the so-
alled dynami
 representation for
onsistent polygonal �elds, being a dis
rete version of and 
onstru
ted in full analogy withthe 
orresponding representation in Se
tions 4 and 5 in Arak & Surgailis (1989). Theidea underlying this 
onstru
tion is to represent the 
onsidered polygonal �eld in termsof the equilibrium evolution of a one-dimensional parti
le system tra
ing the polygonalboundaries of the �eld in two-dimensional time-spa
e. To this end, we interpret the open
onvex domain D as a set of time-spa
e points (t; y) 2 D; with t 2 R referred to as the time
oordinate and with y 2 R standing for the spatial 
oordinate of a parti
le at the time t: Inthis language, a straight line segment in D stands for a pie
e of the time-spa
e traje
toryof a freely moving parti
le. For a straight line l non-parallel to the spatial axis and 
rossingthe domain D we de�ne in the obvious way its entry point to D; in(l; D) 2 �D; and its exitpoint, out(l; D) 2 �D: Without loss of generality we assume that no line of T is parallelto the spatial axis, possibly rotating the 
oordinate system if this is not the 
ase.We 
hoose the time-spa
e birth sites for the new parti
les by independently pla
ing abirth site� at ea
h node n(l1; l2) of the tessellation T falling into D; with probability �l1�l2(interior birth site),� at ea
h entry point in(l; D) of lines l 2 T into D; with probability �l(1+�l) (boundarybirth site).Ea
h interior birth site n(l1; l2) emits two parti
les moving with initial velo
ities su
h thatthe initial segments of their traje
tories lie on the lines l1 and l2 of the tessellation going outfrom the birth site, unless another parti
le previously born hits the site in whi
h 
ase the
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birth does not o

ur. Note that this prevents 
reation of degree 3 and degree 4 verti
es inthe resulting graph. Ea
h boundary birth site in(l; D) emits a single parti
le moving withthe initial velo
ity su
h that the initial segment of its traje
tory lies on l (no pre
autionsimilar to the one for interior birth sites above is present be
ause boundary birth sites
annot be hit by previously born parti
les). All the parti
les evolve independently in timea

ording to the following rules:(E1) Between the 
riti
al moments listed below, ea
h parti
le moves with 
onstant ve-lo
ity so that dy = vdt with v standing for the a
tual velo
ity,(E2) When a parti
le tou
hes the boundary �D; it dies,(E3) In 
ase of a 
ollision of two parti
les (equal spatial 
oordinates y at some momentt with (t; y) 2 D), both of them die,(E4) Whenever a parti
le moving in time-spa
e along l1 2 T rea
hes a node n(l1; l2); it
hanges its velo
ity so as to move along l2 with probability �l2 ; and keeps movingalong l1 otherwise.The 
laim 
onstituting the 
ore of the proof is that the union of the time-spa
e traje
toriestra
ed by the parti
les of the above system 
oin
ides in distribution with the 
ontourensemble A�D of the polygonal �eld Â�D ; whereas the law of the �eld itself is re
overedby pi
king one of the two possible bla
k-white 
olourings at random with probability 1=2:To verify this statement we 
hoose some 
̂ 2 �̂D(T ) and 
ompute the probability that the
olour-blind 
ontour ensemble 
 is tra
ed by the parti
le system above. To this end, weobserve that� ea
h edge e 2 E(
) whose initial (lower time 
oordinate) vertex lies on �D yields afa
tor �l[e℄1+�l[e℄ (boundary birth site) times Ql2T ; l�e(1� �l) (no velo
ity updates alonge),� ea
h of the two edges e1; e2 2 E(
) stemming from a 
ommon interior birth siten(l1; l2) yields a fa
tor �li ; i = 1; 2; (
oming from the birth probability) timesQiQl2T ; l�ei(1� �l) (no velo
ity updates along ei),� ea
h of the edges e 2 E(
) arising due to a velo
ity update of a parti
le yields afa
tor �l[e℄ (velo
ity update probability) times Ql2T ; l�e(1� �l) (no velo
ity updatesalong e), 8



� the absen
e of birth sites in nodes n(l1; l2) of T in D not belonging to 
 yields thefa
tor Qn(l1;l2)2Dn
(1 � �l1�l2) (note that birth sites are allowed in all points of 
 {either they give rise to parti
les tra
ing 
 or are dis
arded if hit by a previously bornparti
le),� the absen
e of boundary birth sites at those entry points to D of lines of T whi
h donot give rise to an edge of 
 yields the fa
tor Ql2T ; l\D 6=;; in(l;D)62
 11+�l :Putting these fa
tors together allows us to evaluate the probability of 
 being tra
ed bythe parti
le system to0� Ye2E(
) �l[e℄
1A0� Ye2E(
) Yl2T ; l�e(1� �l)1A0� Yn(l1;l2)2
 (1� �l1�l2)1A�10� Yn(l1;l2)2D (1� �l1�l2)1A�

�0� Yl2T ; l\D 6=; 11 + �l
1A = 2 exp(��D(
̂))Z[�D℄ Ye2E(
) �l[e℄ (7)

with Z[�D℄ given by (6). Taking into a

ount that the 
hoi
e between the two possible
olourings of the �eld is made with probability 1=2; independently of 
; we see that theprobability of obtaining 
̂ as the out
ome of the parti
le system evolution is exa
tlyexp(��D(
̂))Z[�D℄ Ye2E(
) �l[e℄;and hen
e the resulting polygonal �eld 
oin
ides in law with Â�D as required { this fa
twill be referred to as the dynami
 representation for the polygonal �eld Â�D in the sequel.The Solvability statement (6) follows from the above as well. The remaining propertiesfollow in full analogy with the 
orresponding argument in Arak & Surgailis (1989), when
ewe only provide a brief dis
ussion below. First, the Markov property stated above isa dire
t 
onsequen
e of the Gibbsian de�nition of Â�D , whereas the Linear se
tionsstatement will follow from the form of the boundary birth me
hanism des
ribed above assoon as we establish the remaining Consisten
y property. To this end, 
hoose a boundedopen 
onvex set D � R 2 and a straight line l interse
ting D, and de�ne D0 to be theset of points of D lying to the left of l (lower time 
oordinates). Clearly then, from thedynami
 representation we 
on
lude the Consisten
y statement for so 
hosen D and D0:
9



Noting that the dynami
 representation is equally available upon rotating the time-spa
e
oordinate system, we see that the Consisten
y holds as well upon 
utting o� the part ofthe set D lying to the left of l: This means however that the 
onsisten
y holds upon 
uttingo� pie
es of the original set with arbitrary straight lines { a repetitive use of this pro
edureand a possible passage to the limit allows us to 
arve from D any arbitrary 
onvex subset.This proves the Consisten
y 
laim and 
ompletes the proof of Theorem 1. 2
4 Disagreement loop birth and death dynami
s for
onsistent polygonal �elds
A 
ru
ial 
on
ept below will be that of a disagreement loop, borrowed from S
hreiber(2005), Se
tion 2.1. This arises from the dynami
 
onstru
tion of the polygonal �elds asprovided by the evolution rules (E1-4) and the 
orresponding birth rules spe
i�ed in theproof of Theorem 1 above.Suppose that we observe a parti
ular realisation 
 2 �D(T ) of the 
olourless 
ontourensemble A�D and that we modify the 
on�guration by adding an extra birth site x0 to theexisting 
olle
tion of birth sites for 
 arising in the dynami
 representation, while keepingthe evolution rules (E1-4) for all the parti
les, in
luding the two newly added ones if x0is an interior birth site and the single newly added one if x0 is a boundary birth site.Denote the resulting new random (
olourless) polygonal 
on�guration by 
�x0: A 
ru
ialobservation is that, under appropriate 
oupling of the dynami
s of newly added parti
leswith that of the previously existing ones along their sub-traje
tories annihilated due to the
reation of new parti
les, for an interior birth site x0 the symmetri
 di�eren
e 
4[
 � x0℄is almost surely a single loop (a 
losed polygonal 
urve), possibly self-interse
ting andpossibly 
hopped o� by the boundary. Likewise, under the same 
oupling, the symmetri
di�eren
e 
4[
 � x0℄ is almost surely a single polygon with no self-interse
tions. Wedes
ribe this 
oupling below. It should be noted that for formal 
onvenien
e we assumethat a polygonal 
on�guration 
 
omes together with the knowledge of all attempted birthsites dis
arded during its 
reation.If x0 happens to lie on 
; the new birth attempt gets immediately dis
arded, yielding
4[
�x0℄ = ;: Apart from this degenerate 
ase, the leftmost point of the loop 
4[
�x0℄is of 
ourse x0: Ea
h of the two new parti
les p1; p2 emitted from x0 move independently,a

ording to (E1� 4); ea
h giving rise to a disagreement path. The initial segments of
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su
h a disagreement path 
orrespond to the movement of a parti
le, say p1; before itsannihilation in the �rst 
ollision. If this is a 
ollision with the boundary, the disagreementpath gets 
hopped o� and terminates there. If this is a 
ollision with a segment of theoriginal 
on�guration 
 
orresponding to a 
ertain old parti
le p3; the new parti
le p1 diesbut the disagreement path 
ontinues along the part of the traje
tory of p3 whi
h is 
ontainedin 
 but not in 
�x0: A parti
ular 
ase may happen when the 
ollision o

urs with a birthsite in 
; where one of the two parti
les born (denote it by p3) gets annihilated, whereasthe evolution of the se
ond one is re-used under our 
oupling to yield the extension of theevolution of p1 { we do so instead of annihilating both parti
les emitted from the birth siteand building the extension of the evolution of p1 anew. The 
hoi
e of the annihilated andsurviving parti
les upon su
h a 
ollision at a node n(l1; l2) with the 
urrent dire
tion of p1being l1 is made as follows: with probability (1 � �l2) we annihilate the parti
le movingalong l2 (no velo
ity update for p1) and with probability �l2 we annihilate the parti
lemoving along l1 (p1 undergoes a velo
ity update). Clearly, this is 
onsistent with thedynami
 representation. Thus, we note that under the so-
onstru
ted 
oupling p1 alwaysmoves a

ording to the usual evolution rules (E1-4) be
ause the parti
les emitted by thehit birth site did so. At some further moment p3 dies itself in 
; tou
hing the boundary orkilling another parti
le p4 in 
: In the se
ond 
ase, however, this 
ollision only happens for
 and not for 
�x0, so the parti
le p4 survives (for some time) in 
�x0 yielding a further
onne
ted portion of the disagreement path for p1; whi
h is 
ontained in 
 � x0 but not in
: Likewise, it may happen that p3 rea
hes a node n(l1; l2) where a birth attempt was madein 
 but was dis
arded due to the presen
e of p3: Now that p3 is absent in 
�x0, this birthdoes o

ur for 
 � x0: We require in our 
oupling that one of the emitted parti
les followthe remaining traje
tory of p3 in 
; thus re-using for the new parti
le the random 
hoi
esmade before for p3: Clearly, the se
ond parti
le emitted by the birth site denoted by p4 asabove, adds one further sub-portion of the disagreement loop in [
 � x0℄ n 
. Again, theparti
le evolving a

ording to the previous traje
tory of p3 moves in a

ordan
e with allthe rules of the dynami
 representation be
ause so did p3:A re
ursive 
ontinuation of this 
onstru
tion shows that the disagreement path initiatedby p1 
onsists alternately of 
onne
ted polygonal sub-paths 
ontained in [
 � x0℄ n 
 (
allthese positive parts) and in 
 n [
� x0℄ (
all these negative parts). Note that this disagree-ment path is self-avoiding and, in fa
t, it 
an be represented as the graph of some pie
ewiselinear fun
tion t 7! y(t): Clearly, the same applies for the disagreement path initiated by
11



the se
ond initial parti
le p2: An important observation is that whenever two positive ortwo negative parts of the two disagreement paths hit ea
h other, both disagreement pathsmay die at this point and the disagreement loop may 
lose (as opposed to interse
tions ofsegments of distin
t signs whi
h do not have this e�e
t). Obviously, if the disagreementloop does not 
lose in the above way, it gets eventually 
hopped o� by the boundary. Notethat upon the interse
tion of two positive or negative sub-paths at a node v, instead ofgetting killed a disagreement loop may also 
ontinue due to altering the status of a birthsite, should it o

ur at v: Indeed, for negative sub-paths a birth site previously dis
ardedmay be rea
tivated, whereas for positive sub-paths a birth site may be ina
tivated.We shall write ��[x0; 
℄ = 
4[
 � x0℄ to denote the (random) disagreement loop
onstru
ted above. It remains to 
onsider the 
ase of x0 being a boundary birth site,whi
h is mu
h simpler be
ause there is only one parti
le emitted and so, under our 
oupling,��[x0; 
℄ = 
4[
�x0℄ is easily seen to be a single self-avoiding polygonal path eventually
hopped o� by the boundary. We abuse the language and 
all su
h ��[x0; 
℄ a (degenerate)disagreement loop as well.Likewise, a disagreement loop arises if we remove one birth site x0 from the 
olle
tion ofbirth sites of an admissible polygonal 
on�guration 
 2 �D(T ); while keeping the evolutionrules for all the remaining parti
les. We write 
 	 x0 for the 
on�guration obtained from
 by removing x0 from the list of the birth sites, while the resulting random disagreementloop is denoted by �	[x0; 
℄, so that �	[x0; 
℄ = 
4[
 	 x0℄: Note that again an emptydisagreement loop may o

ur, should we annihilate a birth site where the birth attemptwas dis
arded due to the presen
e of previously 
reated parti
les. We refer the reader toS
hreiber (2005) for further formal details of the disagreement loop 
on
ept.With the above terminology we are in a position to des
ribe random dynami
s onthe 
oloured 
on�guration spa
e �̂D(T ) whi
h leave invariant the law of the polygonal�eld Â�D : Parti
ular 
are is needed, however, to distinguish between the notion of time
onsidered in the dynami
 representation of the polygonal �eld as well as throughout the
onstru
tion of the disagreement loops above, and the notion of time to be introdu
ed forthe random dynami
s on �̂D(T ) 
onstru
ted below. To make this distin
tion 
lear we shallrefer to the former as to the representation time (r-time for short) and shall keep for it thenotation t; while the latter will be 
alled the simulation time (s-time for short) and will bedenoted by s in the sequel.Consider the following pure jump birth-and-death type Markovian (DL)-dynami
s on
12



�̂D(T ):DL:birth At ea
h x := n(l1; l2) 2 D; l1; l2 2 T ; with intensity �l1�l2ds set 
s+ds := 
s�x(interior births), then 
onstru
t 
̂s+ds by randomly 
hoosing, with probability 1=2;either of the two possible 
olourings for 
s+ds: Pro
eed likewise at ea
h x := l\�D; l 2T ; with intensity �l1+�lds (boundary births).DL:death For ea
h interior and boundary birth site x in 
s; with intensity 1 set 
s+ds :=
s 	 x; then 
onstru
t 
̂s+ds by randomly 
hoosing, with probability 1=2; either ofthe two possible 
olourings for 
s+ds:If none of the above updates o

urs, we keep 
̂s+ds = 
̂s: It is 
onvenient to per
eive theabove dynami
s in terms of generating random disagreement loops � and setting 
s+ds :=
s4�; with the loops of the type ��[�; �℄ 
orresponding to the rule DL:birth and �	[�; �℄to the rule DL:death.As a 
onsequen
e of the dynami
 representation developed in the proof of Theorem 1we obtainProposition 1 The distribution of the 
onsistent polygonal �eld Â�D is the unique in-variant law of the dynami
s given by DL:birth and DL:death. The resulting stationarypro
ess is reversible. Moreover, for any initial distribution of 
̂0 the laws of the randompolygonal �elds 
̂s 
onverge in variational distan
e to the law of Â�D as s!1:
Proof To establish the invarian
e, we note �rst that the DL dynami
s is easily seento preserve the Bernoulli law imposed by the dynami
 representation on the 
olle
tion ofbirth sites of the pro
ess (in
luding the birth attempt sites dis
arded due to the in
iden
ewith previously born parti
les). Moreover, the DL dynami
s is expli
itly 
onstru
ted soas to ensure that if the original 
on�guration is tra
ed by parti
les evolving a

ording tothe rules of the dynami
 
onstru
tion and emitted from the given 
olle
tion of birth sites,then so is the updated 
on�guration, with the a

ordingly updated 
olle
tion of birth sites.This ensures the required invarian
e.The reversibility of the dynami
s follows from the obvious reversibility of the birth sitebirth-and-death pro
ess. To see this, assign to ea
h birth site (in
luding the dis
arded birthattempts) the (random) sequen
e of velo
ity update 
hoi
es to be made in the 
ourse ofevolution of the parti
les it emits (would emit), whi
h 
orresponds to the full knowledge of

13



the (unlimited) parti
le evolution. This makes birth sites into birth pa
kages, algorithmi-
ally representable e.g. by assigning to ea
h birth site the 
orresponding seed for randomnumber generation. Thus, we end up with a random 
olle
tion of birth pa
kages 
ontainingall the randomness of the �eld, that is to say, fully determining the resulting �eld now ob-tainable by a deterministi
 pro
edure. For de�niteness, we assume that if a parti
le passeson its way a birth site, whi
h thus be
omes ina
tivated, starting from the next evolutionstep after this event the parti
le evolves further a

ording to the birth pa
kage of the justina
tivated birth site rather than a

ording to its own. Now, in this 
ontext it is easy to
he
k that the reverse move to adding a birth pa
kage at x0 is removing the same birthpa
kage at x0 and vi
e versa, that is to say [
 � x0℄ 	 x0 � 
 and [
 	 x0℄ � x0 � 
 withx0 
arrying always the same birth pa
kage. This ensures the reversibility under the abovebirth pa
kage interpretation. To get the required reversibility for polygonal 
on�gurationsnot 
ontaining the full knowledge of entire birth pa
kages (unne
essarily determining theunlimited extension of the traje
tories of annihilated parti
les as if they were to surviveforever) is easily re
overed by integrating out the spurious 
omponents of birth pa
kages.The uniqueness and 
onvergen
e statements in the above proposition require a shortjusti�
ation as well. They both follow from the observation that, in �nite volume, regardlessof the initial state, the pro
ess 
̂s spends a non-null fra
tion of time in the state 'bla
k'(no 
ontours, the whole domain D 
oloured bla
k). Indeed, this observation allows us to
on
lude the required uniqueness and 
onvergen
e by a standard 
oupling argument, e.g.along the lines of the proof of Theorem 1.2 in Liggett (1985). 2
5 Disagreement loop birth and death dynami
s forgeneral polygonal �elds
Take now a general polygonal �eld ÂHD+�D with a Hamiltonian HD + �D : �̂D(T ) !R [ f+1g as in (1). Consider the following modi�
ation of the basi
 (DL) dynami
s
onstru
ted in Se
tion 4 above:DL[H℄:birth At ea
h x := n(l1; l2) 2 D; l1; l2 2 T ; with intensity �l1�l2ds set Æs+ds :=
s � x; whereupon 
onstru
t Æ̂ by 
hoosing with probability 1=2 one of the twopossible 
olourings for Æ: Then, with probability min�1; exp hHD(
̂s)�HD(Æ̂)i�, put
̂s+ds := Æ̂; otherwise keep 
̂s+ds := 
̂s: Pro
eed likewise at ea
h x := l \ �D; l 2 T ;with intensity �l1+�lds: 14



DL[H℄:death for ea
h interior and boundary birth site x in 
s, with intensity 1 � ds setÆ := 
s 	 x; whereupon 
onstru
t Æ̂ by 
hoosing with probability 1=2 one of the twopossible 
olourings for Æ: Then, with probability min�1; exp hHD(
̂s)�HD(Æ̂)i�, put
̂s+ds := Æ̂; otherwise keep 
̂s+ds := 
̂s.In other words, the original dynami
s DL are used to propose a new 
on�guration Æ̂; whi
his then a

epted with probability min�1; exp hHD(
̂s)�HD(Æ̂)i� ; and reje
ted otherwise.By a straightforward veri�
ation of the detailed balan
e 
onditions and an appeal to Propo-sition 1, we obtain the following result.Theorem 2 The distribution of the polygonal �eld ÂHD+�D given by (1) is the uniqueinvariant law of the dynami
s des
ribed by DL[H℄:birth and DL[H℄:death. The resultingstationary pro
ess is reversible. Moreover, for any initial distribution of 
̂0, the laws of therandom polygonal �elds 
̂s 
onverge in total variation to the law of ÂHD+�D as s!1:
6 Generalised dynami
 representation for 
onsistentpolygonal �elds
The dynami
 
onstru
tion of 
onsistent polygonal �elds borrowed from Arak & Surgailis(1989) and adapted for tessellation-based �elds in the proof of Theorem 1 
an be regardedas revealing in
reasing portions of the polygonal �eld in the 
ourse of time 
ow. Under thisinterpretation, with probability 1 the portion of a polygonal �eld in a bounded open 
onvexdomain D un
overed by time t is, upon 
losure, pre
isely the 
losure of its interse
tionwith Dt = �D \ (�1; t℄� R+ : The idea underlying our generalised dynami
 representationdeveloped in the present se
tion below is to repla
e the above familyDt by some other time-in
reasing family of subsets of D, also denoted by Dt in the sequel, eventually 
overingthe whole D; and to try to provide a natural 
onstru
tion of the polygonal �eld beinggradually un
overed on the growing domain Dt in the 
ourse of time 
ow. We shallalways assume that Dt is 
onvex, for otherwise we would have to deal with situationswhere two or more dis
onne
ted parts of an edge of the �eld have been revealed, whi
hleads to unwanted dependen
ies along the segments 
onne
ting these parts. Taking thisinto a

ount, and having formal 
onvenien
e in mind, we impose the following naturalassumptions on Dt; t 2 [0; 1℄;� (Dt)t2[0;1℄ is an in
reasing family of 
ompa
t 
onvex subsets of �D = D [ �D;15



� D0 is a single point x in �D = D [ �D;� D1 
oin
ides with �D;� Dt is 
ontinuous in the usual Hausdor� metri
,� For ea
h l 2 T the interse
tion l \ D�l 
onsists of exa
tly one point A (l); where�l := infft 2 [0; 1℄; Dt \ l 6= ;g: Moreover, A (l) is not a node of T :The 
ondition requiring that D0 be a singleton 
an be easily weakened, in fa
t it is enoughif D0 be a linear segment, yet this requires 
ertain te
hni
al 
hanges in the dynami
s belowwithout providing essential generalisations and hen
e we do not dis
uss this option here.The point A (l) will be referred to as the an
hor point for l; this indu
es the an
hormappingA : T ! �D: Consider now the following dynami
s in time t 2 [0; 1℄; with all updates givenby the rules below performed independently of ea
h other.(GE:Initialise) Begin with an empty �eld at time 0;(GE1) Between 
riti
al moments listed below, during the time interval [t; t+dt℄; the �eldlines in Dt hitting �Dt extend straight to Dt+dt nDt;(GE2) When a �eld line hits the boundary �D; its stops growing in this dire
tion (re
allthat �D 
ontains no segments along lines of T and so the interse
tion of a �eld linewith �D 
onsists of at most two points),(GE3)When two �eld lines interse
t in Dt+dt nDt; they are not extended any further be-yond the interse
tion point (stop growing in the dire
tion marked by the interse
tionpoint),(GE4) Whenever a node n(l1; l2); l1; l2 2 T ; falls into Dt+dt n Dt; and l1 is a 
urrent�eld line hitting �Dt; with probability �l2 we update the dire
tion of the line to l2;extending away from the an
hor point A (l2): We keep the previous dire
tion along l1otherwise. Should several su
h verti
es belong to Dt+dt n Dt; the dire
tion updatesare performed independently,(GE:LineBirth) Whenever an an
hor point A (l); l 2 T ; falls into Dt+dt n Dt; withprobability �l1+�l a new �eld line l is born at A (l); extending in both dire
tions,
16



(GE:VertexBirth) Whenever a node n(l1; l2); l1; l2 2 T ; falls into Dt+dt n Dt; withprobability �l1�l2 two new �eld lines l1 and l2 are born, ea
h extending in the dire
tionaway from its an
hor point, unless another �eld line present at time t hits n(l1; l2) inwhi
h 
ase the birth does not o

ur.It is worth noting that if we 
hoose the family Dt so that Dt := �D \ (�1; (1 � t)xmin +txmax℄�R+ ; where xmin and xmax are the minimal and maximal x-
oordinates of points in D(assume that �D 
ontains exa
tly one point with x-
oordinate xmin for formal 
onvenien
e),the generalised dynami
 representation (GE) 
oin
ides with the original Arak & Surgailisone determined by rules (E1-4) and we have A (l) = in(l; D):In analogy with the 
orresponding result for the usual dynami
 
onstru
tion, as estab-lished in the proof of Theorem 1, we show that the �eld resulting from the above (GE)
onstru
tion does 
oin
ide in law with the 
ontour ensemble A�D and, 
onsequently, withÂ�D upon 
hoosing with probability 1=2 one of the two possible 
olourings.Theorem 3 The random 
ontour ensemble resulting from the above 
onstru
tion (GE)
oin
ides in law with A�D :
Proof To verify the statement of the theorem, we 
hoose some 
 2 �D(T ) and 
omputethe probability that the 
olour-blind 
ontour ensemble 
 is obtained as a result of theabove 
onstru
tion. To this end, we observe that� ea
h edge e 2 E(
) 
ontaining the an
hor point A (l[e℄) in its interior yields a fa
tor�l[e℄1+�l[e℄ (line birth) times Ql2T ; l�e(1� �l) (no dire
tion updates along e),� ea
h of the two edges e1; e2 2 E(
) stemming from a 
ommon interior birth siten(l1; l2) yields a fa
tor �li ; i = 1; 2; (
oming from the birth probability) timesQiQl2T ; l�e(1� �l) (no dire
tion updates along ei),� ea
h of the edges e 2 E(
) arising due to a dire
tion update yields a fa
tor �l[e℄(dire
tion update probability) times Ql2T ; l�e(1��l) (no dire
tion updates along e),� the absen
e of birth sites at nodes n(l1; l2) of T in D not belonging to 
 yields thefa
tor Qn(l1;l2)2Dn
(1 � �l1�l2) (note that birth sites are allowed in all points of 
 {either they give rise to lines tra
ing 
 or are dis
arded if hit by a previously bornline),
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� the absen
e of line births at those an
hor points A (l); l 2 T ; whi
h do not give riseto an edge of 
 yields the fa
tor Ql2T ; l\D 6=;; A (l)62
 11+�l :Putting these fa
tors together allows us to evaluate the probability of 
 arising as a resultof the (GE) 
onstru
tion as0� Ye2E(
) �l[e℄
1A0� Ye2E(
) Yl2T ; l�e(1� �l)1A0� Yn(l1;l2)2
(1� �l1�l2)1A�10� Yn(l1;l2)2D(1� �l1�l2)1A�

�0� Yl2T ; l\D 6=; 11 + �l
1A = 2 exp(��D(
̂))Z[�D℄ Ye2E(
) �l[e℄ (8)

in full analogy to (7) with Z[�D℄ given by (6). This 
ompletes the proof as in the argumentestablishing the dynami
 representation in Theorem 1. 2
7 Path 
reation and annihilation dynami
s for generalpolygonal �elds
The purpose of the present se
tion is to use the generalised dynami
 representation to
onstru
t dynami
s on the spa
e of polygonal 
on�gurations in a spirit similar to thederivation of the disagreement loop dynami
s from the basi
 Arak & Surgailis dynami
representation dis
ussed in Se
tion 4 above. This means in parti
ular that the path 
reationand annihilation pro
edure is a dire
t generalisation of the disagreement loop dynami
s;there are good reasons, though, to treat the disagreement loop pro
edure separately, sin
eit is usually less 
omplex from a 
omputational viewpoint due to the parti
ularly simplenature of the an
hor mapping A (l) = in(l; D): Also, as we shall see below, the mainadvantage of 
hoosing the family Dt di�erent from the one 
orresponding to the Arak& Surgailis 
onstru
tion relies on the parti
ular form of line birth events, whereas thevertex birth Monte-Carlo moves are equally well generated by the simpler disagreementloop dynami
s. It should be noted here that further interest in the generalised dynami
representation stems from its theoreti
al impli
ations (S
hreiber, work in progress), givingan insight into the higher order 
orrelation stru
ture of the �eld, whi
h falls beyond thes
ope of the present appli
ation-oriented paper.
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To pro
eed towards the so posed obje
tive, we note �rst that, in full analogy withthe DL dynami
s above, adding a new line birth site for l 2 T at its an
hor point las spe
i�ed in (GE:LineBirth) and letting it evolve thereupon a

ording to the rulesof the (GE) dynami
s under the same 
oupling as for DL above, yields a disagreementpath as the symmetri
 di�eren
e between the previous on�guration 
 and the new one
 �Dt l; where �Dt is the line 
reation operator 
orresponding to the 
hoi
e of (Dt)t2[0;1℄:Likewise, annihilating a line birth site, with the 
orresponding operator denoted by 	Dt;yields under the usual 
oupling a disagreement path as well. Clearly, disagreement paths orloops are also obtained upon adding or removing a vertex, with the 
orresponding operatorsdenoted again by �Dt and 	Dt with no ambiguity arising between the line 
reation andannihilation operators whi
h 
an be distinguished by the di�erent nature of their rightargument. Consider the following path 
reation and annihilation (PCA) dynami
s:PCA:CreateLine For ea
h l 2 T ; with intensity �l1+�lds; set 
s+ds := 
s �Dt l;PCA:AnnihilateLine For ea
h l 2 T su
h that A (l) 2 
; with intensity 1; set 
s+ds :=
s 	Dt l;PCA:CreateVertex For ea
h x := n(l1; l2) 2 D; l1; l2 2 T ; with intensity �l1�l2ds; set
s+ds := 
s �Dt x;PCA:AnnihilateVertex For ea
h interior birth site x in 
s; with intensity 1; set 
s+ds :=
s 	Dt x:In full analogy with Proposition 1 we getProposition 2 The distribution of the 
onsistent 
olour-blind polygonal �eld A�D is theunique invariant law of the dynami
s PCA. The resulting stationary pro
ess is reversible.Moreover, for any initial distribution of 
0 the laws of the random polygonal �elds 
s
onverge in variational distan
e to the law of A�D as s!1:Clearly, a version of the above dynami
s 
an be 
onstru
ted for general polygonal �eldswith Hamiltonian �D+HD for some HD : �̂D(T )! R+ : To this end, we regard the PCAdynami
s as a generator of update proposals, whi
h are then a

epted with probability 1if HD de
reases and with probability exp(��HD) otherwise, where �HD) is the in
reasein HD. To put it in formal terms, pro
eed as follows:
19



PCA[H℄ Given 
̂s generate an update proposal Æ for 
s+ds; 
olour it randomly in oneof two possible ways with probability 1=2 ea
h, thus obtaining the 
oloured updateproposal Æ̂: Now, if HD(Æ̂) < HD(
̂s); set 
̂s+ds := Æ̂; otherwise set 
̂s+ds := Æ̂ withprobability exp(�[HD(Æ̂) � HD(
̂s)℄) and keep 
̂s+ds = 
̂s with the 
omplementaryprobability.Using Proposition 2 and verifying the usual detailed balan
e 
onditions we 
ome toTheorem 4 The distribution of the polygonal �eld ÂHD+�D is the unique invariant law ofthe dynami
s PCA[H℄. The resulting stationary pro
ess is reversible. Moreover, for anyinitial distribution of 
̂0 the laws of the random polygonal �elds 
̂s 
onverge in variationaldistan
e to the law of Â�D+HD as s!1:
8 Image segmentation as a statisti
al inferen
e prob-lem
Here we re
all the framework for image interpretation in terms of planar Markov random�elds (see e.g. Chellapa & Jain (1993)).The data 
onsist of some dis
retised grey level image. Write S for the set of sites andL = f0; � � � ; 255g for the label set. Formally, the data is a ve
tor y = (ys)s2S with ys 2 L.As before, assume that D is a bounded, 
onvex and open subset of R 2. We will imposethe further 
onstraint that D 
ontains S.Below, we shall reformulate the task of segmenting y into foreground and ba
kgroundregions as a statisti
al parameter estimation problem. Sin
e the aim is to interpret y interms of a bla
k-and-white 
oloured polygonal 
on�guration, we seek to �nd a 
̂� 2 �̂Dthat explains the data `best' in the sense of having a small mis
lassi�
ation rate as well asexhibiting desirable `smoothness' properties. More spe
i�
ally, we shall base inferen
e onthe polygonal �eld distribution exp��Y y;�D;S(
̂)�Z[Y y;�D;S℄ Ye2E(
) �l[e℄ (9)
with

Y y;�D;S(
̂) = �D(
̂) + �XD;S(
̂; y); 
̂ 2 �̂D(T ); (10)
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for � > 0, and partition fun
tionZ[Y y;�D;S℄ = X�̂2�D(T ) exp��Y y;�D;S(�̂)� Ye2E(�) �l[e℄:Thus, (9) is a of the form (1) with a Hamiltonian that is a weighted sum of two terms:�D(
̂) given by (5), and XD;S(
̂; y) that des
ribes the goodness-of-�t between the 
oloured
on�guration 
̂ and the data y. In the examples to be presented in Se
tion 9, we shall usethe `mis
lassi�
ation rate' XD;S(
̂; y) =Xs2S jys � 
̂sj; (11)
where 
̂s denotes the 
olour of 
̂ at pixel s. Note that as D 
ontains S, 
̂s is well-de�ned.Moreover, observe that (9) 
an also be regarded as the distribution of a 
lassi
al Gibbs�eld on 
̂D(T ), the spa
e 
onsisting of all binary 
olourings of DT with Hamiltonian ofthe form (4),

	D(
̂) = � Y y;�D;S(
̂)�Pe2E(
) log �l[e℄; 
̂ 2 �̂D(T );+1; otherwise. (12)
In 
on
lusion, we pla
e ourselves in a regularisation framework in whi
h a likelihood termXD;S(
̂; y) is weighted against a regularisation term �D(
̂) on 
oloured polygonal 
on�g-urations and line desirability terms �Pe2E(
) log �l[e℄. Upon observation of y, the goal isto estimate the underlying 
oloured polygonal 
on�guration by Hamiltonian optimisation.More spe
i�
ally, we use the simulated annealing algorithm (Geman & Geman (1984),Haario and Saksman (1991)) and let � " 1 to �nd the polygonal 
on�gurations 
̂� havingminimal mis
lassi�
ation rate while keeping the other terms in the Hamiltonian (10) �xed.
9 Examples
In this se
tion we present results produ
ed by our C++ implementation of the abovealgorithms on toy and real life examples. The model (9) was used with 
omponents (5)and (11). We used a 
ombination of the DL[H℄:birth-death algorithm of Se
tion 5and the PCA[H℄ dynami
s of Se
tion 7 
ombined with the usual lo
al basi
 polygonre
olourings 
onstituting the 
ore of the standard simulation algorithms for latti
e-indexedGibbs-Markov �elds (see e.g. Winkler (2003)). Path 
reation and annihilation, beingglobal in nature, is useful in the beginning of the simulated annealing pro
edure, as are21



the disagreement loop updates. In later stages of the simulation they are 
omplementedwith lo
al polygon updates to take 
are of �ne details.We applied simulated annealing, treating (5) as the Hamiltonian of the referen
e dis-tribution, and a linear 
ooling s
hedule that amounts to setting � equal to the number ofiterates divided by 20. At the present stage, for the family T we 
hose the regular squarelatti
e, yet it should be emphasised that experiments with other latti
es are underway.We �rst tested the method on syntheti
 images. At ea
h iteration, the disagreementloop dynami
s were 
hosen with probability 0:7, path 
reation and annihilation with prob-ability 0:1, leaving probability 0:2 for lo
al polygon updates. For the path 
reation andannihilation dynami
s we set the family Dt to grow from a point along a randomly dire
tedsegment until rea
hing the boundary �D and thereupon to extend in perpendin
ular di-re
tion until 
overing the whole of D: Also, random rotations of the time axis for thedisagreement loop dynami
s were performed every 1000 moves.Figure 1 (left) shows a blurry `A' overlaid on the segmentation result obtained after50; 000 steps; Figure 1 (right) is the result after 75; 000 iterations on a `B'. In both 
ases,about a minute 
omputation time was needed on a state of the art desktop 
omputer toseparate foreground from ba
kground. The target mis
lassi�
ation rate is 0:04 for both�gures.

Figure 1: Segmented letters: A (left) and B (right).
Also we used grey level images from the Berkeley Segmentation Dataset and Ben
hmarkweb sitehttp://www.ee
s.berkeley.edu/Resear
h/Proje
ts/CS/vision/grouping/segben
h/22



Figure 2: Segmented image of 
at (left) and mushroom (right).
to evaluate our approa
h, as well as images from the PASCAL Network of Ex
ellen
e
hallenge 2006http://www.pas
al-network.org/
hallenges/VOC/thumbs/VOC2006/index1.htmlFigure 2 (left) depi
ts a 
at. A target goodness-of-�t 0:07 was obtained after 134; 138steps within 2 minutes. As for the toy examples, at ea
h iteration, the disagreement loopdynami
s were 
hosen with probability 0:7, path 
reation and annihilation with probability0:1, and lo
al polygon updates with probability 0:2.Figure 2 (right) shows a pi
ture of a mushroom against a bushy ba
kground, with thesegmentation result obtained after 150; 000 steps. About 7:5 minutes 
omputation time wasneeded to rea
h a 0:29 target goodness-of-�t. For this image, half of the update proposalsinvolved lo
al polygon modi�
ations, the other half disagreement loops.It should be emphasised that, unlike in the purely bla
k-and-white set-up, for the greylevel images the target goodness-of-�t (11) should not be identi�ed with the mis
lassi�
a-tion rate be
ause for instan
e pixels in the middle of the grey s
ale bring a 
ontribution of0:5 regardless of whether they are 
lassi�ed as bla
k or white.The dis
rete nature of polygonal �elds de�ned using regular latti
es implies that itis not possible in prin
iple to follow exa
tly the outline of the foreground obje
t. Onthe other hand, the state spa
e of the annealing algorithm is mu
h redu
ed, resultingin a faster pro
edure than that des
ribed for the 
ontinuum models by Klusz
zy�nski etal. (2005, 2007). It should also be noted that we have used a simple Lp 
riterion for
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optimisation; more sophisti
ated Hamiltonians would also in
lude terms based on the lo
alimage gradient or shape and size 
hara
teristi
s of the polygonal 
ontour 
on�guration.
10 Dis
ussion and 
on
lusion
In this paper, we presented a 
lass of Gibbs �elds on �nite graphs generated by regulartessellations, that 
an be interpreted as dis
retisations of the 
onsistent polygonal Markov�elds introdu
ed by Arak & Surgailis (1989). We showed that these �elds enjoy a numberof striking properties (in
luding 
onsisten
y, solvability, Markovianity) similar to those ofthe 
ontinuous polygonal Markov �elds by whi
h their de�nition was inspired. In parti
u-lar, a dynami
 representation 
an be 
onstru
ted, whi
h may be used to design simulationalgorithms based on disagreement loops as well as path 
reation and annihilation. Byaddition of a Hamiltonian that measures the goodness-of-�t by an Lp 
riterion, the modeland te
hniques were applied to the image analysis problem of foreground-ba
kground sep-aration.It should be noted that, in 
ontrast to the de�nition of a usual Markov random �eld, wehave ex
luded X-shaped nodes, as doing so allows us to obtain a neat theory and avoidsambiguity in distinguishing the 
ontours that 
omprise a polygonal 
on�guration. The
ondition 
an easily be lifted, though, with only a few di�eren
es to the theory:� In the dynami
 
onstru
tion developed in Se
tion 3 we admit births of new parti
lesalso at sites where a prior 
ollision o

urred.� The Hamiltonian �D(
̂) gets an extra term� log (1� �l1�l2) for ea
h parti
le 
ollision(death) site n(l1; l2) 2 D of 
 at whi
h no new parti
le is born { this extra term takesinto a

ount the probability of not having an X-shaped node (not observing a newbirth) at the death site v(l1; l2); whi
h is 1 � �l1�l2 : Unfortunately, the so modi�edHamiltonian be
omes dependent on the 
hoi
e of the 
oordinate system (spatial andtime axes) unlike the original Hamiltonian in (5), this is be
ause the notion of thebirth site does depend on the dire
tion of the time 
ow.The algorithms proposed in this paper 
an be modi�ed a

ordingly. Clearly, if a ri
h enough
olle
tion T is used, the 
hoi
e to in
lude or ex
lude X-shaped nodes hardly matters forsegmentation purposes.
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Exploration of the full potential of the 
lass of 
onsistent polygonal �elds built on �nitetessellations is beyond the s
ope of the present paper and part of our work in progress.In parti
ular, the 
hoi
e of the 
olle
tion T and the assignment of probabilities �l to ea
hl 2 T remains as subje
t of further study. From the perspe
tive of image segmentation, itwould be of parti
ular interest to base the 
hoi
e of tessellation on gradient information.Indeed, as edges lie at the boundaries between more or less homogeneous regions, theyare 
hara
terised by abrupt 
hanges in intensity values, and 
ontain valuable informationabout the stru
tures and obje
ts present in the image. Hen
e, 
omputation of the edgemap of an image is useful, as the amount of data that needs to be stored may be greatlyredu
ed, while preserving most of the information of interest (Rosenfeld & Kak, 1982). TheCanny (1986) �lter is widely regarded as the best general purpose edge dete
tor, designedto 
ombine high signal-to-noise ratio and pre
ise lo
alisation and 
omposed of Gaussiansmoothing, Sobel �lter, non-maximum suppression, and hysteresis steps.We believe that foreground-ba
kground separation is not the only appli
ation for whi
hthe models and te
hniques dis
ussed in this paper 
an be applied. As the Arak (1982)pro
ess 
an be extended to allow for more than two 
olour labels (Arak & Surgailis (1991),Klusz
zy�nski et al. (2007)), so is it of interest to explore their dis
rete 
ounterparts formulti-
lass segmentation (
urrent work in progress).Another appli
ation area is the dete
tion of linear features su
h as road networks oredges from image data. Several marked point pro
ess models have been proposed as priordistributions for this task (La
oste (2004), Stoi
a (2001), Van Lieshout & Stoi
a (2003)).However, being de�ned by a density with respe
t to a Poisson pro
ess, su
h line segmentmodels are not 
apable to reprodu
e su
h 
hara
teristi
s of real-life images as an abundan
eof parallel lines, joined endpoints, or preferred angles of 
rossing. Consistent dis
retepolygonal �eld models, in 
ontrast, are. Related, somewhat easier, 
onditional simulationproblems o

ur in 
ognitive experiments aimed at understanding the human visual system.
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