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A new equilibrium kinetic model has been developed, describing the hydrogen 

storage in hydride-forming materials. Using reasonable structural assumptions 

and based on first-hand principles of chemical kinetics and statistical 

thermodynamics model is capable to describe complex process in the 

hydrogen storage system including phase transition. A complete set of 

equations, describing pressure-composition isotherms in both solid-solution 

and two-phase coexistence regions have been obtained. Basing on energy 

conception and principles of statistical thermodynamics, generalization of 

Langmuir, Temkin and other kinetic approaches has been made. Explicit, 

general and universal algorithm of rate constants determination using well-

defined phase-dependent Hamiltonians for bulk and surface of the hydride 

forming material has been proposed. Various characteristics of both model 

(LaNiyCu1.0) and commercial, MischMetal-based, AB5-type materials at 

different compositions and temperatures have been simulated. Good 

agreement between experimental and theoretical results for the pressure-

composition isotherms obtained in the gas-phase experiment has been found in 

all cases. 
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1. INTRODUCTION 

 

  Modern society urgently needs for clean renewable and efficient energy storage 

devices. Sustainable energy suppliers have to promote a sustainable economic 

development and quality of life as well as for environment protection. MetalHydride 

(MH) compounds are successfully employed as efficient hydrogen storage via the gas 

phase, and this is one of the key factors, enabling usage of hydrogen-driven Fuel Cells and 

other ecologically clean portable applications. The second application of the MH materials 

is high energy density, Nickel MetalHydride (NiMH) batteries, nowadays widely applied 

in many portable electronics and Hybrid Electrical Vehicles (HEV).1-6 

  Hydrogen storage is highly complex multistage process. The first step of 

hydrogen storage is dissociation of hydrogen molecules at the interface between metal and 

gas phase. This represents an adsorption process. The process which is reverse to that is a 

recombination of adsorbed hydrogen atoms. The adsorbed hydrogen atoms may penetrate 

the interstitial sites inside of the hydride-forming material, what substitute an absorption 

process. The absorbed hydrogen atoms spread inside the bulk of the material due to 

diffusion. The overall reaction can be represented by 

 

                                           2M ½ H MH+ ↔ .                                                          (1) 

 

   Evidently, a chemical equilibrium exists between hydrogen stored in the solid 

and that present in the gas phase, which is generally characterized by pressure-

composition isotherms.3-7  

  A typical pressure-composition absorption isotherm and accompanying phase 

diagram are schematically shown in curve (a) and (b) of Fig. 1, respectively7-11
. During 

hydrogen absorption at low concentrations, a solid solution is formed, which is generally 

denoted as the α-phase. In this concentration region the partial hydrogen pressure ( eq
HP

2
) is 

clearly dependent on the amount of stored hydrogen. After the hydrogen concentration has 

reached a certain critical value ( xα ), phase transition occurs and the α-phase is 

continuously transformed into the β-phase. The pressure dependence in this two-phase 

coexistence region is generally characterized by a (sloping) plateau7,12,13. Phase transition 
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is completed at xβ  and a solid solution is subsequently formed by the β-phase only. This 

typical three-step process will play an important role in the present paper. 

  Hydrogen absorption reaction (Eq.1) is a complex process. We can trace a 

number of attempts to describe the adsorption process from pure thermodynamics 

viewpoint. The majority of the existing thermodynamic models employ methods of 

statistical mechanics, which derives macroscopic characteristics, such as Gibbs free 

energy and entropy, from a microscopic description of the system. Lacher14 has proposed 

one of the first models of that kind. His ideas were further developed in Lototsky et al.15 

paper. Both models happen to be not suitable for description of the sloping plateaus. Naito 

et al.16 proposes a lattice gas model to describe pressure-composition isotherms with 

sloping plateaus. However, this model demonstrates a poor fit between the experimental 

and simulation results. Recently a new statistical Lattice Gas Model (LGM) has been 

proposed13. This model is based on first principles of statistical mechanics and takes into 

account the hydrogen absorption and desorption in hydride-forming materials in both 

solid solution and two-phase coexistence regions.  

 All abovementioned papers concentrate only on thermodynamic of the process. No 

kinetic limitations are considered. However chemical kinetic imposes additional 

limitations on equilibrium. Thus the shape of pressure-composition isotherms and 

equilibrium potential curves is affected. To describe complex processes taking place in 

operating fuel cell one needs to know complete kinetics of hydrogen storage, i.e. 

adsorption, absorption and recombination. In this case pure statistical thermodynamic 

description is not enough to describe these stages and chemical kinetic approach must be 

used. 

 There are a number of papers discussing various aspects of hydrogen storage 

kinetics. Martin et al. consider absorption and desorption kinetic of hydrogen. They 

proposed very detailed scheme of hydrogen storage reaction but did not addressed 

equilibrium situation. Same drawback suffers Fernandez et al. and Feldman et al. We 

know only few attempts to describe equilibrium kinetics of complex systems. One of the 

first and fundamental works is Gileadi17-18. Author deeply described similar system, 

considered various (electro-)chemical stages of the process and different kinetic 

approaches to the rate constant determination (Langmuir, Temkin, ect.). But system 

considered by Gileadi is very different from MH storage system and some of kinetic 

equations were done as empirical. The first attempt of description of hydrogen storage 

system from kinetics point of view has been made by Feng et. al.19. Authors applied 
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equilibrium kinetics approach to describe pressure-composition isotherms and obtained 

good agreement with experimental data. However their description of phase transition and 

hydrogen surface recombination are oversimplified and rate constants are treated in 

empirical way. We improve the chemical description of the overall reaction significantly 

considering proper hydrogen recombination reaction and letting reaction rates vary in 

different phases.  

  In the present paper, a new equilibrium kinetic model is proposed. This model is 

based on first principles of chemical kinetics and statistical mechanics and takes into 

account the hydrogen absorption and desorption in hydride-forming materials in both 

solid solution and two-phase coexistence regions. We provided universal and systematic 

approach to the activation energies and rate constants determination using well-defined 

phase-dependent Hamiltonians for bulk and surface of the hydride forming material. 

Proposed approach, definitely, can be extended for arbitrary reacting system. The 

simulated development of partial hydrogen pressure was compared with wide range of 

experimental results, showing very good agreement.  

 

2. MODEL 

 

A. System description. 

  Let us consider storage reaction via the gas phase in more details (Fig.2). The 

hydrogen atoms are chemically adsorbed at the surface and then converted to absorbed 

state in the first atomic layer which is also called sublayer or subsurface [Schlapbach]. 

Then hydrogen moves to the bulk of material by usual diffusion. Simultaneously 

recombination of adsorbed hydrogen atoms takes place at the surface of the hydride-

forming material. In Fig.2 θ is the normalized surface coverage, x is the normalized 

hydrogen concentration in the first atomic layer of the hydride-forming material, ga  is the 

hydrogen concentration in the gas phase. Thus, two reaction steps must be considered: 

 

1. Hydrogen recombination/dissociation (Tafel) reaction: 

 

                                                                                                               (2) 

 

 

2. Hydrogen absorption/adsorption reaction: 

2Ms + H2(g) (ag)
  k1

k-1 
 2MHad (θ ) 
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                                (3) 

   

 For the gas phase we adopt Boltzmann equation, linking pressure (
2

eq
HP ) and 

concentration ( ga ) of the hydrogen for given temperature (T ): 

 

                                                  
2

e q
H gP a R T= .                       (4) 

 

  In fact we will consider general reactions described by Eqs. (2-3) separately within 

each phase. We will assume that reaction flows in each phase independently on other 

phase. 

 

B. Model basics. Structural assumptions. 

 

 Let us consider crystallographic structure of the bulk of MH material. A well-known 

class of hydrogen storage alloys, nowadays exclusively applied in rechargeable NiMH 

batteries, is the so-called AB5-type compounds. A schematic representation of the 

hexagonal unit cell of a non-stoichiometric representative of this class is shown in 

Fig.3(a)18-20. The crystallographic structure is composed of large A-type atoms (e.g. La) at 

the as-denoted 1a positions and smaller B-type atoms (e.g. Ni, Co) surrounding them in a 

well-defined way at the 3g, 2c and 6l positions. Deviation from the stoichiometric 

composition was proven to take place by introducing dumbbell-pairs of B-type atoms at 

some A-type (2e) positions20,21.  Upon hydrogenation the hydrogen guest atoms will 

occupy certain well-defined interstitial sites in the open AB5-host structure, which can be 

recognized in the cross-section of Fig.3(b). It is assumed that a single guest atom can only 

occupy one host site and that each unit cell may have several host sites. Since the host 

material can be in more than one crystallographic state, different unit cells, each 

characterized by its own specific number of host sites, have to be considered.  

     Consider the hydrogen storage system consisting of the gas phase, the surface layer 

of dissociated hydrogen atoms and the bulk of hydrogen storage material. Suppose that the 

bulk of hydrogen storage material consists of bM  unit cells, each of those can, upon 

hydrogen storage, be either in the α- ( bMα ) or the β-state ( bM β ), leading to  

 

   MHabs(x) + Ms  k2 k-2 
 Ms  +  MHad (θ) 

  k2
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                                                        b b bM M Mα β= +                                                  

 

When the crystallographic structure of both phases is assumed to be identical, bM  

remains constant throughout the hydrogenisation process. We assumed that the number of 

host sites per unit cell for the α- and β-phase are equal. This number is denoted as bd .  

The total number of host sites in the solid ( bN ) can then be obtained from  

 

                                      b b b b b b bN N N d M d Mα β α β= + = + . 

 

The amount of hydrogen guest atoms in the α- and β-phase is denoted by bnα  and bnβ , 

respectively, where the total number of occupied hydrogen sites ( bn ) is given by the 

summation of bnα  and bnβ .  Denote max
bn   the maximal number of host sites in the bulk that 

can be occupied by hydrogen. Then, the normalized number of absorbed hydrogen atoms 

x  (which is also called state of charge) in the system can be represented by 

 

                                                  
max max

.
b bb

b b

n nnx
n n

α β+
= =                                                  (5) 

 

The curves in Fig 4(a) and 4(b) show the development of the normalized number of 

host sites max/b b
iN n  as a function of the hydrogen content in the various phases (i) of the 

bulk material. The dependence of bNα  and bNβ  on x  in the three crystallographic regions 

can be mathematically represented as  

 

     

, x

x
, x x

x x

0, x

b b

b b b

d M x

x
N d M x

x

α

β
α α β

β α

β

⎧ <
⎪

⎛ ⎞−⎪
= ≤ ≤⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪ >⎩
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x , x x
x x

, x

b b b

b b

x

xN d M x

d M x

α

α
β α β

β α

β

⎧ <
⎪

⎛ ⎞⎪ −
= ≤ ≤⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪ >⎩

        (6)  

 

In curves Fig. 4(c) and (d) the development of the normalized number of absorbed guest 

hydrogen atoms ( max/b b
in n ) is shown. At low hydrogen concentration the hydrogen atoms 

fill the available α -sites only. The maximum concentration level within α -phase is 
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reached at xx α= . The phase transition starts at that point and bnα  decreases linearly in the 

two-phase coexistence region. Finally bnα  became zero and the phase transition ends at 

xβ . We assume that all available host sites are fully occupied by hydrogen atoms at 1x = , 

that is max
b b bn N nβ β= =  at that point. The following expressions, therefore, determine 

evolution of bnα  and bnβ  as function of x  

 

     

max

max

, x

x
x , x x

x x

0, x

b

b b

xn x

x
n n x

x

α

β
α α α β

β α

β

⎧ <
⎪
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= ≤ ≤⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪ >⎩

; max
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b b

b

x

xn n x

xn x

α

α
β β α β

β α

β

⎧ <
⎪

⎛ ⎞⎪ −
= ≤ ≤⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪ >⎩

    (7)  

 

It is clear that at low hydrogen concentrations whole volume of the sample is occupied by 

α-phase. When the phase transition starts, volume of α-phase decreases linearly in favor 

of β-phase and diminishes at xβ . In the following derivations it is convenient to use 

variable vi  that denotes the percentage of total host sites of hydride forming material 

related to particular phase. This variable formally defines as 

 

 

1, x
x

v , x x
x x

0, x

x
x

x

x

α

β
α α β

β α

β

⎧ <
⎪

−⎪= ≤ ≤⎨ −⎪
⎪ >⎩

;                    

0, x
xv , x x

x x

1, x

x
x x

x

α

α
β α β

β α

β

⎧ <
⎪

−⎪= ≤ ≤⎨ −⎪
⎪ >⎩

.              (8) 

 

Apparently, if we denote the total volume of the sample as 0V  then volume occupied by 

phase i  is expressed as 0= vi iV V  (we neglect change in the volume of  the unit cell during 

phase transition)). In similar way we can express numbers of available host sites in each 

phase i.e. vb b b
i iN d M= . The normalized concentration of the hydrogen in particular 

phase i  is defined as 

                                                               /b b
i i ix n N= .                                                     (9) 

 

We will also define the partial hydrogen concentrations in phase i  as  
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                                                               max/i b b
ix n n= .                                                  (10) 

 

Note that x x xα β= + , but x x xα β≠ + . The average concentration of hydrogen in the 

sample is not equal to sum of hydrogen concentrations in each of phases, unless we have 

just one phase. In the case of pure phase the partial concentration coincides with usual 

normalized concentration. 

  Now let us consider the surface layer of the hydride-forming material. The surface 

layer is composed of half-opened unit cells that contain places suitable for hosting of 

hydrogen atoms. We are working with quasi-one-dimensional model and we assume unit 

half-cells at the surface belong to the same phase as all unit cells exactly below the 

surface. However the total number of surface unit cells sM  remain unchanged and 

 

                                                                .s s sM M Mα β= +  

 

We assumed that the number of host sites per (surface) unit cell for the α- and β-phase are 

equal and denoted as sd . The total number of host sites at the surface ( sN ) can then be 

obtained from  

 

                                      s s s s s s sN N N d M d Mα β α β= + = + . 

 

Consider the surface area occupied by particular phase at the surface. This surface area 

will be denoted as , ,iA i α β= . We assume that fraction of each phase (α  or β ) at the 

surface is exactly the same as beneath in the bulk, and, therefore can be expressed as  

 

                                                               0= vi iA A ,                                                            (11) 

 

where 0A  is the total sample surface area. It immediately follows vs s s
i iN d M= . 

  Denote snα  and snβ  the numbers of adsorbed hydrogen atoms at the surface of the α  

and β  phases accordingly. Denote max
sn   the maximal number of host sites in the surface 

layer that can be occupied by hydrogen. Again, like in the case of bulk we assume this 
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number doesn’t depend on x   (in fact max
s s sn d M= ). Then, by definition, the total surface 

coverage of the surface of the hydride-forming material is:  

 

                                                          
max

.
s s

s

n n
n
α βθ
+

=               

 

The physical sense behind this definition is simple θ  is a fraction (percentage) of the total 

number of available host sites that are occupied by the hydrogen atoms. Define the i -th 

phase surface coverage as fraction of occupied host sites at the surface of i -th phase i.e. 

 

                                                            /s s
i i in Nθ = .                                                         (12) 

 

For mathematical convenience we will define also partial surface coverages for each 

phase as 

 

                                                      max/i s s
in nθ = .                                    (13) 

 

Apparently the total surface coverage is a sum of both partial α βθ θ θ= + . Note that for 

particular phase the surface coverage indicates percentage of filled host sites relative to 

the number of host sites available within the same phase, while the partial surface 

coverage show percentage of filled host sites relatively to the total number of host sites in 

whole surface, i.e. in both phases together. Considering Eqs. 12-13 together with Eqs. 6-8 

we can see that vi
i iθ θ= . 

 

C. Reaction kinetic description 

 

  Schematic representation of hydrogen recombination/dissociation (Eq.2) and 

adsorption/absorption (Eq.3) processes using conception of phase separation is shown in 

Fig.5. According to that scheme we can split our system into two parts. 

 

Part 1. Hydrogen dissociation/recombination reaction. According to the reaction 

scheme (Eq.2, Fig.3,4) and basic principles of chemical kinetics we can write dissociation 

( 1
iJ ) and recombination ( 1

iJ− ) fluxes in phase i  [mol/s] as 
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2
11

2
11

( ) ,
,

( ) ,

ii s
i i g

ii s
i i

J k A a M a
i

J k A a MH
α β

−−

⎧ ⎡ ⎤=⎪ ⎣ ⎦ =⎨
⎡ ⎤⎪ = ⎣ ⎦⎩

                                           (14) 

 

where 1, ,
i

k i α β=  [m5mol-2s-1] is normalized dissociation rate constant, 1, ,
i

k i α β− =  

[m2mol-1s-1] is the normalized recombination rate constant, iA  [m2] is the surface area 

attributed to phase i , ( )s
ia M  [mol m-2] is the surface activity of free host sites in phase i , 

( )s
ia MH  [mol m-2] is the surface activity of occupied host sites in phase i  and ga  [mol m-

3] is the hydrogen activity in the gas phase. For simplicity we assume that all activities are 

equal to corresponding concentrations. If we accept the assumption that chemically active 

species are homogeneously distributed across the surface, occupied by particular phase, 

then we can express concentrations of relevant species via surface coverages (Eq. 12), in 

the following way. Denote 0
sa  the surface density of available host sites (same in both 

phases for scarcity). Consider ( )s
ia MH . This is surface concentration of occupied host 

sites ( adMH ) in phase i . Then, by definition of surface coverage 

 

                                                        0( )s s
i ia MH a θ= . 

 

In similar way, ( )s
ia M  is the surface concentration of free host sites in i -th phase. By 

definition of 0
sa  we have  0( ) ( )s s s

i ia M a MH a+ = , therefore  

 

                                                     0( ) (1 )s s
i ia M a θ= − . 

 

Dividing the fluxes onto the total surface area 0A  and using definition (11) we obtain rates 

(fluxes per unit area) of dissociation ( 1
ir ) and recombination ( 1

ir− ) reactions [mol s-1m-2]: 

 

                                        
2

1 1

2
1 1

v (1 ) ,
,

v ( ) ,

i i
i i g

i i
i i

r k a
i

r k

θ
α β

θ− −

⎧ = −⎪ =⎨
=⎪⎩

                       (15) 
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where 
2

11 0 , ,
ii sk k a i α β⎡ ⎤= =⎣ ⎦  is the dissociation rate constant [s-1] and 

2
11 0 , ,

ii sk k a i α β−− ⎡ ⎤= =⎣ ⎦  is the recombination rate constant [mol s-1m-2]. These rate 

constants differ from normalized rate constants (
i
jk ) by squared concentration of surface 

host sites. 

Phases at the surface (Fig.5) are separated but hydrogen concentration (pressure) in the 

gas phase is the same for both phases. In chemical equilibrium rates of direct and inverse 

reactions must coincide, thus we can write balance equation: 

 

         
1 1

1 1 1 1

1 1

, 0 x

, x x

, x 1

r r x

r r r r x

r r x

α α
α

α β α β
α β

β β
β

−

− −

−

⎧ = ≤ <
⎪⎪ + = + ≤ ≤⎨
⎪

= < ≤⎪⎩

              (16) 

 

Taking into account Bolzmann equation (Eq.4) and reaction rates (Eq.15) we can 

analytically solve Eq.16 and obtain general formula for equilibrium pressure: 

 

                
2

2
1

1
2 2

1 1
2 2

1 1

2
1

1

, 0 x
1

( ) v ( ) v
, x x

(1 ) v (1 ) v

, x 1
1

eq
H

k x
k

k k
P RT x

k k

k x
k

α

αα

α β
α α β β

α βα β
α α β β

β

ββ

θ
θ

θ θ
θ θ

θ
θ

−

− −

−

⎧⎛ ⎞ ≤ <⎪⎜ ⎟−⎝ ⎠⎪
⎪ +⎪= ≤ ≤⎨ − + −⎪
⎪
⎛ ⎞⎪ < ≤⎜ ⎟⎪ −⎝ ⎠⎩

                      (17) 

 

Note, that surface coverages , iθ θ  depend, in general, on state of charge. We find this 

dependence by considering second part of the reaction scheme. We also should remember 

that rate constants 1 1 1 1, , ,k k k kα α β β
− −  may be a functions of surface and bulk concentrations. 

 

Part 2. Adsorption/absorption process is described by Eq.3 and shown in Fig.5. Phases 

at the surface and in the bulk of material (first atomic layer) are separated, so, reactions 

(Eq. 3) in both phases flow independently. Similar to Part 1 we can write adsorption ( 2
iJ ) 

and desorption ( 2
iJ− ) fluxes in phase i  [mol/s] as 
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22

22

( ) ( ) ,
,

( ) ( ) ,

ii s b
i i i

ii s b
i i i

J k A a MH a M
i

J k A a M a MH
α β

−−

⎧ =⎪ =⎨
⎪ =⎩

                                    (18) 

where 2 , ,
i

k i α β=  [m3mol-1s-1] is the adsorption rate constant, 2 , ,
i

k i α β− =  [m3mol-1s-1] 

is the desorption rate constant, ( )b
ia M  [mol m-2] is the bulk activity (concentration) of 

free host sites in phase i , ( )b
ia MH  [mol m-2] is the bulk activity (concentration) of 

occupied host sites in phase i . Denote 0
ba  the density of available host sites in the bulk of 

the material (same for both phases). Then 0 ( ) ( )b b b
i ia a M a MH= +  and we may express 

bulk concentrations of occupied and freehost sites as 

 

                                0( )b b
i ia MH a x=     and       0( ) (1 )b b

i ia M a x= −   ,i α β= . 

 

 Then for adsorption/desorption reaction rates [mol s-1m-2] we obtain  

 

                          2 2

2 2

(1 ) v , ,

(1 ) v , ,

i i
i i i

i i
i i i

r k x i

r k x i

θ α β

θ α β− −

⎧ = − =⎪
⎨

= − =⎪⎩
                            (19) 

 

where 11 0 0 , ,
ii s bk k a a i α β= =  is the renormalized adsorption rate constant [mol s-1m2] and 

2
11 0 , ,

ii sk k a i α β−− ⎡ ⎤= =⎣ ⎦  is the renormalized recombination rate constant [mol s-1m2]. 

These constants are in fact depended on bulk and surface concentrations, but exact form 

of the dependencies will be given in the next section. Under the equilibrium conditions the 

rate of direct reaction is equal to the rate of the reverse reaction: 2 2
i ir r−=  or 

 

                         2 2(1 ) (1 ) , ,i i
i i i ik x k x iθ θ α β−− = − =                      (20) 

 

In general i
jk  may depend on state of charge and surface coverage. If exact form of this 

dependence is known then we can resolve Eq. 20 with respect to iθ  and obtain surface 

coverages. Let us observe, that i
jk  formally depends on material parameters such as 0

sa , 

0
ba . However these parameters are unchanged during hydrogen storage process and may 

be treated just as normalization constants.  
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D. Rate constants description; “rectangle rule” 

   

  In case of hydrogen storage one has very complicated adsorption/absorption 

system. Dependence of the amount of adsorbed/adsorbed species on gas pressure under 

constant temperature is called adsorption/absorption isotherm. 

  The simplest isotherm has been proposed by Langmuir. According to his theory 

adsorbed atoms are situated in the same energy level and interaction between these atoms 

is ignored. Then in Langmuir theory surface coverage has the following simple explicit 

form17,18,22: 

 

   bP
1 bP

θ =
+

                      (21) 

 

where P is pressure of adsorbing gas; ads desb k / k=  is the ratio of adsorption and 

desorption rate constants.  

 Generally accepted equation that expresses rate constant dependence on reaction 

temperature (T) and activation energy (E) is Arhenius equation22: 

 

     exp Ek B
kT

⎛ ⎞= −⎜ ⎟
⎝ ⎠

                   (22) 

 

where B  is predexponent frequency factor that characterizes probability of atomic 

collisions. 

  According to Langmuir theory rate constant described by Eq.21 is independent 

digital constant at certain temperature and it is not changed during chemical process. 

Thus, Langmuir theory is a good approximation if surface coverage is not so large. But for 

reactions with large surface coverages or absorption reactions where interaction forces are 

significant one can observe deviations from Langmuir theory.  

 The next step was semi-empirical theory of Temkin23. Temkin was taking into 

account experimentally observed fact that energy of adsorption is a linear function of 

surface coverage (with linear coefficient f). The final Temkin isotherm has form:  
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           1 1ln
1 exp( )

bP
f bP f

θ
⎡ ⎤+

= ⎢ ⎥+ −⎣ ⎦
               (23) 

 

where ads desb k / k=  is the ratio of adsorption and desorption rate constants. The other 

well-known isotherms (see e.g. Frumkin24) also have half-empirical basis and describe 

only limited number of chemical process.  

 So, if we try to describe some chemical reaction using above approaches we can 

determine that general kinetic equations (for example, for reaction rates) are the same but 

the difference is in rate constants definition. Thus, our conclusion is that the weakest point 

of above theories is that these theories don’t give explicit and clear first principle 

description of the energy of the system and, as a result, equations for activation energies 

(and rate constants) in Eq.22 have completely empirical or half-empirical background.  

 In the present paper we give strong general energy description of the system and 

explicit algorithm of activation energies and rate constants derivation which can be 

applied not only in hydrogen storage system but to any considered reacting system. 

 Activation energy is an important characteristic of chemical process. It characterizes 

energy that one has to apply to the reacting atom to move it from one chemical stage 

(initial substances) to another stage (reaction products). Let us describe the energy levels 

of hydrogen storage process, consisting of adsorption/absorption (Eq.3) and 

recombination/dissosiation (Eq.2). The total energy diagram of the process is shown in the 

Fig.6. We can distinguish three areas in our system: bulk of the gas phase, surface layer 

and bulk of the hydride-forming material. To move one hydrogen atom from one area to 

another we have to apply to it certain activation energy to overcome the energy threshold 

( ijΠ ). Activation energy is also one of the indications of the chemical reaction 

reversibility. If activation energy of direct reaction is smaller that that of reverse reaction, 

direct process is energetically more favorable.  

 Consider in more details the recombination process. Restrict derivation by 

considering separate phase i , ( ,i α β= ). Denote Ei
g  the activation energy (per molecule) 

of the adsorption reaction and Ei
θ  the activation energy (per atom) of the recombination 

reaction in given phase i . Accessing Fig.6 it is easy to see that Ei
g  is the energy that 

hydrogen molecule needs to gain in order to reach the top of the potential barrier i
gθΠ  

from the left, while for inverse reaction the energy gain of 2Ei
θ  is necessary. If we denote 
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energy of one hydrogen molecule in the gas phase as εg  (note that it is independent of 

phase), and energy of hydrogen atom in the surface layer as εi
θ   then, by definition of 

potential barrier we have 

 

               2(E ε ) E εi i i i
g gθ θ θ θΠ = + = +                 (24) 

 

  Values of εi
θ  can be regarded as marginal changes in the energies of the surface 

layer when amount of hydrogen atoms ( sn ) is increased exactly by one. Similar εg  is the 

marginal change in the internal energy of the gas phase when amount of molecules in is 

increased by one.  The “rectangle rule” (Eq. 24) then gives us general tool to determine 

the rate constants from marginal energies, which are already well determined13. Thus we 

can write the individual rate constants: 

 

1 1 1 1 1 1

1 1 1 1 1 1

E (E ε ) ε ε
exp exp exp exp

2E 2(E ε ) 2ε 2exp exp exp exp

i i i i
g g g g g gi i i i i i

i i i i
gi i i i i i

k B k B k B
kT kT kT kT

k B k B k B
kT kT kT

θ

θθ θ θ θ
− − − − − −

⎧ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − Π ⎛ ⎞
= − = − = −⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⇒ ⇒⎨ ⎨

Π⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎪ ⎪= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪
⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎩

εi

kT
θ

⎧
⎪
⎪
⎨

⎛ ⎞⎪
⎜ ⎟⎪
⎝ ⎠⎩

 (25) 

 

  In a similar way we consider absorption/desorbtion reaction. Denote Ei
θ

%  activation 

energy of the absorption reaction per hydrogen atom in phase i , E x  the activation energy 

of the desorbtion reaction per hydrogen atom and εi
θ , ε x  corresponding marginal energies. 

Then we obtain: 

 

                                               E ε E εi i i
x x xθ θ θΠ = + = +% ,                                                    (26) 

 

where i
xθΠ  is the height of the potential barrier between surface and bulk. Then  

° °
2 22 2 2 2

2 22 2 2 2

ε(E ε ) εE exp expexp exp

εE (E ε ) ε exp expexp exp

ii i ii i
i i xi i i i

i
i i x xi i i ix x x x

k Bk B k B
kT kTkT kT

k Bk B k B kT kTkT kT

θθ θ θθ θ

θ
− −− − − −

⎧⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Π+ − = −⎪⎪ ⎜ ⎟⎜ ⎟= − = − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⇒ ⇒⎨ ⎨
⎛ ⎞Π ⎛⎪ ⎪ + −⎛ ⎞ ⎛ ⎞ = −⎜ ⎟= − = − ⎜⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎝⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎩

⎧
⎪
⎪
⎨

⎞⎪
⎟⎪ ⎠⎩

   (27) 

 

accordingly. The next section will explain derivation of the marginal energies εi -s. 
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E. System energy description 

 

  As follows from Eqs.25,27, in order to describe reaction rate constant we need to 

know the height of the potential barrier ( ijΠ ) and the marginal change in energy εi .  To 

find the later value we have to know total energy of hydrogen atoms in any part of our 

system. Let us describe each part: 

 

1. Bulk of the hydride-forming material. 

 The description of the energy of the bulk of hydride forming material is based on the 

application of the mean-field theory. General energy description follows from our LGM13. 

For convenience we reproduce general notions here.  

To describe the energy of the hydrogen absorption system, a few aspects must be 

taken into account. First, the energy of the various host crystal lattices has to be 

considered. The contribution of each unit cell to the total energy is denoted as Lα  and Lβ  

for the α - and β -phase, respectively25,26. Secondly, the so-called Bragg-Williams 

approximation has been adopted, implying that the absorbed hydrogen atoms are 

randomly distributed in the hydride-forming material27. In the case of two-phase 

coexistence, two energetically different types of host sites coexist in the system and a 

binary alloy approach must be adopted. bEα  and bEβ  represent the energy of absorbed 

hydrogen in both phases. It is, furthermore, assumed that an absorbed hydrogen atom at a 

particular site can interact with a hydrogen atom at any other site2, with specific 

interaction energy ( b
iiU ). According to the mean-field approximation27 the interaction 

energy between the occupied sites does not depend on their distance. bUαα  and bUββ  are the 

interaction energies between two absorbed atoms in the α - andβ -phase, respectively, 

and bUαβ  represents the interaction energy between two absorbed hydrogen atoms in 

different phases27. These considerations lead to the following Hamiltonian ( bU ) for the 

entire bulk of the hydrogen storage system: 

 

 2 2

max max max

( ) ( )
2 2 2

b bb
b b b b b b b b b

b b b

U UUU L M L M E n E n n n n n
n n n

ββ αβαα
α α β β α α β β α β α β= + + + + + +        (28) 
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 Taking into account definition of bMα  and bM β  in Eq.5, the first two terms in Eq.28 

can be rewritten as 

 

max( )
( )

b
b b b b b

b

L L n
L M L M L M L L M L M

d
β α

α α β β α β α β α

−
+ = + − = +  .       (29) 

 

where bd is the number of host sites per bulk unit cell. 

  We assumed the same number of host sites per unit cell for both phases ( 1bd = ). 

Replacing bnα  and bnβ  by x using Eq.7, the following relationships are obtained for the 

three considered crystallographic regions: 

 

  

2

max
2

2

max
2

2

2

max

, x
2

x( )v x v x v v
2

x x x
v v v , x x

2 2

, x
2

b b
b

b

b
b b

b b

b b

b b
b

b

L M UE x x x
n

UL L L E E

U n
U U

x

L M U
E x x x

n

α αα
α α

αα α
α β α β α α α β β β α

ββ β αβ α β
β α β α β

β ββ
β β

⎧
+ + <⎪

⎪
⎪

+ − + + + +⎪
⎪⎪= ⎨
⎪

+ ≤ ≤⎪
⎪
⎪

+ + >⎪
⎪⎩

.     (30) 

  As we noted above, ε x  is a marginal change in the energy of bulk when amounts of 

hydrogen atoms bn  is increased exactly by one. Since max
b bn xn= , it follows that  

max

11
b b b

b
b b b

U U Un
n n n x

∂ ∂ ∂
Δ = ⋅ =

∂ ∂ ∂
 up to higher order term with respect to max1/ bn .  Then 

differentiating Eq.30 with respect to x ultimately leads to:  

 

2 2

max

, x

x x x v x v x x (v v ) / 2
,1 x xε

x x

, x

b b

b b b b b

b

x b

b b

E U x x

E E U U U L
U

n x x

E U x x

α αα α

β β α α αα α α αβ β β ββ α β α β

β α

α β

β ββ β

⎧ + <
⎪

− − + + − +⎪
⎪∂ −= = ⎨∂ ⎪ ≤ ≤
⎪
⎪ + >⎩

 (31) 

 

where  L L Lβ α= − . 
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 Apparently there is no difference to which phase hydrogen atom goes during 

absorption, or from which phase it had gone during desorption, thus we have only  ε x  but 

not two separate ε x
α  and ε x

β . The intuition behind this phenomenon is simple. Suppose 

that bulk of the material contain both phases. Then, irrelevant where we put additional 

hydrogen atoms in the bulk, the amount of α -phase will decrease while amount of β -

phase will increase.1 Therefore marginal change in energy of the bulk does not depend on 

phase where additional hydrogen atom was inserted. In mathematical terms it states that 

variables bnα  and bnβ  are not independent variables in the two-phase coexistence region. 

 

2. Surface hydride-forming material. 

To describe the energy of the hydrogen adsorption system we applied similar mean-

field conception as for the bulk. These considerations lead us to the following 

Hamiltonian ( sU ) for the hydrogen adsorbed in the surface of the hydride-forming 

material: 

 

           
22

max max max

( )( )
2 2 2

s s s s ss s
s s s s s

s s s

U n U n nU nU E n E n
n n n

ββ β αβ α βαα α
α α β β= + + + +           (32) 

 

where s
iE  are energies of one separate hydrogen atom adsorbed in the phase i of the 

surface of the hydride-forming material; s
iiU  are interaction energies between adsorbed 

hydrogen atoms in phase i; sUαβ  is interaction energy between adsorbed hydrogen atoms 

in different phases; s
in  is the number of atoms adsorbed in the phase i; i = α, β.  

  Hamiltonian ( sU ) in Eq.32 is different from the bulk Hamiltonian ( bU ) described in 

Eq.28. First two terms, associated with the crystal lattice are absent, since there is no 

lattice at the surface. Another important fact about surface Hamiltonian is that variables 
snα  and snβ  are independent, contrary to situation with bnα  and bnβ . Indeed, hydrogen 

atoms can leave surface layer from α -phase region, and it does have absolutely no 

influence onto the β -phase, since maximal capacities of surface phases are determined by 

                                                 
1 Remember, that concentrations of hydrogen atoms inside pure phase remain constant (and equal to xα or 

xβ correspondingly) during phase transition process. 
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bulk concentrations, not by surface ones2. Now consider the marginal changes in the 

energy of surface layer when amounts of hydrogen atoms snα  and snβ  are increased exactly 

by one, that is: 

 

        max max

max max

ε / 2

ε / 2

sss
s s s s s s

s s s

s ss
s s s s s s

s s s

nnU E U U E U U
n n n

n nU E U U E U U
n n n

βα α βα
θ α αα αβ α αα αβ

α

ββ β αα
θ β ββ αβ β ββ αβ

β

θ θ

θ θ

⎧ ∂
= = + + = + +⎪
∂⎪

⎨
∂⎪ = = + + = + +⎪ ∂⎩

     (33) 

 

Note, that difference ε εi
x θ−  is well interpreted according to 

 

   ε ε ( 1) ( 1) ( ),
b s b s

i b s b s
x i ib s b s

i i

U U U Un n U U
n n n nθ

∂ ∂ ∂ ∂
− = × + + × − = Δ + Δ = Δ +

∂ ∂ ∂ ∂
    (34) 

 

where the last right hand term corresponds to the change in the energy of the (closed) 

system: surface + bulk when exactly one hydrogen atom moves in the i -th phase from the 

surface layer into the bulk according to the positive direction of absorption reaction.   

 

3. Hydrogen in the gas phase. 

To describe the energy of hydrogen in the gas phase we applied similar mean-field 

conception as for adsorption/absorption state. These considerations lead us to the 

following very simple Hamiltonian ( gU ) for the hydrogen in the gas phase: 

            

  g g gU E n=                           (35) 

 

where gE  is the energy of one separate hydrogen atom; gn  is the number of hydrogen 

atoms dissolved in the bulk of the gas phase.  

 Differentiating of Eq.35 with respect to gn  ultimately leads us to:  

 

                                                 
2 Strictly speaking this statement is only approximately correct, because the same hydrogen atom can enter 
the bulk and therefore change somewhat phase distributions. This change of phase distributions, in turn will 
change surface phase areas and it will change the number of hydrogen atoms in each of these areas, 
consequently changing the value of Hamiltonian. However this effect is negligibly small if maxn is 
sufficiently large. 
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        ε
g

g
g g

U E
n

∂
= =
∂

             (36) 

 

 The handbook theories28 for internal energy of two-atomic ideal gas give us 

5 / 2gE kT= , thus 

                                       5ε
2g kT=                (37) 

 

F. Final equations 

 

  Substituting Eq.31,33 into Eq.27 we obtain expressions for the 

adsorption/absorption rate constants: 

 

2 2

2 2 2 2

/ 2
exp exp , , , ; .

( / )

exp , x ,
( / )

exp
x x x v x v x x (v v ) / 2

exp
( / )(x x )

s s i s ji
i iii i x

b b

x
b b b b b

E U U
k B i j i j

kT kT e

E U x x
kT e

k B
kT E E U U U L

kT e

αβθ

α αα
α

α
α α θ

β β α α αα α α ββ β β αβ α β α β

β α

θ θ
α β

− −

⎛ ⎞+ +⎛ ⎞Π
= − = ≠⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞+
<⎜ ⎟

⎝ ⎠⎛ ⎞Π
= −⎜ ⎟ ⎛ ⎞− − + + − +⎝ ⎠

⎜⎜ −⎝ ⎠
2 2

2 2

, x x ,

x x x v x v x x (v v ) / 2
exp , x x ,

( / )(x x )
exp

exp , x .
( / )

b b b b b

x
b b

x

E E U U U L
x

kT e
k B

kT E U x
x

kT e

α β

β β α α αα α α ββ β β αβ α β α β
α ββ

β αβ β θ

β ββ
β

− −

⎧
⎪
⎪
⎨
⎪ ≤ ≤⎟⎪ ⎟
⎩
⎧ ⎛ ⎞− − + + − +

≤ ≤⎪ ⎜ ⎟⎜ ⎟−⎪⎛ ⎞Π ⎝ ⎠= − ⎨⎜ ⎟
⎛ ⎞+⎝ ⎠⎪ >⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

   (38) 

   

  Substituting Eq.38 into Eqs.19,20 we obtain following set of equations for the 

surface coverage in three considered crystallographic regions: 

 

   

2

2

2 2
2

2

( )(1 ) exp , 0 x
(1 ) ( / )
(1 )
(1 )

/ 2 x x x v x v x x (v v ) / 2
exp .

( / ) ( / )(x x )

x x ; ,

s s b b

i i

i i

s s i s j b b b b bi
i ii

i

E U E U xBx x
x B RT F

x
x

E U U E E U U U LB
B RT F RT F

x i j

α
α αα α αα

αα

αβ β β α α αα α α ββ β β αβ α β α β

β α

α β

θθ
θ

θ
θ

θ θ

−

−

⎛ ⎞+ − +−
= ≤ <⎜ ⎟− ⎝ ⎠

−
=

−

⎛ ⎞+ + − − + + − +
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≤ ≤

2

2

, ; ,

( )(1 ) exp , x 1
(1 ) ( / )

s s b b

i j

E U E U xBx x
x B RT F

β
β ββ β ββ

ββ

α β

θθ
θ −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ = ≠⎪
⎪ ⎛ ⎞+ − +−⎪ = < ≤⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠
⎪⎩

   (39)  
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  Note that additional parameters x
α
θΠ  and x

β
θΠ  can be reduced in equilibrium 

equation. The set of Eq.39 is a complex highly nonlinear two-dimensional system with 

two unknowns and its analytical solution is impossible. To calculate total and partial 

surface coverages we have to solve it numerically. But the complexity of solution anyway 

remains very high. In order to reduce complexity of the system we applied consequently 

simplifying assumption that there are no inter-phase interactions in the surface layer, i.e.  

 

                                           0sUαβ = .                                                        (40) 

 

  Simplification Eq.40 also has physical background. In the surface layer, in general, 

interaction energy between adsorbed atoms is smaller than in the absorbed state. The 

reasons are absence of influence of the crystallographic structure and bigger distance 

between adsorbed atoms: closed unit cell in the bulk of the material is, apparently a tighter 

system than half open unit cell at the surface. Thus, we may apply condition Eq.40 to 

simplify mathematics. By the same reason we expect that values of interaction energies at 

the surface ( sUαα  and sUββ ) are several orders smaller than those in the bulk ( bUαα  and 

bUββ ).  

  After applying Eq. 40 the system of equations (Eq.39) can be separated into two 

one-dimensional equations. One is for surface coverage in the α -phase, 

  

2

2

2 2
2

2

( )(1 ) exp , 0 x , (41a)
(1 ) ( / )

x x x v x v x x (v v ) / 2(1 ) exp ,
(1 ) ( / ) ( / )(x x )

when x x

s s b b

b b b b bs s
i i

i i

E U E U xBx x
x B RT F

E E U U U Lx E UB
x B RT F RT F

x

α
α αα α αα

αα

αα
β β α α αα α α ββ β β αβ α β α βα αα

α
β α

α β

θθ
θ

θ θ
θ

−

−

⎛ ⎞+ − +−
= ≤ <⎜ ⎟− ⎝ ⎠

⎛ ⎞− − + + − +− +
= −⎜ ⎟⎜ ⎟− −⎝ ⎠
≤ ≤

 

another is for surface coverage in β  phase 
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2 2
2

2

2

2

x x x v x v x x (v v ) / 2(1 ) exp ,
(1 ) ( / ) ( / )(x x )

when x x

( )(1 ) exp , x 1. (41b)
(1 ) ( / )

s s b b b b b
i i

i i

s s b b

E U E E U U U Lx B
x B RT F RT F

x

E U E U xBx x
x B RT F

ββ
β ββ β β α α αα α α ββ β β αβ α β α β

β
β α

α β

β
β ββ β ββ

ββ

θθ
θ

θθ
θ

−

−

⎛ ⎞+ − − + + − +−
= −⎜ ⎟⎜ ⎟− −⎝ ⎠
≤ ≤

⎛ ⎞+ − +−
= < ≤⎜ ⎟⎜ ⎟− ⎝ ⎠

 

  Eqs.41(a-b) can be solved numerically for each value of x , providing functions 

( )xθ , ( )i xθ , ( )i xθ . Substituting Eqs.33,37 into Eq.25 and taking into account 

simplification Eq.40 we obtained expressions for the dissociation/recombination rate 

constants: 

 

      

1

1 1

1
5exp exp ,
2

,

exp exp 2
( / )

i
gi i

i s s i
gi i i ii

k B
kT

i

E Uk B
kT kT e

θ

θ

α β

θ
− −

⎛ ⎞Π ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
=

⎛ ⎞Π ⎛ ⎞+
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          (42) 

  

 Substituting Eqs.42 into Eq.18 we obtain the final expression for the equilibrium 

hydrogen pressure 
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(43) 

 

where g g
α β
θ θΔΠ = Π −Π .  

 

G. Identification and simplifications. General remarks. 
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     Eqs.41(a-b) and Eq.43 let us simulate the hydrogen pressure composition isotherm. 

We, however, can observe that sometimes different parameter values still lead to the same 

surface coverage and equilibrium pressure. For example only the ratio of parameters 

2 2/B Bα α
−  enters Eq.41a, but not each of these parameters separately. Therefore only the 

ratio 2 2/B Bα α
−  can be identified from experimental data, but not 2Bα  and 2Bα

−  separately. 

To remove that source of identification problem we denote: 

 

    1 1 1B /B Bα α α
−= ,  1 1 1B /B Bβ β β

−= ,  1 1 1/B B Bαβ α β= , 2 2 2/B B Bα α α
−= ,  2 2 2B /B Bβ β β

−= .        (44) 

 

Equations (41) then reduces to 
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and  
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accordingly.  

In similar way we may simplify equation Eq.43. However there we have put one 

more simplifying restriction namely 0ΔΠ = . The physical sense behind this restriction is 

the following. We expect that influence of the bulk phase declines when we moving far 

away from the hydride-forming material. This influence is absent in the bulk of the gas 

phase and therefore must be extremely week just outside the surface layer. Therefore we 

expect that height of the potential barrier for dissociation reaction doesn’t depend on 

phase. Again note, that g
α
θΠ  and  g

β
θΠ  may, in general, be functions of state of charge and 

surface coverage(s). We require only 0g g
α β
θ θΔΠ = Π −Π =  i.e. those barriers are same in 

both phases. Thus we obtain: 
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Eq.46 was derived from the equilibrium rate balance conditions Eqs.17, which 

represents equality of the rates for direct and reverse reactions. It is of interest, therefore, 

to obtain expressions for the rates of dissociation and recombination3 as functions of 

parameters of the system and state variables: 
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Note, that Eq.47,48 are, in general, discontinuous at the point of first phase 

transition, that is for values of θ  corresponding xα . However physical sense requires that 

1r  and 1r−  have to be continuous. To maintain continuity at the point of phase transition it 

is sufficient to impose the following condition:  

 

1B 1αβ =                         (49) 

 

                                                 
3 We normalized all rates setting corresponding i

jkΠ  to zero. It also applies  to absorption/desorption rates. 
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  Finally, using Eqs.45(a,b) and reaction rate balance equations Eqs.19,20 we can 

write rates of direct and reverse reactions of adsorption/absorption process which are also 

useful for simulation: 
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H. Connection with the Lattice Gas Model. 

 

In the previous paper we presented pure statistical thermodynamic Lattice Gas 

Model13. The total energy of hydrogen storage system has been described by energy 

Hamiltonian Eq.28. The model defines the pressure as explicit functions of the normalized 

hydrogen concentration x with eight parameters, i.e. the phase-transition points ( xα  

and x β ), the energies of individual hydrogen atoms ( Eα and E β ), the interaction energies 

within the α and β phases (U αα and U ββ ), the interaction energy between hydrogen 

atoms in the different phases (U αβ ), and the energy of the crystal structure (host energy, 

L ). In the Lattice Gas Model13 the equilibrium hydrogen pressure is determined as: 
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where, in fact 1 vx β=  and 2 vx α=  and entropy terms are the follows: 

 

 0 x ln x (1 x ) ln(1 x )S d d d dα α α α α= + − −  

 0 x ln x (1 x ) ln(1 x )Sβ β β β β= + − − .                  (53) 

 

with the following continuity conditions: 
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Note that restriction 1d =  was used in all simulations. Obviously the phase-

transition points ( xα  and x β ) in both Lattice Gas Model and Kinetic Model are the same. 

Correspondence between the energies of individual hydrogen atoms ( Eα and E β ), the 

interaction energies within the α and β phases (U αα and U ββ ) in both models is simply 

followed from consideration of solid solution parts. Let us consider pure solid solution of 

phase i. From the set of equations Eq.45 we can express factor (1 ) /θ θ−  as 
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Substituting Eq.56 into Eq.46 in the case of pure phase i give us: 
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  Comparing of Eq.57 with the first and third equations in the set of equations Eq.52 

we can establish simple relations between parameters of LGM and Kinetic model, namely 

 

                                           b
ii iiU U= ,     b

i iE E=    and  ref iP P= ,                             (59) 

 

  First restriction is identifying one, while second and third are rather conventional 

normalization, since exp(2 /( / ))b
iE RT F  appear as multiplicative factor in front of 

( )2

1 2B / Bi i . In fact third restriction determines 1Bi  given 2Bi  and iP . Thus we can conclude 

that Kinetic model and LGM lead to exactly the same equilibrium pressure in pure phases, 

while formally the kinetic model generalizes LGM in these regions. 

  Another interesting conclusion is followed from comparing of Eq.57 with the first 

and the third equations in the set of equations Eq.52. As reference pressure ( refP ) is 

temperature independent parameter, iP  also has to be temperature independent. The 

difference from the LGM is that in Kinetic model we expect that iP  depends on the nature 

of the material (Eq.59) and it also makes Kinetic model more general.  

  However in the phase transition region behavior of models is different. Considering 

set of Eqs.45(a-b) we may see, that relation ( )xθ θ=  is determined by different formulas 

in pure phase and in two-phase coexistence region. From physical point of view, total 

surface coverage may not have a jump at the point of phase transition, therefore both 

equations in set of Eqs.45a must produce same θ  at point xα , while both Eqs.45b must 

produce same θ  at point x β .  First condition can be written as: 
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Equating left hand sides in Eq.60 we obtain continuity condition for θ  at point xα in the 

form: 

 

             2( x x x x x / 2 ) /(x x ) xb b b b b bE E U U L E Uβ β α α αα α αβ α β β α α αα α− − + + − = + .                (61) 

 

In the similar way we obtain the second condition: 

 

            2( x x x x x / 2 ) /(x x ) xb b b b b bE E U U L E Uβ β α α ββ β αβ α β β α β ββ β− + − + − = + ,                 (62) 

 

which ensures continuity of ( )xθ θ=  at point x β .  These two equations require two free 

variables to be solved, namely U αβ and L . Resolve Eqs.61,62 we obtain: 

 

                            1 2 1 2

x x
b C C R RU αβ

α β

− − +
=     and     1 2 1 2

2
C C R RL + − −

= .          (63) 

where 

 

           2
1 x x xb b bR E E Uβ β α α αα α= − − ,             1 ( x )(x x )b bC E Uα αα α β α= + − , 

           2
2 x x xb b bR E E Uβ β α α ββ β= − + ,             2 ( x )(x x )b bC E Uβ ββ β β α= + − ,     (64) 

As we can see the set of Eqs.63,64 gives us different expressions for interaction energy 

between hydrogen atoms in the different phases ( bU αβ ), and the host energy ( L ), than we 

had in LGM (see Eq.34 there). 

Thus, we can conclude that, generally speaking, energy parameters describing pure 

phases in the LGM and Kinetic Model could be the same. Moreover, the frequency factors 

ratios 1Bi  and 2Bi  may be chosen (normalized) in such a way that pressure relation Eq.60 

in pure phases can coincide in both models.  

 

I. Identification and estimation of surface coverage 
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  The next very important question is estimation of the surface-hamiltonian 

parameters i.e. sEα , sUαα , sEβ , sUββ . Firstly, note again, that equilibrium pressure doesn’t 

have explicit dependence on these parameters. Secondly, sEα , and sEβ  enter set of 

Eqs.45(a-b) always in product with 2Bα  and 2Bβ and therefore cannot be identified. Thus, 

without loosing generality we may normalize sEα  and sEβ  to zero and exclude them from 

equations. Then from Eqs.45 we obtain in two-phase region the following system of 

equations  
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  Substituting Eqs.65 into second equation of Eq.46 we obtain 
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. We can see that equilibrium pressure in the two-phase transition 

region indeed depends on sUαα , sUββ , 2Bα  and 2Bβ  (indirectly via θ -s). Therefore these 

four parameters can be estimated via the data, and then used to find the surface coverage. 

  Let us observe now, that “pseudo-pressures” iP  in Eq.57 and Eq.66 are still not 

identified separately, since multiplication of both parameter by the same number may be 

exactly compensated by (same) additive term in bEα  and bEβ . To avoid identification 

problem and stress relation with LGM we set refP Pα =  in estimations. 

 

J. Case of immediate phase transition 
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  As we have seen in previous section parameters related to surface Hamiltonian and 

adsorption/absorption rate constants are estimated only by plateau data. It is of interest to 

check what happens if the plateau is absent. First, note, that in absence of phase transition 

we can estimate neither surface coverage nor parameters of surface Hamiltonian. Indeed, 

suppose that only α -phase is present. Then Eq.57 directly give us dependence of pressure 

on state of charge, and these relations do not involve θ , s
iiU . When we estimate 

parameters of Eqs.57 we may use equation Eq.56 to determine θ . That, however, require 

knowledge of s
iiU . For any values of these parameters we obtain certain value of θ . But 

since s
iiU  is not estimable (and therefore not known), the θ  also not known. 

  In the case of instantaneous phase transition we have one single phase transition 

point x t . Below that value in the bulk only α -phase is present, above there is only β -

phase. Then, according to Eq.57 we obtain: 
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  We must impose restriction on parameters of the model, ensuring continuity of 

pressure at point x t . Make equal both branches of Eq.67 at x t  resolving it with respect to 

bEβ  we obtain: 
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  Substitution of restriction Eq.68 to Eq.67 gives us: 
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  Now consider continuity condition for surface coverage. Equating both branches of 

Eq.66 in phase transition point x t  we can express 
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s s
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Then, using restriction condition Eq.68 and definition Eq.58 we obtain: 
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that defines value of the surface coverage at point xt , i.e. (x )tθ , providing 

0s sU Uββ αα− ≠ . Substituting (x )tθ  into each branch of Eq.56 we obtain equation for s
iiU . 

Thus, all necessary parameters are identified in that case. However if s sU Uββ αα=  then any 

value of (x )tθ  is a solution of Eq. 70, thus θ  is not identifiable. 

 

3. RESULTS AND DISCUSSION 

 

 The presented equilibrium kinetic model has been tested, using the experimental 

data reported for various AB5-type hydrogen storage materials. These materials have been 

thoroughly characterized with respect to their physical and electrochemical performance. 

The isotherms for both model-type materials and commercial, MischMetal-based, 

hydride-forming materials have been simulated as a function of composition and 

temperature, respectively. Since all considered materials have the same, hexagonal, 

crystallographic structure for both the α - and β  phase it is evident that the number of 

host sites per unit cell remains constant, i.e. parameters bd  (and sd ) is considered unity in 

the present simulations. 

 The experimental absorption isotherms have been measured with a conventional 

“Sieverts-type” apparatus by expanding a known amount of gas or vacuum into an in situ 

XRD cell and allowing the system to come to equilibrium after each pressure change19. 

The in situ XRD measurements allowed obtaining crystallographic information of the 

system as a function of the hydrogen content. 

 It is well known that (non-)stoichiometric hydride-forming materials are stable with 

respect to hydrogen storage18,19. The crystallographic structure of these materials has been 

illustrated in Fig.3. These materials have a rather simple composition and can therefore be 

considered as model systems for which the phase transitions can be well controlled by the 

stoichiometric composition.  
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 Fig.8 shows the agreement between the experimentally measured (symbols) and 

simulated (line) pressure-composition isotherm (left-hand axis) and the corresponding 

equilibrium potential curve (right-hand axis) for the stoichiometric LaNi4.0Cu1.0. In this 

specific stoichiometric case no dumbbell pairs have been introduced in the host crystal 

lattice (see Fig.3). The solid line represents the simulation according to the Eq.45,46. The 

numerical values of the parameters of the model were obtained by nonlinear least-squares 

method and are listed in Table I. Some explanation concerning the estimation scheme is as 

following. In the course of estimation we tried to force connection with the LGM13. By 

that reason some of the parameters, namely xα , xβ , bEα , bUαα  and bUββ  had been directly 

taken from LGM estimation (appropriate parameters of the LGM are shown in the Table 

II). Surface energy parameters, namely sEα , sEβ , sUαα  and sUββ  were set to zero since they 

are not identifiable. By the same reason 2Bβ  was set to one. Value Pα  was set to normal 

atmospheric pressure (105 Pa). As parameters Πi
jk  are relative and unidentifiable in our 

system they have been set by zero. Three remaining parameters 2Bα , bEβ  and Pβ  were 

estimated by nonlinear least-squares. In fact we have described whole pressure 

composition isotherm by just three adjustable parameters. As Fig. 6 reveals, the kinetic 

model describes the isotherm quite well for the stoichiometric LaNi4.0Cu1.0 material. Three 

regions can be clearly distinguished: Nernst-type solid solution region for low hydrogen 

concentration (x < 0.196), a long, almost flat, two-phase coexistence plateau region (0.196 

≤ x ≤ 0.794), and Nernst-type solid solution region for high hydrogen concentration (x > 

0.794). However the LGM is also capable to describe the pressure-composition isotherm 

quite well. What can kinetic model add to this description?  

 The distinctive feature of the model is its ability to reveal information about 

chemical kinetics of the processes. At Fig.9 and 10 we can see equilibrium rates for two 

basic reactions considered in the paper. Fig.9 shows dissociation and recombination rates 

i.e. rates corresponding to the Eq.2. Note that positive sign of the direct reaction rate 

corresponds to the flux from the gas phase into the alloy. We can see that dissociation and 

recombination rates are the same in absolute values but have opposite signs as it must be 

in equilibrium. The equality of direct and reverse reaction rates in Eq.2 (direct and reverse 

rate balance Eq.17) gives us condition determining the equilibrium pressure in Eq.18. We 

may observe that reaction rate is small in the very initial part of the α phase solid solution 

region. When hydrogen concentration inside the alloy (and outside it as well) grows, the 
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dissociation rate also grows and reach it’s maximum near the first phase transition point 

xα . In the two-phase coexistence region this rate goes down significantly until reach it’s 

minimum in xβ . In the β -solid solution region it remains practically constant and 

concentration independent. We may conclude, that gas-surface kinetics in the α -phase is, 

in general, faster than in theβ -phase.  

 This conclusion holds also for absorption-desorption reaction. Indeed, from Fig.10 

we can see, that shape of the equilibrium absorption and desorption rates is similar to 

those at Fig.9. That implies fast bulk kinetics in the α -phase and slow kinetics in theβ -

phase. Also, due to strong influence of phase separation in the bulk and surface of the 

hydride-forming material the shape of the absorption and desorption reaction rates is more 

complicated that those of the dissociation-recombination reaction (see Fig.9). Absorption 

rate depicted in Fig.10 has two maxima in the phase transition points and minimum in the 

two phase coexistence region.   

 Let us analyze equilibrium reaction rates in more details. Fig.11 presents detailed 

composition of the total dissociation rate into rates via surfaces of α - and β -phase. 

Naturally, in pure α -phase whole rate (red line) coincides with the α -rate (green line). 

As soon as phase transition occurs, surface of the α -phase gradually diminishes in favor 

of the β -phase.  Consequently, the share of α -phase in total flux reduces (green lines 

goes down fast). At the end of the two-phase coexistence region the total flux is composed 

of the flux via surface of β -phase only. At the Fig.12 we may observe normalized (per 

unit of squared surface of particular phase) dissociation rates in both phases. Again we 

can see, that rate of hydrogen dissociation in α -phase is negligible when hydrogen 

concentration is small, then it increases and reaches maximum near the point of phase 

transition. In the two-phase area it is constant and larger than rate of β -phase. The 

hydrogen dissociation rate of the β -phase is practically constant both in the two-phase 

coexistence region and in the β  solid solution region.  

 Similar to the dissociation-recombination reaction the adsorption rate in α -phase 

(see Fig.13) increases with hydrogen concentration and reaches maximum near the left 

phase transition point xα . In two phase coexistence region due to the competition of 

reaction rates in α (green line) and β (blue line) phase, the minimum in the total reaction 

rate (red line) is observed. Adsorption rate in β -phase is smaller than in α -phase. 

However in the β -phase behavior of the absorption rate is different from the dissociation 
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rate of the dissociation-recombination reaction: it gradually decreases toward zero, while 

dissociation rate keeps its level. The same behavior was observed for desorption rate. 

 Fig.14, where we have plotted normalized adsorption rates completes the analysis. 

We may see that both α  and β  normalized rates are constant in the two-phase region and 

former is smaller than later. Normalized β  rate declines quickly as hydrogen 

concentration approach maximum. Physical sense behind that behavior is simple. Both 

very large and very small hydrogen concentrations hinder absorption kinetic. Apparently 

it is difficult to absorb hydrogen into the bulk if there is no place there. Similarly it is 

difficult to desorp hydrogen from the bulk if there is almost no hydrogen there. Note that 

absorption and desorption rates are equal in equilibrium. So the subsurface kinetic is 

sensitive to extreme concentrations of hydrogen. In case of dissociation-recombination 

situation is different. The redundancy of the hydrogen in the bulk does not influence rates 

of the reactions with the surface layer, at least if the surface coverage is not one. But these 

rates decrease if normalized hydrogen concentration goes to zero.  

 One of the contributions of the paper is the new approach of the rate constant 

description. The classical Langmuir approach treats the rate constants as constants. We 

may see that in our system for moderate hydrogen concentrations in the surface of the 

hydride-forming material this is correct (we set surface energy parameters sEα , sEβ , sUαα  

and sUββ  to zero since they are not identifiable). However, for the bulk rate constants 

(desorption rate constants), namely 2 2,k kα β
− −  there are some substantial deviations in the 

behavior for extreme hydrogen concentrations. Dependence of these constants on the 

hydrogen concentration is shown in Fig.15. Very small and very large hydrogen 

concentrations significantly change desorption rate constants, while in the two phase 

coexistence plateau region they are equal and almost not sensitive to the hydrogen 

concentrations. We may say that our rate constant approach generalizes nicely classical 

approach, and at the same time confirms that classical approach is also valid to moderate 

hydrogen concentrations in some areas of our system. 

 Since kinetics in theβ -phase is slow, we expect the larger percentage of the surface 

to be covered there. Fig.16 illustrates dependence of surface coverage on state of charge. 

We may see that, in general, surface coverage increases with the state of charge, while 

somewhat differently in three regions. It is interesting to point out that in considering 

system the surface coverage demonstrates the similar behavior as the pressure 

composition isotherm. In two solid solution region it has non-linear (logarithmic) shape 
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while in the two phase coexistence region it shows linear behavior, but in contrary with 

isotherms the slope of the surface coverage in the two phase region much more bigger. 

 The next plot, Fig.17, shows the pressure composition isotherms for all four 

materials under consideration. We can see that model perfectly adapts to the variety of the 

shapes caused by different material compositions. The dotted line in the Fig.17 

corresponds to LaNi5.0Cu1.0, where we observe instantaneous phase transition.  

 At Fig.18 we may observe, how the surface coverages change with the increase of 

the degree of non-stochiometry (parameter y in formula LaNiyCu1.0). In particular we can 

see that surface coverage at the plateau is higher for materials with higher plateau pressure 

that corresponds to the common physical sense. For large hydrogen concentrations, at the 

end of β  solid solution region, the surface coverage behaves in opposite way, i.e. it is 

decreasing with the increase of the degree of non-stochiometry. This suggests faster β -

phase kinetics for these materials. Note that LaNi5.0Cu1.0 is not presented at the figure, 

since surface coverage can not be estimated for this case. These preliminary conclusions 

are confirmed by detailed analysis of normalized recombination rates for three model 

material i.e. Fig.19. There we can see that kinetics in α -phase declines when y grows, 

while in β -phase situation is reverse. For LaNi4.0Cu1.0 the difference between the rates of 

α - and β - phases is maximal. When y grows this gap gradually reduces and became 

negligible for LaNi4.4Cu1.0. The same pattern is revealed for adsorption rate in Fig.20. The 

only substantial difference is that normalized absorption rates go down for large hydrogen 

concentrations. Also kinetics in β phase becomes faster than that in α phase in two phase 

coexistence region for LaNi4.4Cu1.0 stoicheometric alloy. We did not show the phase 

diagram for estimated parameter values, since it is exactly coincides with one reported in 

the LGM paper13.  

 Some analysis of parameter estimates is the following. Estimated values of xEβ  are 

somewhat higher than their counterparts from LGM, but are in reasonable physical range. 

We may also observe that frequency related parameter 2Bα  declines with the degree of 

non-stochiometry. Since 2 2 2B /B Bα α α
−= , we may say that  frequency factor for desorption 

reaction became larger than for absorption one. We did not reported estimated parameter 

values for LaNi5.0Cu1.0 material, since those are exactly equals to their counterparts in the 

LGM. Also it is very interesting to point out that reference pressure parameter ( )P β  which 

in the LGM is equal that in the α phase and set to the normal atmospheric pressure (105 
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Pa) in our kinetic model growth with increasing of non-stoicheometry. That makes the 

kinetic model more general, flexible and close to reality.  

 Good performance of the model does not restricted by the model materials. 

Simulation of the MischMetal-based commercial materials29,30 produced by Matsushita 

Corp for various temperatures (0, 24, 45, 60 and 70°C) is shown in Fig.21. Again, model 

adapts well to the range of experimental curves. As expected, the plateau pressure 

increases with increasing temperatures. Fig.22 illustrates surface coverages for the range 

of available temperatures. We can clearly observe that surface coverage becomes larger 

for higher temperature that is in line with generally accepted Langmuir consideration. As 

we expected surface kinetics of the alloy accelerates with temperature as shown in Fig.23. 

The similar behavior can be seen in Fig.24 where equilibrium absorption-desorption rates 

are plotted. We may observe that influence of the temperature is maximal in α -phase, but 

declines in β -phase. This observation is confirmed by analysis of the normalized 

concentrations for two basic reactions given in Fig.25 and 26. The acceleration effect is 

more visible in the surface reaction in the α-phase. We may also point out that normalized 

absorption rates in α  and β - phases became equal approximately at 60°C. 

 We should note that estimation scheme for the MischMetal-based commercial 

materials was somewhat different from one employed for LaNi-based stoicheometric 

materials. The sample measured at 24°C was estimated in the same way as all LaNi 

alloys. In particular, parameter Pα  was set to normal atmospheric pressure (105 Pa). For 

other temperatures this parameter had been estimated, otherwise fit was poor. All obtained 

model parameter values are given in the Table.III. Behavior of the estimated Pα  and Pβ  as 

functions of temperature is shown in Fig.27: almost linear dependence (in a log-scale) is 

observed. Estimated energies are all in physically meaningful range and mostly keep the 

same behavior as in the LGM (absolute values increases with temperature). The difference 

in estimated values between LGM and kinetic model is minor with one exception: 

estimates for parameter L  are of the opposite signs estimation (appropriate parameters of 

the LGM are shown in the Table IV). This, however, is of marginal concern since absolute 

values of L  are one-two orders of magnitude smaller than other energy related 

parameters. 

 

4. CONCLUSIONS 
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In the present paper the new equilibrium kinetic model describing hydrogen storage in 

the hydride forming materials has been proposed. The model is based on the first 

principles of chemical kinetics, statistical mechanics and reasonable structural 

assumptions.  

A complete set of equations, describing pressure-composition isotherms including 

phase transformation has been obtained. The model defines the equilibrium pressure as a 

function of the normalized surface coverage θ and normalized hydrogen concentration x, 

with parameters, namely the phase-transition points, interaction energies between atoms, 

the host energy, ect. The final set of equations consists of three parts; the first (x < xα ) 

and last (x > xβ ) parts characterize the solid solution regions of the pure α and β phases, 

respectively, and have the Nernst-type logarithmic form the second equation is 

responsible for two phase coexistence region.   

The new approach of description of the chemical rate constants has been given. 

Approach generalizes classical Langmiur and Temkin approaches and based on clear 

energy description of the system (“rectangle rule”). The strong general energy description 

of each area of the system including surface and gas phase has been given. Estimation 

results show that the rate constants are indeed deviates from constant for extreme values 

of concentrations. Proposed approach can be applied not only in hydrogen storage system 

but to any considered reacting system. Case of immediate phase transition also has been 

described.  

Paper contains explicit comparison between earlier published Lattice Gas Model and 

nicely completes thermodynamic description presented there by accessing various aspect 

of the hydrogen storage equilibrium kinetics. 

 Simulations of experimental absorption isotherms have been presented for both model 

hydride-forming LaNiyCu1.0-type materials and commercial MischMetal-based hydrogen 

storage electrode materials. The experimental and theoretical results of the equilibrium 

hydrogen pressure show good agreement. The calculated pressure-composition isotherms 

at various temperatures also show a good agreement with the experiments.  

 The simulation results shows that during hydrogen storage process three regions can be 

clearly distinguished: Nernst-type solid solution region for low hydrogen concentration, 

two-phase coexistence plateau region, and Nernst-type solid solution region for high 

hydrogen concentration.  
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 After deep consideration chemical kinetics of all areas in our reacting system, we may 

conclude, that gas-surface kinetics in the α-phase, in general, is faster than that of in the 

β-phase. This conclusion holds also for absorption-desorption (surface-bulk) reaction. 

Absorption-desorption rate has two maxima in the phase transition points and minimum in 

the two phase coexistence region. Also it was shown that hydrogen storage kinetics is 

sensitive to extreme concentrations of hydrogen.  

 Surface coverage increases with the state of charge, while somewhat differently in 

three regions, and demonstrates the similar behavior as the pressure composition isotherm. 

It was shown that surface coverage at the plateau region is higher for materials with 

higher plateau pressure and higher order of non-stoicheometry.  

 As expected, the plateau pressure increases with increasing temperatures and surface 

coverage becomes larger for higher temperature that is in line with generally accepted 

Langmuir consideration. Also surface and bulk kinetics of the hydride-forming material 

accelerates with temperature. 

 We may say that our approach to describe kinetics of hydrogen storage in hydride-

forming materials nicely generalizes classical approach, and makes the kinetic model 

more general, flexible and close to reality. 
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Table 1. Simulation results for the equilibrium kinetic model  
(stoichiometric and non-stoichiometric materials). 

 
N Par Dim LaNi4.0Cu1.0 LaNi4.2Cu1.0 LaNi4.4Cu1.0

      
1 xα          [1] * 0.196 0.231 0.276 
2 xβ           [1] * 0.794 0.711 0.448 
3 bEα  [10-2 eV] * 6.900 7.000 7.200 
4 bEβ   [10-2 eV] 7.912 6.709 7.417 
5 bUαα  [10-1 eV] * -1.580 -1.390 -1.220 
6 bUββ  [10-2 eV] * -5.300 -4.200 -8.000 
7 bUαβ  [10-1 eV] # -2.499 -1.725 -2.050 
8 L  [10-2 eV]      -1.318 -0.659 -0.338 
9 1Bα       [104] # 1.017 0.131 0.017 

10 1Bβ        [102] # 0.024 0.090 1.163 
11 2Bα           [1] 4.509 1.615 0.580 
12 2Bβ         [1]+ 1.000 1.000 1.000 
13 Pα   [105 Pa] + 1.000 1.000 1.000 
14 Pβ   [104 Pa] 0.047 0.181 2.325 
15 sEα      [eV] + 0.000 0.000 0.000 
16 sEβ      [eV] + 0.000 0.000 0.000 
17 sUαα      [eV] + 0.000 0.000 0.000 
18 sUββ      [eV] + 0.000 0.000 0.000 

 

parameters in bold are obtained by optimization 
*parameter values are taken from the Lattice Gas Model 

#parameters are calculated from the continuity conditions. 
+parameters are set to constant by normalisation 

 
 
Table 2. Lattice Gas Model. Simulation results for stoichiometric and non-stoichiometric materials 

 

Experimental  Simulation Composition 
xα  xβ  xα  xβ  Eα 

[eV] 
Eβ 

[eV] 
Uαα 
[eV] 

Uββ 
[eV] 

Uαβ 
[eV] 

L  
[eV] 

 
LaNi4.0Cu1.0 
LaNi4.2Cu1.0 
LaNi4.4Cu1.0 
LaNi5.0Cu1.0 
 

 
0.11 
0.19 
0.33 
0.36 

 
0.76 
0.67 
0.41 
0.36 

 
0.196 
0.231 
0.276 
0.346 

 
0.794 
0.711 
0.448 
0.346 

 
0.069 
0.070 
0.072 
0.046

 
0.011 
0.017 
0.056 
0.069 

 
-0.158 
-0.139 
-0.122 
-0.026

 
-0.053 
-0.042 
-0.080 
-0.092 

 
-0.257 
-0.181 
-0.206 

- 

 
0.020 
0.017 
0.003 
-0.003
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Table 3. Simulation results for Matsushita commercial materials. 
 
 

N Par     0ºC 24ºC 45ºC 60ºC 70ºC 
       
1                 xα

* 0.184 0.211 0.208 0.235 0.229 
2                 xβ

* 0.581 0.556 0.596 0.603 0.603 
3 bEα [10-2 eV]   0.846  3.700* 4.538 5.183 5.635 
4 bEβ [10-2 eV] 0.383  2.651 4.606 5.282 6.526 
5 bUαα [10-1 eV] * -0.460 -1.150 -1.230 -1.250 -1.280 
6 bUββ [10-2 eV] * -0.700 -2.500 -4.500 -5.100 -6.400 
7 bUαβ [10-1 eV] # -0.358 -1.092 -1.701 -1.786 -2.161 
8 L [10-3 eV] # -0.312 -1.257 -5.110 -5.659 -8.128 
9  1Bα  [103] #  0.442  0.508 0.644 0.853 1.013 

10  1Bβ  [101] # 2.444 3.222 3.347 5.171 5.534 
11                2Bα + 1.000 1.000 1.000 1.000 1.000 
12                2Bβ + 1.000 1.000 1.000 1.000 1.000 
13 Pα  [105 Pa] 0.824  1.000+     1.397 1.918 2.371 
14 Pβ  [104 Pa] 0.455 0.653     0.747 1.196 1.332 
15          sEα [eV] + 0.000 0.000 0.000 0.000 0.000 
16  sEβ [eV] + 0.000 0.000 0.000 0.000 0.000 
17  sUαα [eV] + 0.000 0.000 0.000 0.000 0.000 
18  sUββ [eV] + 0.000 0.000 0.000 0.000 0.000 

 
parameters in bold are obtained by optimization 

*parameter values are taken from the Lattice Gas Model 
#parameters are calculated from the continuity conditions. 

+parameters are set to constant by normalization 
 
 
 

Table 4. Lattice Gas Model. Simulation results for Matsushita materials 

 Temperature 
[°C] xα  xβ  Eα 

[eV] 
Eβ 

[eV] 
Uαα 
[eV] 

Uββ 
[eV] 

Uαβ  
[eV] 

L  
[eV] 

 
0 
24 
45 
60 
70 

 
0.184 
0.211
0.208
0.235 
0.229 

 
0.581
0.556
0.596
0.603 
0.603 

 
0.005
0.037
0.049
0.060 
0.068

 
-0.033 
-0.009 
0.010 
0.022 
0.036 

 
-0.046 
-0.115 
-0.123 
-0.125 
-0.128

 
-0.007 
-0.025 
-0.045 
-0.051 
-0.064 

 
-0.071 
-0.123 
-0.194 
-0.196 
-0.235 

 
0.011
0.012
0.010
0.010
0.009
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FIG. 1. Schematic representation of a pressure-composition isotherm (a) and phase-
diagram (b) for a typical hydrogen storage material. The α and β solid-solution regions 
are indicated together with the temperature-dependent two-phase (α+β) miscibility gap. 
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FIG. 2a. Schematic representation of the hydrogen storage process. b. General 
(de)hydrogenation reaction scheme, including the dissociation and recombination reaction 
at the surface and the hydrogen absorption and desorption in the bulk of the hydride-
forming material. 
 



 44

(a)

(c)

(b)

1a

2c

3g

6l

2e

2e

2e
2e

6l
1a

3g
2c

Cross-section

Schematic representation of a (non-) stoichiometric
AB5+x materials

a

b

Mi unit cells

Ni host sites

ni guest sites

 

 

 

FIG.3. Schematic representation of a non-stoichiometric AB5+x unit cell (a) and 

corresponding cross-sectional view (b). The large and small atoms represent the A- and B-

type atoms, respectively4.  
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FIG. 3a. Normalized number of host sites ( b

max
b
i n/N ) as a function of normalized 

hydrogen concentration (x) in the α- (curve (a)) and β-phase (curve (b)). b. Partial 
hydrogen concentrations (xi= max/b b

in n , see Eq. 6) as a function of x in the same two 
phases; curve (c) is the total hydrogen concentration. c. Phase-normalized hydrogen 
concentrations ( b

i
b
ii N/nx = , see Eq. 9) as a function of x. 
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FIG. 4. Energy diagram of the various hydrogen species involved in the 
(de)hydrogenation system defined in Fig. 2, including the energies of atomic hydrogen in 
the gas phase (εg), at the surface (εθ) and in the bulk (εx ), the various activation energies 
( i

mE ) and energy barriers ( i
mΠ ). All energies are given with respect to an arbitrary chosen 

reference state. 
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FIG.8. Measured (symbols) and calculated (line) pressure-composition isotherm for the 

stoicheometric alloy LaNi4.0Cu1.0.  The measurements have been performed via the gas 

phase 20 ºC4,19. 
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FIG.9. Dissociation and recombination rates in equilibrium conditions for stoichiometric 

alloy LaNi4.0Cu1.0. 
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FIG.10. Absorption and desorption rates in equilibrium conditions for stoichiometric alloy 

LaNi4.0Cu1.0. 
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FIG.11. Composition of the dissociation rate in equilibrium conditions for stoichiometric 

alloy LaNi4.0Cu1.0. 
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FIG.12. Normalized dissociation rates in equilibrium conditions for stoichiometric alloy 

LaNi4.0Cu1.0. 
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FIG.13. Composition of the absorption rate in equilibrium conditions for stoichiometric 

alloy LaNi4.0Cu1.0. 
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FIG.14. Normalized absorption rates in equilibrium conditions for stoichiometric alloy 

LaNi4.0Cu1.0. 
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FIG.15. Desorption rate constant in equilibrium conditions for stoichiometric alloy 

LaNi4.0Cu1.0. 
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FIG.16. Surface coverages for stochiometric alloy LaNi4.0Cu1.0. Blue line is the surface 

coverage of the α phase ( ( )xαθ ), green line is the surface coverage of the β phase 

( ( )xβθ ), red line is the total surface coverage ( ( ) ( ) ( )x x xα βθ θ θ= + ). 
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FIG.17. Measured (symbols) and calculated (lines) pressure-composition isotherms for 
various (non)stoichiometric compounds as a function of composition: LaNi4.0Cu1.0 (a), 
LaNi4.2Cu1.0 (b), LaNi4.4Cu1.0 (c), LaNi5.0Cu1.0 (d). All measurements have been performed 
via the gas phase 20 ºC19. 
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FIG.18.  Surface coverages for all (non)stochiometric alloys LaNixCu1.0. 
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Fig.19. Normalized recombination rates for stochiometric alloys LaNixCu1.0. 
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Fig.20. Normalized absorption rates for stochiometric alloys LaNixCu1.0. 
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FIG.21. Pressure-composition isotherms for a commercial, MischMetal-based, hydride-
forming electrode material at 0 (a), 24 (b), 45 (c) 60 (d) and 70 ºC (e)30,31. 
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FIG.22. Surface coverages for a commercial, MischMetal-based, hydride-forming 

electrode material: 0C is black line; 24C is red line; 45C is green line; 60C is cyan line; 

70C is blue line. 
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FIG.23. Dissociation and recombination rates for a commercial, MischMetal-based, 

hydride-forming electrode material in equilibrium conditions as function of temperature: 

0C is black line; 24C is red line; 45C is green line; 60C is cyan line; 70C is blue line. 
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FIG.24. Absorption and desorption rates for a commercial, MischMetal-based, hydride-

forming electrode material in equilibrium conditions as function of temperature: 0C is 

black line; 24C is red line; 45C is green line; 60C is cyan line; 70C is blue line. 
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FIG.25. Normalized recombination rates for a commercial, MischMetal-based, hydride-

forming electrode material in equilibrium conditions as function of temperature: 0C is 

black line; 24C is red line; 45C is green line; 60C is cyan line; 70C is blue line. 
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FIG.26. Normalized absorption rates for a commercial, MischMetal-based, hydride-

forming electrode material in equilibrium conditions as function of temperature: 0C is 

black line; 24C is red line; 45C is green line; 60C is cyan line; 70C is blue line. 
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FIG.27. Behavior of parameters ( )P α   and ( )P β  as functions of temperature for 

MischMetal-based, hydride-forming electrode material. 

 

 
 


