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Abstract

We discuss a single-server multi-station alternating queue where the preparation times
and the service times are auto- and cross-correlated. We examine two cases. In the first
case, preparation and service times depend on a common discrete time Markov chain. In
the second case, we assume that the service times depend on the previous preparation time
through their joint Laplace transform. The waiting time process is directly analysed by
solving a Lindley-type equation via transform methods. Numerical examples are included
to demonstrate the effect of the autocorrelation of and the cross-correlation between the
preparation and service times.

1 Introduction

Consider a server alternating between two service points, serving one customer at a time. At
each service point there is an infinite queue of customers waiting for service. Before being served
by the server, a customer first must undergo a preparation phase, which starts immediately after
the server has completed service at that particular service point and has moved to the next one.
The server is not involved at all with the preparation phase. The server is obliged to alternate;
therefore he serves all odd-numbered customers at one service point and all even-numbered
customers at the other. Thus the server, after having finished serving a customer at one service
point, may have to wait for the preparation phase of the customer at the other service point to
be completed. Let Wn be the time the server has to wait before he can start serving the n-th
customer. If Bn is the preparation time of the n-th customer and An is the service time of the
n-th customer, then Wn can be defined recursively by

Wn+1 = max{0, Bn+1 −An −Wn}, n > 1. (1.1)

1

mailto:vlasiou@gatech.edu
mailto:iadan@win.tue.nl
mailto:boxma@win.tue.nl


This alternating service model occurs in many applications. For example, this strategy is
followed by surgeons performing eye surgeries. Another example where (1.1) occurs comes from
inventory theory, in particular from the analysis of two-carousel systems. This application is
considered in [17, 20, 22]. Equation (1.1) is introduced in [22] and has been studied further in
[29, 30, 31, 32, 33]; see these references for a further discussion on applications. A restriction
of the previous work is that {An} and {Bn} are two mutually independent sequences of i.i.d.
random variables. In the present study, we analyse the above queuing model under two different
dependence structures.

In the first dependence structure we study, the distributions of the preparation and service
times are regulated by an irreducible discrete-time Markov chain. Specifically, we assume that
each transition of the Markov chain generates a new preparation time and its corresponding
service time. Given the state of the Markov chain at times n and n + 1, the distributions of
An and Bn+1 are independent of one another for all n. However, the distributions of An and
Bn depend on the state of the Markov chain. Such a dependence structure occurs naturally in
many applications. For example, in the application involving two carousels that is described
in [22, 30, 32], one can intuitively see that if an order consists of multiple items stored on one
carousel, then there are strategies for the preparation of the carousel, where a long preparation
time Bn implies that the service time An (i.e. the time necessary to pick an order on that
carousel) will be relatively short, while being independent of all other past or future preparation
and service times. Also in this example, the service and preparation times may depend on the
carousel. That is, if one carousel is slower than the other, then the service and preparation times
on the slower carousel will be longer than on the faster one. Hence, the service and preparation
times are strictly periodic, which is a special case of Markov-dependence. Also queueing models
with strictly periodic arrivals have been frequently studied; see, [11, 21, 23, 24]. These models
arise, for example, in the modelling of inventory systems using periodic ordering policies; see
[26] and [34].

The second dependence structure we study assumes that the random variables An and Bn+1

have a joint distribution. In particular, given the length of the service time An, the following
preparation time has a Laplace-Stieltjes transform of a specific form. The form we choose
is rather general and allows for various specific dependence structures and preparation time
distributions. Later on, we give a few specific examples. Dependencies between a service time
and the following preparation time are also possible in applications. Again for the carousel
model described in [30, 32] with orders consisting of multiple items, one can have the situation
where a “smart” preparation strategy is followed, which anticipates the expected delay of the
server for the previous order. Thus, knowing that the previous service time is relatively long,
the other carousel rotates at a starting point that may be further away, but reduces the service
time of the following order.

One should note here that (1.1) is, up to the minus sign in front of Wn, equal to Lindley’s
recursion, which is one of the most important and well-studied recursions in applied probability.
Both dependence structures studied are also motivated by analogous cases studied for Lindley’s
recursion. In Lindley’s recursion, An represents the interarrival time between customers n and
n+1, Bn is the service time of the n-th customer, and Wn represents the time the n-th customer
has to wait before starting his service; see, e.g., [2] and [10] for a comprehensive description. We
shall compare Lindley’s recursion to (1.1) for the two dependence structures mentioned above.

Queuing models with dependencies between interarrival and service time have been studied
by several authors. A review of the early literature can be found in Bhat [4]. Such dependencies
arise naturally in various applications. For example, the phenomenon of dependence among the
interarrival times in the packet streams of voice and data traffic is well known; see, e.g., [18,
19, 27]. However, in [16] the authors argue that in packet communication networks one should
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also expect two additional forms of dependence: between successive service times and among
interarrival times and service times. These forms of dependence occur because of the presence of
bursty arrivals and multiple sources with different mean service times (due to different packet
lengths), and they may have a dominant effect on waiting times and queue lengths. In this
paper, we study such forms of dependence for the model described by (1.1).

The presentation is organised as follows. In Section 2 we derive the steady-state waiting-
time distribution FW for the first case studied. We assume that the service times follow some
general distribution that depends on the state of the Markov chain. For the preparation times,
in Section 2.1 we assume that they are exponentially distributed (with a rate depending on
the state of the Markov chain), while in Section 2.2 we extend the analysis to mixed-Erlang
distributions. We complement the results with various numerical examples in Section 2.3. In
Section 3 we derive FW for the second case studied. We assume that the service times are
exponentially distributed, although, as we remark later on, the analysis can be extended to
mixed-Erlang distributions.

2 Markov-modulated dependencies

In this section we define the setting and derive the autocorrelation function of preparation or
service times, as well as the crosscorrelation of these. We study the case where the preparation
times and the service times depend on a common discrete-time Markov chain. This model
allows dependencies between preparation and service times. The waiting time in this case is
directly derived by using Laplace transforms. For Lindley’s recursion, the analogous model has
been analysed in Adan and Kulkarni [1].

We first introduce some notation. For a random variable Y we denote its distribution by FY
and its density by fY . A second index is used when we need to distinguish between the different
states of the underlying Markov chain. For example, we denote by FW,j(x) the steady-state
probability that the waiting time W ≤ x and the Markov chain is in state j. Also, given an
event E we use the convention that P[Y 6 x ;E] = E[1[Y6x] ·1[E]], and likewise for expectations.

As mentioned before, we assume that the sequences {An} and {Bn} are both autocorrelated
and cross-correlated. The nature of the dependence we study in this first part is described
below.

The distributions of the preparation and service times are regulated by an irreducible, ape-
riodic, discrete-time Markov chain {Zn}, n > 1, with state space {1, 2, . . . ,M} and transition
probability matrix P = (pi,j). To be exact, we have that

P[An 6 x ;Bn+1 6 y ;Zn+1 = j | Zn = i ;Bn ; (A`, B`, Z`), 1 6 ` 6 n− 1]
= P[A1 6 x ;B2 6 y ;Z2 = j | Z1 = i]
= pi,jP[A1 6 x ;B2 6 y | Z1 = i ;Z2 = j]
= pi,jFA|i(x)FB|j(y), (2.1)

where x, y > 0 and where i, j = 1, 2, . . . ,M . Thus, given Zn and Zn+1, the distributions of
An and Bn+1 are independent of one another for all n. The random variables An follow an
arbitrary distribution that is independent of the past, given Zn, while Bn follows in general a
phase-type distribution that is depending on the state of Zn.

We assume that there are an i and j such that P[Xn < 0, Zn+1 = j|Zn = i] > 0, where
Xn = Bn+1 − An. This implies that the Markov chain (Wn, Zn) is stable. To see that, first
notice that a regeneration point occurs if Wn+1 = 0 and Zn+1 = j. Since the Markov chain {Zn}
is finite and irreducible, the time between two occurrences of state j is finite in expectation.
For each time state j is reached there is a positive probability that Xn < 0, which implies that
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Wn+1 = 0. Thus, we will have that in a geometric number of steps both events Wn+1 = 0
and Zn+1 = j will happen at the same step. In particular, the number of steps is finite in
expectation. In other words, we will have a regeneration point within a finite expected time.
Hence, since {Zn} is aperiodic, the limiting distribution of the Markov chain (Wn, Zn) exists,
and thus we can define for Re(s) > 0, n > 1, and j = 1, 2, . . . ,M the transforms

ωj(s) = lim
n→∞

ωnj (s),

where
ωnj (s) = E[e−sWn ;Zn = j].

Denote by λ−1
i the mean and by si the second moment of the service time distribution FA|i.

Analogously, define µ−1
i as the mean of FB|i and σi as its second moment. Moreover, denote by

$ = ($1, $2, . . . , $M ) the stationary distribution of the Markov chain {Zn}. Then, in steady
state, the autocorrelation between Am and Am+n is given by

ρ[Am, Am+n] = ρ[A1, An+1] =

∑M
i=1

∑M
j=1$i

(
p
(n)
i,j −$j

)
λ−1
i λ−1

j∑M
i=1$isi −

(∑M
i=1$iλ

−1
i

)2 , (2.2)

where
p
(n)
i,j = P[Zn+1 = j | Z1 = i], n > 0, 1 6 i, j 6 M.

A similar expression can be derived for the autocorrelation between preparation times. Since
P is aperiodic, we have that p(n)

i,j converges to $j geometrically as n tends to infinity. In other
words, the autocorrelation function approaches zero geometrically fast as the lag goes to infinity.
For the cross-correlation between An and Bn we have that

ρ[An, Bn] = ρ[A1, B1] =
∑M

i=1$iλ
−1
i µ−1

i − µ̂ λ̂(∑M
i=1$isi − λ̂2

)1/2(∑M
j=1$jσi − µ̂2

)1/2
,

where λ̂ =
∑M

i=1$iλ
−1
i and µ̂ =

∑M
i=1$iµ

−1
i .

When {Zn} is in state j, we denote by αj the Laplace-Stieltjes transform of the service
distribution FA|j . We denote the derivative of order i of a function f by f (i) and we have by
definition that f (0) = f . For simplicity, in the following section we first derive the steady-
state waiting-time distribution for this model in case the preparation times are exponentially
distributed. Later on, in Section 2.2, we generalise this result to phase-type preparation times.

2.1 Exponential preparation times

In this section we assume that FB|j(x) = 1 − e−µjx. We are interested in the steady-state
waiting-time distribution. The next theorem gives the equations satisfied by the waiting-time
densities for every state of {Zn}.

Theorem 1 (Exponential preparation times). Let FB|j(x) = 1 − e−µjx. Then, for all j =
1, . . . ,M ,

FW,j(0) = $j − cj ,

where cj =
∑M

i=1 pi,j ωi(µj)αi(µj), and the waiting-time density is given by

fW,j(x) = µjcj e−µjx.
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The M2 unknown constants ωi(µj) are the unique solution to the following system of linear
equations

ωj(µ`) = $j −
µ`

µj + µ`

M∑
i=1

pi,j ωi(µj)αi(µj), j, ` = 1, . . . ,M.

Proof. From (1.1) we obtain the following equation for the transforms ωn+1
j , j = 1, . . . ,M .

ωn+1
j (s) = E[e−sWn+1 ;Zn+1 = j] =

M∑
i=1

P[Zn = i]E[e−smax{0,Bn+1−An−Wn} ;Zn+1 = j | Zn = i]

=
M∑
i=1

P[Zn = i]pi,j

(
E[
∫ An+Wn

0
fBn+1

(x) dx | Zn = i ;Zn+1 = j]+

+ E[
∫ ∞

An+Wn

e−s(x−An−Wn)fBn+1
(x) dx | Zn = i ;Zn+1 = j]

)
. (2.3)

Since Zn+1 = j, we have that Bn+1 is now exponentially distributed with rate µj . Thus, the
above equation becomes

ωn+1
j (s) =

M∑
i=1

P[Zn = i]pi,j

(
E[
∫ An+Wn

0
µje−µjx dx | Zn = i]+

+ E[
∫ ∞

An+Wn

e−s(x−An−Wn)µje−µjx dx | Zn = i]
)

=
M∑
i=1

P[Zn = i]pi,jE[1− e−µj(An+Wn) +
µj

µj + s
e−µj(An+Wn) | Zn = i]

=
M∑
i=1

P[Zn = i]pi,j
(
1− s

µj + s
E[e−µj(An+Wn) | Zn = i]

)
=

M∑
i=1

pi,j

(
P[Zn = i]− s

µj + s
ωni (µj)αi(µj)

)
.

So for n→∞ we have that ωj(s) is given by

ωj(s) = $j −
M∑
i=1

pi,j ωi(µj)αi(µj) +
µj

µj + s

M∑
i=1

pi,j ωi(µj)αi(µj). (2.4)

Define the constants

cj =
M∑
i=1

pi,j ωi(µj)αi(µj).

Inverting the Laplace transform ωj yields that the density of the waiting time is given by

fW,j(x) = µjcj e−µjx,

and the corresponding distribution has mass FW,j(0) = $j−cj at the origin. For i, j = 1, . . . ,M ,
the M2 unknown constants ωi(µj) that are needed in order to determine the unknown constants
cj are the unique solution to the system of linear equations given by the expression

ωj(µ`) = $j −
µ`

µj + µ`

M∑
i=1

pi,j ωi(µj)αi(µj), j, ` = 1, . . . ,M ; (2.5)
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see Equation (2.4). The uniqueness of the solution follows from the general theory of Markov
chains, which states that there is a unique stationary distribution and thus also a unique solution
to the system of equations formed by (2.5) for all j, ` = 1, . . . ,M .

The result given in Theorem 1 is expected. Evidently, since the preparation time Bn is
exponentially distributed (with a rate depending on the state of the Markov chain) and Wn is
the residual preparation time, we have that for every state j of the Markov chain, the waiting-
time distribution has mass at zero and the conditional waiting time is exponentially distributed
with rate µj .

Observe that Theorem 1 generalises the statement of Theorem 1 in [30], which gives the
steady-state waiting-time density in case {An} and {Bn} are mutually independent sequences
of i.i.d. random variables and B follows an Erlang distribution. Specifically, if the Markov chain
in Theorem 1 has only one state (and thus there is a unique service-time distribution and a
unique rate µ for the exponentially distributed preparation times) and the Erlang distribution
FB in [30, Theorem 1] has only one phase, then the statements of these two theorems are
identical. Observe, for example, that (2.5) reduces to [30, Eq. (3.2)] as now $j = 1, and
pi,j = 1.

2.2 Phase-type preparation times

Assume now that if the Markov chain is in state j, the preparation time is with probability κn
equal to a random variable Yn, n = 1, . . . , N , that follows an Erlang distribution with parameter
µj and n phases. In other words the distribution function of B is given by

FB|j(x) =
N∑
n=1

κn

(
1− e−µjx

n−1∑
`=0

(µjx)`

`!

)
, x > 0. (2.6)

This class of phase-type distributions may be used to approximate any given distribution on
[0,∞) for the preparation times arbitrarily close; see Schassberger [25]. The waiting-time density
for this case is given by the following theorem.

Theorem 2 (Mixed-Erlang preparation times). Let FB|j be given by (2.6). Then, for j =
1, . . . ,M ,

FW,j(0) = $j −
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
µ`j
`!

(
`

m

)
(−1)`

(
αi(µj)

)(`−m)(
ωi(µj)

)(m) (2.7)

and the waiting time density is given by

fW,j(x) =
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
(−1)`

`!

(
`

m

)(
αi(µj)

)(`−m)(
ωi(µj)

)(m)
µnj e

−µjx
xn−`−1

(n− `− 1)!
.

Proof. For the proof, we shall refrain from presenting detailed computations, as the analysis
is straightforward and similar to the one for the exponential case. We give, however, a few
intermediate formulas. From (2.3) and for the present preparation time distributions we have
that

ωn+1
j (s) =

M∑
i=1

P[Zn = i]pi,j

(
1−

N∑
n=1

κnE[e−µj(An+Wn)
n−1∑
`=0

µ`j(An +Wn)`

`!
| Zn = i]+

+
N∑
n=1

κn

( µj
µj + s

)n
E[e−µj(An+Wn)

n−1∑
`=0

(µj + s)`(An +Wn)`

`!
| Zn = i]

)
.
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So for n→∞ we have that ωj(s) is given by (cf. (2.4))

ωj(s) = uj +
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
(−µj)`

`!

(
`

m

)(
αi(µj)

)(`−m)(
ωi(µj)

)(m)
( µj
µj + s

)n−`
, (2.8)

where uj is the mass of the waiting time distribution at the origin and it is given by (2.7).
Inverting the Laplace transform ωj yields that the density of the waiting time is given by the
expression presented in the theorem and the corresponding distribution has mass uj at the
origin. For i, j = 1, . . . ,M , the M2 unknown constants ωi(µj) are the unique solution to the
system of linear equations resulting from substituting µk, k = 1, . . . ,M , for s in (2.8).

Naturally, Theorem 2 reduces to Theorem 1 for N = 1, and to the i.i.d. case for M = 1; cf.
[30, Theorem 2].

Dependence structures of the form of Equation (2.1), and several generalisations, have been
studied extensively for Lindley’s recursion. Asmussen and Kella [3] considered multidimensional
martingales for a class of processes, and sketched the results for the Markov-modulated M/G/1
queue. The basic model was then described in detail in Adan and Kulkarni [1], where all re-
sults are given explicitly and the analysis extends to the study of the queue length distribution.
Specifically, the authors study a single-server queue where the interarrival times and the service
times depend on a common discrete-time Markov chain in a way similar to the one described
by Equation (2.1). This model generalises the well-known MAP/G/1 queue by allowing de-
pendencies between interarrival and service times. The MAP/G/1 queue provides a powerful
framework to model dependencies between successive interarrival times [12], but typically the
service times are assumed to be i.i.d. and independent of the arrival process.

Remark 1 (Periodic Markov chain). The results in Sections 2.1 and 2.2 are also valid in case the
transition probability matrix P is periodic. Clearly, the transforms ωj should then be defined
as Cesaro limits, i.e., for Re(s) > 0, n > 1, and j = 1, 2, . . . ,M ,

ωj(s) = lim
n→∞

1
n

n∑
m=1

ωmj (s).

But contrary to the aperiodic case, the autocorrelation between service times and preparation
times does not converge to zero as the lag tends to infinity; see (2.2).

2.3 Numerical examples

In this section we present some examples to demonstrate the effects of autocorrelation and
crosscorrelation of the preparation and service times. In all of the examples, we have assumed
that the underlying Markov chain has four states, i.e., M = 4. The transition matrices are
chosen so that the limiting distributions for all cases are equal. Naturally, different transi-
tion matrices produce different dependence structures between and among the sequences {An}
and {Bn}. We also assume that the service times and the preparation times are exponen-
tially distributed and that the service rates in each state of the Markov chain are given by
(λ1, λ2, λ3, λ4) = (1, 100, 1, 100). We keep the mix of small and large preparation and service
rates the same. Thus the examples differ only in the dependence structure among and between
the sequences of preparation and service times.

First example. In this example we study the effect of autocorrelation in case {An} and {Bn}
are positively crosscorrelated. In particular, we assume that the preparation rates are given by
(µ1, µ2, µ3, µ4) = (u/2, 10u, u/2, 10u), where we employ the parameter u > 0 in order to explore
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Figure 1: Positive crosscorrelation: the mean waiting time against the parameter controlling
the preparation rate for autocorrelated and i.i.d. sequences.

the effect of the mean preparation time on the expected waiting time. For this setting, we have
that the crosscorrelation between {An} and {Bn} is approximately equal to 0.3195.

We will compare the case where both the preparation and the service times are autocorre-
lated to the case that successive preparation and service times are i.i.d. In the first case, we
take the transition probability matrix to be given by

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (2.9)

Thus, since we assumed that the service times are exponentially distributed (with the given
rates), we have that their autocorrelation is given by

ρ[A1, An+1] = (−1)n
9801
29803

, n > 1, (2.10)

and similarly, we can derive that the autocorrelation for the preparation times is equal to

ρ[B1, Bn+1] = (−1)n
361
1163

, n > 1.

In the second case, we take P = (0.25), i.e. we take all elements of the matrix P equal to 0.25,
which implies that successive preparation and successive service times have zero autocorrelation.
In Figure 1 we plot the mean waiting time of the server against the parameter u. Keep in mind
that all means of the preparation times decrease as u increases. As is evident from Figure 1,
autocorrelation leads to higher mean waiting times.

Second example. In Figure 2 we study the effect of autocorrelation in case {An} and
{Bn} are negatively crosscorrelated. For this case, we take the preparation rates equal to
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Figure 2: Negative crosscorrelation: the mean waiting time against the parameter controlling
the preparation rate for autocorrelated and i.i.d. sequences.

(µ1, µ2, µ3, µ4) = (10u, u/2, 10u, u/2), u > 0, which implies that the crosscorrelation in this
example is approximately equal to −0.3195. We compare the previous two cases for the new
preparation rates. Namely, we compare the autocorrelated case, where the transition matrix P
is given by (2.9), to the i.i.d. case, where the transition matrix has all its entries equal to 0.25.
The autocorrelation functions, both for the preparation times and for the service times remain
the same. As before, autocorrelation leads to higher mean waiting times. However, in this case,
the effect of the autocorrelation is not as big as in the first example.

Third example. Now the preparation rates are given by (µ1, µ2, µ3, µ4) = (u/2, u/2, 10u, 10u),
u > 0, which implies that the crosscorrelation in this example is equal to zero. As before, we
compare two cases. In the first case, we take

P =


0 0.5 0 0.5

0.5 0 0.5 0
0 0.5 0 0.5

0.5 0 0.5 0


which leads to autocorrelated service times with the autocorrelation function given by Equa-
tion (2.10), and i.i.d. preparation times. We compare this case to the case where all entries
of the transition matrix are equal to 0.25, where successive preparation and successive service
times have zero autocorrelation. In Figure 3, the mean waiting times are shown for both cases.
The difference in the mean waiting times is negligible in this case, although the two functions
are not equal.

Comparing these numerical results to the analogous cases for Lindley’s recursion, which
are described in [1], illustrates the different effect of dependencies on these two recursions.
In Lindley’s recursion, autocorrelation leads to slightly lower mean waiting times. Moreover,
negative crosscorrelation leads to a bigger difference between the autocorrelated and the i.i.d.
case than the difference observed for the positively crosscorrelated case. The results for the
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Figure 3: Zero crosscorrelation: the mean waiting time against the parameter controlling the
preparation rate for autocorrelated and i.i.d. sequences.

Lindley-type recursion (1.1) are reversed. Autocorrelation leads to higher mean waiting times
and the biggest differences are observed in case {An} and {Bn} are positively crosscorrelated
(cf. Figures 1 and 2). Also, in the third example, where the crosscorrelation is eliminated, the
outcome is again very different. For Lindley’s recursion, even in the case of zero crosscorrelation,
autocorrelation leads to significant differences for the mean waiting times. In our case, there is
hardly any difference between the autocorrelated and the i.i.d. case (cf. Figure 3).

3 Services depending on the previous preparation time

In this section, we study the second dependence structure mentioned in the introduction. In
particular, we assume that for all n, the service times An are distributed as A, which in turn is
exponentially distributed with rate λ. Moreover, the Laplace-Stieltjes transform of the prepa-
ration time Bn+1, given that the previous service time An equals t, is of the form

E[e−sBn+1 | An = t] = E[e−sB | A = t] = χ(s)e−ψ(s)t. (3.1)

Observe that now the preparation time Bn+1 depends only on the previous service time, while
in the Markov-modulated case we have examined previously all preparation and service times
are correlated between and among one another, since their distributions depend on a common
Markov chain.

This dependence structure also occurs in simple queuing models. Consider the following
situation. Work arrives at a single-server queue according to a process with stationary, non-
negative independent increments. This work, however, does not immediately enter the queue of
the server facility; instead it is accumulated behind a gate. At exponential interarrivals the gate
is opened and – after the addition of an independent component – the work is collected and
delivered as a single customer at the queue of the service facility. The additional component
may be viewed as a set-up time.

10



Due to the exponentially distributed interarrival times of customers, we can view the service
facility as an M/G/1 queue in which the interarrival and service time for each customer are
positively correlated. Indeed, if the interval between two consecutive openings of the gate is
relatively long (short), it is likely that a relatively large (small) amount of work has accumulated
during that interval. This model is a unification and generalisation of the M/G/1 queue with a
positive correlation between interarrival and service times [5, 6, 9, 14] and has been analysed in
Boxma and Combé [7]. In Combé and Boxma [12] it is shown that the collect system can also
be modelled by using the BMAP framework.

3.1 The waiting-time distribution

In order to derive the waiting-time distribution we shall further assume that the functions χ
and ψ that appear in Equation (3.1) are rational functions; i.e.,

χ(s) =
P1(s)
Q1(s)

and ψ(s) =
P2(s)
Q2(s)

, (3.2)

where P2, Q1, and Q2 are polynomials of degrees L, M , and N respectively. From the form
of Equation (3.1) we see that a number of other assumptions have been implicitly made. For
example, since for s = 0 the expectation E[e−sB | A = t] should be equal to one, we have
implicitly assumed that ψ(0) = 0 and χ(0) = 1. We shall mention other implications of such
type only when necessary.

The preparation time Bn+1 consists of two parts: a component which depends on the pre-
vious service time, represented by e−ψ(s)t, and an ‘ordinary’ preparation time with Laplace-
Stieltjes transform χ(s), which does not depend on the service time. From (3.1) we have that
the bivariate Laplace-Stieltjes transform of the generic preparation and service time is given by

E[e−sB−zA] =
∫ ∞

0
λe−λte−ztχ(s)e−ψ(s)t dt =

λχ(s)
λ+ ψ(s) + z

, (3.3)

for Re(λ+ ψ(s) + z) > 0. This expression leads to

E[B] =
ψ′(0)
λ

− χ′(0), and E[AB] =
2ψ′(0)− λχ′(0)

λ2
,

from which we have that the covariance between a preparation time and a service time is given
by

cov[A,B] =
ψ′(0)
λ2

.

The correlation between these two variables can be also computed, see Boxma and Combé [7].
Thus, one can construct a distribution function FB that has any covariance (or correlation)
between A and B that is desired.

In order to derive the steady-state waiting-time distribution, we shall first derive the Laplace-
Stieltjes transform of FW . We follow a method based on Wiener-Hopf decomposition. A
straightforward calculation, starting from the steady-state version of (1.1),

W
D= max{0, B −A−W},

yields that

ω(s) = E[e−sW ] = P[B 6 W +A] + E[e−s(B−W−A)]− E[e−s(B−W−A) ;B 6 W +A]

= P[B 6 W +A] + E[esW ] E[e−s(B−A)]− E[e−s(B−W−A) ;B 6 W +A],

11



since B −A and W are independent. Therefore, from (3.3) we have for Re(s) = 0 that

ω(s) = P[B 6 W +A] + ω(−s) λχ(s)
λ− s+ ψ(s)

− E[e−s(B−W−A) | B 6 W +A]P[B 6 W +A]

(3.4)

= ω(−s)P1(s)
Q1(s)

λQ2(s)
(λ− s)Q2(s) + P2(s)

+ P[B 6 W +A]
(
1− E[e−s(B−W−A) | B 6 W +A]

)
,

which can be rewritten as

ω(s)Q1(s)
(
(λ− s)Q2(s) + P2(s)

)
= λω(−s)P1(s)Q2(s) +Q1(s)

(
(λ− s)Q2(s) + P2(s)

)
×

× P[B 6 W +A]
(
1− E[e−s(B−W−A) | B 6 W +A]

)
. (3.5)

We can observe that Q1(s)
(
(λ− s)Q2(s)+P2(s)

)
is a polynomial of degree K = max{M +N +

1,M + L} and also that the left-hand side of (3.5) is analytic for Re(s) > 0 and continuous
for Re(s) > 0, and the right-hand side of (3.5) is analytic for Re(s) < 0 and continuous for
Re(s) 6 0. Therefore, from Liouville’s theorem [28], we conclude that both sides of (3.5) are
the same K-th degree polynomial, say,

∑K
i=0 qis

i. Hence,

ω(s) =
∑K

i=0 qis
i

Q1(s)
(
(λ− s)Q2(s) + P2(s)

) . (3.6)

In the expression above, the constants qi are not determined so far. In order to obtain the
transform, observe that ω is a fraction of two polynomials both of degreeK. Let ri, i = 1, . . . ,K,
be the zeros of the denominator. Ignoring the special case of zeros with multiplicity greater
than one, partial fraction decomposition yields that (3.6) can be rewritten as

ω(s) = c0 +
K∑
i=1

ci
s− ri

, (3.7)

which implies that the waiting-time distribution has a mass at the origin that is given by

P[W = 0] = lim
s→∞

E[e−sW ] = c0

and has a density that is given by

fW (x) =
K∑
i=1

cierix. (3.8)

All that remains is to determine the K + 1 constants ci. To do so, we work as follows. We
express the terms P[B 6 W+A] and E[e−s(B−W−A) | B 6 W+A] that appear at the right-hand
side of (3.5) in terms of the constants ci by using (3.7) and (3.8). Then, we substitute these
expressions and (3.7) in the left-hand side of (3.5). Thus we obtain a new equation in terms of
the constants ci that we differentiate a total of K times. We evaluate each of these derivatives
for s = 0 and thus we obtain a linear system of K+1 equations, i = 0, . . . ,K, for the constants
ci (the original equation and the K derivatives). We summarise the above in the following
theorem.

Theorem 3. Let FA(x) = 1− e−λx. Under the assumptions (3.1) and (3.2), we have that

FW (0) = c0
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and the waiting time density is given by

fW (x) =
K∑
i=1

cierix.

In the expression above, the constants ri are the K zeros of the equation

Q1(s)
(
(λ− s)Q2(s) + P2(s)

)
= 0

and the coefficients ci are derived as described above.

Remark 2. In case that for some i we have that the real part of ri is greater than or equal to zero,
then it follows that the corresponding coefficient ci is equal to zero. This is a consequence of
the fact that the limiting distribution exists and therefore the density fW should be integrable.
Note that the meaning of χ as the Laplace-Stieltjes transform of an ordinary preparation time
already implies that the L zeroes of Q1(s) have a negative real part.

Remark 3. Although the roots ri and coefficients ci may be complex, the density and the mass c0
at zero will be positive. This follows from the fact that there is a unique equilibrium distribution
and thus a unique solution to the linear system for the coefficients ci. Of course, it is also clear
that each root ri and coefficient ci have a companion conjugate root and conjugate coefficient,
which implies that the imaginary parts appearing in the density cancel.

Remark 4. When Q1(s)
(
(λ − s)Q2(s) + P2(s)

)
has multiple zeros, the analysis proceeds in

essentially the same way. For example, if r1 = r2, then the partial fraction decomposition of ω
becomes

ω(s) = c0 +
c1

(s− r1)2
+

K∑
i=2

ci
s− ri

,

yielding

fW (x) = c1xer1x +
K∑
i=2

cierix.

Remark 5. For the service time A we have considered only the exponential distribution, mainly
because we can illustrate the technique we use without complicating the analysis. However, we
can extend this class by considering distributions with a mixed-Erlang distribution of the form of
Equation (2.6) and the proof remains essentially the same. That is, let FA(x) =

∑n
i=1 κiEi(x),

where Ei is the Erlang distribution with i phases. Then, the resulting density of the waiting
time is again of the form

fW (x) =
K′∑
i=1

cierix,

where K ′ = M + nmax{N + 1, L}. The constants ri are the zeros to the equation

Q1(s)
(
(λ− s)Q2(s) + P2(s)

)n = 0,

and the coefficients ci are determined in a similar fashion as before. Naturally, if any of the
zeros ri has multiplicity greater than one, the form of the density changes analogously; see also
the previous remark.

We now present a few examples where we show how some classic dependence structures fit
into this class. In the examples below, we only discuss how to derive the function ψ. All of the
examples presented here are examples of Lévy processes.
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Independent case

The dependence structure described by Equation (3.1) contains a great variety of dependence
structures, including the independent case. If for all s we have that ψ(s) = 0, then the Laplace-
Stieltjes transform of B is independent of the length of the service time, and thus the function χ
appearing in (3.1) is in fact the Laplace-Stieltjes transform of B. Observe that we have assumed
that B has a rational Laplace-Stieltjes transform, which is necessary in order to decompose
Equation (3.4) into functions that are analytic either in the left-half plane or in the right-half
plane.

Linear Dependence

Assume that the service time A and the preparation time B are linearly dependent; that is,
B = cA. Then,

E[e−sB | A = t] = E[e−scA | A = t] = e−sct.

Thus we have that χ(s) = 1, and ψ(s) = cs, and both functions satisfy our assumptions.
Queuing models with a linear dependence between the service time and the preceding interarrival
time have been studied in [9, 13, 15]; see also [8].

Compound Poisson Process

In this case we assume that given that A = t, the preparation time B is equal to
∑N(t)

i=1 Ci, where
N(t) is a Poisson process with rate γ, and {Ci} is a sequence of i.i.d. random variables, where
each of them is distributed like C, and where C has a rational Laplace-Stieltjes transform. By
convention, if N(t) = 0, we have that the preparation time is also zero. Under this assumption,
we have

E[e−sB | A = t] = E[e−s
∑N(t)

i=1 Ci | A = t] =
∞∑
k=0

E[e−s
∑k

i=1 Ci | A = t] e−γt
(γt)k

k!

=
∞∑
k=0

(
E[e−sC ]

)k e−γt
(γt)k

k!
= e−ψ(s)t,

where ψ(s) = γ
(
1− E[e−sC ]

)
. As before, in this case we have that χ(s) = 1.

Brownian Motion

In this case we assume that given that A = t, the random variable B is normally distributed
with mean µt and variance σ2t. Then we have that

E[e−sB | A = t] =
∫ ∞

−∞
e−sx

e−(x−µt)2/(2σ2t)

σ
√

2πt
dx = e−ψ(s)t,

where ψ(s) = µs − s2σ2/2, and χ(s) = 1. Of course, if B is interpreted as the preparation
time of a customer, then assuming that B is normally distributed is not a natural assumption,
since the preparation time of a customer is non-negative. However, in the analysis we do not
need the condition of B being non-negative; therefore, it is mathematically possible to consider
this case. For further examples of distributions satisfying the condition described by (3.1), see
Boxma and Combé [7].
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One additional assumption made in [7] is that the function ψ appearing in (3.1) has a com-
pletely monotone increasing derivative. This implies that the function e−ψ(s) is the Laplace-
Stieltjes transform of an infinitely divisible probability distribution, which in its turn is a distri-
bution of increments in processes with stationary independent increments, i.e. Lévy processes.
However, the monotonicity of the derivative of ψ was not required for the analysis of our model.

3.2 Numerical examples

We shall demonstrate the effect of the dependence structure given by (3.1) to the mean waiting
time of the server. In Figure 4 we plot the mean waiting time against the mean preparation
time of a customer for the three first cases mentioned in the previous section. In all cases, we
assume that the service times are exponentially distributed with mean 1.

As an example, we present the derivations for the linear dependence. In this case, we have
that K = 1 and thus we have one root, given by r1 = −1/(c− 1). Moreover, one can compute
that

P[B 6 W +A] =

{
1, c 6 1
1− c0 + c1

2r1
, c > 1

and that

E[e−s(B−W−A) | B 6 W +A] =


ω(−s)

1−(1−c)s , c 6 1
1

1+(c−1)s
ω(−s)−ω(1/(c−1))

1−c0+
c1
2r1

, c > 1.

Thus, for c 6 1, Equation (3.5) becomes

(c0 +
c1

s− r1
)(1− s+ cs) = c0 −

c1
s+ r1

+ (1− s+ cs)
(
1−

c0 − c1
s+r1

1− (1− c)s
)
.

Evaluating this equation and its derivative at s = 0 we form a linear system of two equations,
from which we conclude that for c 6 1, c0 = 1 and c1 = 0. This is what was to be expected, as
in this case there is no waiting time.

For c > 1, Equation (3.5) becomes

(c0+
c1

s− r1
)(1−s+cs) = c0−

c1
s+ r1

+(1−s+cs)(1−c0+
c1
2r1

)
(
1−

c1
2r1

− c1
s+r1

(1 + (c− 1)s)(1− c0 + c1
2r1

)
)
.

Evaluating this equation and its derivative at s = 0 we have that for c > 1, c0 = 1/3 and
c1 = 2/(3(c− 1)). Since the mean waiting time is equal to c1/r21, we have that E[W ] is zero for
c 6 1 and is equal to 2(c− 1)/3 for c > 1. This case is depicted in Figure 4.

Furthermore, for the independent case we have assumed that the preparation times are also
exponentially distributed, and for the compound Poisson process we have assumed that the
jumps Ci are exponentially distributed with mean 1 (which implies that the mean preparation
times are equal to the parameter γ of the underlying Poisson process).

As is evident from Figure 4, the precise nature of the dependence structure between the
preparation and the service times has a significant impact on the mean waiting time (and on
the waiting time distribution). In Section 2.3, where we have examined the effect of Markov
modulated dependencies, correlation has led to longer waiting times. However, in this case, we
observe that dependent preparation and service times do not necessarily lead to longer waiting
times. In case B is linearly dependent on A, the resulting mean waiting time is always smaller
than the mean waiting time for A and B being both exponentially distributed and independent
of one another.
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Figure 4: The mean waiting time against the mean preparation time

We further observe that the mean waiting time can vary significantly among various depen-
dence structures. For example, we see that for the compound Poisson case, the mean waiting
time grows faster than an exponential (which is the growth rate for the independent case)
and diverges from the independent case faster than the mean waiting time for the linear case.
One can infer from this example that the dependence among preparation and service times in
Equation (1.1) cannot be ignored and should be modelled appropriately.
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[9] I. Cidon, R. Guérin, A. Khamisy, and M. Sidi. On queues with interarrival times pro-
portional to service times. Probability in the Engineering and Informational Sciences,
10(1):87–107, 1996.

[10] J. W. Cohen. The Single Server Queue. North-Holland Publishing Co., Amsterdam, 1982.

[11] J. W. Cohen. On periodic Pollaczek waiting time processes. In Athens Conference on
Applied Probability and Time Series Analysis, Vol. I (1995), volume 114 of Lecture Notes
in Statististics, pages 361–378. Springer, New York, 1996.
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