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HITTING TIMES FOR MULTIPLICATIVE

GROWTH-COLLAPSE PROCESSES
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Abstract: We consider a stochastic process (Xt)t≥0 that grows linearly in time and
experiences collapses at times governed by a Poisson process with rate λ. The collapses
are modeled by multiplying the process level by a random variable supported on [0, 1).
For the hitting time defined as τy = inf{t > 0|Xt = y} we derive power series for the
Laplace transform and all moments. We further discuss the asymptotic behavior of
the mean of τy as y tends to infinity.

1. Introduction

We investigate a growth-collapse process (Xt)t≥0 with deterministic growth and a
multiplicative collapse structure. The process increases linearly with rate one and at
the time Ti of the ith collapse, the process jumps down to Qi·XTi , where Q,Q1, Q2, . . .
are i.i.d. random variables with distribution function FQ supported on [0, 1).

The collapse times (Ti)i∈N are governed by a Poisson process with rate λ. We
define the hitting time of level y by

τy = inf{t > 0|Xt = y}. (1)

We shall establish a formula for the Laplace transform of τy, as well as for its mo-
ments, and the asymptotic behavior of its mean.

Growth-collapse processes are real-valued processes that grow between random
collapse times, at which they jump down according to some distribution depending
on their current level. This evolutionary pattern is encountered in a large variety
of physical phenomena, see [16], like build-up of friction, earthquakes, avalanches,
neuron firing, and shot noise, as well as in other fields like insurance mathematics
[29], queueing theory [7] and mathematical finance [9]. Some properties of Markovian
growth collapse models have been studied in [12]. The case where Q is a constant
(usually Q = 1/2) is used as a model for the Transmission Control Protocol (TCP),
the dominant protocol for data transfer over the internet, cf. Section 7 and [4, 5, 8,
15, 19, 27]. Picking items on a circle [23, 24] and DNA replication [22] are further
applications of this case. Moreover, as indicated in [26] (see also [19]), the process
(Xt)t≥0 is equivalent to an exponential functional ([9, 13]) of a Lévy process.

In the literature, emphasis lies on analyzing the stationary behavior of the growth-
collapse processes. The results we present for the hitting times are some of the few
results obtained on the transient behavior of growth-collapse processes.
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Another noteworthy contribution on transient behavior is [15] in which results are
obtained for the mean hitting time of a growth-collapse process with Q a constant
and the Poisson process having rate λ ·Xt (level-dependent).

To obtain our results, we invoke techniques from the field of piecewise deterministic
Markov processes (see [14]). We consider the infinitesimal generator of the strong
Markov process (Xt)t≥0 and apply the well known Dynkin formula. In Theorem 2
we find for τy, starting from level x < y, that its mean can be expressed as

Exτy =
∞∑

n=1

yn − xn

n!

n−1∏

i=1

θi

and its Laplace transform as

Exe−sτy =
1 + s

∑∞
n=1

xn

n!

∏n−1
i=1 (s + θi)

1 + s
∑∞

n=1
yn

n!

∏n−1
i=1 (s + θi)

,

where θi = λ
(
1− E(Qi)

)
.

We also investigate the asymptotic behavior of Exτy as y → ∞. Clearly the
asymptotic behavior will strongly depend on the behavior of FQ(x) as x → 1. It turns
out that the asymptotic relations for Exτy all have as their leading behavior eλy as
y →∞, and so one might argue that the mean hitting times are almost exponential.
In the context of Markov chains on finite state spaces there is a vast literature on
almost exponential hitting times (see [1] for an overview). As advocated by Aldous
[3], hitting times of rarely-visited sets are approximately exponentially distributed
if stationarity is reached rapidly. In [26] the authors obtained expressions for the
transient moments of (Xt)t≥0. These moments were shown to converge to their
stationary counterparts exponentially fast.

A hitting time is a valuable characteristic, as it indicates the ability of the process
to recover after a collapse. We therefore introduce the closely related notion of
recovery time σx, defined as the time to reach level x conditioned on the fact that a
collapse took place when the process was exactly in x. As for the hitting time, we
obtain for the recovery time explicit expressions for the Laplace transform and its
mean. Moreover, we show that the recovery time and hitting time have the same
asymptotic behavior.

We have structured the paper as follows. A formal introduction to the model
is presented in Section 2, including the infinitesimal generator, Dynkin’s formula
and a specific class of test functions. In Section 3 we derive explicit expressions
for the means and Laplace transforms of the hitting- and recovery times. Section
4 is concerned with the asymptotic behavior of the mean hitting time. The main
theorem, covering various modes of asymptotics, is proved in Section 5. We conclude
with two special choices of Q in Sections 6 and 7. In Section 6 we treat the case where
Q follows a Beta distribution. Several characteristics are reformulated in terms of
hypergeometric functions and exponential integrals. In Section 7 we consider the
case where Q is some constant in [0, 1), which gives rise to q-calculus.

In what follows let Px denote as usual the conditional probability given that the
process starts at X0 = x. Moreover, let P(x) be the probability given that the process
starts with a jump from x and let Ex and E(x) be the respective expectations. Note
that E(x) is obtained from Ex by conditioning on the first jump,

E(x)(·) =
∫ 1

0
Exy(·) dFQ(y). (2)
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For a probability distribution function F , let F = 1−F . For the asymptotic behavior
of functions we sometimes write f(x) ³ g(x) if there is a constant C ∈ (0,∞) such
that lim f(x)/g(x) = C. In particular, if C = 1 we use the usual notation f(x) ∼ g(x)
for asymptotic equivalence. The infimum over the empty set is defined to be infinite,
empty sums are zero, empty products are one.

We already introduced the coefficients θa = λ (1− E(Qa)). We further introduce
π0(s) = 1 and the product

πk(s) =
k∏

i=1

(θi + s).

2. The model

We thus consider the process (Xt)t≥0, a Markov process with linear deterministic
increase and multiplicative jumps. The process jumps down at times (Ti)i∈N that
are governed by a Poisson process (Nt)t≥0 with intensity λ. At Ti the process jumps
from XTi− to XTi = Qi ·XTi− where Q,Q1, Q2, . . . are i.i.d. random variables with
distribution function FQ supported on [0, 1). We exclude the case where P (Q =
1) > 0, although it could be included by changing the jump intensity from λ to
P (Q < 1) · λ.

The process is a special case of a piecewise deterministic Markov process intro-
duced by Davis [14]. The state space S consists of all non-negative real numbers.
The extended generator of the strong Markov process (Xt)t≥0 is given by

A f(x) = f ′(x)− λf(x) + λ

∫ 1

0
f(xy) dFQ(y) , x ∈ S = [0,∞).

The domain of A contains absolutely continuous functions f : [0,∞) → R that are
either locally bounded or for which f(xy) ≤ f(x)f(y) holds (see [26]). The defining
property of the extended generator is that for all functions f in the domain of A the
stochastic process f(Xt)−

∫ t
0 A f(Xs) ds is a martingale.

Our central observation is that for all a for which E(Qa) < ∞ the application of
the generator to power functions leads to a sum of two powers. That is,

A xa = axa−1 − xaθa. (3)

It has been shown in [26] that (3) can be used to obtain a formula for the transient
moments of the process. In this paper we will demonstrate how (3) can be utilized to
find expressions for the mean and the Laplace transform of the hitting- and recovery
times. The preservation of powers property in (3) is crucial in proving Theorem 1,
which gives a solution to the generator equation A f(x) = sf(x) + z(x), where z is
some arbitrary function.

3. Hitting- and recovery times

We have defined the hitting time of the level y ∈ S as τy = inf{t > 0|Xt = y}. We
have furthermore defined the recovery time σx as the time the process needs to reach
level x, conditionally on the fact that a jump takes place when the process is in level
x. It has been shown in [12] and [26] that Exτy < ∞ for all x, y ∈ S. Obviously,
E(x)σx ≤ E0τx < ∞ for all x ∈ S.

To prepare the ground for our main result we provide a solution to the generator
equation A f(x) = sf(x)+z(x). The result is more general than needed, but perhaps
of some interest for future study of this model.
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Theorem 1. Let z : R→ R be a function analytic in a neighborhood zero. A solution
of A f(x) = sf(x) + z(x) with f(0) = a0 ∈ R is given by

f(x) = a0 +
∞∑

n=1

(
sa0 +

n−1∑

k=0

z(k)(0)
πk(s)

)
πn−1(s)

xn

n!
.

Proof. It is straightforward to show that for a function h(x) =
∑∞

n=0 anπn−1(s)xn

n!
we get

A h(x) = (1− s)h(0) + sh(x) +
∞∑

n=1

∆anπn−1(s)
xn−1

(n− 1)!
,

where ∆an = an−an−1. Thus the equation A f(x) = sf(x)+ z(x) can be written as

(1− s)a0 +
∞∑

n=1

∆anπn−1(s)
xn−1

(n− 1)!
=

∞∑

n=1

z(n−1)(0)
xn−1

(n− 1)!
.

It follows from comparison of the coefficients that z(0) = (1−s)a0+(a1−a0) = a1−sa0

and ∆an = z(n−1)(0), and finally that an = sa0 +
∑n

k=1
z(k−1)(0)
πk−1(s) for n ≥ 1. ¤

We now present our main result. Let the function Rs(x) be given by

Rs(x) =
∞∑

n=1

πn−1(s)
xn

n!
. (4)

Theorem 2. For x ≤ y the means and Laplace transforms of τy and σx are given by

Exτy = R0(y)−R0(x), (5)

Exe−sτy =
1 + sRs(x)
1 + sRs(y)

, (6)

E(x)σx =
1
λ

(
R′

0(x)− 1
)
, (7)

E(x)e
−sσx = 1 +

1
λ

(
s− R′

s(x)
1 + sRs(x)

)
. (8)

Proof. We utilize the fact that, if f is in the domain of A ,

f(Xt)−
∫ t

0
A f(Xs) ds (9)

and

f(Xt) exp
(
−

∫ t

0
A f(Xs)/f(Xs) ds

)
(10)

are martingales (see e.g. [15, 17]). It follows from Theorem 1 that Rs(x) is the solution
of the equation A f(x) = sf(x) + 1 with f(0) = 0. In particular, A R0(x) = 1, so
that R0(Xt) − t is a martingale and optional stopping, if allowed, yields Exτy =
R0(y)−R0(x). On {t < τy} we have that |R0(Xt)− t| ≤ R0(y)+ t = O(t) as t →∞.
Since Exτy < ∞ it follows that

Ex(R0(Xt)− t; t < τy) = Ex(R0(Xt)− t|t < τy)o(1/t) → 0

as t → ∞ and thus the optional stopping theorem can be applied (see [17] for this
criterion) and (5) follows.

Since A (1+sRs(x)) = s(1+sRs(x)) it follows that e−st(1+sRs(Xt)) is a martin-
gale and optional stopping yields (6). Because Rs(Xt) is bounded for t < τy, optional
stopping is allowed here (see also [21]).
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We can find an expression for the mean of σx in terms of the function R0 by
applying the conditioning formula (2), i.e.,

E(x)σx =
∫ 1

0
Exyτx dFQ(y) =

∫ 1

0
(R0(x)−R0(xy)) dFQ(y).

Since A R0(x) = 1 = R′
0(x)− λ

∫ 1
0 (R0(x)−R0(xy)) dFQ(y), it follows that

E(x)σx =
R′

0(x)−A R0(x)
λ

=
R′

0(x)− 1
λ

.

A similar method works for the Laplace transform. Using (2) and (6) yields

E(x)e
−sσx = E(x)e

−sτx =
∫ 1

0

1 + sRs(xy)
1 + sRs(x)

dFQ(y).

Since A (1 + sRs(x)) = s (1 + sRs(x)) it follows that

s =
A (1 + sRs(x))

1 + sRs(x)
=

R′
s(x)

1 + sRs(x)
− λ + λ

∫ 1

0

1 + sRs(xy)
1 + sRs(x)

dFQ(y).

Consequently,

E(x)e
−sσx = 1 +

A (1 + sRs(x))−R′
s(x)

λ (1 + sRs(x))
= 1 +

s

λ
− R′

s(x)
λ (1 + sRs(x))

.

This completes the proof. ¤
To derive formulas for the higher moments we define

π
(m)
k (s) =

∑

K⊆{1,...,k}
|K|=k−m

∏

i∈K

(θi + s),

and κn(x) =
∑∞

k=n
xk

k! π
(n−1)
k−1 (0). Note that πk(s) = π

(0)
k (s) and thus κ1(x) = R0(x).

The next lemma shows that these functions are solutions of the equation A kκk(x) =
1, where A k denotes the repeated application of the operator A . Moreover, although
we will not use this fact in the sequel, it is shown that the κk are the coefficients of
the power series expansion of Rs in s.

Lemma 3. A κn(x) = κn−1(x) and Rs(x) =
∑∞

n=1 κn(x)sn−1.

Proof. We have

Rs(x) =
∞∑

n=1

n−1∏

k=1

(θk + s)
xn

n!
=

∞∑

n=1

(
n−1∑

k=0

π
(k)
n−1(0)sk

)
xn

n!

=
∞∑

n=1

sn−1
∞∑

k=n

π
(n−1)
k−1 (0)

xk

k!
=

∞∑

n=1

sn−1κn(x).

That A κn(x) = κn−1(x) follows from A Rs(x) = 1 + sRs(x). ¤
Theorem 4. For x ≤ y the higher moments of τy and σx are given via the recursions

Exτn
y = n!

(
κn(x)− κn(y)−

n−1∑

k=1

(−1)k κk(y)
(n− k)!

Exτn−k
y

)
, (11)

E(x)σ
n
x = (−1)nn!

(
κn−1(x)− κ′n(x)

λ
−

n−1∑

k=1

(−1)k κk(x)
(n− k)!

E(x)σ
n−k
x

)
. (12)
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Proof. It is shown in [25] that (11) holds if A κn(x) = κn−1(x). Equation (12) is
immediate if we use (2). We have

E(x)σ
n
x = (−1)nn!

∫ 1

0

(
κn(xu)− κn(x)−

n−1∑

k=1

(−1)k κk(x)
(n− k)!

Exuτn−k
x

)
dFQ(u)

= (−1)nn!

(
κn−1(x)− κ′n(x)

λ
−

n−1∑

k=1

(−1)k κk(x)
(n− k)!

E(x)σ
n−k
x

)
. ¤

4. Asymptotic behavior of the hitting time and recovery time

Our first asymptotic result gives an upper bound for the mean of τy and σy and
states that as y → ∞ both values grow equally fast in the sense of asymptotic
equivalence (denoted by ∼). Both statements are not difficult to prove and we will
see later that the actual growth may differ considerably from these bounds.

Proposition 5. We have

eθ1y − 1
θ1

≤ E0τy ≤ eλy − 1
λ

(13)

and 1
λ

(
eθ1y − 1

) ≤ E(y)σy ≤ 1
λ

(
eλy − 1

)
. Moreover, as y →∞,

E(y)σy ∼ Exτy. (14)

Proof. It is immediate from the definition of Rs and θ1 ≤ θn ≤ λ that

eθ1y − 1
θ1

=
∞∑

n=1

(
n−1∏

k=1

λ(1− EQ)

)
yn

n!
≤ Rs(y) ≤

∞∑

n=1

λn−1 yn

n!
=

eλy − 1
λ

.

Next, we have E(y)σy = 1
λ (R′

0(y)− 1) and

eθ1y =
∞∑

n=0

(
n∏

k=1

θ1

)
yn

n!
≤ R′

0(y) ≤
∞∑

n=0

λn yn

n!
= eλy.

Finally, with πn = πn(0),

R′
0(y) =

∞∑

n=0

πn
yn

n!
= θ1 +

∞∑

n=1

πn

πn+1
πn+1

yn

n!
,

so that relation (14) follows from Lemma 8 and the fact that πn+1/πn = θn+1 con-
verges to λ as n →∞. ¤

The next result shows that there is no smaller coefficient than λ in the linear term
in the exponent.

Proposition 6. For every ε > 0,

e(1−ε)λy ≤ E0τy ≤ eλy − 1
λ

, (15)

for large enough values of y.

Proof. The upper bound in (15) is copied from (13). For an entire function f(x) =∑∞
n=0 anxn for which ec(1−ε)xρ ≤ f(x) ≤ ec(1+ε)xρ

holds ultimately for every ε > 0 the
coefficients ρ and c are called order and type of f . One can calculate the order and
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type by using the formulas ρ = − limn→∞ n log n/ log |an| and c = limn→∞ n
eρ |an|ρ/n,

respectively (see e.g. [11]). Stirling’s formula and θn−1
n ≤ πn ≤ θn−1

1 yield

ρ−1 = lim
n→∞

log n!− log πn−1

n log n
= lim

n→∞

(
1− log πn−1

n log n

)
= 1.

c = lim
n→∞

n

e
(πn−1/n!)1/n = lim

n→∞ |πn−1|1/n = lim
n→∞

∑n−1
i=1 log θi

n
= λ.

Thus (15) follows. ¤

For q ∈ [0, 1], let (q)∞ =
∏∞

k=1(1−qk) denote the infinite q-series (see Askey et al. [2])
and define xQ = sup{x ∈ [0, 1]|FQ(x) < 1}. A measurable function L : [0,∞) →
[0,∞) is said to be slowly varying at 0 if L(cx)/L(x) → 1 as x → 0 for all c > 0
(cf. [10]). The central result of this section is the following theorem, which gives the
asymptotic behavior of Exτy as y tends to infinity in some important cases.

Theorem 7. Let F be a probability distribution function on [0, 1] with

F (x) = (1− x)βL(1− x)

and L(x) slowly varying as x → 0. The following asymptotic relations hold as y →∞.
1. If either xQ < 1 or FQ(x) ≥ F (x), β = 1 and

∫∞
1 L(1/u)/u du < ∞ then

Exτy ∼ D

λ
· eλy (16)

with D =
∏∞

k=1

(
1− E(Qk)

)
. Moreover, (xQ)∞ ≤ D ≤ (EQ)∞.

2. If FQ(x) ∼ F (x) as x → 1 and β ∈ (1
2 , 1] then Exτy ∼ C · exp

(∫ y
0 θλt dt

)
with

some C > 0. In particular,
(a) if β = 1 then

Exτy ∼ exp
(

λy −
∫ λy

1

L(1/t)
t

dt · (1 + o(1))
)

. (17)

(b) if β ∈ (1
2 , 1) then

Exτy ∼ exp
(

λy − (λy)1−βL (1/(λy)) ·
(

Γ(1 + β)
1− β

+ o(1)
))

. (18)

Some remarks are in order.
Firstly, for the third assertion in Theorem 7, we rely heavily on a depoissonization

lemma of Foss & Korshunov [18] (see Lemma 11). Although this result may be used
also for our β ∈ (0, 1

2) case, the results in [18] are not easy to state in this case.
We refer to the original paper for the interested reader. Further depoissonization
methods can be found in [20, 28].

Secondly, note the appearance of the o(1) term in (17) and (18). As y → ∞ the
quotients

Exτy/exp
(

λy −
∫ λy

1

L(1/t)
t

dt

)

and

Exτy/exp
(

λy − (λy)1−βL (1/(λy)) ·
(

Γ(1 + β)
1− β

))

may considerably deviate from constants. It seems complicated though to derive
more accurate results.
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5. Proof of Theorem 7

We need several lemmas. The first lemma is well known from calculus and shows
that functions expanded in power series with asymptotically equivalent coefficients
are asymptotically equivalent.

Lemma 8. Let (an) and (bn) be two non-negative real sequences and let A(x) =∑∞
k=1 akx

k and B(x) =
∑∞

k=1 bkx
k be convergent for all x. If ak ∼ c · bk as k → ∞

then A(x) ∼ c ·B(x) as x →∞. In particular, if ak ³ bk then A(x) ³ B(x).

Proof. First note that A(x) and B(x) tend to ∞ as x → ∞. For all ε > 0 there is
an m ∈ N such that bk(1− ε/2) ≤ ak ≤ bk(1 + ε/2). Thus

A(x) ≤
m−1∑

k=1

xkak +
∞∑

k=m

xkbk(1 + ε/2)

Let a′m =
∑m−1

k=1 xkak and b′m =
∑m−1

k=1 xkbk. Then

A(x)
B(x)

≤ a′m
B(x)

+ (1 + ε/2)(1− b′m
B(x)

).

Thus for every ε > 0, A(x)/B(x) ≤ (1 + ε) ultimately as x → ∞. It can be shown
similarly that A(x)/B(x) ≥ (1− ε). ¤

The next result gives the asymptotics of the coefficients πk(s) =
∏k

i=1(θi + s) in
terms of the moments E(Qk).

Lemma 9. Let M be the smallest integer such that
∑∞

j=1 E(Qj)M < ∞. Then

πk(s) ³ (λ + s)kexp


−

M−1∑

i=1

1
i

(
λ

λ + s

)i k∑

j=1

E(Qj)i


 . (19)

Proof. For brevity we write σk(s) = (λ + s)−k πk(s). Note that σk(s) =
∏k

j=1(1−µj),
with µt = λ

λ+sE(Qt). By taking logarithms we obtain log σk(s) =
∑k

j=1 log
(
1− µj

)
.

We have µj ≤ c = λ
λ+sEQ < 1 and from Taylor’s formula log(1− x) = −∑n

i=1
xi

i −
(x/z)n+1

n+1 for all x ∈ [0, c) and some z = z(x) ∈ [1− c, 1). Hence

log σk(s) = −
M−1∑

i=1

1
i

k∑

j=1

µi
j − dMC

with d ∈ [1, 1
1−c ] and C = 1

M

∑k
j=1 µM

j < ∞, and so (19) follows. ¤

The next result relates FQ(x) at x = 1 to the Mellin transform of Q at infinity.

Lemma 10. Let β > 0. Then the following relations are equivalent:

F Q(x) ∼ (1− x)βL(1− x) (x → 1)

E(Qt) ∼ Γ(β + 1)t−βL(1/t) (t →∞)

Proof. Let W (x) = F Q(e−x) be the probability distribution function of W = − log Q.
Since (1− e−x)β ∼ xβ and

L(1− e−1/x)
L(1/x)

=
L(1/x + O(1/x2))

L(1/x)
→ 1, (20)
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we know that W (x) ∼ xβL(1/x) as x → 0. Therefore, by Karamata’s Tauberian
theorem (cf. [10])

E(Qt) =
∫ ∞

0
wt dFQ(w) =

∫ ∞

0
e−tw dW (w) ∼ Γ(β + 1)t−βL(1/t),

which concludes the proof. ¤

Lemma 11 (Foss & Korshunov [18]). Let (ξn)n∈N be a sequence of i.i.d. non-negative
random variables with Eξ

1/γ
1 < ∞ for some γ ∈ (1

2 , 1] and let λ = E(ξ1). Let Nt be
the associated renewal counting process and let X be a random time with tail function
G(t) = P (X > t). If G(n + h(n)) ∼ G(n) as n →∞ for all functions h(n) = o(nγ),
then P (X >

∑n
i=1 ξi) ∼ G(λn).

Lemma 12. Let g be a non-increasing function such that g(x) → 0 and g(x+h(x)) ∼
g(x) as x →∞ for all functions h(n) = o(nγ) for some γ ∈ (1

2 , 1]. Then, as x →∞,

∞∑

k=1

g(k)
xk

k!
∼ exg(x).

Proof. We may assume that g(0) = 1 and set G(x) = P (X > x) = g(x) for some
random variable X. Let (Nt)t≥0 be a Poisson process with intensity one and let
ξi = Ni −Ni−1. Then clearly Eξa

i < ∞ for all a > 0, and according to Lemma 11,

g(n) ∼ P (X >
n∑

i=1

ξi) = P (X > Nn) =
∞∑

k=1

e−ng(k)
nk

k!
.

Finally note that P (Nn+1 < X) ≤ P (Nx < X) ≤ P (Nn < X) for x ∈ [n, n + 1]. It
follows that P (Nn+1 < X)/P (Nn < X) → 1 and g(n)/g(x) → 1 as n, x →∞. ¤

Proof of Theorem 7. Clearly if FQ(x) ≥ F (x) then Exτy ≥ Exτ ′y, where τ ′y is the mod-
ified hitting time of a process where FQ has been replaced by F . Since

∫∞
1 L(u)/u du <

∞ it follows from Lemma 10 that
∑∞

k=1 EQk < ∞. In particular the variable M in
Lemma 9 is equal to one and thus πk ³ λk. Applying Lemma 8 yields Exτy ³ eλy.
The inequalities for D are immediate from xk

Q ≤ E(Qk) ≤ (EQ)k. This proves
assertion 1.

To prove assertion 2 note that it follows from Lemma 10 that E(Qt) ∼ Γ(β +
1)t−βL(1/t), so that

∫∞
1 E(Qt) dt is finite and thus

∑∞
k=1(EQk)2 is finite. Hence,

application of Lemma 9 with M = 2 gives

πk(s) ³ λkexp


−

k∑

j=1

E(Qj)


 (21)

as k →∞. Since the function t 7→ EQt is decreasing it follows that
∫ k

1
E(Qt) dt ≤

k∑

j=1

E(Qj) ≤
∫ k

1
E(Qt) dt + EQ,

so that the sum in (21) can be approximated by an integral without changing the
asymptotic behavior (w.r.t. ³). Let h(x) = o(xβ−δ) with δ ∈ (0, β − 1

2). It follows
from Lemma 10 and the mean value theorem that for x large enough there are
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constants c, c′ > 0, such that
∫ x+h(x)

x
E(Qt) dt ≤ c ·

∫ x+h(x)

x

L(1/t)
tβ

dt ≤ c ·
∫ x+h(x)

x

1
tβ−δ/2

dt

≤ c′ · h(x) · xδ/2−β = o(x−δ/2).

For g(x) = exp
(− ∫ x

1 E(Qt) dt
)

and γ = β − δ ∈ (1
2 , 1], the conditions of Lemma 12

are fulfilled. The first part of assertion 2 follows from
∞∑

k=1

πk−1(s)
xk

k!
³

∞∑

k=1

exp
(
−

∫ k

1
E(Qt) dt

)
(λx)k

k!
∼ exp

(
λx−

∫ λx

1
E(Qt) dt

)

and

λx−
∫ λx

1
E(Qt) dt = 1 +

1
λ

∫ λx

1
λ(1− E(Qt)) dt = 1 +

∫ x

1
λ(1− E(Qλt)) dt.

Moreover, Lemma 10 yields
∫ λx

1
E(Qt) dt ∼ Γ(1 + β)

∫ x

1

L(1/t)
tβ

dt,

which proves assertion 2a in the β = 1 case. To see that 2b is true for β < 1, observe
that

Γ(1 + β)
∫ x

1

L(1/t)
tβ

dt ∼ Γ(1 + β)
1− β

λ1−βx1−βL(1/(λx))

from Karamata’s integration theorem (see [10]). ¤

6. Special case: beta distributed Q

We assume that Q has a beta distribution with density

fQ(x) =
xα−1(1− x)β−1

B(α, β)
,

for x ∈ [0, 1], where B(α, β) =
∫ 1
0 xα−1(1 − x)β−1 dx = Γ(α)Γ(β)

Γ(α+β) and α > 0, β > 0.
In this case we have

θt = λ

(
1− B(α + t, β)

B(α, β)

)
= λ

(
1− Γ(α + t)Γ(α + β)

Γ(α)Γ(α + β + t)

)
.

Lemma 10 yields E(Qt) ∼ Γ(α + β)/Γ(α) · t−β as t → ∞. According to Theorem 7
we then have, for β ∈ (1

2 , 1),

Exτy = C · exp
(

λy − (λy)1−β Γ(α + β)
(1− β)Γ(α)

+ o(y1−β)
)

.

In case β = 1, when Q
d= U1/α, we can obtain more explicit results and sharper

asymptotics.

Corollary 13. For x ≤ y and the mean hitting- and recovery times are given by

Exτy =
∫ y

x
αλ−αu−αeλuγ(α, λu) du, (22)

E(x)σx = αλ−α−1x−αeλxγ(α, λx)− 1
λ

, (23)

where γ(α, λu) =
∫ λu
0 tα−1e−t dt.
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Proof. Since θt = λt
α+t it follows that

πk(s) = (λ + s)k ( αs
λ+s + 1)k

(α + 1)k

, (24)

where (x)k = x · (x + 1) · · · (x + k − 1) is the Pochhammer symbol. We thus have

R′
0(x) =

∞∑

k=1

(λx)k−1

(k − 1)!
(k − 1)!

(α + 1)k−1

= αλ−αx−αeλxγ(α, λx).

With Exτy = R0(y)−R0(x) and E(x)σx = 1
λ (R′

0(x)− 1) this gives the result. ¤

Expression (23) leads, using limx→∞ γ(α, λx) = Γ(α), to a sharp result for the
asymptotics.

Corollary 14. For x ≤ y and Q
d= U1/α we have the asymptotics

E(y)σy ∼ Exτy ∼ Γ(α + 1)
λα+1yα

eλy. (25)

In the special case Q
d= U , i.e. if α = 1, we obtain R0(x) = C + 1

λ (Ei(λu)− log u)
with Ei(x) = − ∫∞

−x
1
ue−u du the exponential integral. Consequently,

Exτy =
Ei(λy)− Ei(λx)− log(y/x)

λ
(26)

and

E(x)σx =
eλx − 1− λx

λ2x
. (27)

The asymptotic result E(y)σy ∼ Exτy ∼ 1
λ2y

eλy follows immediately from (25) with
α = 1. Alternatively, it follows from (26) and the fact that Ei(x) ∼ 1

xex (see [2],
p. 231).

Let 1F1(a; b; x) =
∑∞

k=0
(a)k
(b)k

xk

k! denote Kummer’s hypergeometric function (see
e.g. [6]).

Corollary 15. For x ≤ y and Q
d= U1/α the Laplace transforms of the hitting- and

recovery times are given by

Exe−sτy =
1F1( αs

λ+s ; α; (λ + s)y)

1F1( αs
λ+s ; α; (λ + s)x)

,

Exe−sσx = 1 +
s

λ

(
1− 1F1( αs

λ+s + 1; α + 1; (λ + s)x)

1F1( αs
λ+s ; α; (λ + s)x)

)
.

Proof. We get from (4) and (24) that

1
s
R′

s(x) = 1F1(
αs

λ + s
+ 1;α + 1; (λ + s)x)

and since 1F1(a; b; x) = b−1
a−1 · d

dx1F1(a− 1; b− 1;x) and Rs(0) = 1,

1 + sRs(x) = 1F1(
αs

λ + s
; α; (λ + s)x).

Application of Theorem 2 then completes the proof. ¤
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7. Special case: deterministic Q

In this section we discuss the case where Q is a constant, say Q = q ∈ [0, 1). The
case q = 1/2 corresponds to the standard model for TCP, which is the dominant
protocol for data transmission over the internet. The case q = 0 describes the age
process of renewal theory with exponential renewal epochs.

In general, we have θa = λ(1− qa) and
k∏

j=1

(θa+j + u) = (λ + u)k
k−1∏

j=0

(1− λqa+1

λ + u
qj) = (λ + u)k(

λ

λ + u
qa+1; q)k,

where (a; q)k =
∏k−1

i=0 (1−aqi) is the so called q-series (see Askey et al. [2]). Recall that
(q)∞ = limk→∞(q; q)k. Specializing Theorem 2 to the deterministic case immediately
yields the following result.

Corollary 16. For x ≤ y and Q = q ∈ [0, 1) the means and Laplace transforms of
τy and σx are given by

Exτy =
1
λ

∞∑

k=1

(λy)k − (λx)k

k!
(q; q)k−1, (28)

Exe−sτy =
1 +

∑∞
k=1 (x(λ + s))k/k! · ( λ

λ+s ; q)k

1 +
∑∞

k=1 (y(λ + s))k/k! · ( λ
λ+s ; q)k

, (29)

E(x)σx =
1
λ

∞∑

k=1

(λx)k

k!
(q; q)k, (30)

E(x)e
−sσx = 1 +

s

λ

(
1− 1 +

∑∞
k=1((λ + s)x)k/k!( λ

λ+sq; q)k

1 +
∑∞

k=1((λ + s)x)k/k!( λ
λ+s ; q)k

)
. (31)

The asymptotic result below is an immediate consequence of Theorem 7, part 1.

Corollary 17. For x ≤ y and Q = q ∈ [0, 1) we have the asymptotics

E(y)σy ∼ Exτy ∼ (q)∞
λ

eλy. (32)

8. Acknowledgment

We would like to thank Svevolod Shneer for stimulating discussions and for point-
ing out the connection to the depoissonization Lemma 11.

References

[1] M. Abadi and A. Galves. Inequalities for the occurrence times of rare events in mixing processes.
The state of the art. Markov Process. Relat. Fields, 7(1):97–112, 2001.

[2] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Washington: John Wiley & Sons, 1984.

[3] D.J. Aldous. Markov chains with almost exponential hitting times. Stochastic Process. Appl.,
13(3):305–310, 1982.

[4] E. Altman, K. Avrachenkov, Barakat Ch., and R. Nunez Queija. State-dependent M/G/1 Type
Queueing Analysis for Congestion Control in Data Networks. In INFOCOM, pages 1350–1359,
2001.

[5] E. Altman, K. Avrachenkov, A. Kherani, and B. Prabhu. Performance Analysis and Stochastic
Stability of Congestion Control Protocols. Technical Report RR-5262, INRIA, Sophia-Antipolis,
France, July 2004.



13

[6] G.E. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathe-
matics and Its Applications. Cambridge University Press, 2000.

[7] S. Asmussen. Applied Probability and Queues. John Wiley & Sons, 1987.
[8] F. Baccelli, D.R. McDonald, and J. Reynier. A mean-field model for multiple TCP connections

through a buffer implementing RED. Perform. Eval., 49(1-4):77–97, 2002.
[9] J. Bertoin and M. Yor. Exponential functionals of Lévy processes. Probability Surveys, 2:191–
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