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SUMMARY

We use local polynomial fitting to estimate the nonparametric M-regression function for strongly mixing
stationary processes {(Y;, X,)}. We establish a strong uniform consistency rate for the Bahadur repre-
sentation of estimators of the regression function and its derivatives. These results are fundamental for
statistical inference and for applications that involve plugging in such estimators into other functionals
where some control over higher order terms are required. We apply our results to the estimation of an
additive M-regression model.
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1 Introduction

In many contexts one wants to evaluate the properties of some procedure that is a function or
functional of some estimators. It is useful to be able to work with some plausible high level
assumptions about those estimators rather than to rederive their properties for each different

application. In a fully parametric context it is quite natural to assume that parametric estimators
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are root-n consistent and asymptotically normal. In some cases this suffices; in other cases one
needs to be more explicit in terms of the linear expansion of these estimators, but in any case
such expansions are quite natural and widely applicable. In a nonparametric context there
is less agreement about the use of such expansions and one often sees standard properties
of standard estimators derived anew for a different purpose. It is our objective to provide
results that can circumvent this. The types of application we have in mind are estimation of
semiparametric models where the parameters of interest are explicit or implicit functionals of
nonparametric regression functions and their derivatives, see Powell (1994), Andrews (1994),
Chen, Linton and Van Keilegom (2003). Another class of applications includes estimation of
structured nonparametric models like additive models, Linton and Nielsen (1995), or generalized
additive models, Linton, Sperlich, and Van Keilegom (2007).

We motivate our results in a simple i.i.d. setting. Suppose we have a random sample
{Y;, X;}?, and consider the Nadaraya-Watson estimator of the regression function m(z) =
B(Y|X; = ),

_ @) Tt Y Kz — X0
fla)y ot Kn(e = X)
where K is a kernel, h is a bandwidth and Kj(.) = K(./h)/h. Standard arguments (Hérdle,

1990) show that (under suitable smoothness conditions)

in(x) —m(z) = h*b(x ZKh Xi)ei + Rn(x), (1)

where f(z) is the covariate density, &; = Y; — m(X;) is the error term and b(z) = [m”(z) +
2m/(z) f'(x)/ f(x)]/2. The remainder term R, (z) is of higher order (almost surely) than the two
leading terms. Such expansion is sufficient to derive the central limit theorem for 7 (z) itself,
but generally is not if 7(z) is to be plugged into some semiparametric procedure. For example,
suppose we need to estimate the parameter 6y = [ m(x r)%dx by 0 = Jm(z x)2dx, where the integral
is over some compact set D; and we would expect to find n'/? (é—@g) to be asymptotically normal.

The argument goes like this. First, we obtain the expansion
n2(0 — 6y) = 2n'/? / m(z){m(z) — m(z)}dz +n'/? / [i(z) — m(z)]2dz.
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If it can be shown that 7(z) —m(x) = o(n~'/*) a.s. uniformly in z € D ( such results are widely

available, see for example Masry (1996)), we have

n2(0 — 6y) = 2n'/? /m(:p){m(x) —m(z)}dr + o(1), a.s.

Note that the quantity on the right hand side is the term in assumption 2.6 of Chen, Linton,
and Van Keilegom (2003) which is assumed to be asymptotically normal. It is the verification
of this condition with which we are now concerned. If we substitute in the expansion (1) we

obtain
n'/2(0 — 6y) = 2n'/?h? / m(z)b(x)dz + 2n1/2/ T}l((;:))nl Z Kp(z — X;)eidx
i=1

+2n1/2/m z)dr +o(1), a.s.

If nh* — 0, then the first term (the smoothing bias term) is o(1). By a change of variable, the
second term (the stochastic term) can be written as a sum of independent random variables
with mean zero

n'/2 [ m(z)f~H(z)n ™! i Kp(z — X;)esdr = n~1/? i &n(Xi)ei,
i=1

i=1
En(Xi) = [ m(X; 4+ uh) f~H(X; + uh)K (u)du,
and this term obeys the Lindeberg central limit theorem under standard conditions. The problem
is that (1) only guarantees that [ m(z)R,(z)dz = o(n"?/%) a.s. at best. Actually, in this simple
case it is possible to derive a more useful Bahadur expansion (Bahadur (1966)) for the kernel

estimator
m(x) —m(z) = hby(z) + {Ef (2 }1’12Khw— i)ei + Iy, (@), (2)

where by, () is deterministic and satisfies by, (z) — b(x) uniformly in z € D, and Ef(z) — f(z)

uniformly in z € D, while the remainder term now satisfies

. B logn
sup |R;,(z)] = O < — ) ,  a.s. (3)
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This property is a consequence of the uniform rate of convergence of f(z)—Ef(x),n ' Y27, Kj,(x
—X){m(X;) — m(z)} — EKp(x — X;){m(X;) — m(z)}, and n=1 3 | Kj(x — X;)e; that follow
from, for example Masry (1996). Clearly, R’ (z) can be made to be o(n~1/?), a.s. uniformly
over D, by appropriate choice of h; from this property we can easily see that the remainder
term 2n'/2 [ m(x) R} (z)dz = o(1) a.s. and one can just work with the two leading terms in (2).
The leading terms are slightly more complicated than in the previous expansion but are still
sufficiently simple for many purposes; in particular, b, (x) is uniformly bounded so that provided
nh* — 0, the smoothing bias term satisfies h?n'/? [ m(z)b,(x)dx — 0, while the stochastic term

is a sum of mean zero independent random variables

nl/2 / %n_l ; Kp(x — X;)eidx = n=1/2 ;fn(Xl &

m(X; + uh)
fX + uh)

K (u)du,
and obeys the Lindeberg central limit theorem under standard conditions, where f(z) = Ef(z).
This argument shows the utility of the Bahadur expansion (2). There are many other applica-
tions of this result because a host of probabilistic results are available for random variables like
n~t3" | Kp(x — X;)e; and integrals thereof.

The one-dimensional Nadaraya-Watson estimator for i.i.d. data is particularly easy to an-
alyze and the above arguments are well known. However, the limitations of this estimator are
manyfold and there are good theoretical reasons for working instead with the local polynomial
class of estimators (Fan and Gijbels, 1996). In addition, for many data one may have concerns
about heavy tails or outliers that point in the direction of using robust estimators like the local
median or local quantile method, perhaps combined with local polynomial fitting. We examine
a general class of (nonlinear) M-regression function (that is, location functionals defined through
minimization of a general objective function) and derivative estimators. We treat a general time
series setting where the multivariate data are strong mixing. We establish a uniform strong Ba-

hadur expansion like (2) and (3) with remainder term of order (logn/nh?)¢ almost surely, where

¢ depends on several factors including the smoothness of the M-regression function. Under mild



conditions we can obtain ¢ = 3/4, almost optimal based on the results in Kiefer (1967) under
i.i.d. setting. The leading terms are linear and functionals of them can be analyzed simply.
The remainder term can be made to be o(n~'/2) a.s. under restrictions on the dimensionality
in relation to the amount of smoothness possessed by the M-regression function. We apply our
result to the study of marginal integration estimators (Linton and Nielsen, 1995) in additive
nonparametric M-regression where we only need the remainder term to be o(n=?/(?P*1) as.,
where p is a smoothness index.

Bahadur expansions (Bahadur, 1966) have been widely studied and applied, with notable
refinements in the i.i.d. setting by Kiefer (1967). A recent paper of Wu (2005) extends these
results to a general class of dependent processes and provides a review. The closest paper to ours
is Hong (2003) who establishes a Bahadur expansion for essentially the same local polynomial
M-regression estimator as ours. However, his results are: (a) pointwise, i.e., for a single x only;
(b) the covariates are univariate; (c) for i.i.d. data. Clearly, this limits the range of applicability
of his results, and specifically, the application to semiparametric or additive models are perforce

precluded.
2 The General Setting

Let {(Y;,X,)} be a jointly stationary process, where X; = (x;1,...,X;q)| with d > 1 and Y; is a
scalar. As dependent observations are considered in this paper, we introduce here the mixing
coefficient. Let F% be the o— algebra of events generated by random variables {(V;, X;),s < i <
t}. The stationary process {(Y;, X;)} is strongly mixing if
sup |P[AB]— P[A]P[B]| =~[k] — 0, as k — oo,

Aer0

BeF
and v[k] is called the strong mixing coefficient.

Suppose p(.;.) is a loss function. Our first goal is to estimate the multivariate M-regression

function

m(xla t )xd) = a‘rgngnE{p(}/i;e)’Xi = (1317 to 7$d)}’ (4)



and its partial derivatives based on observations {(Y;, X;)} ;. An important example of the M-
function is with loss function p(y; 0) = (2¢—1)(y —6) + |y — 6], corresponding to the ¢'th quantile
of Y; given X; = (w1,-++ ,74)". Another leading example is the L, criterion p(y;0) = |y — 6]
for ¢ > 1, which includes the least squares criterion p(y;60) = (y — 6)? in which case m is the
expectation of Y; given X.

Assuming that m(z) has derivatives up to order p + 1 at z = (x1,...,24)", we have the

following multivariate p’th order local polynomial approximation of m(z) for any z close to z,

mz)= Y S Dim)(z - )t
0<|r|<p —

where r = (r1,...,7q), |r| = Zgzl i, rl=r! x o xrgl,

o P J J
Drm(x)zw, at =t X .Loxal, Z :ZZZ (5)

0<|r|<p  j=0m=0 ry=0
r1+...+rg=J

Let K (u) be a nonnegative weight function on RY, h be a bandwidth and Kj(u) = K (u/h).
With observations {(Y;, X;)} ,, we consider the following quantity
n
ZKh(XZ - ( i Z 67“ _Q ) (6)
i=1 0<|z|<p
Minimizing (6) with respect to §,,0 < |r| < p gives an estimate 3,(z). The M-function m(z)
and its derivatives D™m(z) are then estimated respectively by

~

m(z) = fo(z) and Dim(z) =r!B(z), 1< |r| < p. (7)

3 Main Results

For any M > 2, Ao € (0,1) and A; € (A2, (1 4+ A2)/2], let
dy, = (nh?/logn)~ M2/ (npdlogn) /2, r(n) = (nh?/logn)1=22)/2, (8)

MO = M(nhd/ log n) M(Q) M1/4(nhd/ logn)~ )‘2, T, = {r(n)/h}d

n

and L, be the smallest integer such that log n(M/2)4+1 > nM{? /d We use ||.|| to denote the
Euclidean norm and C'is a generic constant, which may have different values at each appearance.

The following assumptions are used in our proofs of the results. Let ¢; = Y; — m(X).



(A1) For each y € R, p(y;0) is absolutely continuous in 6, i.e., there is a function ¢(y;6) =
©(y — @) such that for any 0 € R, p(y;0) = p(y;0) + foe ©(y; t)dt. The probability density

function of ¢; is bounded, E{¢(&;)|X,;} = 0 almost surely and E|p(g;)|"* < oo for some

v > 2.
(A2) ¢(.) satisfies the Lipschitz condition in (aj,a;+1), j =0,--- ,m, where a1 < --- < a,, are
the finite number of jump discontinuity points of ¢(.), ag = —oc0 and ay,+1 = +00.

A3) K(.) has a compact support, say [—1,1]®? and |H;(u) — H;(v)| < C|lu — v|| for all j with
J J

0 < |j| < 2p+1, where Hj(u) = ulK(u).

(A4) The probability density function of X, f(.) is bounded and with bounded first order
derivatives. The joint probability density of (X, X;) satisfies f(u,v;l) < C < oo for all

[ >1.
(A5) For r with |r| = p+ 1, D™m(z) is bounded with bounded first order derivative.
(A6) The bandwidth h — 0 satisfies that
nh?/logn — oo, nhdt@TV/22 /logn < 0o, n~ {r(n)}*?/%d, logn/M? — oo, (9)

for some 2 < vy < vy and the processes {(Y;, X;)} are strongly mixing with mixing
coefficient ~y[k| satisfying

ika{y[k}}l_wyz < oo for some a > (p+d+1)(1 —2/1n)/d. (10)
k=1

Moreover, the bandwidth h and ~[k] should jointly satisfy the following condition

0 (1) 1/9 va/2 2L, /12
—= dn r(n)(2v2/2/M)?Ln/v2

(A7) The conditional density fx|y of X given Y exists and is bounded. The conditional density

fox, x01n v of (Xq, Xy yy) given (Y1,Y)41) exists and is bounded, for all I > 1.

Remark 1. (Al) is imposed for model specification and (A2) is necessary for the remainders

in Bahadur representations to achieve optimal rates. To our best knowledge, in all known robust



and likelihood type regressions, ¢(.;.) satisfies (A2). In this case, it was proved in Hong (2003)
that, if the conditional density f(y|z) of Y given X is continuously differentiable with respect

to y, then there is a constant C' > 0, such that for all small ¢ and z,
2
E[lovit+a)—o(via)} X =u] <l (12)
holds for all (a,u) in a neighborhood of (m(z),x). Let
Then
g(z) = Gi(m(z),z) > C >0, Ga(t,z) bounded for all z € D and ¢ near m(z). (14)

Assumptions (A3)-(A7) are standard for nonparametric smoothing in multivariate time series
analysis, see Masry (1996). Note that condition (11) is more stringent than (4.7b) in Masry
(1996), due to the fact that the form of p(.) considered here is more general than the simple
squared loss.

Let N; = (izdjl) be the number of distinct d—tuples r with |r| = i. Arrange these d—tuples
as a sequence in a lexicographical order(with the highest priority given to the last position so
that (0,---,0,7) is the first element in the sequence and (i,0,---,0) the last element). Let 7;
denote this 1-to-1 map, i.e. 7;(1) = (0,---,0,7),--- ,7(N;) = (¢,0,--- ,0). Foreachi =1,--- | p,

define a N; x 1 vector p;(x) with its kth element given by gn(k) and write

TN\T

)Tv"' 7:“;17(@) ) ’

plz) = (1, m(z

which is a column vector of length N = ¥ | N; x 1. Similarly define vectors 3,(z) and 3
through the same lexicographical arrangement of D™m(z) and , in (6) for 0 < |r| < p. Thus

(6) can be rewritten as
> Kn(X; — 2)p(Yi; (X, — 2)' ). (15)
i=1

Suppose the minimizer of (15) is denoted as (,(z). Let ﬁp(g) = Wpﬁn(g), where W), is the

diagonal matrix with diagonal entries the lexicographical arrangement of r!, 0 < |r| < p.



Let v; = [ K (u)uldu. For g(.) given in (14), define
Vni(z) = / K(wu'g(z + hu) f(z + hu)du.

For 0 < j,k < p, let S and S, ;r(z) be two N; x Nj, matrices with their (I,m) elements

respectively given by

[Sj’k]l,m = Vri()+7i(m) (l)? [Sn,j,k(g)} Lm = Vn,ri ()41 (m) (E) (16)
Now define the N x N matrices S, and S, ,(z) by
So0 Soi - Sop Sno0(z) Spoi(z) -+ Spopz)
S10 S11 - Sip Snao0(@) Spai(x) - Spiplx)
P : - : ’ S"’p(x) - : - :
Spo Spar o Spp Sppo(@) Sppi(x) - Snppx)

According to Lemma 6.8, S, ,(z) converges to g(z)f(x)S, uniformly in z € D almost surely.

Hence for |S,| # 0, we can define

Bala) = =5 W, 12Kh p(Vion(X; — ) By(a)p(X; =), (17)

where ¢(.;.) is as defined in (Al) and H is the diagonal matrix with diagonal entries the
lexicographical arrangement of hlZl, 0 < |r| < p.
The following asymptotic expression for the mean of 3} (z) is an extension of Proposition 2.2

in Hong (2003) to the multivariate case.

Proposition 3.1 Denote the typical element of 3;;(x) by By, (x), 0 <|r| <p. If f(z) >0, then

under (A1)-(A5),
—hP e Ny WpS, Bimy, 1 (z) + o(hPT), for p—|r| odd,

EgB;,.(z) = _ _ ~ _
O8] =N e W5 [0} @)y (2) (T () — N,y B1) + Bamyia(a)]
+o(hPT2), for p—|r| even,
where N(r) = Ty (T Y(r) + er‘ 1Nk, e; 158 a N x 1 vector having 1 as the ith entry with all other

entries 0, and

Sopt1 S0,p+2

Sl,p+1 Sl7p+2
Bl - . y BZ - .

Sp,pH Sp,p+2



Our Bahadur representation for local polynomial estimates is as follows.

Theorem 3.2 Let (A1)-(A7) hold with Ao = (p+1)/2(p+ s+ 1) for some s >0 and D be any

compact subset of R*. Then

~ 1 A(s)
sup [H{fp(2) — By(a)} = Oie)] = O({*271"") atmost surety,

where |.| is taken to be the sup norm and

p+1 3p+3+25}
p+s+1 4dp+4s+4J°

A(s) = min {
Remark 2. From above Theorem, we can see that the dependence among the observations
doesn’t have effect on the rate of uniform convergence, given that the degree of the dependence,
as indicated by the mixing coefficient [k], is not very strong, i.e. (10) and (11) are satisfied.
This is in accordance with the results in Masry (1996), where for local polynomial estimator
with squared loss, the uniform convergence rate is proved to be (nh®/logn)~'/2, the same as in
the independent case.
Remark 3. It is of practical interest to provide an explicit rate of decay for the strong
mixing coefficient 7[k]| of the form ~[k] = O(1/k°) for some ¢ > O(to be determined) under
which Theorem 3.2 holds. Tt is easily seen that, among all the conditions imposed on v[k], the

summability condition (11) is the most restrictive. We assume that

i 1 1 4
h=hy~ (1 @ f U
(logn/n)* for some prst+d <a< d{ (1_>\2)V2_4)\1+2(1+)\2)}

so that (9) is satisfied. Algebraic calculations show that the summability condition (11) is
satisfied provided that

(I—ad){(1 —=X2)(AN +1)+8NXA} +10+ (44 8N)ad
2(1 = Xo)(1 — ad)vo — 8ad + 4(1 —ad)(1 — Ay — 2X\1)

Cc> V3 1= C(d7p7 V2, Q, )\17>\2)- (18)

Note that we would need the following condition

4{ad + (1 — ad)\,}
(1 —ad)(1 - X)

vy > 2+

to secure positive denominator for (18). It is easy to see that ¢(d, p, v2, @, A1, A2) is decreasing in

v9(< v1) and therefore there is a tradeoff between the order 14 of the moment E|p(g;)|"* < oo
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in (A1) and the decay rate of the strong mixing coefficient [k]: the existence of higher order
moments allow for weaker condition on ~[k].
The following proposition follows from the above theorem with s = 0 and uniform conver-

gence of sum of weakly dependent observations.

Corollary 3.3 Suppose that conditions in Theorem 3.2 hold with s = 0. Then with probability

1, we have,

n

sup H{By(x) — Byla)} — BB (@) — —y WSl (2) B > En(X; — 2)e(en(X; — o)

nhd —
-o({T5}")

Remark 4. The rate (nh?/logn)~3/* obtained here is not optimal for all such M-regressions,
as the rate for the N-W estimator given in (3) is faster. The explanation is that our results are
developed for a wider variety of loss functions. This does not rule out the possibility that the
rate could be higher for one particular loss function, e.g., the squared loss corresponding to the
N-W estimator. It has been proved that the optimal rate of Bahadur representation of sample
quantiles is (logn/n)3* (Kiefer, 1967), so we expect that the rate given above is indeed optimal

for a similar class of problems.
4 M-Estimation of the Additive model

The convergence rate of the estimated m(x1,...,z4) strongly depends on the dimension of d.
The rate decreases dramatically as d increases (Stone, 1982). This phenomenon is the so-called
“curse of dimensionality”. One approach to reduce the curse is by imposing model structure. A

popular model structure is the additive model assuming that

m(x1,...,2q) =c+mi(x1) + ... + mg(xq), (19)
where c¢ is an unknown constant and my(.), k = 1,...,d are unknown functions which have been
normalized such that Emy(x;) = 0 for kK = 1,...,d. In this case, the optimal rate of convergence

is the same as one dimensional nonparametric regression (Stone, 1986). We consider this case

11



where m(x) is the M-regression function defined above. Previous work on additive quantile
regression, for example, includes Linton (2001) and Horowitz and Lee (2005) for the i.i.d. case.

We are interested in applications to the volatility model
Y; =0;e; and Ino? = m(X;),

where X; = (Yi_1,...,Y;_q)". We suppose that ¢; satisfies E[p(Ine?;0)|X;] = 0, whence m is
defined as the conditional M-regression of In Yf on X;. Peng and Yao (2003) have applied LAD
estimation to parametric ARCH and GARCH models and have shown the superior robustness
property of this procedure over Gaussian QMLE with regard to heavy tailed innovations. The
heavy tails issue also arises in nonparametric models, which is why our procedures may be useful.

We use the marginal integration method (Linton and Nielsen, 1995) to estimate the additive
model, which is known to achieve the optimal rate under some conditions. This involves esti-
mating first the unrestricted M-regression function and then integrating it over some directions.
Partition X; = (x1,...,2q) as X; = (x14,X5;), where X; is the one dimensional direction of
interest and X,; is a d — 1 dimensional nuisance direction and let z = (z1,2,). Define the

functional
or(1) = [ m(or,p) )i, (20)
where fo(z,) is the joint density of X,;. Under the additive structure (19), ¢1 is m; up to a

constant. Replace m in (20) with Go(z1,25) = fo(z) defined in (7) and ¢;(x;) can thus be

estimated by the sample version of (20):

$1(z1) = Bolzr, Xoy).
i=1

The application of Corollary 3.3 here may seem somewhat straightforward, however, we need
to be cautious about the choice of the bandwidth. As noted by Linton and Hérdle (1996) and
Hengartner and Sperlich (2005), different bandwidths should be employed for the direction of
interest X; and the d — 1 dimensional nuisance direction X,, say h; and h respectively. The

following corollary is about the asymptotic properties of ¢; (x1).

12



Corollary 4.1 Suppose the support of X is x = [0, 1]®d with strictly positive density function.
Let the conditions in Proposition 3.3 hold with T,, = {r(n)/min(hy,h)}* and the h® in all the
notations defined in (8) or (9) replaced by hih®'. Especially, (9) is strengthened as

nhih*@=Y /log® n — oo, nhih* ' max(hy, h)2P+D /logn < oo,
(21)
n~Hr(n)}**/2d, log n/MT(LQ) — 0.

Then we have
(nh) /{1 (21) — $1(21) + {max(hn, )} e W, S5 By By (w1, X5)} 5 N(0,6%(w1)) (22)
where ‘%7 stands for convergence in distribution,

) ={ [ PV 00 X B0 0, X)X, ferS; Kk ;]
[0’1]®d—1 p p

02(z) = E[¢*(e)|X = z] and Ky = f[o 1jed K(v)u(v)dv. In particular for quantile estimation,

i.e. p(y;0)=(2q—1)(y—0)+ |y — 0|, we have

52 (a1) = (1 - q){ /[O Jois 7 (@1 X0) £ 0l X0) f3(X5)dX, fer Sy Ko ) S el

Remark 5. For the conditions in the above corollary to hold, we would need 3d < 2p + 5,
i.e. the order of local polynomial approximation increases as the dimension of the predictor
variable X increases. See also the discussion in Hengartner and Sperlich (2005). Note that if

we need (22) to admit the following form
(nh1)Y?{1(21) — d1(21)} 5 N(e1W,S, ' Bi By (21, X,), 62 (21)),

then the fastest convergence rate is achieved only when hy oc n=1/(?P%3) and h = O(hy).
Remark 6. It is trivial to extend this result to the generalized additive case where G(m(z1,
.yxq)) = ¢+ mi(z1) + ... + mg(zq) for some known smooth function G in which case the
marginal integration estimator is the sample average of G(m(xz1,Xy;)). It is also easy to obtain
uniform strong Bahadur expansions for ¢; (1) themselves like those assumed in Linton, Sperlich,

and Van Keilegom (2007).
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5 Proof of Theorem, Proposition and Corollaries
Proof of Proposition 3.1. Write 8} (z) = —W,S, L(z) Y1) Zni(z)/n, where

Zni(z) = H™ 0™ Kn(X; — 2)o(Yi, (X — )" Bp(a)) (X — ).
We first focus on EZ,;(x). Based on (13) and (14), we have

E{o(Yi, w(X; — ) Bp(2))| X,;} = G(u(X; —2) Bp(z), X;)
= —g(X){m(X,) — n(X; —z) Bp(2)}

+Ga(&i(@), Xo){m(X;) — n(X; —2) Bp(2)}?/2

for some &;(x) between (X, — z)" 8,(z) and m(X,). Apparently, if X, = z + hu, then

Dim(x Dim(x
m(X;) — (X — 2)" Bplz) = Y k,()v’“ +hE N k,() of 4 o(RPH2).
lk|l=p+1 |k|=p+2 :

Therefore,

EZni(z) = W / K@) fg(z+ho)pw) Y Dzm,(@ykdy

|k|=p+1

72 [ Koo+ hout) Y DR+ o)
|k|=p-+2

T + Ts.

Now arrange the Np;1 elements of the derivatives D™m(z)/r! for |r| = p+1 as a column vector
m,1(z) using the lexicographical order introduced earlier and define my, o(z) in the similar

way. Let the N x Nj,41 matrix By,; and the N x Ny o matrix B2 be defined as

Sn,0,pt+1 (z) Sn,0,p+2 (z)

Sn Z Sn L
Bulg) = | et g = | S|

Sn,pp+1 (z) Sn.p.p+2 (z)

where Sy ipt1(z) and Sy ;pi2(x) is as given by (16). Therefore, T = hPHBnl(g)mpH(g),

Ty = W2 Bps(z)myi2(x), and

EB;(z) = —W,hP TS L (2) Bt (2)my1 () — Wph? 28, L (2) Bua(2)my42(z) + o(RP2).
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Let e;, ¢ =1,---,d be the d x 1 vector having 1 in the ¢th entry and all other entries 0. For

0<j<p, 0<Ek<p+1,let Njp(x) be the Nj x Nj matrix with its (I, m) element given by

d
[Nnl)], = Yo DI} @) [ KOt ey, (23
’ i=1
and use these Njz(z) to construct a N x N matrix Npy(z) and a N x N1 matrix M(z) via
Noo(z) Noa(z) --- Nop(z) Nop+1(z)
Nio(z) Niap(z) - Nip(z) - Nip+1(z)
N =| 0T e =]
Npo(z) Npi(z) -+ Npp(z) Npp+1(z)

Then Sup(@) = {f9H(@)S) + hNp(@) + O1?), Bur(z) = {fg}(@)By + hI(z) + O(h2) and
Bpa(z) = {fg}(z) B2+ O(h). As S, 1(z) = {fg} ' (z)S, " — h{fg} *(2)S, ' Np(2)S, " + O(h?),

we have

~EB;(z) =W,k [{g} 1 @)S; " — h{fg}2(@)S; Ny(@)S, ] [{f9} @) By + bl ()| mp 1 ()
+ W fg} ()8,  fo} (@) Bamya(x) + (A7)
=hPTIW, S, Bimy g (z) + WP PWLS, T {Fg} T (@) my (2){ M (z) — Ny(2)S, ' Bi}

+ Bomy(z)| + o(h+?).

We claim that for elements E3;,.(z) of E};(z) with p—|r| even, the k"1 term will vanish. This
means for any given r with |r| < p and ry with |[ry| =p+1,
> S e v Ve, =0 (24)
0<|r|<p
To prove this, first note that for any r; with 0 < |r| < p and ry with |ry] =p+ 1,

Z {S;I}N(fl)vN(f) Vrtry, = /UTQK’“DP(U)CZ“» (25)

0<|r|<p
where K, p(u) = {|M,p(w)|/|Sp|} K (uw) and M, p(u) is the same as Sy, but with the N(r) column
replaced by p(u). Let ¢;; denote the cofactor of {S,}; ; and expand the determinant of M, p,(u)

along the N (r) column. We see that

/ w2 Ky p(u)du = |Sp| 7 / D NNy K (w)du

0<r|<p

15



(25) thus follows, because () n(r,)/19| = {Sp ' n@,) N from the symmetry of S, and a
standard result concerning cofactors. As a generalization of Lemma 4 in Fan et al (1995) to

multivariate case, we can further show that for any r; with 0 <|r;| < p and p — |r;| even,
/“TzKr,p(U)du =0, for any |ry| =p+1,

which together with (25) leads to (24). ]
With the results given by the lemmas in Section 5, we are ready to prove the main results
in this paper. For ease of exposition, let X, = X; — 2, pix = p(X;;), Kiz = Kp(X;,) and

oni(z;t) = @(Y;;u—li—x,@p(g) +t). For a,f € RN define
D,i(z;0,0) = Km{p(Yi; pih (o4 B+ Bp(2))) — p(Vis (B + Bp(2))) — wil(z; O)MZTza}
pl (atp)
= sz/ {eni(z;t) — @ni(z;0)}dt,
e

and Rni(z; o, ) = Pni(z; 0, B) — E®i(z; v, ).
Proof of Theorem 3.2. Let \; = A(s). By Lemma 6.1 and Lemma 6.9, we know that with

probability 1, for some C; > 1 and all large M,

sup sup | 3 il B) — - (Ha) Syyl2)H(ar +26)
z€D € B,(ll)7 =1 2
Be B
< CYMP(dpy + dy) < 20, M3 (nh®)1=2M (log n)?M | when n is large, (26)

where d,; = (nh?)1=*17222(logn)M+2*2. Note that from (17), we can write
> Knio(Yii p17,8p(2)) s = nh B (2) W, Sp () Ho.
i=1

Replace B in (26) with Br%g = {a € RN 1k < M~Y(nh?/logn)M|Ha| < k+ 1} and M with
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(k 4+ 1)M. We have, by the definition of ®,;(z; a, 3), that
inf  inf { D o(Yis i+ B+ Byp(@) K — Y p(Vis 113 (8 + By (@) Ko

1
€0 ae Bl Mo i=1

+nh? (W, B (@) — HB)' Syl Her}

d
> inf inf ﬂ(Hoz)TSnp(g)Hoz—2C’M3/2(nhd)1_2h(logn)”‘1

> {og(ka /2 — 204 (k + 1)3/2M3/2}(nhd)1_2’\1 (log )M

> (8- 21010y (nh) "M (logn)?™ > 0 almost surely, (27)

where the last term is independent of the choice of k£ > 1. The last inequality is derived as follows.
As S, > 0, suppose its minimum eigenvalue is 71 > 0. As Sp,(z) — g(z)f(2)S, uniformly in
z € D by Lemma 6.8 and g(z)f(z) is bounded away from zero by (A5) and (14), there exists
some constant C3 > 0, such that for all z € D, the minimum eigenvalue of S,,(z) is greater

than C3. The last inequality thus holds if M > C; = (1601 /C3)?. Note that

00 N nhd A1
| B = {a| e RV . (@) \Ha| > M} .= BV, (28)

Therefore, from (27) and (28), we have

n

inf inf { Z p(Yis uhi(a+ B+ Bp(2))) Kni — Z p(Yis b (B + Bp(2))) K

z€D o e BY

5e 35?5 i=1 i=1
+nhd(W 185 (z) — HB) Syp(z)Ha b > 0 almost surely. 29
P n 7Y

Note that by (30), Lemma 6.10 and Proposition 3.1, we have |3%(z)| < C3(nh?/logn)=*?
uniformly in z € D almost surely. Namely, 5 (z) € B for all z € D, if M > C4. This implies

that if M > max(C3, Cy), (29) still holds with 3 replaced with H~'W, '35 (x). Therefore,

n

. . T —1 —1 %
o inf {30 Kuup (s i+ HOUW95(@) 4 6y()

=3 Knip (Vi i (H W, B (2) + By(2))) } > 0,

=1

which is equivalent to Theorem 3.2. |
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Proof of Corollary 3.3. As 1+ Ay > 2y, it’s sufficient to prove that with probability 1,

B (@)~ BBy (@)L WSt ) H Y K (X —a)ple)u(X—x) = Of ((22m) T (a0
=1

uniformly in z € D. As ¢(g;) = @(Y;,m(X;)) and Ep(e;) = 0, the term on the left hand side of

(30) stands for
Sup(@) 7 i{zm»@) ~ EZu()},
where -
Zuilw) = HVKn(X, = o)X, — o) (Vi n(X; — 2) By(2)) = ole0) ).

Next, like what we did in Lemma 6.1, we cover D with number T,, cubes D}, = D, with side

length [,, = O(T,, 1/d ) and centers z; = z,, . Write

n
su Znilz) — EZ < ma Zoilz —EZ-x‘
xeg ’ Z i ( ni(2)] 1<k<}’i’ Z ni(Ty) ni(Zy)

i=1 i=1
+ max sup E Zni(x) — Zni( a:k)‘
1<k<T, zeDy =1

+ max sup
1<k<T, zeD;

=Q1 + Q2 + Q3.

> EZui(w) ~ EZni(ay)|
=1

AS Zni(@) = Znily) = HUKR(X,; — 2)p(X; — 2){ni(@;0) — @piy; 0)}, through approaches

similar to that for &;3 in the proof of Lemma 6.2, we can show that

Q2 = O{ (1222)(1_&)/2 log n} almost surely

and so is Q3. To bound Q, first note that EZ2,(x;) = O(hP*1*%) uniformly in i and k. As

| Zni(z)| < C for some constant C' by (A2), we can see that from Lemma 6.5

ZEZ (x) + Z |Cov(Zni(zy,), Znj(zy,))] < ConhPH1+d,
1<J

Finally by Lemma 6.4 with By = C; , By = Cnh?t'*4 5 = Az(nh?/logn)1=*2)/2logn and

rn, = r(n), we have (note that nB;/n — oo indeed)
Aa) = A3/ (2C1) logn, A2 By = Cy/(4C%)logn.

18



Therefore,

> Zni(zy) — EZni(zy)| > As(nh?/logn)1722)/21og n) < Tp/n® + CT, ¥,
=1

P( max
1<k<Ty

where a = A3/(8C)) — C/(4C?). By selecting A3 large enough, we can ensure that T,,/n®

summable over n. As T, ¥,, is summable over n from (11), we can conclude that

Q1= O{ (1221)(1)\2)/2 log n} almost surely.

This together with Lemma 6.8 completes the proof. O
Proof of Corollary 4.1. Through the proof lines for Theorem 3.2 and Corollary 3.3, it’s
not difficult to see that Corollary 3.3 still holds under the conditions imposed here. Under the

additive structure (19), we thus have

- 1o I
¢1(x1) =1 (1) Zmz Xoi) hp+1€1WPSp1B1n;mp+1(xle2i)

n2h hd 1612<P (g5) Z 3717X2z (Xl,xj/hlaXz,ij/h)M(Xij/hlaKQ,ij/h)

+ Op({maX(hh )}p“) + Op{(nhlhd !flogn) =1}, (31)

where X .5 = X15 — 2, Xy;; = Xy, — Xy; and ey is as in Proposition 3.1. Note that by (21),
(nh1)Y?(nhih=! /logn)=3/* — oo, the O,(.) term can thus be safely ignored.

By central limit theorem for strongly mixing processes (Bosq, 1998, Theorem 1.7), we have

1< _ _
- > ma(Xy) = Op(n~1/?), Zmp+1 21, Xo;) = Emyi (21, Xy) + Op(n~1/?).
=1 =1

As the expectations of all other terms in (31) are 0, the leading term in the asymptotic bias of

¢1(x1) — ¢1(x1) is thus given by
—{max(hl, h)}p+1€1WpSIlelEmp+1($1,52).
Again through standard arguments in Masry (1996), we can see that
1 n
hd 1 Z ST;pl (z1, Xo)) Kn (X125 Xo i )1( X125/ h1, X 5/ h)
i=1

{Ku}(Xl,xj/hl,y)dy{l + O({ 71(;5111 }1/2)}

19
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uniformly in 1 < i < n. Therefore, the leading term in the asymptotic variance of ¢ (1) —¢1 (z1)

is the variance of the following term

() "er 3 p(e) Sk (1, Xop) o X o) / (K} (X1 0/ 11, v)d,

j=1 [0,1]®@d—1

which is asymptotically

(mh)™{ /Mw1{fg2}—1<x1,X2>f§<X2>a2<x1,X2>dX2}els;1K2K§S;le? (32)

If p(y;0) = (2¢ — 1)(y — 0) + |y — 0] and p(8) = 2¢I{6 > 0} + (2¢ — 2)I{6 < 0}, we have

g(z) = 2f-(0|z) and
0'2(@) = E[‘P2(E)’X =z|= 4q2(1 — F.(0)) +4(1 - Q)QFg(O) = 4q(1 — q),

which when substituted into (32), yields the asymptotic variance for the quantile regression

estimator,
5 (a1) = (1 - q){ /[0 Jois F 7 (@1 Xo) 2201, X0) F3(X5)AX fer S, KoK S, e
6 Lemmas

Lemma 6.1 Under assumptions (Al) — (A6), we have for all large M,

n
sup sup |2Rm-(g; a, B)| < M3/%d,, almost surely, (33)
z€D o e BV, i=1
ge B

where BY = {BeRYN:|H,B| < Mff')}, i=1,2.

Proof. Since D is compact, it can be covered by a finite number T,, of cubes Dy = D, ;.
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with side length 1, = O T;l/d = O{h(nh®/logn)~1=22)/2} and centers x, = x, .. Write
g g k nk

n

n
sup sup | Rpi(z;a,8)] < max  sup ‘§:¢m@%xuﬂ%—E@m@%xhﬂﬂ
2€P o e BV, i=1 L<k<Tn ¢ g0 i

seB? ge B

+ max sup sup ‘zn:{q)ni(wk;;aw@)_q)ni(x;avﬂ)}’

1<k<Th 2€Dr , ¢ g ' =

g e By

n
+ max sup sup ‘ Z {Eq)ni@k; a, ) — E®pi(z; a’ﬂ)}‘
1<k<Thn 2D ¢ g ' 1
B e B

=Q1 + Q2 + Q3.

In Lemma 6.2, it is shown that Qo < M?3/2d,, /3 almost surely and thus Q3 < M?>/%d,, /3.
Now all we need to do is to quantify Q1. To this end, we partition BS), 1 = 1,2, into a
sequence of disjoint subrectangles Dgi), e ,D(? such that
|Dfp:wpﬂﬂma—ﬁﬂu%ﬁeDﬁ}SZM*Awngm 1< 41 < J.
Obviously J; < (M logn)™. Choose a point «, € Dj(.i) and G, € Dl(c21)' Then

n

Q1 < max  sup | Y {Rui(agiyy, Br) — Rui(zys o, B)}
Lsk<Tn oecp, i

1<,k <1 e

e D}
n
+ max ’ ZRn’L(glw ajpﬂlﬂ)‘ = Hnl + Hn?- (34)
1<k<T, 1

1<j1,ki <1

We first consider H,;. For each j; = 1,---,J; and ¢ = 1,2, partition each rectangle Dj(-?

(@)
1

further into a sequence of subrectangles Dy ,D(i) J,- Repeat this process recursively as

J
(@)
1

follows. Suppose after the Ith round, we get a sequence of rectangles Dj 2 it

Jk, 1 <k <, then in the (I+1)th round, each rectangle D i is partitioned into a sequence

J1:J2, s
of subrectangles {D](-?’j%,“’jhjlﬂ, 1 <7 < J;} such that
A A , l ‘
‘DJ('i),jz,---,jz,le‘ = Sup {\Hn(a — Ol € DJ('Zl),jzf-wjz,jurl} = QMT(LZ)/(M logn), 1< jit1 < Jiga,

where Ji;1 < MY, End this process after the (L, + 1)th round, with L,, given at the beginning

of Section 3. Let Dl(i), 1 = 1,2, denote the set of all subrectangles of D((]i) after the [th round of
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partition and a typical element Dj(i) o of Dl(i) is denoted as Dgf) Choose a point Qg € ngl.l))
and () € Dg.l)) and define
n M3/2dn
‘/l - ZP{‘ Z{R’m(zlwajlwgkl) - Rni(&k;ajl+1aﬁkl+1)}‘ Z T}? 1 S l S Ln7
((Jf.vll))’ =
n M3/2dn
Q=Y P{ s | Y (RulzyiaiB) — Rulzgo 9} > =5} 1< 1< Ly 1
i), a €D i) i=1
((]kz>) 8c D(<2))

By (A4), it is easy to see that for any a € pW = DSL)H and 3 € Dgi) ) € DS)H?

(JLp+1 Ln+1

oM

|Rnl(£k; a, ﬂ) — an(@ka CJlen+1aBkLn+1)| < m’

which together with the choice of L,, implies that @)1, +1 =0. As Q; <V, + @, 1 <1< L,,

M3/2dn Ln
=1
To quantify V;, let
n
Wn = Z Znia Zm = an(&k» ajlvﬁkl) - Rn’i(lk; Ollerlaﬁlerl)' (36)
i=1
Note that by (A2), we have, uniformly in z, « and 3, that
[@ni(z; @, B)] < OMD. (37)

Therefore, | Z,;| < C’M,(ll). With Lemma 6.6, we can apply Lemma 6.4 to V; with

By = CiMY, By = nh(MV)2M® (M logn} =2/,
Ty = ré = (21/2/2/M)2l/1/2,,,(n)7 q= n/Té, n= M3/2dn/QZ,

An = 201 M) W (n) = O3 2y et et MY Y2

Note that nM,(LI)/n — 00, 7l, — oo for all 1 <1 < L, from (9) and

n
A = CMY 2 lognM?/72 22 N2By = Clog n=2/V2 02wz 1220 — o(\p),

which hold uniformly for all 1 <[ < L,,. Therefore,

I+1
W < (H J]2>48Xp{—cl logn(M/2V2)21/V2} + 027_711’
7=1
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where, as J; < 2(Mlogn)" and J; < 2MY for 2 <1< L, 7 is given by

M( )1/2
L r2N(1+1) 2N 3/27[ W }
=4'M (logn)*"'n RPN PRI

It is tedious but easy to check that for M large enough,

L,  I+1
T, Z [( H J2>4exp{ C1 log n(M/2v2)2/v: }} is summable over n. (38)
=1 7j=1

As vy [Tfl]/ rfl is increasing in [, we have

L.
T, 3 7t < To(logn)?Vn 3/2{M VY2 o[k H41M2N 1),
= : @3

which is again summable over n according to (11). This along with (35) and (38) implies that
H,1 < M3/2d, /2 almost surely, by the Borel-Cantelli lemma.

For H,q, first note that

n

P(Hpy >n) < TpJi sup sup P(|> Rui(z;o, )] > n). (39)
€D, c gV, T
8 e BY )

For any given «, 3, using the facts along with Lemma 6.7, we apply Lemma 6.4 to quantify
P, Rui(z; 0, B)] > 1), with r, = r(n), By = 20, MV, By = Conhd(MS")2MP, A, =

{r(n)Mfll)}_l/llCl and = M®/2d,,. Note that nB;/n — oo, and
Ann/4 = (nh®) 172272 (1og n)(1H+22)/2 ) 116C 1 (n)} = M2 logn/(16C)),
A2 By = MY4(nh®) =2 (log n)*2 /{16C? % (n)} = MY *1ogn/(16C3),

V(n) = gu{nBi/n}"*ylra] = Tudia(m)*? /2o r(n){r(n) MDY,
where ¥(n) is summable over n by condition (11). Therefore,

1 1/ M4 Cy

< 2T, J%/n’ = — 2 —=).
P(Hpo >n) <2T,J; /n’° +¥(n), b 16C: (M 01) (40)

By selecting M large enough, we can ensure that (40) is summable. Thus, for M large enough,
H,o < M®/2d,, almost surely. By (34), we know for large M, Q; < M?/?d,, almost surely. O

The quantification of Q2 is very involved, so we put it as a separate Lemma.
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Lemma 6.2 Under the conditions in Lemma 6.1, Qo < M3/2dn/3 almost surely.

Proof. Let X, = X, — xp, pir = (X)) and K, = Kp(X,;,)- It is easy to see that we can

write ®pi(zy; @, B) — Ppi(w; , B) = &1 + &io + &i3, where
T 1
&l = (Kz‘k,uik - Kixum> Oé/ {@m‘(@k; i (B + at)) — oni(zy; 0)} dt,
0
1

Ein = KixNsza/o {wm(@f; 11 (B + at)) — oni(@; i (B + at))} dt,

€z = Kigptay0{@ni(;0) — @ni(24;0) 1}
Therefore, P(Qa > M?3/2d,,/3) < Tp(Pp1 + Ppa + Pr3), where

Ppj = max P( sup  sup Izn:&jl > M3/2dn/9>, j=12,3.
1<k<T, 2Dk o ¢ BV, =1
geBY
If >, TpPyj < 00, j = 1,2,3, then by Borel-Cantelli lemma we have Q2 < M3/2d,, almost
surely.

First we study P,;. For any fixed « € B,Sl) and 3 € B7(L2)7 let If,‘c’ﬁ = 1, if there exists some
interval [t1,t2] C [0, 1], such that there are discontinuity points of (Y;;6) between pul, (8, (z)) +
B+ at)) and pul, By(xy,) for all t € [ty, to]; and 57 = 0, otherwise. Write &; = £ 157 + €1(1 —
Il.k’ﬁ). Note that by (A3), |(Kipir — Kizttiz) o] < CQMél)ln/h. Then by (A2) and the fact
that |, (8 + at)] < C M, we have &1 (1 — If,;’ﬁ)\ < CMéZ)M,(ll)ln/h uniformly in i, a, 8 and

x € Dy. Therefore,

n n

M3/24 MY4ppd

P< sup  sup Z&l(l—li’ﬁ)‘> n) §P(ZI{|X¢k\§2h}>7n), (41)
(1) zeDy |4 ! 18 ; 18C

a € By, 2k =1 i=1

g e By

where we have used the fact that &1 = &1I{|X,;| < 2h} since l,, = o(h). By Lemma 6.5, it

follows that Var(> ", I{|X,;| < 2h) = O(nh?). We can thus apply Lemma 6.4 to the term on
the right hand side of (41) with By = 1, n = MY*nh?/(18C), By = nh?, r, = r(n). It’s easy to
check that \,n = CM*logn(nh?®/logn)1+*2)/2 X2 By = o(\,n) and T, ¥, is summable over

n under condition (11). Thereby we have proved that

n
TnP( sup ‘ Zfil(l - Iﬁc’ﬁ) > M3/2dn/18> is summable over n, (42)
aeBl, i=1
ge Bl
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and that Zn T, Pn1 < o0, is thus equivalent to

n
TnP( sup ‘ Zﬁillﬁcﬁ’ > M3/2dn/18> is summable over n. (43)
eBY, -1
B e B

First note that I,L.O,;’ﬁ =1I{e € Sio;‘,;ﬁ}, where

Sz?;[l;:ﬁ = U U szxk) + /“sz(ﬁ + Oét) A(K@)@k)]
j=1te[0,1]
C U [a; — cMP), a; + CM?] = D,, for some C >0,
j=1
1 T ! T P
Az zo) = (p+1) Z 5@1 — )" ; Drm(zy + w(z) — 25))(1 — w)Pdw,
|r|=p+1~"

where the fact that A(X,,z,) = O(hP*!) = O(ngQ)) uniformly in ¢ with |X,.| < 2h is used
in the derivation of Sf,‘,’f C D,. As Igc’ﬁ < I{g; € D,}, we have \Qﬂ[gﬂﬂ < [&1|Uni, where

Uni = I(|X,] <2h)I{e; € D,,}, which is independent of the choice of & and 3. Therefore,

( sup ‘ Zgﬂl o ’ > M2, /18) < P( f: Uni > M PnhfM{P /(18C) )
(1) -_
8 el;%)’ - =
< P(Zn:(Um — EUm) >

=1

1/2,,7,d 7 r(2)
M “nh® M, )7 (44)

36C
where the first inequality is because |&;1]| < C’M,gl) l,/h and the second one because EU,; =
O(hdeLQ)) by (Al). As EU?, = EUy,;, by Lemma 6.5, we know that Var(}_" | Uy;) = CnhdM?.

We can then apply Lemma 6.4 to the last term in (44) with
=Cnh'MP | B =1, r, =r(n), n=M"?nh? M2 /(36C).

Apparently, A\, = C'logn(nh®/logn)1=*2)/2 and A2 By = o(\,7n). As in this case T, U, is still
summable over n based on (11), (43) thus indeed holds.

For P,s, first note that using approach for P,1, we can show that

n—d

Z{fiz — &9} < MP3/%d,,/18 almost surely,
=0
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where
z T ! T T
o = Kik,uika/ {wm@k; i (B + at)) — oni(w; 1, (B + Oét))} dt.
0
Therefore, we would have > T, P2 < oo, if

TnP( sup sup Zfzg

= B(l) ﬂCEDk i=1

M3/2dn/18> is summable over n. (45)
B c B(2>
For any fixed o € BT(LI), g € BT(LZ) and z € Dy, let I?,’f , = 1, if there exists some interval

[t1,t2] C [0,1], such that

Y Mzk(ﬂp(wk) + ﬁ + at) < a; < Y Nzx(ﬂp( ) + ﬁ + at) te [tlth] (46)

with a; € {a1,--- ,an}; and If,f = 0, otherwise. Write & = £l ik, $+€i2(1 —Ig,;ﬁ ). Note that
Koo = OMY) and gpi(zy; 1, (8 + at)) — (s (8 + at) = O(MP1, /h) if I35, = 0.

sk T

Then again as &z = E1{|X,1.| < 2k}, we have similar to (42) that

n
TnP< sup ‘Z&g( IO‘B )‘ > M3/2dn/18) is summable over n.

Therefore, by (45), > T, P2 < 00, if it can be shown that

Z 61211061;6:5
=1

TnP< sup sup
GB(l) €Dy

ge B(2)

M3/2dn/36> is summable over n. (47)

To this end, define ¢; = ¢; + A(X;, z;,). Then Ig,’fx =1, i.e. (46) is equivalent to
A(Xy ) — AXy 2) + pip (B + at) < & —aj < (B + at), ¢ € [t ta]. (48)

Let 9, = M,gz)ln/h. Then |A(X;,z;,) — A(X;,2)| < C6, and |(pix — piz)' B] < C8y, and we can

say that from (48),
—2C6, + i (B+ at) < € — a; < (B + at) +2C6,, t € [t,ta]. (49)
Without loss of generality, assume ,ulTkoz > 0. Then (49) implies that
—2C6, + py(B + ata) < e — a; < (B + aty) +2C5,, (50)
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which in turn means that if Iff,fx = 1, then |&2| < C(ta — tl)]ujkoz\ < Céy,, uniformly in

i, a € B7(L1), b€ BT(L2) and z € D;. Therefore, as &2 = &QI{|X“€\ < 2h}, we have

M3/2d
P( sup sup 790 > ")
eB(l) €Dy, 12512 Gke 36
ﬁeB‘Q’
M5/4nhdM(1)
<P< I{|X ) < 20} 170, >—"). 51
< SU;MSEH%Z {IXal <2W}IE0 > —— (51)

5eB®

We will bound If‘k’g » by a random variable that is independent of the choice of o € B,(ll) and

« € Dy. By the definition of I} ,’f .. and (50), the necessary condition for I, ,;,ﬁ ., = 1 is given by

€ € U aj + B — 2MV, a; + pl s +2MV) = DY, (52)
7j=1

which is indeed independent of the choice of « and z € D). Therefore,

M5/4nhdM(1)
P( sup su I{|X,.| <2} %P > —n>
Bl:zl) xEDpk Z {’ lk| } zkx - 360
B € B 2)
M54 hdM(l)
< P( sup ZI{|X2,€| < 2h}I{e; € D°} > #) (53)
5eB® i 36C
Now we partition B7(12) into a sequence of subrectangles Sy, --- , S, such that

181 = sup {|[Ha(3 - )] : 8,8 € i} < MY, 1<1<m.

Obviously, m < (M,(LQ)/MS))N = M—3N/4(nht/logn)M—22)N | Choose a point §; € S; for each

1 <1 <m, and thus

MO nhd MY )

&)
P( sup Z[{\sz\ < 2h}I{ei € D} = —— o

,BGB( )
M5 4 nhd )
2 )

IN

mP (32 H{IXl < 20} 1{e € DL} >
i=1

, VS Anhd D
P E B 3 n
+m X < Dy : pDEY > —
<legpl g I{’ 1k| 2h‘}’I{EZ € nz} I{GZ € m}| - 720 )

= m(T1 + TQ). (54)
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We deal with T3 first. Let
U, = I{|X;,| < 2n}I{e; € D}, (55)

Then by the definition of Df; given in (52), EUZZ- = O(hdell)) < M5/4hdM7$1)/(144C) for large

M and we have

LN . M5/ Anpd )
J J n
1< P = B0 = =)

We can thus apply Lemma 6.4 to the quantity on the right hand side with B; = 1, By given by

(66), r, = 7(n) and n M5/4nher(Ll), and A, = 1/(2r,). It follows that
Ant) = C M5 *10g n(nh?/ log n)(1+)‘2)/2_’\1, A2 By = Clog n(nh?/ log n)_2(A1_A2)/”2.

As (14 X2)/2 > A1 and Ay < A1, we have T} = O(n~?) for any b > 0.

For Ty, note that as |;ﬂi—k(ﬂ — 6] < CMS) for any 8 € S5, 1 <1 <m, we have

e € DY = Hes € DY = IHeie DN D)

I{Gi S U [aj + M—irkﬁl - CM;LI), a; + M—irkﬁl + CM;LI)}} = Um',
7j=1

IA

for some C' > 0, which is independent of the choice of 3 € S;. Therefore,

M5/ phd Y )

To < P(Y HIXyl < 2hH00 > ——

which can be dealt with similarly as with 7} and thus 75 = O(n~?) for any b > 0. Thus from
(51), (53) and (54), we can claim that (47) is true and thus T, P,2 is summable over n.

The quantification of P,3 is much simpler, as there is no 3 involved in &3. For any given
x € Dy, let I = 1, if there is a discontinuity point of ¢(Y;;6) between ), 8,(z;,) and pl,By(x);
and 1, . = 0 otherwise. Write &3 = {i3likz + &i3(1 — Lijk,z). Again by (A2) and the fact that
|[Kizplyal = OMY) and |l By () — pl,Bp(2)] = |A(X,, 23,) — AX,,2)] = O(MP 1y /h), we

have similar to (42) that

< Sup( ) Z{Zg —Lika) M3/2dn/18) is summable over n.
o€ BY

x € Dy,
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It’s easy to see that I;. , < I{e; + A(X;,2;) € Si;k»}, where
Sue = U U [ - Q) - A0 05 + A 20) - AX2)
Jj=1t€[0,1]

C laj — CMPl,/h,aj + CMP1,/h] = D, for some C > 0.

'CS

—

J=

Therefore, |§i3|like = |&i3[T{| X1 < 2R} ik < Uni, where
Uni = M\DT{|X | < 2h}I{e; + A(X,, z;) € Dy},

which is independent of the choice of o € B,(Il) and x € D;.. Thus

T, p( sup | > M3/2dn/18> < TnP(Z[Um- — EUy) > M3/2d, /36), (56)
ae B i=1
z € Dy

where we have used the fact that FU,; = O(hdM(l)M ln/h) = O(d,/n). We will have

> Ty Prs < oo if the right hand side in (56) is summable over n, i.e.

TnP< Z[Um — EU,| > M3/2dn/36) is summable over n. (57)
i=1

It’s easy to check that Lemma 6.5 again holds with v, (X, ¥;) standing for U,;. Applying Lemma
6.4 to (57) with By = M,Sl), By = Cnh?(M, M ))ZM(Q)Z /h, n = M3/?d, /36 and r, = r(n), we

have (note that nBj/n — oo indeed)
Ann/4 = CMY?logn, X2By = Cr; 2" 1logn = o(Aun).

Thus, T, ¥, again is summable over n and (57) indeed holds. O

The next Lemma is due to Davydov (Hall and Heyde (1980), Collary A2).

Lemma 6.3 Suppose that X and Y are random wvariables which are G— and H— measurable,
respectively, and that E|X|P < oo, E|Y |9 < 0o, where p, ¢ > 1, p~ ' + ¢t < 1. Then
[EXY — EXEY| < 8| X,[[Yllgfalg, 1} 70

The next lemma is some excerpts from the proof of Theorem 2 in Masry (1996).
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Lemma 6.4 Suppose {Z;}32, is a zero-mean strictly stationary processes with strongly mizing

coefficient v[k], and that |Z;| < By, >0 | EZ? + Y, . |Cov(Z;, Z;)| < Ba. Then for anyn >0

1<j

and integer series r, — 00, if nB1/n — oo and g, = [n/r,] — 0o, we have

|ZZ\ >n) < 4exp{—7 + A2 By} + C¥(n),
=1

where ¥(n) = g {nB1/n}*~[r,], An = 1/{2r,B1}.
Proof. We partition the set {1,--- ,n} into 2¢ = 2¢g,, consecutive blocks of size r = r, with
n=2qr+vand 0 <ov <r. Write

=(j—1)r+1

and

q n
ZV W= Va2, W= ) Z

j=1 1=2qr+1

Then W,, = >0 | Z; = W,’L + W) + W/, The contribution of W)/ is negligible as it consists of
at most r terms compared of ¢gr terms in W), or W/'. Then by the stationarity of the processes,

for any n > 0,
P(Wy >n) < P(W,, >n/2) + P(W)] > n/2) = 2P(W, > n/2). (58)

To bound P(W] > n/2), using recursively Bradley’s Lemma, we can approximate the random
variables V, (1), V,,(3), - - - , V,(2¢—1) by independent random variables V,¥(1), V,*(3), - - -, V,} (2¢—
1), which satisfy that for 1 < j < g, V,*(2j — 1) has the same distribution as V,,(2j — 1) and

PV (2] = 1) = Va(2j = D) > u) < 18(1Va(2] = 1)loo/w)"/* sup |[P(AB) — P(A)P(B)], (59)

where u is any positive value such that 0 < u < [|V},(2j — 1)[|oc < 00 and the supremum is taken
over all sets of A and B in the o—algebras of events generated by {V,,(1),V,(3), -, V,(2j —
3)} and V,,(2j — 1) respectively. By the definition of V,,(j), we can see that sup |P(AB) —
P(A)P(B)| = ~[ry]. Write
pw. =1 < P(‘ ZQ:V*(QJ' - 1)‘ > Q) +P(‘ ijvn(zj 1) - VA2 — 1)‘ > 9)
"2 = " 4 o " 4
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We bound I; as follows. Let A = 1/{2Byr}. Since |Z;| < By, AV, (j)| < 1/2, then using the fact

that e* < 1+ x + 22/2 holds for |x| < 1/2, we have
E{e:tAV,f(Qj—l)} <1+ )\QE{Vn(j)}2 < eAzE{V;(Qj—l)}2. (61)

By Markov inequality, (61) and the independence of the {V,*(2j — 1)}?:1, we have

q q
—An/4 (25 — - (25 —
< 2exp < — An/4 4 N\ iE{V;(Qj - 1)}2>
j=1
< 2exp{ —An/4+ 02)\2BQ}~ (62)

We now bound the term I in (60). Notice that

q
I, < ZP(
j=1

If |[Vi(25 — 1)||oo > n/(4q), substitute n/(4q) for w in (59),

(2 — 1) — 2—1‘ L.
Va(2) = 1) = V(2 )>4q>

I < 18q{||Va(2) — D)ll/n/(40)}*1[rs] < Ca*? " P~ [r] (rn B1)'/2, (63)
If |[Vi(2) — 1)]leo < m/(4q), let u=||V,(2j — 1)||co in (59) and we have
I < Cqy[ry],
which is of smaller order than (63), if nBj/n — oo. Thus by (58), (60), (62) and (63),
P(W,, >n) <4dexp{—Aun/4+ CaBu)2} + CV,,
where the constant C' is independent of n. O

Lemma 6.5 For any z € R?, let 1,(X,;,Y;) = I(|X;,| < h)Y.(X,,,Y:), a measurable function
of (X;,Ys) with [¢o(X;,Y;)| < B and V = E¢2(X;,Y;). Suppose the mizing coefficient (k]

satisfies (10). Then

Cov(zn: e (X, Y:)|) = nV [1 4 o{ <Bth+d+1/V) 172/1/2}]
i=1
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Proof. Denote ¢,(X;,Y;) by iz. First note that

V = EyZ, =ht EWZ|X, =z + hu) f(z + hu)du,
lu|<1
n—d n—d
D 1CovV(Wia, i)l = D (n—1—d+1)[Cov(tos, viz)| <n Y |Cov(thos, Yiz)]
i<j =1 =1
d—1 Tn n—d
= n +"Z +n Z = ndo1 + nJag + nJas,
=1 l=d l=mp+1

where 7, = RPTd+DE/v2=1)/a For Jy  there might be an overlap between the components of
X, and X, for example, when X; = (X;_g4,--, Xi_1), where {X;} is a univariate time series.
Without loss of generality, let v/, u” and «” of dimensions [,d — [ and [ respectively, be the
d+1 distinct random variables in (X, /h, X, /h). Write u; = («/",2"7)" and uy = (v, u"")".

Then by Cauchy inequality, we have

< {BOZIXy =2+ hu) B4 IX, = 2+ hup) s = v/nt (64

Xog=z+hu
‘E<¢Ox7wl$|i?:g+hy21)

and through a transformation of variables, we have

Cov (Yo, Y1z)| < W'V [z + huy, x4 hug; 1) — f(z + huy) f(z + hug; 1 + d — 1) |du’du du™,
1 2 1 2

|E1|§1
lug| <1

where by (A4) and (A5), the integral is bounded. Therefore,

d—1
nJo < CnVZhl =o(nV).
=1

For Jaz, there is no overlap between the components of X, and X;. Let X, = hu and X;, = hv

and we have

=z + hu
(Covtbortual|l < 1 [, B (v, val30 2T 1) dude
o] <1

x[f(z+ hu,z + hv;l +d — 1) — f(z + hu) f(z + hv)]

= Chy,
where the last equality follows from (A4), (A5) and (64). Therefore, as m,h? — 0,
nJays = O{nm,h@V} = o(nV).
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For Jos, using Davydov’s lemma (Lemma 6.3) we have
|Cov(og, Yiz)| < 8{Y[L — d + 122 { Bl |2 }2*2, as vy > 2. (65)
As [¢iz| < B, E|®y|"? < B2V,

Jog < CB(V*Q)Z/VQVWW/W;}L Z 1]l — d + 1]}172/1127
l=mpn+1

1-2/v
where the summation term is o(1) as m, — oco. Thus Ja3 = o{V(Bth+d+1/V) 2}, which

completes the proof. O
Lemma 6.6 Suppose (A2)- (A6) hold. Then for UL, 1 =1,--- ,m defined in (55) and Zy;,1 =
, Ly, defined in (36), we have
S EUL)?+ > |Cov(UL, ULyl < Cnh® MM { M) /MDY =22, (66)
= 1<J
S EZ 4 Y Cov(Zai, Zuj)| = nh (MED)* M (M log n} /"2, (67)
i 1<J

uniformly in z,, 1 <k <T,,.

Proof. We only prove (67), which is more involved than (66). To simplify the notations,

denote o, Bk, oj, and Bj, by a1, B1, a2 and B, respectively. Clearly,

u' H(az+B32) u' H(az+061) T
/ {wni(xk;t)—soni(xk;o)}dtz/ {oni(zy;t+u' H(B2—51)) — pni(zy; 0) hdt,
u' HfB2 u" Hpy

and

{eni(@p;t) — oni(zy; 0) bt — / {oni(@p;t) — oni(ay; 0) bdt

u H(a1+051) u" H(az+32)
u" HpB1 u' Hf2

u' H(a1+81) -
- / (ons(aast) — nilagst+ 0" H(B — Bu)) )t
ul HBy

' H(oo+p1) -
—/ {pni(zp;t +u H(B2 — B1)) — ©ni(zy; 0)}dt = Ay + Ao,
u" H(o1+51)
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Therefore, E{Z,;}* = h? [ K2(u) f(z}, + hu) E{(A1 + A2)?|X; = z;, + hu}du. The conclusion is

thus obvious observing that by Cauchy inequality and (12),

EBAX; =z, +hu) < |u Hou H(Bs — B1)u" Haq| < 2(MMDYV2 M) /(M logn),
E(A%|X¢ =z, +hu) < {QTH(OQ — al)}Z( yTHa2| + |QTHoz1] + Q‘QTHﬁQD

< A MP /(M logn)?,

where we used the facts that |a; — as| < ZMT(LI)/(Ml logn) and B — 2| < 2M7(12)/(Ml logn).
Therefore, E{Z;}2 = ChA(M")2MP /(M logn). As |Zni| < MY and hP+1 /MY < oo, the

rest of the proof can be completed following the proof of Lemma 6.5. a
Lemma 6.7 Suppose (A2)- (A6) hold.

n
> E®L+ D 1Cov(®ni, @)l < Crh (M) M2, (68)
i=1 i<j
uniformly in z € D, a € By(ll), 06 e B7(L2).
Proof. By Cauchy inequality and (12), we have
E®Z,

w(w)" H(a+08)

— he / K (w)B|{ / s (nilat) — gui(w: 0)) e} 1X; = 2+ hu] F(a + hu)du

p(w)" H(a+8) )
<h? / flz+ hu)KQ(U)M(U)THa/ E[(gom-(g; t) — oni(z; O)) X, =z+ hg} dtdu
uT HB
(w)" H(a+5)
<u [ K pt) Ho [ Cltldtf(z + hu)du = O{hU(MV)? M)}, (69)
w(w)THB
uniformly in x € D, a € By(Ll) and 3 € BT(LQ). (68) thus follows from (69) and Lemma 6.5. 0O

Lemma 6.8 Let (A3) — (A6) hold. Then

sup |Snp(z) — g(z) f(2)S,| = O(h + (nh?/logn)~Y/2) almost surely.
z€D

Proof. The result is almost the same as Theorem 2 in Masry (1996). Especailly if (11) holds,

then the requirement (3.8a) there on the mixing coefficient y[k] is met. O

34



Lemma 6.9 Denote d,; = (nh®)!=*1=222(logn)"1+2%2 and let \; and BY. i =1,2, be as in
Lemma 6.1. Suppose that (A1) — (A5) and (9) hold. Then there is a constant C' > 0 such that

for each M > 0 and all large n,

sup sup |ZE<I>m z;a, ) — T(Ha) Spp(z)H (e + 26)| < CM>%d,,;.
IEDQEB(U, =1
g e B

Proof. Recall that G(t,u) = E(o(Y;t)|X = u),

p(w)" H(a+06)

Bop(zaf) = he / K () f(z + hu)du x / s (70)
p(u

{G(t + p(u) HBy(z), & + hu) — G(p(u)" HBy(z), z + hu)}dt-
By (A3) and (A5), we have

G(t+ p(u) HBy(z), z + hu) — G(p(w) HBp(z, z + hu)
= (G () HBy (@), + ) + S Gttt 0). .+ ),

G1(p(w) HBy(z), z + hu) = g(z + hu) + O(hPT1),

where &,(t,w) falls between u(u)" H3,(x) and ¢+ pu(u)" HB,(z), and the term O(hP*1) is uniform

in € D. Therefore, the inner integral in (70) is given by

log n) A1+2A2 }

(e -+ hu)(Ho) () (o +28) + 0{ a2 (1!

uniformly in z € D, where we have used the fact that nh%®+1/*2 /1ogn < co. By the definition

of Spp(z), the proof is thus completed. O

Lemma 6.10 Under conditions in Theorem 3.2, we have

-t Z Kp(X (e)p(X; — g)‘ = O{ (17(”)5;) 1/2} almost surely.

sup
z€D hd

Proof. Note that, under conditions Theorem 3.2, the conditions imposed by Masry (1996)
in Theorem 5 also hold. Specifically, (4.5) there follows from (9) and (4.7b) there can be derived

from (11). Therefore, following the proof lines there, we can show that

sup ! 21 K(X; — 2)eleon(X; — )| = of (B1) ),
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which together with Lemma 6.8, yields the desired results. O

REFERENCES

Andrews, D.W.K. (1994). Asymptotics for semiparametric econometric models via stochastic

equicontinuity. Fconometrica 62, 43-72.
Bahadur, R.R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37, 577-80.
Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes. NewYork: Springer-Verlag.

Chen, X., Linton, O. B. and I. Van Keilegom (2003). Estimation of Semiparametric Models

when the Criterion is not Smooth. Econometrica 71, 1591-608.
Fan, J. and Gijbels, I. (1996). Local polynomial regression. London: Chapman and Hall.

Hengartner, N. W. and Sperlich, S. (2005). Rate optimal estimation with the integration

method in the presence of many covariates. J. Multivariate Anal. 95, 246 - 72.

Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and its Applications. NewYork:

Academic Press.

Hong, S. (2003). Bahadur representation and its application for Local Polynomial Estimates

in Nonparametric M-Regression. Nonparametric Statistics 15, 237-51.

Horowitz, J. L. and Lee, S. (2005). Nonparametric estimation of an additive quantile regression

model. J. Amer. Statist. Assoc. 100, 1238-49.

Kiefer, J. (1967). On Bahadur’s representation of sample quantiles. Ann. Math. Statist. 38,

1323-42.

Linton, O. B. (2001). Estimating additive nonparametric models by partial L, Norm: The

Curse of Fractionality. Econom. Theory 17, 1037-50.

Linton, O. B. and Nielsen, J. P. (1995). A kernel method of estimating structured nonpara-

metric regression based on marginal integration. Biometrika 82, 93-100.

36



Linton, O. B., Sperlich, S. and I. Van Keilegom (2007). Estimation of a Semiparametric

Transformation Model by Minimum Distance. Ann. Statist. To appear

Linton, O. B. and Hérdle, W. (1996). Estimation of additive regression models with known

links. Biometrika 83, 529-40.

Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong

consistency and rates. J. Time Ser. Anal. 17, 571-99.

Peng, L. and Yao, Q. (2003). Least absolute deviation estimation for ARCH and GARCH

models. Biometrika 90, 967-75.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann.

Statist. 10, 1040-53.

Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models.

Ann. Statist. 14, 592-606.

Wu, W. B. (2005). On the Bahadur representation of sample quantiles for dependent sequences.

Ann. Statist. 33, 1934-63.

37



