
Parameter estimation of ODE's via nonparametri
estimatorsNi
olas Brunel∗June 15, 2007Abstra
tOrdinary di�erential equations (ODE's) are widespread models inphysi
s, 
hemistry and biology. In parti
ular, this mathemati
al for-malism is used for des
ribing the sets of intera
tions and the evolutionof 
omplex systems and it might 
onsist of high-dimensional sets of
oupled nonlinear di�erential equations. In this setting, we proposea general method for estimating the parameters indexing ODE's fromtimes series. Our method is able to alleviate the 
omputational di�
ul-ties en
ountered by the 
lassi
al parametri
 methods. These di�
ultiesare due to the impli
it de�nition of the model. We propose the useof a nonparametri
 estimator of regression fun
tions as a �rst-step inthe 
onstru
tion of an M-estimator, and we show the 
onsisten
y ofthe derived estimator under general 
onditions. In the 
ase of splineestimators, we provide asymptoti
 normality, and we derive the rate of
onvergen
e, whi
h is not the usual √n-rate for parametri
 estimators.This rate depends on the smoothness of the di�erential equation. Someperspe
tives of re�nements of this new family of parametri
 estimatorsare given.Key words: Consisten
y, Ordinary Di�erential Equation, Splines, Nonpara-metri
 regression, Parametri
 estimation, M-estimator.1 Introdu
tionOrdinary di�erential equations are used for the modelling of dynami
 pro-
esses in physi
s, engineering, 
hemistry, biology,et
. In parti
ular, su
h a
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formalism is used for the des
ription of regulatory networks (for examplebetween 
ompeting spe
ies in biology), or of 
ell regulatory systems e.g.the temporal evolution of the 
on
entrations of some bio
hemi
al spe
ies(mRNA, proteins) involved in biologi
al fun
tions inside the 
ell [5℄. Usu-ally, the model for the state variables x = (x1, . . . , xd)
⊤ 
onsists in an initialvalue problem

{

ẋ(t) = F (x(t), θ), ∀t ∈ [0, 1],
x(0) = x0,

(1)where F is a ve
tor �eld from R
d to R

d, d ∈ N, and θ ∈ Θ, Θ being asubset of a Eu
lidean spa
e. When data are available su
h as a time series,we are interested in the problem of estimation of the 
oe�
ients parametriz-ing the ODE. In prin
iple, this may be done by some 
lassi
al parametri
estimators, usually the least squares estimator [13℄ or the Maximum Likeli-hood estimator (MLE). Di�erent estimators have been derived in order totake into a

ount some parti
ular features of the di�erential equation su
has spe
ial boundary values (there exists a fun
tion g linking the values at theboundary i.e. g(x(0), x(1)) = 0 instead of the simple initial value problem),or random initial values or random parameters [4℄. Otherwise, there may besome variations on the observational pro
ess su
h as noisy observation timesthat ne
essitate the introdu
tion of appropriate minimization 
riteria [12℄.Despite their satisfa
tory theoreti
al properties, the e�
ien
y of theseestimators may be dramati
ally degraded in pra
ti
e by 
omputational prob-lems that arise from the impli
it and nonlinear de�nition of the model. In-deed, these estimators give rise to nonlinear optimization problems that ne-
essitate the approximation of the solution of the ODE and the explorationof the (usually high-dimensional) parameter spa
e. Hen
e, we have to fa
epossibly numerous lo
al optima and a huge 
omputation time. Instead of
onsidering the estimation of θ straightforwardly as a parametri
 problem,it may be useful to look at it as the estimation of a univariate regressionfun
tion t 7→ x(t) that belongs to the (�nite dimensional) family of fun
tionssatisfying (1). So we may use tools from fun
tional estimation in order toderive a proxy for the solution of the ODE and derive estimates of the pa-rameters from this. Similar attempts of getting a smooth approximation ofthe solution without solving the ODE were made by Madar et al. [14℄ orVarah [20℄ with 
ubi
 splines (and a well-
hosen sequen
e of knots). Di�er-ent spline estimators were proposed by Ramsay and Silverman [15℄ based onthe fa
t that smoothing splines are obtained by solving the trade-o� betweenadequa
y to data and smoothness measured by some linear di�erential op-2



erators. It was extended more re
ently by Ramsay et al. [16℄ to the 
aseof nonlinear di�erential operators. Moreover, this fun
tional point of viewenables one to use prior knowledge on the solutions of the ODE su
h as posi-tivity or boundedness whereas it is di�
ult to exploit the stri
tly parametri
form. Indeed, it implies that we have a thorough knowledge of the in�uen
eof the parameters on the qualitative behavior of the solutions of (1), whi
his rarely the 
ase. In this paper, we exploit this interpretation of estimationof ODE's as fun
tional estimation, so that we are able to obtain a generalestimation pro
edure, by exploiting numerous results from nonparametri
regression theory.In the next se
tion, we introdu
e the statisti
al model and we de�neour so-
alled two-step estimator of θ. We show that under broad 
onditionsthis estimator is 
onsistent, and we give some straightforward extensionsof this estimator to di�erent models. In se
tion 3, we review some usefulde�nitions and results of spline theory whi
h are useful for understandingthe properties of the spline estimator derived in se
tion 4. We derive thenthe rate of 
onvergen
e of the parametri
 estimator in this parti
ular 
ase. Inthe last se
tion, we give some simulation results obtained with the 
lassi
alLotka-Volterra's population model 
oming from biology. In 
on
lusion, wegive some possible extensions of this work.2 Two-step estimator2.1 Statisti
al modelWe want to estimate the parameter θ of the ordinary di�erential equation(1) from noisy observations at n points in [0, 1], 0 ≤ t1 < · · · < tn ≤ 1,
yi = x(ti) + ǫi, i = 1, . . . , n, (2)where the ǫi's are i.i.d 
entered random variables. The ODE is indexed by aparameter θ ∈ Θ ⊂ R

p with initial value x0; the true parameter value is θ∗and the 
orresponding solution of (1) is x∗.The ve
tor �eld de�ning the ODE is a fun
tion F : X × Θ → R
d(X ⊂ R

d) of 
lass Cm w.r.t x for every θ and with m ≥ 1. It is a Lips
hitzfun
tion so that we have existen
e and uniqueness of a solution xθ,x0
to(1) on a neighborhood of 0 for ea
h θ and x0; and we assume that every
orresponding solution 
an be de�ned on [0, 1]. Hen
e, the solutions xθ,x0belong to Cm+1([0, 1], Rd). Moreover, we suppose also that F is a smooth3



fun
tion in θ so that ea
h solution xθ,x0
depends smoothly1 on the parameters

θ and x0. Then, we suppose that F is of 
lass C1 in θ for every x. Let fΣbe the density of the noise ǫ, then the log-likelihood in the i.i.d 
ase is
l(θ, x0, Σ) =

n
∑

i=1

log fΣ(yi − xθ,x0
(ti)) (3)and the model that we want to identify is parametrized by (θ, x0, Σ) ∈ Θ ×

X × S+ for instan
e when the noise is 
entered Gaussian with 
ovarian
ematrix Σ (S+ is the set of symmetri
 positive matri
es). An alternativeparametrization is (θ, xθ,x0
, Σ) ∈ Θ × F × S+, with F the set of fun
tionsthat solve (1) for some θ and x0, thanks to the inje
tive mapping betweeninitial 
onditions and a solution.In most appli
ations, we are not really interested in the initial 
onditionsbut rather in the parameter θ, so that x0 or xθ,x0


an be viewed as a nuisan
eparameter like the 
ovarian
e matrix Σ of the noise. We want to de�ne esti-mators of the �true� parameters (x∗, θ∗) (x∗ = xθ∗,x∗

0
) that will be denoted by

(x̂n, θ̂n). The estimation problem appears as a standard parametri
 problemthat 
an be dealt with by the 
lassi
al theory in order to provide good es-timators (with good properties, e.g. √n-
onsisten
y) su
h as the MaximumLikelihood Estimator (MLE). Indeed, from the smoothness properties of F ,the log-likelihood l(θ, x0) is at least C1 w.r.t (θ, x0) so that we 
an de�ne thes
ore s(θ, x0) = ( ∂l
∂θ

⊤ ∂l
∂x0

⊤
)⊤. If s(θ, x0) is square integrable under the trueprobabilityP(x∗,θ∗), we 
an 
laim under weak 
onditions (e.g. theorem 5.39[19℄) that the MLE is an asymptoti
ally e�
ient estimator. The di�
ultyof this approa
h is then essentially pra
ti
al be
ause of the impli
it depen-den
e of x on the parameter (θ, x0), whi
h prohibits proper maximization of

l(θ, x0). Indeed, derivative-based methods like Newton-Raphson are not easyto handle then and evaluation of the likelihood ne
essitates the integration ofthe ODE, whi
h be
omes a burden when we have to explore a huge param-eter spa
e. Moreover, the ODE's proposed for modelling may be expe
tedto give a parti
ular qualitative behavior whi
h 
an be easily interpreted interms of systems theory, e.g. 
onvergen
e to an equilibrium state or os
illa-tions. Typi
ally, these qualitative properties of ODE are hard to 
ontrol andinvolve bifur
ation analysis [11℄ and may ne
essitate a mathemati
al knowl-edge whi
h is not always a

essible for huge systems. Moreover, boundednessof the solution x∗ (a ≤ x∗(t) ≤ b, with a, b ∈ R
d) may be di�
ult to use1if F depends smoothly on x and θ then the solution depends on the parameter by thesame order of smoothness, see Anosov & Arnold, Dynami
al systems, p.17.4



during the estimation via the 
lassi
al devi
e of a 
onstraint optimization.Hen
e, these remarks motivate us to 
onsider the estimation of an ODE as afun
tional estimation and use �exible methods 
oming from nonparametri
regression from whi
h we 
ould derive a likely parameter for the ODE.2.2 Prin
ipleWe use 
onsistent nonparametri
 estimators of the solution x∗ and its deriva-tive ẋ∗ in order to derive a �tting 
riterion for the ODE and subsequentlythe M-estimator of θ∗ 
orresponding to the 
riterion. We denote by ‖f‖q =
(

∫ 1
0 |f(t)|qdt

)1/q
, 0 < q ≤ ∞, the Lq norm on the spa
e of Lebesgue in-tegrable fun
tions on [0, 1]. By using 
lassi
al nonparametri
 regression es-timators, we 
an 
onstru
t 
onsistent estimators x̂n and ˆ̇xn of x∗ and ẋ∗(a
tually we will obtain the estimator of the derivative by deriving x̂n sothat ˆ̇xn = ˙̂xn) i.e. ‖x̂n − x∗‖q = oP (1) and ‖ˆ̇xn − ẋ∗‖q = oP (1). We may
hoose as 
riterion fun
tion to minimize Rq

n(θ) = ‖ ˙̂xn − F (x̂n, θ)‖q fromwhi
h we derive the two-step estimator
θ̂n = arg min

θ
Rq

n(θ). (4)Thanks to the previous 
onvergen
e results and under additional suitable
onditions to be spe
i�ed below, we 
an show that Rq
n(θ) → Rq(θ) =

‖ẋ∗ − F (x∗, θ)‖q in probability, and that this dis
repan
y measure enablesus to 
onstru
t a 
onsistent estimator θ̂n. Note that there are no 
omputa-tional di�
ulties now as there are in the straightforward parametri
 modelapproa
h.We are left with two 
hoi
es of pra
ti
al and theoreti
al importan
e: the
hoi
e of q and the 
hoi
e of the nonparametri
 estimator. In this paper,we fo
us on the one hand on q = 2 (so that the optimization program (4)
an be pro
essed as a nonlinear least squares regression) and on the otherhand we 
onsider splines with a number of knots depending on the numberof observations n. It is likely that some other families of nonparametri
estimators su
h as smoothing splines, kernels or wavelets 
ould be used,depending on the performan
e or the type of 
onstraints we want.2.3 Consisten
yWe show that the minimization of Rq
n(θ) gives a 
onsistent estimator for

θ. We introdu
e the asymptoti
 
riterion Rq(θ) = ‖F (x∗, θ∗) − F (x∗, θ)‖q5



derived from Rq
n and we make the additional assumption:

∀ǫ > 0, inf
‖θ−θ∗‖≥ǫ

Rq(θ) > Rq(θ∗), (5)whi
h may be viewed as an identi�ability 
riterion for the model.Proposition 2.1. We suppose there exists a 
ompa
t set K ⊂ X su
h that
∀ θ ∈ Θ,∀x0 ∈ X ,∀t ∈ [0, 1], xθ,x0

(t) is in K. Moreover we suppose that uni-formly in θ ∈ Θ, F (·, θ) is K− Lips
hitz on K. If x̂n and ˆ̇xn are 
onsistent,and x̂n(t) ∈ K almost surely, then we have
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| = oP (1).Moreover, if the identi�ability 
ondition (5) is ful�lled the two-step estimatoris 
onsistent, i.e.
θ̂n − θ∗ = oP (1).Proof. In order to show the 
onvergen
e of |Rq

n(θ)−Rq(θ)| = |‖ˆ̇xn−F (x̂n, θ)‖q−
‖F (x∗, θ) − F (x∗, θ∗)‖q|, we make the following de
omposition

|Rq
n(θ) − Rq(θ)| ≤ ‖

(

ˆ̇xn − F (x̂n, θ)
)

+ (F (x∗, θ) − F (x∗, θ∗)) ‖q

≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + ‖F (x̂n, θ) − F (x∗, θ)‖q. (6)Sin
e all the solutions xθ,x0
(t) and x̂n(t) stay in K ⊂ X , and x 7→ F (x, θ)are K− Lips
hitz uniformly in θ, we obtain for all θ ∈ Θ

‖F (x̂n, θ)−F (x∗, θ)‖q ≤ K

(
∫ 1

0
|x̂n(t) − x∗(t)|qdt

)1/q

= K‖x̂n−x∗‖q. (7)Together, (6) and (7) imply
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| ≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + sup

θ∈Θ
‖F (x̂n, θ) − F (x∗, θ)‖q

≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + K‖x̂n − x∗‖q.and 
onsequently, by the 
onsisten
y of x̂n and ˙̂xn,
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| = oP (1).6



With the additional identi�ability 
ondition (5) for the ve
tor �eld F , The-orem 5.7 of [19℄ implies that the estimator θ̂n 
onverges in probability to
θ∗.In the 
ase q = 2, the Hessian of R2(θ) at θ = θ∗ is

J∗ =

∫ 1

0
(DθF (x∗(t), θ∗))⊤ DθF (x∗(t), θ∗)dt.Nonsingularity of J∗ enables one to have a lo
al identi�ability 
riterion;indeed, the 
riterion behaves like a positive de�nite quadrati
 form on aneighborhood V(θ∗) of θ∗ so that 
ondition (5) is true on V(θ∗).Remark 2.1.The prin
iple of the two-step estimation is the same when the ODEis nonautonomous, i.e. the ve
tor �eld depends also on time. Moreover,proposition 2.1 
an be adapted to Rq

n(θ) =
∫ 1
0 |ˆ̇xn(t) − F (x̂n(t), t; θ)|qdt, and

θ̂n is 
onsistent provided that the asymptoti
 
riterion Rq(θ) =
∫ 1
0 |ẋ∗(t) −

F (x∗(t), t; θ)|qdt has property (5).Remark 2.2.The estimator proposed 
an be easily extended to 
ases where several vari-ables are not observed. Indeed, if the di�erential system (1) is partially linearin the following sense
{

u̇ = G(u, v; η)
v̇ = H(u; η) + Av

(8)with x = (u⊤ v⊤)⊤, u ∈ R
d1, being observed, v ∈ R

d2 being unobserved,and d1 + d2 = d (the initial 
onditions are x0 = (u⊤
0 v⊤0 )⊤), i.e. x(ti) isrepla
ed by u(ti) in (2) (the noise ǫi being then d1-dimensional). We wantto estimate the parameter θ = (η, A) when H is a nonlinear fun
tion and Ais a matrix, so we 
an take advantage of the linearity in v in order to derivean estimator for v. We 
an derive a nonparametri
 estimator for v by using

ûn and the fa
t that t 7→ v(t) must be the solution of the non-homogeneouslinear ODE v̇ = Av+H(ûn; η), v(0) = v0. The solution of this ODE is givenby Duhamel's formula [8℄
∀t ∈ [0, 1], v̂n(t) = exp (tA) v0 +

∫ t

0
exp ((t − s)A) H(ûn(s); θ)ds, (9)7



whi
h then 
an be plugged into the 
riterion Rq
n(θ). This estimator dependsexpli
itly on the initial 
ondition v0 whi
h must be estimated at the sametime

(θ̂, v̂0) = arg min
(η,A,v0)

Rq
n(η, A, v0) =

∥

∥

∥

˙̂un − F (ûn, v̂n; η)
∥

∥

∥

q
.As previously, if H is uniformly Lips
hitz the integral ∫ t

0 exp ((t − s)A) H(ûn; θ)ds
onverges (uniformly) in probability in the Lq sense to ∫ t
0 exp ((t − s)A) H(u∗; θ)dsas soon as ûn does, hen
e Rq

n(θ, A, v0) 
onverges also uniformly to the asymp-toti
 
riterion
Rq(θ, v0) = ‖u̇∗ − F (u∗, v∗; θ)‖q .The estimator (θ̂, v̂0) is 
onsistent as soon as Rq(θ, v0) veri�es the identi�a-bility 
riterion (5).Remark 2.3.If the observation times t1, . . . , tn are realizations of i.i.d. random vari-ables (T1, . . . , Tn) with 
ommon 
.d.f Q, the nonparametri
 estimators x̂n, asthe one used before, are relevant 
andidates for the de�nition of the two-stepestimator sin
e they are still 
onsistent under some additional assumptionson Q.As in the setting 
onsidered by Lalam and Klaassen [12℄, the observationtimes may be observed with some random errors τi = ti + ηi, i = 1, . . . , n,(the ηi's being some white noise) so we have to estimate x from the noisybivariate measurements (τi, yi). Consistent nonparametri
 estimators havebeen proposed for the so-
alled �errors-in-variables� regression and some ex-amples are kernel estimators [6℄ and splines estimators [10℄ (in the L2 sense).Hen
e, we 
an de�ne exa
tly the same 
riterion fun
tion R2

n and derive a
onsistent parametri
 estimator.3 Splines theoryIn order to give a better insight into the properties of the nonparametri
estimator proposed in se
tion 4, we re
all some properties of splines and B-splines. Indeed, the good statisti
al behavior of the estimator we propose, isbased on our ability to approximate the solution x∗ with a �nite number ofknown fun
tions. Moreover, the parti
ular properties of the B-splines basisenable us to derive e�
ient algorithms for pra
ti
al implementation of therelated approximation method and give eventually 
omputationally e�
ientstatisti
al pro
edures. For the sake of 
ompleteness, we re
all some fa
ts8



about pie
ewise polynomial fun
tions and splines, borrowed from De Boor[2℄. We 
onsider a sequen
e of in
reasing points (sometimes 
alled break-points) ξ = (ξ1, . . . , ξℓ+1) and we denote by Pξ,k the set of pie
ewise polyno-mial fun
tions (pp fun
tions) of degree k− 1 (or of order k), i.e., f ∈ Pξ,k ⇔
∀i = 1, . . . , ℓ, f|]ξi,ξi+1[ is a polynomial of degree at most k − 1. Pξ,k is ave
tor spa
e of dimension equal to ℓk. A pp fun
tion is in general neither
ontinuously di�erentiable nor 
ontinuous. Nevertheless, it is useful to in-trodu
e the jth derivative of a pp fun
tion f denoted by Djf whi
h is thepie
ewise derivative having possibly some jump2 ∆ξi

f (j) at the breakpoint ξi(f (j) is the jth derivative of f on ea
h open interval ]ξs, ξs+1[, s = 1, . . . , ℓ).A pp fun
tion is usually des
ribed by the values of its right derivatives
(

D(j−1)f(ξ+
i )
)

, i = 1, . . . , ℓ, j = 1, . . . , k. Of 
ourse, we are parti
ularlyinterested in pp fun
tions with regularities at some knots des
ribed by someintegers ν = (νi)i=2,...,ℓ

∀i ∈ [2, . . . , l],∀j ∈ [1, . . . , νi], D(j−1)f(ξ+
i ) = D(j−1)f(ξ−i ).This ve
tor spa
e is denoted Pξ,k,ν. When νi = ν for all i = 2, . . . , ℓ, wedenote Pξ,k,ν = Cν ∩ Pξ,k. There exist several representations of pp fun
-tions but we will fo
us on the B-splines de
omposition, whi
h uses the �nitedimensional linear property of spa
es of pp fun
tions. The B-splines are anearly orthogonal basis for pp fun
tions whi
h are de�ned (among others)by the following re
urren
e equation from a nonde
reasing sequen
e of knots

τ = (τi)i∈I (I is a possibly in�nite set of indi
es, τ may 
ontain identi
alknots):
∀i ∈ I, Bi,1(x) = 1[τi,τi+1](x)and

∀i ∈ I, ∀k ≥ 2, Bi,k(x) =
x − τi

τi+k−1 − τi
Bi,k−1(x) +

τi+k − x

τi+k − τi+1
Bi+1,k−1.The B-splines possess the following useful properties:Property 3.1.1. Compa
t support: ∀x /∈ [τi, τi+k], Bi(x) = 0 and ∀x ∈]τi, τi+k[, Bi(x) >

0.2The jump of a fun
tion h at point ξ is ∆ξh = h(ξ+) − h(ξ−).9



2. Only the k B-splines Bj−k+1, . . . , Bj are nonzero on [τj , τj+1].3. ∀x ∈ [τr, τs],
∑

i Bi(x) =
∑s−1

i=r+1−k Bi(x) = 1.A spline fun
tion of order k with knot sequen
e τ is de�ned as a linear
ombination of B-splines of order k for the knot sequen
e τ . The generatedve
tor spa
e is denoted Sk,τ . The link between Sk,τ and Pξ,k,ν is given bythe following theorem from Curry and S
hoenberg, see De Boor p. 113.Theorem 3.1.For a given stri
tly in
reasing sequen
e ξ = (ξi)i=1,...,ℓ+1 and a givennonnegative integer sequen
e ν = (νi)i=2,...,ℓ with νi ≤ k we de�ne
K , k +

ℓ
∑

i=2

(k − νi) = kℓ −
ℓ
∑

i=2

νi = dim Pξ,k,ν (10)and a nonde
reasing sequen
e τ = (τi)i=1,...,K+k with τ1 ≤ · · · ≤ τk ≤ ξ1and ξℓ+1 ≤ τK+1 ≤ · · · ≤ τK+k and for ea
h i = 2, . . . , ℓ , ξi appears exa
tly
k − νi times in the sequen
e τ .Then the sequen
e B1, . . . , BK of B-splines of order k for the knot se-quen
e τ is a basis for Pξ,k,ν 
onsidered as fun
tions on [τk, τK+1].Hen
e, fewer knots means more 
ontinuity and we have the equation:number of 
ontinuity 
onditions at ξ + number of knots at ξ = k. (11)In parti
ular, a k-fold knot is a point with no 
ontinuity. At the opposite, noknot at a point enfor
es k 
ontinuity 
onditions so that the two polynomialpie
es that meet at this point are identi
al. There are∑ℓ

i=2(k−νi) additionalinterior knots τi between ξ2 and ξℓ and there are also k initial and k �nalknots outside the interval [ξ1, ξℓ+1]. These 2k knots are usually 
hosen in thefollowing 
onvenient way τ1 = · · · = τk = ξ1 and τK+1 = · · · = τK+k = ξℓ+1,whi
h means that ν1 = νℓ+1 = 0. The B-representation of f ∈ Pξ,k,ν is givenby K and k, the ve
tor of knots (τi)i=1,...,K+k and the 
oe�
ients (αi)i=1,...,Kso that
∀x ∈ [τk, τK+1], f(x) =

K
∑

i=1

αiBi(x).Splines are mainly used for their approximation 
apability, whi
h 
an bemeasured for instan
e in the sup norm sense with dist(g, Sk,τ) = infs∈Sk,τ
‖g−10



s‖∞, g being a smooth fun
tion. For a given knots sequen
e τ = (τ1, . . . , τK+k)(in [0, 1]), a usual k−th order spline approximation is de�ned thanks to asequen
e of points ti, i = 1, . . . , K, by
∀t ∈ [0, 1], Ag(t) =

K
∑

i=1

g(ti)Bi(t).If g is Cm and m ≤ k−1, we have for all τ = (τi)i=1..K+k su
h as τ1 = · · · =
τk = 0 and τK+1 = · · · = τK+k = 1dist(g, Sk,τ) ≤ Ck,m|τ |m‖g(m)‖∞ (12)with |τ | being the mesh size of the partition.4 Spline-based estimatorsWe des
ribe in this se
tion a two-step method based on the s
heme givenin se
tion 2, but in the parti
ular 
ase of splines estimators and using theleast squares 
riterion R2

n. From se
tion 3, it appears that splines possess in-teresting 
omputational properties and will result in rapid algorithms whi
his the main motivation of the present resear
h. Moreover, this spline-basedestimator is linear whi
h enables one to derive rather straightforwardly theproperties of the two-step estimator under broad and intuitive assumptions.Finally, splines are used in the 
ollo
ation method [2℄ for the numeri
al inte-gration of ODE's, so it links the statisti
al estimation and the approximationproblems and it may provide a better insight into the statisti
al problem tothe numeri
al analysis 
ommunity.4.1 De�nition of the estimatorWe have n observations y1, . . . , yn 
orresponding to noisy observations of thesolution of the ODE (1) at times t1, . . . , tn. We introdu
e Qn the empiri
aldistribution of the sampling times and we suppose that this empiri
al dis-tribution 
onverges to a distribution fun
tion Q (whi
h possesses a density
q). We 
onstru
t our estimator x̂n of x∗ as a fun
tion in the spline spa
e
Sk,τ

3. We 
onsider a breakpoint sequen
e ξ = (ξ1, . . . , ξLn+1) of size Ln, so
dim(Sk+1,τ) = Kn = (k + 1 − ν)Ln + ν is allowed to depend on the num-ber of observations (and the knots sequen
e τ is of size Kn + k + 1). The3If ν = 2 for ea
h internal breakpoint, the estimator is a C1 fun
tion whi
h is a minimalrequirement for the solution of an ODE if F is 
ontinuous. In order to be 
oherent withthe smoothness property of our model, we 
an take ν = m+1, so that the fun
tion is Cm.11



breakpoint sequen
e is 
hosen su
h that max1≤i≤Ln |hi+1 − hi| = o(L−1
n ),

|ξ|/ mini hi ≤ M where hi = (ξi+1 − ξi) and |ξ| = supi hi is the mesh sizeof ξ. As a 
onsequen
e, we have |ξ| = O(L−1
n ). Like in Zhou et al. [22℄, wesuppose that we have 
onvergen
e of Qn towards Q at a rate 
ontrolled bythe mesh size, i.e.

sup
t∈[0,1]

|Qn(t) − Q(t)| = o(|ξ|). (13)The estimator x̂n we 
onsider is written 
omponentwise
∀i = 1, . . . , d, x̂n,i =

Kn
∑

k=1

cikBk (14)or in matrix form x̂n = CnB with the ve
tor-valued fun
tion B = (B1, . . . , BKn)⊤and the d × Kn 
oe�
ient matrix Cn = (cn
ik)1≤i,k≤d,Kn

(and 
olumn ve
tors
ci,n = (ci1, . . . , ciKn)⊤ ∈ R

Kn). We stress the fa
t that all the 
omponents
x̂n,i are approximated via the same spa
e, although it may be inappropriatein some pra
ti
al situations but it enables to keep simple expressions for theestimator. The fa
t that we look for a fun
tion in the ve
tor spa
e spannedby B-splines, puts emphasis on the regression interpretation of the �rst stepof our estimating pro
edure. The estimation of the parameter Cn 
an be
ast into the 
lassi
al multivariate regression setting

Yn = BnC⊤
n + ǫn, (15)where Yn = (Y1 . . .Yd) is the n × d matrix of observations, ǫ is the n ×

d matrix of errors, C⊤
n is the Kn × d matrix of 
oe�
ients and Bn =

(Bj(ti))1≤i≤n,1≤j≤Kn is the design matrix. We look for a fun
tion 
loseto the data in the L2 sense, i.e. we estimate the 
oe�
ient matrix Cn byleast-squares
ĉi,n = arg min

c∈RKn

n
∑

j=1

(yij − B(tj)
⊤
c)2, i = 1, . . . , d,whi
h gives the least squares estimator Ĉn = (B⊤

n Bn)+B
⊤
n Y where (·)+denotes the Moore-Penrose inverse. We have

∀i ∈ {1, . . . , d},∀t ∈ [0, 1], x̂i,n(t) = B
⊤(t)ĉi,n,where ĉi = (B⊤

n Bn)+B
⊤
n Yi. Finally, we introdu
e the proje
tion matrix

PB,n = Bn(B⊤
n Bn)+B

⊤
n . We will use the notation x . y to denote thatthere exists a 
onstant M > 0 su
h that x ≤ My.12



General results given by Huang in [9℄ ensure that x̂n
L2

−→ x∗ in probabil-ity for sequen
es of suitably 
hosen approximating spa
es Sk+1,ξ,ν with anin
reasing number of knots. Indeed, 
orollary 1 in [9℄ enables us to 
laimthat if the observation times are random with Q(B) ≥ cλ(B) (0 < c ≤ 1 and
λ(·) is the Lebesgue measure on [0, 1]), the fun
tion x∗ is in the Besov spa
e
Bα

2,∞ (with k ≥ α− 1) and the dimension grows su
h that limn
Kn log Kn

n = 0then
1

n

n
∑

i=1

(yij − x̂i(tj))
2 + ‖x̂i − x∗

i ‖2 = OP (
Kn

n
+ K−2α

n ).Moreover, the optimal rate OP (n−2α/(2α+1)) (given by Stone [17℄) is rea
hedfor Kn ∼ n1/(2α+1). For this nonparametri
 estimator, it is possible to
onstru
t a 
onsistent two-step estimator θ̂n by minimization of R2
n(θ).4.2 Asymptoti
sWe give in this part the rate of 
onvergen
e of the estimator θ̂n. In orderto derive the asymptoti
s, we use linearization te
hniques based on Taylor'sexpansion and we use the fa
t that the estimator depends linearly on theobservations. We need to have a pre
ise pi
ture of the evolution of the basis

(B1, . . . , BKn) as Kn → ∞ and parti
ularly the asymptoti
 behavior of theempiri
al 
ovarian
e GKn,n = 1
n(B⊤

n Bn) and of the (theoreti
al) 
ovarian
e
GKn =

∫ 1
0 B(t)B(t)⊤dQ(t). So we re
all some useful te
hni
al properties onB-splines (of order k) when the knot sequen
e τ is su
h that:

(∗) τ = (τ1, . . . , τn+k) is su
h that τ1 = · · · = τk = 0 and τn+1 =· · · =τn+k =
1, and τi < τi+k, i = 1, . . . , n.Property 4.1. Under 
ondition (∗), for k > 1,∃ c0(k), ∀s ∈ Sk,τ , s.t.

c0(k)

(

K
∑

i=1

a2
i (τi − τi−k)

)1/2

≤
(
∫ 1

0
s2(x)dx

)1/2

≤
(

K
∑

i=1

a2
i (τi − τi−k)

)1/2

.(16)Inequalities (16) were derived by De Boor [2℄ in order to assess the well-posedness property of the B-splines basis. Zhou et al. [22℄ have given somere�nements of these inequalities for the study of spline estimators for regres-sion fun
tions. 13



Property 4.2. If τ satis�es (∗), there exist 
onstants 0 < c1 ≤ c2 < ∞(independent of n or Kn) su
h that for any s ∈ Sk,τ

(c1 + on(1))|ξ|
(

Kn
∑

i=1

a2
i

)

≤
∫ 1

0
s2(x)dQn(x) ≤ (c2 + on(1))|ξ|

(

Kn
∑

i=1

a2
i

)

.(17)This property gives a bound on the eigenvalues of the 
ovarian
e matri
es:Property 4.3. If τ satis�es (∗), there exist 
onstants 0 < c1 ≤ c2 < ∞(independent of n or Kn) su
h that for any s ∈ Sk,τ

(c1 + on(1))|ξ| ≤ λminGKn,n ≤ λmaxGKn,n ≤ (c2 + on(1))|ξ|. (18)with λminGKn,n, λmaxGKn,n being respe
tively the lowest and the highesteigenvalues of the empiri
al 
ovarian
e matrix GKn,n of the basis (B1, . . . , BKn).Eventually, we have the following asymptoti
 behavior if Kn = o(n)

∀t ∈]0, 1], B
⊤(t)

(

B
⊤
n Bn

)−1
B(t) =

1

n
B(t)⊤G−1

Kn
B(t) + o(

1

n|ξ|). (19)We are interested now in the asymptoti
 behavior of Γ(x̂n) where Γ isa linear fun
tional Γ(x) =
∫ 1
0 A(s)⊤x(s)ds with s 7→ A(s) a fun
tion in

Cm([0, 1], Rd). If x = C⊤
B, Γ(x) =

∑d
i=1 c

⊤
i γi = Trace(C⊤γ) with γi the
olumns of the K × d matrix γ =

∫ 1
0 B(s)A⊤(s)ds. Hen
e, the asymptoti
behavior is derived dire
tly from the asymptoti
s of Ĉn and of matrix γ. Byusing the results from Andrews [1℄, we will derive the asymptoti
 normal-ity of this fun
tional. For simpli
ity, we 
onsider only the 
ase d = 1, theextension to higher dimensions is 
umbersome but straightforward. If thevarian
e of the noise is σ2, the varian
e of ĉn is

V (ĉn) = σ2(B⊤
n Bn)+ (20)and the varian
e of the estimator of the fun
tional is

Vn = V (Γ(x̂n)) = σ2γ⊤
n (B⊤

n Bn)+γn. (21)
14



Proposition 4.1.Let (ξn)n≥1 be a sequen
e of knot sequen
es of length Ln and let Knbe the dimension of the asso
iated spline spa
es Sk,τn
. We suppose that

Ln → ∞ (equivalently Kn → ∞ or |ξn| → 0) su
h that n|ξn| → ∞. If
Γ(x) =

∫ 1
0 A(s)x(s)ds with A : [0, 1] → R is Cm and x∗ is Cm+1 then:(i) Γ(x̂n)−Γ(x) = OP (n−1/2) and √

n(Γ(x̂n)−Γ(x)) is asymptoti
ally nor-mal,(ii) ∀t ∈ [0, 1], x̂n(t) − x(t) = OP (n−1/2|ξn|−1/2),(iii) V (x̂n(t))−1/2(x̂n(t) − x(t)) is asymptoti
ally normal, t ∈ [0, 1].Proof. In order to prove the asymptoti
 normality of Γ(x̂n)−Γ(x), we 
he
kthe assumptions of theorem 2.1 of [1℄. Assumption A is satis�ed be
ausethe ǫi's are i.i.d. with �nite varian
e. For assumption B, sin
e A is Cm,the fun
tional is 
ontinuous with respe
t to the Sobolev norm (or simply thesup norm). Moreover, it is possible to 
onstru
t a spline Ã =
∑Kn

i=1 αiBi =
α⊤

n B ∈ Sk,τn
su
h that ‖A − Ã‖∞ = O(|ξ|m) if k ≥ m (distan
e to splinespa
e is given by (12)) and we have the approximation |ΓA(x) − ΓÃ(x)| =

|
∫ 1
0 (A − Ã)(s)x(s)ds| . |ξ|m‖x‖∞. Hen
e, it su�
es to look at the 
ase

A = α⊤
n B be
ause ΓA(x) − ΓÃ(x) will tend to zero at faster rate than n1/2.We introdu
e the ve
tors γn = (ΓA(B1) . . .ΓA(BKn))⊤ , so we have γ⊤

n γn =
α⊤G⊤

Kn
GKnα ≥ λ2

minGKn × ‖α‖2
2. From (18), we get γ⊤

n γn & |ξ|‖α‖2
2.Inequality (17) ensures that γ⊤

n γn is bounded away from 0 be
ause
|ξ|‖α‖2

2 &

∫ 1

0
A2(s)dQn(s)hen
e lim infn γ⊤

n γn > 0 and assumption B is 
he
ked.From (19), we get the behavior of the diagonal entries of PB,n:
∀i ∈ [1..Kn], (PB,n)ii =

1

n
B(ξi)

⊤G−1
Kn

B(ξi) + o
(

(n|ξ|)−1
) (22)we see that assumption C(ii) is true be
auseB(ξi)

⊤G−1
Kn

B(ξi) ≤ c1‖B(ξi)‖2
2|ξ|−1and ‖B(ξi)‖2

2 ≤ k (be
ause the B-splines are bounded by 1 and only k ofthem are stri
tly positive) ensure that maxi(PB,n)ii = O((n|ξ|)−1) → 0. Itis 
lear that Bn is of full rank for n large enough.We know from (12) that there exists a sequen
e (x̃n) ∈ Sk,τn
su
h that

‖x̃n − x∗‖∞ = OP (|ξ|m+1) hen
e
n1/2‖x̃n − x∗‖∞ → 0.15



If we use again the spline approximation of the fun
tion A, we derive thefollowing expression for
γ⊤

n

(

B
⊤
B

n

)−1

γn = α⊤G⊤
KG−1

K,nGKα.From (18) we have α⊤G⊤
KG−1

K,nGKα & α⊤GKα. As for γ⊤
n γn, we have

lim inf
n

γ⊤
n

(

B
⊤
B

n

)−1

γn > 0,whi
h remains true when A is any smooth fun
tion in Cm.A

ording to Andrews, we 
an 
on
lude V
−1/2
n (Γ(x̂n)−Γ(x∗)) N(0, 1).We obtain an equivalent of the rate of 
onvergen
e by the same approxima-tion as above

Vn = γ⊤
n

(

B
⊤
B

)−1
γn

=
1

n
α⊤GKG−1

K,nGKα

≃ 1

n
α⊤GKαi.e. Vn ∼ ‖α‖2|ξ|

n by (18) and we obtain �nally that Vn ∼ n−1.The te
hnique used by Andrews for his theorem 2.1 gives also asymp-toti
 normality of x̂n(t) = B(t)⊤ĉi,n. We have then ∀t ∈ [0, 1], V (x̂n(t)) =

σ2
B(t)⊤(B⊤

n Bn)+B(t) and from (19) we get V (x̂n(t)) = σ2

n B(t)⊤G−1
Kn

B(t)+

o( 1
n|ξ|) , so that V (x̂n(t)) ∼ C

n|ξ| from lemma 6.6 in [22℄.By linearizing the 
riterion R2
n, we show that the two-step estimator is asimple fun
tional of the spline estimator. We introdu
e the di�erentials of

F at (x, θ) w.r.t. θ and x and we denote them DθF (x, θ) and DxF (x, θ)respe
tively. For short, we adopt the following notation for the fun
tions:
DθF (x∗, θ∗) = DθF

∗ and DxF (x∗, θ∗) = DxF ∗.Theorem 4.1.Let F a Cm ve
tor �eld w.r.t (θ, x) (m ≥ 1), su
h that DθF and DxF areLips
hitz w.r.t (θ, x). We suppose that the Hessian J∗ of the asymptoti
 
ri-terion R2(θ) evaluated at θ∗ is nonsingular. We suppose that the 
onditionsof proposition 2.1 are satis�ed and that the knots of the spline estimators aresu
h that n|ξn| → 0, then the two-step estimator θ̂n = arg minR2
n(θ) is:16



(i) asymptoti
ally normal,(ii) (θ̂n − θ∗) = OP (n−1/2|ξn|−1/2).Moreover, the optimal rate of 
onvergen
e for the Mean Square Error is ob-tained for Kn = O(n1/(2m+3)) and we have then (θ̂n−θ∗) = OP (n−(m+1)/(2m+3)).Proof. ∇θR
2
n(θ̂n) = 0 implies that ∫ 1

0

(

DθF (x̂n(t), θ̂n)
)⊤

( ˙̂xn(t)−F (x̂n(t), θ̂n))dt =

0. We remove dependen
e on t and n for notational 
onvenien
e and intro-du
e F ∗ and F (x̂, θ∗) whi
h gives
∫ 1

0

(

DθF (x̂, θ̂)
)⊤

(( ˙̂x − ẋ∗) + F ∗ − F (x̂, θ∗) + F (x̂, θ∗) − F (x̂, θ̂))dt = 0and
∫ 1

0

(

DθF (x̂, θ̂)
)⊤ (

( ˙̂x − ẋ∗) + DxF (x̃∗, θ∗)(x∗ − x̂) + DθF (x̂, θ̃∗)(θ∗ − θ̂)
)

dt = 0with x̃∗ and θ̃∗ being random points between x∗ and x̂, and θ∗ and θ̂ re-spe
tively. We introdu
e Â = DθF (x̂, θ̂), and an asymptoti
 expression for
(θ∗ − θ̂) is

(θ∗ − θ̂)

∫ 1

0
Â⊤DθF (x̂, θ∗)dt = −

∫ 1

0
Â⊤( ˙̂x − ẋ∗)dt

−
∫ 1

0
Â⊤DxF (x̃∗, θ∗)(x∗ − x̂)dt.It su�
es to 
onsider the 
onvergen
e in law of the random integral Hn =

∫ 1
0 (DθF

∗)⊤
(

( ˙̂x − ẋ∗) + DxF ∗(x∗ − x̂)
)

dt be
ause the random variable
Gn =

∫ 1

0
Â⊤
(

( ˙̂x − ẋ∗) + DxF (x̃∗, θ∗)(x∗ − x̂)
)

dtis su
h that Gn−Hn → 0 in probability (in the L2 sense), moreover we havethe 
onvergen
e in probability of ∫ 1
0 Â⊤DθF (x̂, θ∗)dt to J∗.Indeed, we 
onsider the map D : (x, θ) 7→ (t 7→ DθF (x(t), θ)) de-�ned on C([0, 1],K) × Θ (with the produ
t Hilbert metri
) with values in

C([0, 1], Rn×p) (with the L2 norm ‖A‖2 =
∫ 1
0 Tr(A⊤(t)A(t))dt). Sin
e DθFis Lips
hitz in (x, θ), the fun
tional map D is a 
ontinuous map, and we
an 
laim by the 
ontinuous mapping theorem that the random fun
tions17



t 7→ DθF (x̂(t), θ̂) and t 7→ DθF (x̂(t), θ∗) 
onverge in probability (in the
L2sense) to DθF

∗. As a 
onsequen
e, ∥∥
∥
DθF (x̂, θ̂)

∥

∥

∥

2

onverges in probabilityto ‖DθF

∗‖2 so it is also bounded, and ‖DθF (x̂, θ∗) − DθF
∗‖2 → 0 in proba-bility. This statement is also true for all entries of these (fun
tion) matri
es,whi
h enables to 
laim that all entries of the matrix

∫ 1

0

(

DθF (x̂, θ̂)
)⊤

(DθF (x̂, θ∗) − DθF
∗) dttend to zero in probability (by applying the Cau
hy-S
hwarz inequality 
om-ponentwise). Moreover, we have 
onvergen
e in probability of ea
h entry of

∫ 1
0

(

DθF (x̂, θ̂)
)⊤

DθF
∗dt to the 
orresponding entry of ∫ 1

0 (DθF
∗)⊤ DθF

∗dt(
onsequen
e of the 
onvergen
e of DθF (x̂, θ̂) to DθF
∗ in the L2 sense),whi
h implies �nally that

∫ 1

0

(

DθF (x̂, θ̂)
)⊤

DθF (x̂, θ∗)dt
P−→ J∗By the same arguments and by using the fa
t that DxF is also Lips
hitz in

(x, θ), we have 
onvergen
e of the matrix Gn − Hn to 0 in probability. Theasymptoti
 behavior of (θ̂n − θ∗) is then given by the random integral
J∗−1

∫ 1

0
(DθF

∗)⊤
(

( ˙̂x − ẋ∗) + DxF ∗(x∗ − x̂)
)

dt. (23)We 
an write it also as Γ(x̂)−Γ(x∗) by introdu
ing the R
d -valued 
ontinuouslinear fun
tional de�ned by

Γ(x) =

∫ 1

0

(

B(s) − d

ds
A(s)

)

x(s)ds + B(1)x(1) − B(0)x(0)with s 7→ A(s) = DxF (x∗(s), θ∗)⊤ and s 7→ B(s) = A(s)DθF (x∗(s), θ∗) be-ing (at least) Cm−1fun
tions. From proposition 4.1, we may 
laim the asymp-toti
 normality An(Γ(x̂n)−Γ(x∗)) N(0, Id) where An is a properly 
hosennormalizing sequen
e (normality is extended from s
alar fun
tional to mul-tidimensional fun
tional by the Cramér-Wold devi
e). Moreover, we knowthat Γ(x̂n)−Γ(x∗) = OP (n−1/2) + OP (n−1/2|ξn|−1/2) = OP (n−1/2|ξn|−1/2),be
ause the estimation of x∗(t) is done at a slower rate.Now to determine the optimal rate of 
onvergen
e in the mean squaresense, we need to use the Bias - Varian
e de
omposition for the evalua-tion fun
tional ‖θ̂n − θ∗‖2 = OP

(

(E(x̂n(t)) − x(t))2
)

+ OP (V ar(x̂n(t))).18



Theorem 2.1 of [22℄ gives E(x̂n(t)) − x∗(t) = O(|ξn|m+1) (be
ause x∗ is
Cm+1) and V ar(x̂n(t)) = OP (n−1|ξn|−1) so the optimal rate is rea
hed for
|ξn| = O(n−1/(2m+3)) and is O(n−(2m+2)/(2m+3)).Remark 4.1.The asymptoti
 result given for the deterministi
 observational times
0 ≤ t1 <· · · <tn ≤ 1 remains true when they are repla
ed by realizationsof some random variables T1, . . . , Tn as long as the assumptions of the twoprevious propositions are true with probability one. Andrews gives some 
on-ditions (theorem 2) in order to obtain this. It turns out that in the 
ase of
T1, . . . , Tn i.i.d. random variables drawn from the distribution Q, it su�
esto have K4

n . nr with 0 < r < 1. In parti
ular, as soon as m ≥ 1, the
on
lusion of proposition 4.1 holds with probability one for the optimal rate
Kn = n1/(2m+3).5 ExperimentsThe Lotka-Volterra equation is a standard model for the evolution of prey-predator populations. It is a planar ODE

{

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2
(24)whose behavior is well-known [8℄. Despite its simpli
ity, it exhibits 
onver-gen
e to limit 
y
les whi
h is one of the main features of nonlinear dynam-i
al systems, whi
h has usually a meaningful interpretation. Due to thissimpli
ity and the interpretability of the solution, it is often used in biology(population dynami
s or phenomena with 
ompeting spe
ies), but the statis-ti
al estimation of the parameter θ = (a, b, c, d)⊤ has not been extensivelyaddressed. Nevertheless, Varah (1982) illustrates spline-based method (withnatural 
ubi
 splines and knots 
hosen by an expert) on the same modelas (24). Froda et al. (2005) [7℄ have 
onsidered another original methodexploiting the fa
t that the orbit may be a 
losed 
urve for some values ofthe parameters.For this ben
hmark example, we study the behavior of the two-step es-timator 
orresponding to the 
riterion R2

n(θ). A 
hallenging problem inthe 
onstru
tion of the estimator is the usual problem of the sele
tion ofthe number of knots during the spline estimation (whi
h was left to thepra
titioner in Varah's paper). A similar problem arises also in Ramsay's19



method based on smoothing splines where one has to 
hoose properly thetrade-o� 
onstant λ during the minimization of the penalized �tting 
riterion
∑n

i=1 |yi − x̂(ti)|22 + λ‖ ˙̂x − F (x̂, θ)‖2
2. The 
lassi
al optimal value given by
ross-validation (
hapter 3 [21℄) is not dire
tly relevant in this 
ase, so it isalso a parameter left to the modeler. The nonparametri
 estimation relieson the 
hoi
e of the sequen
e of knots, and we take a uniform grid τ here.Nevertheless, the present result (theorem 4.1) is not pra
ti
al and does notenable us to sele
t a 
orre
t number of knots. As suggested before, one 
anthink of an extension of the 
elebrated GCV, but in our setting this problemof knots sele
tion seems more naturally dealt by the free-knot splines [3, 18℄.We do not propose here a knots sele
tion pro
edure for the pra
tioner, butan adho
 one, based on the ability to approximate the fun
tion of interest bysplines. In order to do this, we study and 
hoose an arbitrary nonde
reas-ing sequen
e of number of knots Kn by graphi
al arguments relying on theapproximation of x∗ by its L2 proje
tion on S

Kn

4 the spa
e of 
ubi
 splinesthat are C2 with Kn uniformly spa
ed knots. The proje
tion is denoted by
PKnx∗.
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(a) Traje
tories (time evolution)

(b) Phase planeFigure 1: Solution of Lotka-Volterra system in the phase plane.In our experiment, we 
onsider the system with a = 1, b = 1.5, c = 1.5,
d = 2 and x(0) = 1, y(0) = 2. As shown in Figure 1, the solution is attra
tedby a periodi
 solution and is observed on the time interval [0, 10] whi
h
orresponds roughly to 2 periods (and the tra
e in the phase plane is nearly a21



n 50 100 200 400 600 800 1000 1200 1400
Kn 9 9 12 13 14 15 16 17 18

R2
n(θ̃Kn) 12 6.8 5.9 5.4 3.4 2.9 2.9 2.0 2.2

n 1600 1800 2000 5000
Kn 19 20 20 20

R2
n(θ̃Kn) 2.0 1.9 1.7 0.7Table 1: Number of knots and minima of the 
riterion R2

n
losed 
urve). With a Monte-Carlo study (based on Nmc = 1000 independentdrawings), we show the asymptoti
 properties of the two-step estimator inthe 
ase of a homos
edasti
 Gaussian noise with σ = 0.4 (yi = x∗(ti) + ǫiwith ǫi ∼ N (0, σ2I2)) by 
onsidering di�erent sample size n = 50, 100, 200,
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 and 5000 (the observationtimes are uniformly drawn in [0, 10]).The L2 distan
e between the solution x∗ and its spline approximation isdiminishing with the number of the knots Kn but this is not monotone as we
an see from �gure 2 (a), be
ause the spa
es S

K
4 , K > 1 are not nested. Weintrodu
e θ̃Kn the minimizer of the 
riterion R2

n(θ) 
omputed with PKnx∗and we give the evolution of ‖θ̃n − θ∗‖2 in Figure 2 (b). This is anotherway to evaluate the 
onvergen
e of the 
riterion R2
n to the asymptoti
 one

R2 (and in fa
t this is a most important 
hara
teristi
 of the 
onvergen
eof an M-estimator). A striking feature is that the dimension of Kn is notan indi
ator of the quality of approximation: for instan
e, we have a goodapproximation of x∗ by PKnx∗ for Kn = 12 (lo
al minimum of the 
urvein Figure 2 (a)) whi
h is better than for Kn = 13 and we have θ̃Kn ≈ θ∗.Despite this pe
uliar behavior, Figure 2 shows that for Kn ≥ 20, we havea very good estimate of x∗ and θ̃Kn ≈ θ∗, moreover there is no noti
eabledi�eren
e between Kn = 20, . . . , 50. Hen
e, the dis
repan
y between θ̃Knand θ∗ will introdu
e a bias in the estimation, whi
h is �nally a by-produ
tof the bias in the nonparametri
 regression. The sele
ted number of knotsand the mean values of the sele
ted minima minθ Rn(θ) are shown in Table1.
The 
hoi
e of the knots is done a

ording to the features enhan
ed inequation (2): indeed, we 
hoose the knots a

ording to the approximating22



n Number of knots Mean (â, b̂, ĉ, d̂) Standard deviation50 9 (0.7, 1.22, 1.35, 1.81) (0.29, 0.31, 0.39, 0.48 )100 9 (0.73, 1.28, 1.50, 1.99) (0.20, 0.21, 0.27, 0.35)200 12 (0.93, 1.46, 1.41, 1.92) (0.17, 0.18, 0.20, 0.26)400 13 (0.88, 1.36, 1.32, 1.77) (0.12, 0.11, 0.13, 0.18)600 14 (0.88, 1.39, 1.51, 2.02) (0.10, 0.10, 0.13, 0.18)800 15 (0.98, 1.49, 1.42, 1.93) (0.10, 0.10, 0.11, 0.15)1000 16 (0.91, 1.41, 1.43, 1.91) (0.08, 0.08, 0.10, 0.14)1200 17 (0.98, 1.48, 1.50, 2.03) (0.08, 0.08, 0.09, 0.13)1400 18 (0.98, 1.48, 1.44, 1.94) (0.08, 0.07, 0.09, 0.13)1600 19 (0.96, 1.46, 1.47, 1.97) (0.08, 0.07, 0.09, 0.13)1800 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.07, 0.08, 0.12)2000 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.06, 0.08, 0.12)5000 20 (1.00, 1.49, 1.49, 1.99 ) (0.05, 0.04, 0.05, 0.08)Table 2: Mean and standard deviation of the two step estimator θ̂npower of the 
orresponding spline spa
e. The leading prin
iple is to avoida small spa
e or a spa
e that behaves worse than a smaller one. Hen
e wedo not take Kn ≤ 8 be
ause the distan
e between S
K
4 and x∗ is too big.Moreover, we do not use neither Kn = 10, 11 be
ause the approximation isworse than with Kn = 9 (the same for Kn = 13).The 
omputation of θ̂n is done by a Nelder-Mead algorithm starting fromthe true value θ∗ = (1, 1.5, 1.5, 2)⊤: this enables us to stay in a relevantpart of the parameter spa
e, hen
e we 
an avoid the bias due to the numer-i
al determination of the estimator. Nevertheless, this lo
al algorithm givesspurious minima in less than 1% of the simulations be
ause of the spikinessof the fun
tion R2

n: in this 
ase the results are dis
arded from the statisti
s.The performan
e of the estimator (mean and standard deviation) is gath-ered in table 2, whi
h illustrates the 
onvergen
e in quadrati
 mean of theestimator.We 
he
k the asymptoti
 normality of the estimator by performing a Kol-mogorov Smirnov (KS) test on ea
h 
omponent of the standardized residuals
rn = Σ−1

n (θ̂n − θ∗). We 
ontrol also the normality of the biased residuals
rb
n = Σ−1

n (θ̂n − θ̄n) where θ̄n = 1
Nmc

∑Nmc

i=1 θ̂
(i)
n and θ̂

(i)
n is the estimate of the

ith Monte Carlo simulation, and we store the p-values of the KS test for the23



n P (U > ks(rn)) P (U > ks(rb
n))50 (0, 0, 0, 0) (0.22, 0.0009, 0.022, 0.0048)100 (0, 0, 0, 0) (0.13, 0.08, 0.11, 0.35)200 (0, 0, 0, 0) (0.54, 0.05, 0.98, 0.87)400 (0, 0, 0, 0) (0.85, 0.18, 0.99, 0.62)600 (0, 0, 0, 0.74) (0.61, 0.59, 0.65, 0.84)800 (0, 0, 0, 0.0001) (0.75, 0.26, 0.81, 0.31)1000 (0, 0, 0, 0) (0.46, 0.01, 0.73, 0.57)1200 (0, 0, 0, 0) (0.50, 0.97, 0.95, 0.62)1400 (0, 0, 0, 0.0001) (0.74, 0.21, 0.76, 0.86)1600 (0, 0, 0, 0.0921) (0.65, 0.87, 0.18, 0.27)1800 (0.7, 0.3, 0, 0.33) (0.21, 0.98, 0.71, 0.28)2000 (0.97, 0.08, 0, 0.74) (0.98, 0.59, 0.35, 0.85)5000 (0.33, 0, 0, 0.29) (0.97, 0.45, 0.30, 0.12)Table 3: P-values of the Kolmogorov-Smirnov (
omponentwise) test forasymptoti
 normality (U is the Kolmogorov-Smirnov statisti
). In this table,0 means lower than 10−4 and values lower than 0.05 implies reje
tion of thenormality assumption with 95% 
on�den
e.two residuals in Table 3 (we denote ks(rn) and ks(rb

n) the values of the KSstatisti
). We may 
on
lude from Table 3 that the 
onvergen
e to normalityof the residuals rn is quite slow and is not attained for n as big as 5000 (butit is true for 2 
omponents as soon as n ≥ 1800). In fa
t, this is partly dueto the KS test we use, be
ause it is 
lear from table 2 that the bias tendsto zero; nevertheless, the di�eren
e between the Monte Carlo sample andthe true parameter remains signi�
ant (despite it is less than 0.1) be
ausewe have a huge sample size. Indeed, the reje
tion of the normality of theestimator stems from the bias, and we 
an verify that we have asymptoti
normality of the estimator by applying KS test for rb
n. Moreover, the nor-mality is rapidly rea
hed, sin
e the normality assumption 
annot be reje
tedas soon as n ≥ 100 (most of the p-values are indeed greater than 0.05).6 Con
lusionWe have proposed a new family of parametri
 estimators of ODE's relyingon nonparametri
 estimators, whi
h are simpler to 
ompute than straight-forward parametri
 estimators su
h as MLE or LSE. The 
onstru
tion of this24



parametri
 estimator puts emphasis on the regression interpretation of theODE's estimation problem, and on the link between a parameter of the ODEand an asso
iated fun
tion. By using an intermediate fun
tional proxy, weexpe
t to gain information and pre
ision on likely value of the parameters.We do not have studied the e�e
t of using shape or inequality 
onstraints ofthe estimator x̂n but it might be valuable information for the inferen
e of
omplex models, either by shortening the 
omputation time (it gives moresuitable initial 
onditions) or by a

elerating the rate of 
onvergen
e of theestimator thanks to restri
tion to smaller sets of admissible parameter values.We have parti
ularly studied the 
ase R2
n(θ), but other M-estimatorssu
h as the one obtained from R1

n(θ) may possess interesting theoreti
al andpra
ti
al properties su
h as robustness. This 
ould be parti
ularly useful inthe 
ase of noisy data whi
h 
an give os
illating estimates of the derivativesof the fun
tion.We have only 
onsidered spline-based estimators, we have derived theasymptoti
 normality of the two-step estimator, and we have determinedthe optimal rate as n−(m+1)/(2m+3) whi
h is obtained for an appropriatelygrowing sequen
e of knots. We have tou
hed on the e�e
tive sele
tion ofthe number of knots in se
tion 5 and a ne
essary theoreti
al and pra
ti
aldevelopment is the 
onstru
tion of a data-driven methodology to determinethe number of knots. A more general problem of knots sele
tion might beaddressed by the use of a free-knots spline estimator where the number andthe lo
ation of the knots is determined from the data [3, 18℄. This type ofestimator is mu
h more �exible and may help in redu
ing the observed biasin the experiments for small n. Eventually, our two-step estimator 
an beimproved to a √
n-
onsistent and even a parametri
ally e�
ient estimatorby additional steps. This will be pursued within a more general frameworkelsewhere.A
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(a)

(b)Figure 2: (a) L2 Distan
e between x∗ and its spline approximations (w.r.tthe number of knots)(b) Eu
lidean distan
e between θ̃n and θ∗
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