
Parameter estimation of ODE's via nonparametriestimatorsNiolas Brunel∗June 15, 2007AbstratOrdinary di�erential equations (ODE's) are widespread models inphysis, hemistry and biology. In partiular, this mathematial for-malism is used for desribing the sets of interations and the evolutionof omplex systems and it might onsist of high-dimensional sets ofoupled nonlinear di�erential equations. In this setting, we proposea general method for estimating the parameters indexing ODE's fromtimes series. Our method is able to alleviate the omputational di�ul-ties enountered by the lassial parametri methods. These di�ultiesare due to the impliit de�nition of the model. We propose the useof a nonparametri estimator of regression funtions as a �rst-step inthe onstrution of an M-estimator, and we show the onsisteny ofthe derived estimator under general onditions. In the ase of splineestimators, we provide asymptoti normality, and we derive the rate ofonvergene, whih is not the usual √n-rate for parametri estimators.This rate depends on the smoothness of the di�erential equation. Someperspetives of re�nements of this new family of parametri estimatorsare given.Key words: Consisteny, Ordinary Di�erential Equation, Splines, Nonpara-metri regression, Parametri estimation, M-estimator.1 IntrodutionOrdinary di�erential equations are used for the modelling of dynami pro-esses in physis, engineering, hemistry, biology,et. In partiular, suh a
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formalism is used for the desription of regulatory networks (for examplebetween ompeting speies in biology), or of ell regulatory systems e.g.the temporal evolution of the onentrations of some biohemial speies(mRNA, proteins) involved in biologial funtions inside the ell [5℄. Usu-ally, the model for the state variables x = (x1, . . . , xd)
⊤ onsists in an initialvalue problem

{

ẋ(t) = F (x(t), θ), ∀t ∈ [0, 1],
x(0) = x0,

(1)where F is a vetor �eld from R
d to R

d, d ∈ N, and θ ∈ Θ, Θ being asubset of a Eulidean spae. When data are available suh as a time series,we are interested in the problem of estimation of the oe�ients parametriz-ing the ODE. In priniple, this may be done by some lassial parametriestimators, usually the least squares estimator [13℄ or the Maximum Likeli-hood estimator (MLE). Di�erent estimators have been derived in order totake into aount some partiular features of the di�erential equation suhas speial boundary values (there exists a funtion g linking the values at theboundary i.e. g(x(0), x(1)) = 0 instead of the simple initial value problem),or random initial values or random parameters [4℄. Otherwise, there may besome variations on the observational proess suh as noisy observation timesthat neessitate the introdution of appropriate minimization riteria [12℄.Despite their satisfatory theoretial properties, the e�ieny of theseestimators may be dramatially degraded in pratie by omputational prob-lems that arise from the impliit and nonlinear de�nition of the model. In-deed, these estimators give rise to nonlinear optimization problems that ne-essitate the approximation of the solution of the ODE and the explorationof the (usually high-dimensional) parameter spae. Hene, we have to faepossibly numerous loal optima and a huge omputation time. Instead ofonsidering the estimation of θ straightforwardly as a parametri problem,it may be useful to look at it as the estimation of a univariate regressionfuntion t 7→ x(t) that belongs to the (�nite dimensional) family of funtionssatisfying (1). So we may use tools from funtional estimation in order toderive a proxy for the solution of the ODE and derive estimates of the pa-rameters from this. Similar attempts of getting a smooth approximation ofthe solution without solving the ODE were made by Madar et al. [14℄ orVarah [20℄ with ubi splines (and a well-hosen sequene of knots). Di�er-ent spline estimators were proposed by Ramsay and Silverman [15℄ based onthe fat that smoothing splines are obtained by solving the trade-o� betweenadequay to data and smoothness measured by some linear di�erential op-2



erators. It was extended more reently by Ramsay et al. [16℄ to the aseof nonlinear di�erential operators. Moreover, this funtional point of viewenables one to use prior knowledge on the solutions of the ODE suh as posi-tivity or boundedness whereas it is di�ult to exploit the stritly parametriform. Indeed, it implies that we have a thorough knowledge of the in�ueneof the parameters on the qualitative behavior of the solutions of (1), whihis rarely the ase. In this paper, we exploit this interpretation of estimationof ODE's as funtional estimation, so that we are able to obtain a generalestimation proedure, by exploiting numerous results from nonparametriregression theory.In the next setion, we introdue the statistial model and we de�neour so-alled two-step estimator of θ. We show that under broad onditionsthis estimator is onsistent, and we give some straightforward extensionsof this estimator to di�erent models. In setion 3, we review some usefulde�nitions and results of spline theory whih are useful for understandingthe properties of the spline estimator derived in setion 4. We derive thenthe rate of onvergene of the parametri estimator in this partiular ase. Inthe last setion, we give some simulation results obtained with the lassialLotka-Volterra's population model oming from biology. In onlusion, wegive some possible extensions of this work.2 Two-step estimator2.1 Statistial modelWe want to estimate the parameter θ of the ordinary di�erential equation(1) from noisy observations at n points in [0, 1], 0 ≤ t1 < · · · < tn ≤ 1,
yi = x(ti) + ǫi, i = 1, . . . , n, (2)where the ǫi's are i.i.d entered random variables. The ODE is indexed by aparameter θ ∈ Θ ⊂ R

p with initial value x0; the true parameter value is θ∗and the orresponding solution of (1) is x∗.The vetor �eld de�ning the ODE is a funtion F : X × Θ → R
d(X ⊂ R

d) of lass Cm w.r.t x for every θ and with m ≥ 1. It is a Lipshitzfuntion so that we have existene and uniqueness of a solution xθ,x0
to(1) on a neighborhood of 0 for eah θ and x0; and we assume that everyorresponding solution an be de�ned on [0, 1]. Hene, the solutions xθ,x0belong to Cm+1([0, 1], Rd). Moreover, we suppose also that F is a smooth3



funtion in θ so that eah solution xθ,x0
depends smoothly1 on the parameters

θ and x0. Then, we suppose that F is of lass C1 in θ for every x. Let fΣbe the density of the noise ǫ, then the log-likelihood in the i.i.d ase is
l(θ, x0, Σ) =

n
∑

i=1

log fΣ(yi − xθ,x0
(ti)) (3)and the model that we want to identify is parametrized by (θ, x0, Σ) ∈ Θ ×

X × S+ for instane when the noise is entered Gaussian with ovarianematrix Σ (S+ is the set of symmetri positive matries). An alternativeparametrization is (θ, xθ,x0
, Σ) ∈ Θ × F × S+, with F the set of funtionsthat solve (1) for some θ and x0, thanks to the injetive mapping betweeninitial onditions and a solution.In most appliations, we are not really interested in the initial onditionsbut rather in the parameter θ, so that x0 or xθ,x0

an be viewed as a nuisaneparameter like the ovariane matrix Σ of the noise. We want to de�ne esti-mators of the �true� parameters (x∗, θ∗) (x∗ = xθ∗,x∗

0
) that will be denoted by

(x̂n, θ̂n). The estimation problem appears as a standard parametri problemthat an be dealt with by the lassial theory in order to provide good es-timators (with good properties, e.g. √n-onsisteny) suh as the MaximumLikelihood Estimator (MLE). Indeed, from the smoothness properties of F ,the log-likelihood l(θ, x0) is at least C1 w.r.t (θ, x0) so that we an de�ne thesore s(θ, x0) = ( ∂l
∂θ

⊤ ∂l
∂x0

⊤
)⊤. If s(θ, x0) is square integrable under the trueprobabilityP(x∗,θ∗), we an laim under weak onditions (e.g. theorem 5.39[19℄) that the MLE is an asymptotially e�ient estimator. The di�ultyof this approah is then essentially pratial beause of the impliit depen-dene of x on the parameter (θ, x0), whih prohibits proper maximization of

l(θ, x0). Indeed, derivative-based methods like Newton-Raphson are not easyto handle then and evaluation of the likelihood neessitates the integration ofthe ODE, whih beomes a burden when we have to explore a huge param-eter spae. Moreover, the ODE's proposed for modelling may be expetedto give a partiular qualitative behavior whih an be easily interpreted interms of systems theory, e.g. onvergene to an equilibrium state or osilla-tions. Typially, these qualitative properties of ODE are hard to ontrol andinvolve bifuration analysis [11℄ and may neessitate a mathematial knowl-edge whih is not always aessible for huge systems. Moreover, boundednessof the solution x∗ (a ≤ x∗(t) ≤ b, with a, b ∈ R
d) may be di�ult to use1if F depends smoothly on x and θ then the solution depends on the parameter by thesame order of smoothness, see Anosov & Arnold, Dynamial systems, p.17.4



during the estimation via the lassial devie of a onstraint optimization.Hene, these remarks motivate us to onsider the estimation of an ODE as afuntional estimation and use �exible methods oming from nonparametriregression from whih we ould derive a likely parameter for the ODE.2.2 PrinipleWe use onsistent nonparametri estimators of the solution x∗ and its deriva-tive ẋ∗ in order to derive a �tting riterion for the ODE and subsequentlythe M-estimator of θ∗ orresponding to the riterion. We denote by ‖f‖q =
(

∫ 1
0 |f(t)|qdt

)1/q
, 0 < q ≤ ∞, the Lq norm on the spae of Lebesgue in-tegrable funtions on [0, 1]. By using lassial nonparametri regression es-timators, we an onstrut onsistent estimators x̂n and ˆ̇xn of x∗ and ẋ∗(atually we will obtain the estimator of the derivative by deriving x̂n sothat ˆ̇xn = ˙̂xn) i.e. ‖x̂n − x∗‖q = oP (1) and ‖ˆ̇xn − ẋ∗‖q = oP (1). We mayhoose as riterion funtion to minimize Rq

n(θ) = ‖ ˙̂xn − F (x̂n, θ)‖q fromwhih we derive the two-step estimator
θ̂n = arg min

θ
Rq

n(θ). (4)Thanks to the previous onvergene results and under additional suitableonditions to be spei�ed below, we an show that Rq
n(θ) → Rq(θ) =

‖ẋ∗ − F (x∗, θ)‖q in probability, and that this disrepany measure enablesus to onstrut a onsistent estimator θ̂n. Note that there are no omputa-tional di�ulties now as there are in the straightforward parametri modelapproah.We are left with two hoies of pratial and theoretial importane: thehoie of q and the hoie of the nonparametri estimator. In this paper,we fous on the one hand on q = 2 (so that the optimization program (4)an be proessed as a nonlinear least squares regression) and on the otherhand we onsider splines with a number of knots depending on the numberof observations n. It is likely that some other families of nonparametriestimators suh as smoothing splines, kernels or wavelets ould be used,depending on the performane or the type of onstraints we want.2.3 ConsistenyWe show that the minimization of Rq
n(θ) gives a onsistent estimator for

θ. We introdue the asymptoti riterion Rq(θ) = ‖F (x∗, θ∗) − F (x∗, θ)‖q5



derived from Rq
n and we make the additional assumption:

∀ǫ > 0, inf
‖θ−θ∗‖≥ǫ

Rq(θ) > Rq(θ∗), (5)whih may be viewed as an identi�ability riterion for the model.Proposition 2.1. We suppose there exists a ompat set K ⊂ X suh that
∀ θ ∈ Θ,∀x0 ∈ X ,∀t ∈ [0, 1], xθ,x0

(t) is in K. Moreover we suppose that uni-formly in θ ∈ Θ, F (·, θ) is K− Lipshitz on K. If x̂n and ˆ̇xn are onsistent,and x̂n(t) ∈ K almost surely, then we have
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| = oP (1).Moreover, if the identi�ability ondition (5) is ful�lled the two-step estimatoris onsistent, i.e.
θ̂n − θ∗ = oP (1).Proof. In order to show the onvergene of |Rq

n(θ)−Rq(θ)| = |‖ˆ̇xn−F (x̂n, θ)‖q−
‖F (x∗, θ) − F (x∗, θ∗)‖q|, we make the following deomposition

|Rq
n(θ) − Rq(θ)| ≤ ‖

(

ˆ̇xn − F (x̂n, θ)
)

+ (F (x∗, θ) − F (x∗, θ∗)) ‖q

≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + ‖F (x̂n, θ) − F (x∗, θ)‖q. (6)Sine all the solutions xθ,x0
(t) and x̂n(t) stay in K ⊂ X , and x 7→ F (x, θ)are K− Lipshitz uniformly in θ, we obtain for all θ ∈ Θ

‖F (x̂n, θ)−F (x∗, θ)‖q ≤ K

(
∫ 1

0
|x̂n(t) − x∗(t)|qdt

)1/q

= K‖x̂n−x∗‖q. (7)Together, (6) and (7) imply
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| ≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + sup

θ∈Θ
‖F (x̂n, θ) − F (x∗, θ)‖q

≤ ‖ˆ̇xn − F (x∗, θ∗)‖q + K‖x̂n − x∗‖q.and onsequently, by the onsisteny of x̂n and ˙̂xn,
sup
θ∈Θ

|Rq
n(θ) − Rq(θ)| = oP (1).6



With the additional identi�ability ondition (5) for the vetor �eld F , The-orem 5.7 of [19℄ implies that the estimator θ̂n onverges in probability to
θ∗.In the ase q = 2, the Hessian of R2(θ) at θ = θ∗ is

J∗ =

∫ 1

0
(DθF (x∗(t), θ∗))⊤ DθF (x∗(t), θ∗)dt.Nonsingularity of J∗ enables one to have a loal identi�ability riterion;indeed, the riterion behaves like a positive de�nite quadrati form on aneighborhood V(θ∗) of θ∗ so that ondition (5) is true on V(θ∗).Remark 2.1.The priniple of the two-step estimation is the same when the ODEis nonautonomous, i.e. the vetor �eld depends also on time. Moreover,proposition 2.1 an be adapted to Rq

n(θ) =
∫ 1
0 |ˆ̇xn(t) − F (x̂n(t), t; θ)|qdt, and

θ̂n is onsistent provided that the asymptoti riterion Rq(θ) =
∫ 1
0 |ẋ∗(t) −

F (x∗(t), t; θ)|qdt has property (5).Remark 2.2.The estimator proposed an be easily extended to ases where several vari-ables are not observed. Indeed, if the di�erential system (1) is partially linearin the following sense
{

u̇ = G(u, v; η)
v̇ = H(u; η) + Av

(8)with x = (u⊤ v⊤)⊤, u ∈ R
d1, being observed, v ∈ R

d2 being unobserved,and d1 + d2 = d (the initial onditions are x0 = (u⊤
0 v⊤0 )⊤), i.e. x(ti) isreplaed by u(ti) in (2) (the noise ǫi being then d1-dimensional). We wantto estimate the parameter θ = (η, A) when H is a nonlinear funtion and Ais a matrix, so we an take advantage of the linearity in v in order to derivean estimator for v. We an derive a nonparametri estimator for v by using

ûn and the fat that t 7→ v(t) must be the solution of the non-homogeneouslinear ODE v̇ = Av+H(ûn; η), v(0) = v0. The solution of this ODE is givenby Duhamel's formula [8℄
∀t ∈ [0, 1], v̂n(t) = exp (tA) v0 +

∫ t

0
exp ((t − s)A) H(ûn(s); θ)ds, (9)7



whih then an be plugged into the riterion Rq
n(θ). This estimator dependsexpliitly on the initial ondition v0 whih must be estimated at the sametime

(θ̂, v̂0) = arg min
(η,A,v0)

Rq
n(η, A, v0) =

∥

∥

∥

˙̂un − F (ûn, v̂n; η)
∥

∥

∥

q
.As previously, if H is uniformly Lipshitz the integral ∫ t

0 exp ((t − s)A) H(ûn; θ)dsonverges (uniformly) in probability in the Lq sense to ∫ t
0 exp ((t − s)A) H(u∗; θ)dsas soon as ûn does, hene Rq

n(θ, A, v0) onverges also uniformly to the asymp-toti riterion
Rq(θ, v0) = ‖u̇∗ − F (u∗, v∗; θ)‖q .The estimator (θ̂, v̂0) is onsistent as soon as Rq(θ, v0) veri�es the identi�a-bility riterion (5).Remark 2.3.If the observation times t1, . . . , tn are realizations of i.i.d. random vari-ables (T1, . . . , Tn) with ommon .d.f Q, the nonparametri estimators x̂n, asthe one used before, are relevant andidates for the de�nition of the two-stepestimator sine they are still onsistent under some additional assumptionson Q.As in the setting onsidered by Lalam and Klaassen [12℄, the observationtimes may be observed with some random errors τi = ti + ηi, i = 1, . . . , n,(the ηi's being some white noise) so we have to estimate x from the noisybivariate measurements (τi, yi). Consistent nonparametri estimators havebeen proposed for the so-alled �errors-in-variables� regression and some ex-amples are kernel estimators [6℄ and splines estimators [10℄ (in the L2 sense).Hene, we an de�ne exatly the same riterion funtion R2

n and derive aonsistent parametri estimator.3 Splines theoryIn order to give a better insight into the properties of the nonparametriestimator proposed in setion 4, we reall some properties of splines and B-splines. Indeed, the good statistial behavior of the estimator we propose, isbased on our ability to approximate the solution x∗ with a �nite number ofknown funtions. Moreover, the partiular properties of the B-splines basisenable us to derive e�ient algorithms for pratial implementation of therelated approximation method and give eventually omputationally e�ientstatistial proedures. For the sake of ompleteness, we reall some fats8



about pieewise polynomial funtions and splines, borrowed from De Boor[2℄. We onsider a sequene of inreasing points (sometimes alled break-points) ξ = (ξ1, . . . , ξℓ+1) and we denote by Pξ,k the set of pieewise polyno-mial funtions (pp funtions) of degree k− 1 (or of order k), i.e., f ∈ Pξ,k ⇔
∀i = 1, . . . , ℓ, f|]ξi,ξi+1[ is a polynomial of degree at most k − 1. Pξ,k is avetor spae of dimension equal to ℓk. A pp funtion is in general neitherontinuously di�erentiable nor ontinuous. Nevertheless, it is useful to in-trodue the jth derivative of a pp funtion f denoted by Djf whih is thepieewise derivative having possibly some jump2 ∆ξi

f (j) at the breakpoint ξi(f (j) is the jth derivative of f on eah open interval ]ξs, ξs+1[, s = 1, . . . , ℓ).A pp funtion is usually desribed by the values of its right derivatives
(

D(j−1)f(ξ+
i )
)

, i = 1, . . . , ℓ, j = 1, . . . , k. Of ourse, we are partiularlyinterested in pp funtions with regularities at some knots desribed by someintegers ν = (νi)i=2,...,ℓ

∀i ∈ [2, . . . , l],∀j ∈ [1, . . . , νi], D(j−1)f(ξ+
i ) = D(j−1)f(ξ−i ).This vetor spae is denoted Pξ,k,ν. When νi = ν for all i = 2, . . . , ℓ, wedenote Pξ,k,ν = Cν ∩ Pξ,k. There exist several representations of pp fun-tions but we will fous on the B-splines deomposition, whih uses the �nitedimensional linear property of spaes of pp funtions. The B-splines are anearly orthogonal basis for pp funtions whih are de�ned (among others)by the following reurrene equation from a nondereasing sequene of knots

τ = (τi)i∈I (I is a possibly in�nite set of indies, τ may ontain identialknots):
∀i ∈ I, Bi,1(x) = 1[τi,τi+1](x)and

∀i ∈ I, ∀k ≥ 2, Bi,k(x) =
x − τi

τi+k−1 − τi
Bi,k−1(x) +

τi+k − x

τi+k − τi+1
Bi+1,k−1.The B-splines possess the following useful properties:Property 3.1.1. Compat support: ∀x /∈ [τi, τi+k], Bi(x) = 0 and ∀x ∈]τi, τi+k[, Bi(x) >

0.2The jump of a funtion h at point ξ is ∆ξh = h(ξ+) − h(ξ−).9



2. Only the k B-splines Bj−k+1, . . . , Bj are nonzero on [τj , τj+1].3. ∀x ∈ [τr, τs],
∑

i Bi(x) =
∑s−1

i=r+1−k Bi(x) = 1.A spline funtion of order k with knot sequene τ is de�ned as a linearombination of B-splines of order k for the knot sequene τ . The generatedvetor spae is denoted Sk,τ . The link between Sk,τ and Pξ,k,ν is given bythe following theorem from Curry and Shoenberg, see De Boor p. 113.Theorem 3.1.For a given stritly inreasing sequene ξ = (ξi)i=1,...,ℓ+1 and a givennonnegative integer sequene ν = (νi)i=2,...,ℓ with νi ≤ k we de�ne
K , k +

ℓ
∑

i=2

(k − νi) = kℓ −
ℓ
∑

i=2

νi = dim Pξ,k,ν (10)and a nondereasing sequene τ = (τi)i=1,...,K+k with τ1 ≤ · · · ≤ τk ≤ ξ1and ξℓ+1 ≤ τK+1 ≤ · · · ≤ τK+k and for eah i = 2, . . . , ℓ , ξi appears exatly
k − νi times in the sequene τ .Then the sequene B1, . . . , BK of B-splines of order k for the knot se-quene τ is a basis for Pξ,k,ν onsidered as funtions on [τk, τK+1].Hene, fewer knots means more ontinuity and we have the equation:number of ontinuity onditions at ξ + number of knots at ξ = k. (11)In partiular, a k-fold knot is a point with no ontinuity. At the opposite, noknot at a point enfores k ontinuity onditions so that the two polynomialpiees that meet at this point are idential. There are∑ℓ

i=2(k−νi) additionalinterior knots τi between ξ2 and ξℓ and there are also k initial and k �nalknots outside the interval [ξ1, ξℓ+1]. These 2k knots are usually hosen in thefollowing onvenient way τ1 = · · · = τk = ξ1 and τK+1 = · · · = τK+k = ξℓ+1,whih means that ν1 = νℓ+1 = 0. The B-representation of f ∈ Pξ,k,ν is givenby K and k, the vetor of knots (τi)i=1,...,K+k and the oe�ients (αi)i=1,...,Kso that
∀x ∈ [τk, τK+1], f(x) =

K
∑

i=1

αiBi(x).Splines are mainly used for their approximation apability, whih an bemeasured for instane in the sup norm sense with dist(g, Sk,τ) = infs∈Sk,τ
‖g−10



s‖∞, g being a smooth funtion. For a given knots sequene τ = (τ1, . . . , τK+k)(in [0, 1]), a usual k−th order spline approximation is de�ned thanks to asequene of points ti, i = 1, . . . , K, by
∀t ∈ [0, 1], Ag(t) =

K
∑

i=1

g(ti)Bi(t).If g is Cm and m ≤ k−1, we have for all τ = (τi)i=1..K+k suh as τ1 = · · · =
τk = 0 and τK+1 = · · · = τK+k = 1dist(g, Sk,τ) ≤ Ck,m|τ |m‖g(m)‖∞ (12)with |τ | being the mesh size of the partition.4 Spline-based estimatorsWe desribe in this setion a two-step method based on the sheme givenin setion 2, but in the partiular ase of splines estimators and using theleast squares riterion R2

n. From setion 3, it appears that splines possess in-teresting omputational properties and will result in rapid algorithms whihis the main motivation of the present researh. Moreover, this spline-basedestimator is linear whih enables one to derive rather straightforwardly theproperties of the two-step estimator under broad and intuitive assumptions.Finally, splines are used in the olloation method [2℄ for the numerial inte-gration of ODE's, so it links the statistial estimation and the approximationproblems and it may provide a better insight into the statistial problem tothe numerial analysis ommunity.4.1 De�nition of the estimatorWe have n observations y1, . . . , yn orresponding to noisy observations of thesolution of the ODE (1) at times t1, . . . , tn. We introdue Qn the empirialdistribution of the sampling times and we suppose that this empirial dis-tribution onverges to a distribution funtion Q (whih possesses a density
q). We onstrut our estimator x̂n of x∗ as a funtion in the spline spae
Sk,τ

3. We onsider a breakpoint sequene ξ = (ξ1, . . . , ξLn+1) of size Ln, so
dim(Sk+1,τ) = Kn = (k + 1 − ν)Ln + ν is allowed to depend on the num-ber of observations (and the knots sequene τ is of size Kn + k + 1). The3If ν = 2 for eah internal breakpoint, the estimator is a C1 funtion whih is a minimalrequirement for the solution of an ODE if F is ontinuous. In order to be oherent withthe smoothness property of our model, we an take ν = m+1, so that the funtion is Cm.11



breakpoint sequene is hosen suh that max1≤i≤Ln |hi+1 − hi| = o(L−1
n ),

|ξ|/ mini hi ≤ M where hi = (ξi+1 − ξi) and |ξ| = supi hi is the mesh sizeof ξ. As a onsequene, we have |ξ| = O(L−1
n ). Like in Zhou et al. [22℄, wesuppose that we have onvergene of Qn towards Q at a rate ontrolled bythe mesh size, i.e.

sup
t∈[0,1]

|Qn(t) − Q(t)| = o(|ξ|). (13)The estimator x̂n we onsider is written omponentwise
∀i = 1, . . . , d, x̂n,i =

Kn
∑

k=1

cikBk (14)or in matrix form x̂n = CnB with the vetor-valued funtion B = (B1, . . . , BKn)⊤and the d × Kn oe�ient matrix Cn = (cn
ik)1≤i,k≤d,Kn

(and olumn vetors
ci,n = (ci1, . . . , ciKn)⊤ ∈ R

Kn). We stress the fat that all the omponents
x̂n,i are approximated via the same spae, although it may be inappropriatein some pratial situations but it enables to keep simple expressions for theestimator. The fat that we look for a funtion in the vetor spae spannedby B-splines, puts emphasis on the regression interpretation of the �rst stepof our estimating proedure. The estimation of the parameter Cn an beast into the lassial multivariate regression setting

Yn = BnC⊤
n + ǫn, (15)where Yn = (Y1 . . .Yd) is the n × d matrix of observations, ǫ is the n ×

d matrix of errors, C⊤
n is the Kn × d matrix of oe�ients and Bn =

(Bj(ti))1≤i≤n,1≤j≤Kn is the design matrix. We look for a funtion loseto the data in the L2 sense, i.e. we estimate the oe�ient matrix Cn byleast-squares
ĉi,n = arg min

c∈RKn

n
∑

j=1

(yij − B(tj)
⊤
c)2, i = 1, . . . , d,whih gives the least squares estimator Ĉn = (B⊤

n Bn)+B
⊤
n Y where (·)+denotes the Moore-Penrose inverse. We have

∀i ∈ {1, . . . , d},∀t ∈ [0, 1], x̂i,n(t) = B
⊤(t)ĉi,n,where ĉi = (B⊤

n Bn)+B
⊤
n Yi. Finally, we introdue the projetion matrix

PB,n = Bn(B⊤
n Bn)+B

⊤
n . We will use the notation x . y to denote thatthere exists a onstant M > 0 suh that x ≤ My.12



General results given by Huang in [9℄ ensure that x̂n
L2

−→ x∗ in probabil-ity for sequenes of suitably hosen approximating spaes Sk+1,ξ,ν with aninreasing number of knots. Indeed, orollary 1 in [9℄ enables us to laimthat if the observation times are random with Q(B) ≥ cλ(B) (0 < c ≤ 1 and
λ(·) is the Lebesgue measure on [0, 1]), the funtion x∗ is in the Besov spae
Bα

2,∞ (with k ≥ α− 1) and the dimension grows suh that limn
Kn log Kn

n = 0then
1

n

n
∑

i=1

(yij − x̂i(tj))
2 + ‖x̂i − x∗

i ‖2 = OP (
Kn

n
+ K−2α

n ).Moreover, the optimal rate OP (n−2α/(2α+1)) (given by Stone [17℄) is reahedfor Kn ∼ n1/(2α+1). For this nonparametri estimator, it is possible toonstrut a onsistent two-step estimator θ̂n by minimization of R2
n(θ).4.2 AsymptotisWe give in this part the rate of onvergene of the estimator θ̂n. In orderto derive the asymptotis, we use linearization tehniques based on Taylor'sexpansion and we use the fat that the estimator depends linearly on theobservations. We need to have a preise piture of the evolution of the basis

(B1, . . . , BKn) as Kn → ∞ and partiularly the asymptoti behavior of theempirial ovariane GKn,n = 1
n(B⊤

n Bn) and of the (theoretial) ovariane
GKn =

∫ 1
0 B(t)B(t)⊤dQ(t). So we reall some useful tehnial properties onB-splines (of order k) when the knot sequene τ is suh that:

(∗) τ = (τ1, . . . , τn+k) is suh that τ1 = · · · = τk = 0 and τn+1 =· · · =τn+k =
1, and τi < τi+k, i = 1, . . . , n.Property 4.1. Under ondition (∗), for k > 1,∃ c0(k), ∀s ∈ Sk,τ , s.t.

c0(k)

(

K
∑

i=1

a2
i (τi − τi−k)

)1/2

≤
(
∫ 1

0
s2(x)dx

)1/2

≤
(

K
∑

i=1

a2
i (τi − τi−k)

)1/2

.(16)Inequalities (16) were derived by De Boor [2℄ in order to assess the well-posedness property of the B-splines basis. Zhou et al. [22℄ have given somere�nements of these inequalities for the study of spline estimators for regres-sion funtions. 13



Property 4.2. If τ satis�es (∗), there exist onstants 0 < c1 ≤ c2 < ∞(independent of n or Kn) suh that for any s ∈ Sk,τ

(c1 + on(1))|ξ|
(

Kn
∑

i=1

a2
i

)

≤
∫ 1

0
s2(x)dQn(x) ≤ (c2 + on(1))|ξ|

(

Kn
∑

i=1

a2
i

)

.(17)This property gives a bound on the eigenvalues of the ovariane matries:Property 4.3. If τ satis�es (∗), there exist onstants 0 < c1 ≤ c2 < ∞(independent of n or Kn) suh that for any s ∈ Sk,τ

(c1 + on(1))|ξ| ≤ λminGKn,n ≤ λmaxGKn,n ≤ (c2 + on(1))|ξ|. (18)with λminGKn,n, λmaxGKn,n being respetively the lowest and the highesteigenvalues of the empirial ovariane matrix GKn,n of the basis (B1, . . . , BKn).Eventually, we have the following asymptoti behavior if Kn = o(n)

∀t ∈]0, 1], B
⊤(t)

(

B
⊤
n Bn

)−1
B(t) =

1

n
B(t)⊤G−1

Kn
B(t) + o(

1

n|ξ|). (19)We are interested now in the asymptoti behavior of Γ(x̂n) where Γ isa linear funtional Γ(x) =
∫ 1
0 A(s)⊤x(s)ds with s 7→ A(s) a funtion in

Cm([0, 1], Rd). If x = C⊤
B, Γ(x) =

∑d
i=1 c

⊤
i γi = Trace(C⊤γ) with γi theolumns of the K × d matrix γ =

∫ 1
0 B(s)A⊤(s)ds. Hene, the asymptotibehavior is derived diretly from the asymptotis of Ĉn and of matrix γ. Byusing the results from Andrews [1℄, we will derive the asymptoti normal-ity of this funtional. For simpliity, we onsider only the ase d = 1, theextension to higher dimensions is umbersome but straightforward. If thevariane of the noise is σ2, the variane of ĉn is

V (ĉn) = σ2(B⊤
n Bn)+ (20)and the variane of the estimator of the funtional is

Vn = V (Γ(x̂n)) = σ2γ⊤
n (B⊤

n Bn)+γn. (21)
14



Proposition 4.1.Let (ξn)n≥1 be a sequene of knot sequenes of length Ln and let Knbe the dimension of the assoiated spline spaes Sk,τn
. We suppose that

Ln → ∞ (equivalently Kn → ∞ or |ξn| → 0) suh that n|ξn| → ∞. If
Γ(x) =

∫ 1
0 A(s)x(s)ds with A : [0, 1] → R is Cm and x∗ is Cm+1 then:(i) Γ(x̂n)−Γ(x) = OP (n−1/2) and √

n(Γ(x̂n)−Γ(x)) is asymptotially nor-mal,(ii) ∀t ∈ [0, 1], x̂n(t) − x(t) = OP (n−1/2|ξn|−1/2),(iii) V (x̂n(t))−1/2(x̂n(t) − x(t)) is asymptotially normal, t ∈ [0, 1].Proof. In order to prove the asymptoti normality of Γ(x̂n)−Γ(x), we hekthe assumptions of theorem 2.1 of [1℄. Assumption A is satis�ed beausethe ǫi's are i.i.d. with �nite variane. For assumption B, sine A is Cm,the funtional is ontinuous with respet to the Sobolev norm (or simply thesup norm). Moreover, it is possible to onstrut a spline Ã =
∑Kn

i=1 αiBi =
α⊤

n B ∈ Sk,τn
suh that ‖A − Ã‖∞ = O(|ξ|m) if k ≥ m (distane to splinespae is given by (12)) and we have the approximation |ΓA(x) − ΓÃ(x)| =

|
∫ 1
0 (A − Ã)(s)x(s)ds| . |ξ|m‖x‖∞. Hene, it su�es to look at the ase

A = α⊤
n B beause ΓA(x) − ΓÃ(x) will tend to zero at faster rate than n1/2.We introdue the vetors γn = (ΓA(B1) . . .ΓA(BKn))⊤ , so we have γ⊤

n γn =
α⊤G⊤

Kn
GKnα ≥ λ2

minGKn × ‖α‖2
2. From (18), we get γ⊤

n γn & |ξ|‖α‖2
2.Inequality (17) ensures that γ⊤

n γn is bounded away from 0 beause
|ξ|‖α‖2

2 &

∫ 1

0
A2(s)dQn(s)hene lim infn γ⊤

n γn > 0 and assumption B is heked.From (19), we get the behavior of the diagonal entries of PB,n:
∀i ∈ [1..Kn], (PB,n)ii =

1

n
B(ξi)

⊤G−1
Kn

B(ξi) + o
(

(n|ξ|)−1
) (22)we see that assumption C(ii) is true beauseB(ξi)

⊤G−1
Kn

B(ξi) ≤ c1‖B(ξi)‖2
2|ξ|−1and ‖B(ξi)‖2

2 ≤ k (beause the B-splines are bounded by 1 and only k ofthem are stritly positive) ensure that maxi(PB,n)ii = O((n|ξ|)−1) → 0. Itis lear that Bn is of full rank for n large enough.We know from (12) that there exists a sequene (x̃n) ∈ Sk,τn
suh that

‖x̃n − x∗‖∞ = OP (|ξ|m+1) hene
n1/2‖x̃n − x∗‖∞ → 0.15



If we use again the spline approximation of the funtion A, we derive thefollowing expression for
γ⊤

n

(

B
⊤
B

n

)−1

γn = α⊤G⊤
KG−1

K,nGKα.From (18) we have α⊤G⊤
KG−1

K,nGKα & α⊤GKα. As for γ⊤
n γn, we have

lim inf
n

γ⊤
n

(

B
⊤
B

n

)−1

γn > 0,whih remains true when A is any smooth funtion in Cm.Aording to Andrews, we an onlude V
−1/2
n (Γ(x̂n)−Γ(x∗)) N(0, 1).We obtain an equivalent of the rate of onvergene by the same approxima-tion as above

Vn = γ⊤
n

(

B
⊤
B

)−1
γn

=
1

n
α⊤GKG−1

K,nGKα

≃ 1

n
α⊤GKαi.e. Vn ∼ ‖α‖2|ξ|

n by (18) and we obtain �nally that Vn ∼ n−1.The tehnique used by Andrews for his theorem 2.1 gives also asymp-toti normality of x̂n(t) = B(t)⊤ĉi,n. We have then ∀t ∈ [0, 1], V (x̂n(t)) =

σ2
B(t)⊤(B⊤

n Bn)+B(t) and from (19) we get V (x̂n(t)) = σ2

n B(t)⊤G−1
Kn

B(t)+

o( 1
n|ξ|) , so that V (x̂n(t)) ∼ C

n|ξ| from lemma 6.6 in [22℄.By linearizing the riterion R2
n, we show that the two-step estimator is asimple funtional of the spline estimator. We introdue the di�erentials of

F at (x, θ) w.r.t. θ and x and we denote them DθF (x, θ) and DxF (x, θ)respetively. For short, we adopt the following notation for the funtions:
DθF (x∗, θ∗) = DθF

∗ and DxF (x∗, θ∗) = DxF ∗.Theorem 4.1.Let F a Cm vetor �eld w.r.t (θ, x) (m ≥ 1), suh that DθF and DxF areLipshitz w.r.t (θ, x). We suppose that the Hessian J∗ of the asymptoti ri-terion R2(θ) evaluated at θ∗ is nonsingular. We suppose that the onditionsof proposition 2.1 are satis�ed and that the knots of the spline estimators aresuh that n|ξn| → 0, then the two-step estimator θ̂n = arg minR2
n(θ) is:16



(i) asymptotially normal,(ii) (θ̂n − θ∗) = OP (n−1/2|ξn|−1/2).Moreover, the optimal rate of onvergene for the Mean Square Error is ob-tained for Kn = O(n1/(2m+3)) and we have then (θ̂n−θ∗) = OP (n−(m+1)/(2m+3)).Proof. ∇θR
2
n(θ̂n) = 0 implies that ∫ 1

0

(

DθF (x̂n(t), θ̂n)
)⊤

( ˙̂xn(t)−F (x̂n(t), θ̂n))dt =

0. We remove dependene on t and n for notational onveniene and intro-due F ∗ and F (x̂, θ∗) whih gives
∫ 1

0

(

DθF (x̂, θ̂)
)⊤

(( ˙̂x − ẋ∗) + F ∗ − F (x̂, θ∗) + F (x̂, θ∗) − F (x̂, θ̂))dt = 0and
∫ 1

0

(

DθF (x̂, θ̂)
)⊤ (

( ˙̂x − ẋ∗) + DxF (x̃∗, θ∗)(x∗ − x̂) + DθF (x̂, θ̃∗)(θ∗ − θ̂)
)

dt = 0with x̃∗ and θ̃∗ being random points between x∗ and x̂, and θ∗ and θ̂ re-spetively. We introdue Â = DθF (x̂, θ̂), and an asymptoti expression for
(θ∗ − θ̂) is

(θ∗ − θ̂)

∫ 1

0
Â⊤DθF (x̂, θ∗)dt = −

∫ 1

0
Â⊤( ˙̂x − ẋ∗)dt

−
∫ 1

0
Â⊤DxF (x̃∗, θ∗)(x∗ − x̂)dt.It su�es to onsider the onvergene in law of the random integral Hn =

∫ 1
0 (DθF

∗)⊤
(

( ˙̂x − ẋ∗) + DxF ∗(x∗ − x̂)
)

dt beause the random variable
Gn =

∫ 1

0
Â⊤
(

( ˙̂x − ẋ∗) + DxF (x̃∗, θ∗)(x∗ − x̂)
)

dtis suh that Gn−Hn → 0 in probability (in the L2 sense), moreover we havethe onvergene in probability of ∫ 1
0 Â⊤DθF (x̂, θ∗)dt to J∗.Indeed, we onsider the map D : (x, θ) 7→ (t 7→ DθF (x(t), θ)) de-�ned on C([0, 1],K) × Θ (with the produt Hilbert metri) with values in

C([0, 1], Rn×p) (with the L2 norm ‖A‖2 =
∫ 1
0 Tr(A⊤(t)A(t))dt). Sine DθFis Lipshitz in (x, θ), the funtional map D is a ontinuous map, and wean laim by the ontinuous mapping theorem that the random funtions17



t 7→ DθF (x̂(t), θ̂) and t 7→ DθF (x̂(t), θ∗) onverge in probability (in the
L2sense) to DθF

∗. As a onsequene, ∥∥
∥
DθF (x̂, θ̂)

∥

∥

∥

2
onverges in probabilityto ‖DθF

∗‖2 so it is also bounded, and ‖DθF (x̂, θ∗) − DθF
∗‖2 → 0 in proba-bility. This statement is also true for all entries of these (funtion) matries,whih enables to laim that all entries of the matrix

∫ 1

0

(

DθF (x̂, θ̂)
)⊤

(DθF (x̂, θ∗) − DθF
∗) dttend to zero in probability (by applying the Cauhy-Shwarz inequality om-ponentwise). Moreover, we have onvergene in probability of eah entry of

∫ 1
0

(

DθF (x̂, θ̂)
)⊤

DθF
∗dt to the orresponding entry of ∫ 1

0 (DθF
∗)⊤ DθF

∗dt(onsequene of the onvergene of DθF (x̂, θ̂) to DθF
∗ in the L2 sense),whih implies �nally that

∫ 1

0

(

DθF (x̂, θ̂)
)⊤

DθF (x̂, θ∗)dt
P−→ J∗By the same arguments and by using the fat that DxF is also Lipshitz in

(x, θ), we have onvergene of the matrix Gn − Hn to 0 in probability. Theasymptoti behavior of (θ̂n − θ∗) is then given by the random integral
J∗−1

∫ 1

0
(DθF

∗)⊤
(

( ˙̂x − ẋ∗) + DxF ∗(x∗ − x̂)
)

dt. (23)We an write it also as Γ(x̂)−Γ(x∗) by introduing the R
d -valued ontinuouslinear funtional de�ned by

Γ(x) =

∫ 1

0

(

B(s) − d

ds
A(s)

)

x(s)ds + B(1)x(1) − B(0)x(0)with s 7→ A(s) = DxF (x∗(s), θ∗)⊤ and s 7→ B(s) = A(s)DθF (x∗(s), θ∗) be-ing (at least) Cm−1funtions. From proposition 4.1, we may laim the asymp-toti normality An(Γ(x̂n)−Γ(x∗)) N(0, Id) where An is a properly hosennormalizing sequene (normality is extended from salar funtional to mul-tidimensional funtional by the Cramér-Wold devie). Moreover, we knowthat Γ(x̂n)−Γ(x∗) = OP (n−1/2) + OP (n−1/2|ξn|−1/2) = OP (n−1/2|ξn|−1/2),beause the estimation of x∗(t) is done at a slower rate.Now to determine the optimal rate of onvergene in the mean squaresense, we need to use the Bias - Variane deomposition for the evalua-tion funtional ‖θ̂n − θ∗‖2 = OP

(

(E(x̂n(t)) − x(t))2
)

+ OP (V ar(x̂n(t))).18



Theorem 2.1 of [22℄ gives E(x̂n(t)) − x∗(t) = O(|ξn|m+1) (beause x∗ is
Cm+1) and V ar(x̂n(t)) = OP (n−1|ξn|−1) so the optimal rate is reahed for
|ξn| = O(n−1/(2m+3)) and is O(n−(2m+2)/(2m+3)).Remark 4.1.The asymptoti result given for the deterministi observational times
0 ≤ t1 <· · · <tn ≤ 1 remains true when they are replaed by realizationsof some random variables T1, . . . , Tn as long as the assumptions of the twoprevious propositions are true with probability one. Andrews gives some on-ditions (theorem 2) in order to obtain this. It turns out that in the ase of
T1, . . . , Tn i.i.d. random variables drawn from the distribution Q, it su�esto have K4

n . nr with 0 < r < 1. In partiular, as soon as m ≥ 1, theonlusion of proposition 4.1 holds with probability one for the optimal rate
Kn = n1/(2m+3).5 ExperimentsThe Lotka-Volterra equation is a standard model for the evolution of prey-predator populations. It is a planar ODE

{

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2
(24)whose behavior is well-known [8℄. Despite its simpliity, it exhibits onver-gene to limit yles whih is one of the main features of nonlinear dynam-ial systems, whih has usually a meaningful interpretation. Due to thissimpliity and the interpretability of the solution, it is often used in biology(population dynamis or phenomena with ompeting speies), but the statis-tial estimation of the parameter θ = (a, b, c, d)⊤ has not been extensivelyaddressed. Nevertheless, Varah (1982) illustrates spline-based method (withnatural ubi splines and knots hosen by an expert) on the same modelas (24). Froda et al. (2005) [7℄ have onsidered another original methodexploiting the fat that the orbit may be a losed urve for some values ofthe parameters.For this benhmark example, we study the behavior of the two-step es-timator orresponding to the riterion R2

n(θ). A hallenging problem inthe onstrution of the estimator is the usual problem of the seletion ofthe number of knots during the spline estimation (whih was left to thepratitioner in Varah's paper). A similar problem arises also in Ramsay's19



method based on smoothing splines where one has to hoose properly thetrade-o� onstant λ during the minimization of the penalized �tting riterion
∑n

i=1 |yi − x̂(ti)|22 + λ‖ ˙̂x − F (x̂, θ)‖2
2. The lassial optimal value given byross-validation (hapter 3 [21℄) is not diretly relevant in this ase, so it isalso a parameter left to the modeler. The nonparametri estimation relieson the hoie of the sequene of knots, and we take a uniform grid τ here.Nevertheless, the present result (theorem 4.1) is not pratial and does notenable us to selet a orret number of knots. As suggested before, one anthink of an extension of the elebrated GCV, but in our setting this problemof knots seletion seems more naturally dealt by the free-knot splines [3, 18℄.We do not propose here a knots seletion proedure for the prationer, butan adho one, based on the ability to approximate the funtion of interest bysplines. In order to do this, we study and hoose an arbitrary nondereas-ing sequene of number of knots Kn by graphial arguments relying on theapproximation of x∗ by its L2 projetion on S

Kn

4 the spae of ubi splinesthat are C2 with Kn uniformly spaed knots. The projetion is denoted by
PKnx∗.

20



(a) Trajetories (time evolution)

(b) Phase planeFigure 1: Solution of Lotka-Volterra system in the phase plane.In our experiment, we onsider the system with a = 1, b = 1.5, c = 1.5,
d = 2 and x(0) = 1, y(0) = 2. As shown in Figure 1, the solution is attratedby a periodi solution and is observed on the time interval [0, 10] whihorresponds roughly to 2 periods (and the trae in the phase plane is nearly a21



n 50 100 200 400 600 800 1000 1200 1400
Kn 9 9 12 13 14 15 16 17 18

R2
n(θ̃Kn) 12 6.8 5.9 5.4 3.4 2.9 2.9 2.0 2.2

n 1600 1800 2000 5000
Kn 19 20 20 20

R2
n(θ̃Kn) 2.0 1.9 1.7 0.7Table 1: Number of knots and minima of the riterion R2

nlosed urve). With a Monte-Carlo study (based on Nmc = 1000 independentdrawings), we show the asymptoti properties of the two-step estimator inthe ase of a homosedasti Gaussian noise with σ = 0.4 (yi = x∗(ti) + ǫiwith ǫi ∼ N (0, σ2I2)) by onsidering di�erent sample size n = 50, 100, 200,
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 and 5000 (the observationtimes are uniformly drawn in [0, 10]).The L2 distane between the solution x∗ and its spline approximation isdiminishing with the number of the knots Kn but this is not monotone as wean see from �gure 2 (a), beause the spaes S

K
4 , K > 1 are not nested. Weintrodue θ̃Kn the minimizer of the riterion R2

n(θ) omputed with PKnx∗and we give the evolution of ‖θ̃n − θ∗‖2 in Figure 2 (b). This is anotherway to evaluate the onvergene of the riterion R2
n to the asymptoti one

R2 (and in fat this is a most important harateristi of the onvergeneof an M-estimator). A striking feature is that the dimension of Kn is notan indiator of the quality of approximation: for instane, we have a goodapproximation of x∗ by PKnx∗ for Kn = 12 (loal minimum of the urvein Figure 2 (a)) whih is better than for Kn = 13 and we have θ̃Kn ≈ θ∗.Despite this peuliar behavior, Figure 2 shows that for Kn ≥ 20, we havea very good estimate of x∗ and θ̃Kn ≈ θ∗, moreover there is no notieabledi�erene between Kn = 20, . . . , 50. Hene, the disrepany between θ̃Knand θ∗ will introdue a bias in the estimation, whih is �nally a by-produtof the bias in the nonparametri regression. The seleted number of knotsand the mean values of the seleted minima minθ Rn(θ) are shown in Table1.
The hoie of the knots is done aording to the features enhaned inequation (2): indeed, we hoose the knots aording to the approximating22



n Number of knots Mean (â, b̂, ĉ, d̂) Standard deviation50 9 (0.7, 1.22, 1.35, 1.81) (0.29, 0.31, 0.39, 0.48 )100 9 (0.73, 1.28, 1.50, 1.99) (0.20, 0.21, 0.27, 0.35)200 12 (0.93, 1.46, 1.41, 1.92) (0.17, 0.18, 0.20, 0.26)400 13 (0.88, 1.36, 1.32, 1.77) (0.12, 0.11, 0.13, 0.18)600 14 (0.88, 1.39, 1.51, 2.02) (0.10, 0.10, 0.13, 0.18)800 15 (0.98, 1.49, 1.42, 1.93) (0.10, 0.10, 0.11, 0.15)1000 16 (0.91, 1.41, 1.43, 1.91) (0.08, 0.08, 0.10, 0.14)1200 17 (0.98, 1.48, 1.50, 2.03) (0.08, 0.08, 0.09, 0.13)1400 18 (0.98, 1.48, 1.44, 1.94) (0.08, 0.07, 0.09, 0.13)1600 19 (0.96, 1.46, 1.47, 1.97) (0.08, 0.07, 0.09, 0.13)1800 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.07, 0.08, 0.12)2000 20 (1.00, 1.50, 1.48, 1.98) (0.07, 0.06, 0.08, 0.12)5000 20 (1.00, 1.49, 1.49, 1.99 ) (0.05, 0.04, 0.05, 0.08)Table 2: Mean and standard deviation of the two step estimator θ̂npower of the orresponding spline spae. The leading priniple is to avoida small spae or a spae that behaves worse than a smaller one. Hene wedo not take Kn ≤ 8 beause the distane between S
K
4 and x∗ is too big.Moreover, we do not use neither Kn = 10, 11 beause the approximation isworse than with Kn = 9 (the same for Kn = 13).The omputation of θ̂n is done by a Nelder-Mead algorithm starting fromthe true value θ∗ = (1, 1.5, 1.5, 2)⊤: this enables us to stay in a relevantpart of the parameter spae, hene we an avoid the bias due to the numer-ial determination of the estimator. Nevertheless, this loal algorithm givesspurious minima in less than 1% of the simulations beause of the spikinessof the funtion R2

n: in this ase the results are disarded from the statistis.The performane of the estimator (mean and standard deviation) is gath-ered in table 2, whih illustrates the onvergene in quadrati mean of theestimator.We hek the asymptoti normality of the estimator by performing a Kol-mogorov Smirnov (KS) test on eah omponent of the standardized residuals
rn = Σ−1

n (θ̂n − θ∗). We ontrol also the normality of the biased residuals
rb
n = Σ−1

n (θ̂n − θ̄n) where θ̄n = 1
Nmc

∑Nmc

i=1 θ̂
(i)
n and θ̂

(i)
n is the estimate of the

ith Monte Carlo simulation, and we store the p-values of the KS test for the23



n P (U > ks(rn)) P (U > ks(rb
n))50 (0, 0, 0, 0) (0.22, 0.0009, 0.022, 0.0048)100 (0, 0, 0, 0) (0.13, 0.08, 0.11, 0.35)200 (0, 0, 0, 0) (0.54, 0.05, 0.98, 0.87)400 (0, 0, 0, 0) (0.85, 0.18, 0.99, 0.62)600 (0, 0, 0, 0.74) (0.61, 0.59, 0.65, 0.84)800 (0, 0, 0, 0.0001) (0.75, 0.26, 0.81, 0.31)1000 (0, 0, 0, 0) (0.46, 0.01, 0.73, 0.57)1200 (0, 0, 0, 0) (0.50, 0.97, 0.95, 0.62)1400 (0, 0, 0, 0.0001) (0.74, 0.21, 0.76, 0.86)1600 (0, 0, 0, 0.0921) (0.65, 0.87, 0.18, 0.27)1800 (0.7, 0.3, 0, 0.33) (0.21, 0.98, 0.71, 0.28)2000 (0.97, 0.08, 0, 0.74) (0.98, 0.59, 0.35, 0.85)5000 (0.33, 0, 0, 0.29) (0.97, 0.45, 0.30, 0.12)Table 3: P-values of the Kolmogorov-Smirnov (omponentwise) test forasymptoti normality (U is the Kolmogorov-Smirnov statisti). In this table,0 means lower than 10−4 and values lower than 0.05 implies rejetion of thenormality assumption with 95% on�dene.two residuals in Table 3 (we denote ks(rn) and ks(rb

n) the values of the KSstatisti). We may onlude from Table 3 that the onvergene to normalityof the residuals rn is quite slow and is not attained for n as big as 5000 (butit is true for 2 omponents as soon as n ≥ 1800). In fat, this is partly dueto the KS test we use, beause it is lear from table 2 that the bias tendsto zero; nevertheless, the di�erene between the Monte Carlo sample andthe true parameter remains signi�ant (despite it is less than 0.1) beausewe have a huge sample size. Indeed, the rejetion of the normality of theestimator stems from the bias, and we an verify that we have asymptotinormality of the estimator by applying KS test for rb
n. Moreover, the nor-mality is rapidly reahed, sine the normality assumption annot be rejetedas soon as n ≥ 100 (most of the p-values are indeed greater than 0.05).6 ConlusionWe have proposed a new family of parametri estimators of ODE's relyingon nonparametri estimators, whih are simpler to ompute than straight-forward parametri estimators suh as MLE or LSE. The onstrution of this24



parametri estimator puts emphasis on the regression interpretation of theODE's estimation problem, and on the link between a parameter of the ODEand an assoiated funtion. By using an intermediate funtional proxy, weexpet to gain information and preision on likely value of the parameters.We do not have studied the e�et of using shape or inequality onstraints ofthe estimator x̂n but it might be valuable information for the inferene ofomplex models, either by shortening the omputation time (it gives moresuitable initial onditions) or by aelerating the rate of onvergene of theestimator thanks to restrition to smaller sets of admissible parameter values.We have partiularly studied the ase R2
n(θ), but other M-estimatorssuh as the one obtained from R1

n(θ) may possess interesting theoretial andpratial properties suh as robustness. This ould be partiularly useful inthe ase of noisy data whih an give osillating estimates of the derivativesof the funtion.We have only onsidered spline-based estimators, we have derived theasymptoti normality of the two-step estimator, and we have determinedthe optimal rate as n−(m+1)/(2m+3) whih is obtained for an appropriatelygrowing sequene of knots. We have touhed on the e�etive seletion ofthe number of knots in setion 5 and a neessary theoretial and pratialdevelopment is the onstrution of a data-driven methodology to determinethe number of knots. A more general problem of knots seletion might beaddressed by the use of a free-knots spline estimator where the number andthe loation of the knots is determined from the data [3, 18℄. This type ofestimator is muh more �exible and may help in reduing the observed biasin the experiments for small n. Eventually, our two-step estimator an beimproved to a √
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(a)

(b)Figure 2: (a) L2 Distane between x∗ and its spline approximations (w.r.tthe number of knots)(b) Eulidean distane between θ̃n and θ∗
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