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Abstract

In this paper we discuss the pricing of Constant Maturity Credit De-

fault Swaps (CMCDS) under single sided jump models. The CMCDS

offers default protection in exchange for a floating premium which is peri-

odically reset and indexed to the market spread on a CDS with constant

maturity tenor written on the same reference name. By setting up a firm

value model based on single sided Lévy models we can generate dynamic

spreads for the reference CDS. The valuation of the CMCDS can then

easily be done by Monte Carlo simulation.

Keywords: Single sided Levy processes; Structural models; Credit risk; Default
probability; Constant Maturity Credit Default Swaps; Monte Carlo methods
JEL subject category: C02, C15, C63, G12
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1 Introduction

Constant Maturity Credit Default Swaps (CMCDS) are similar to the common
Credit Default Swap (CDS), offering the investor protection in exchange of a
periodically paid spread. In contrast to the CDS spread, which is fixed through
out the maturity of the CDS, the spread of a CMCDS is floating and is indexed to
a reference CDS with a fixed time to maturity at reset dates. The floating spread
is proportional to the constant maturity CDS market spread. The maturity of
the CMCDS and of the reference CDS does not have to be the same.

The aim of this paper is to present a Monte Carlo method for estimating
the participation rate based on single sided Lévy models. We set up a firm’s
value model where the value is driven by the exponential of a Lévy process with
positive drift and only negative jumps. These single sided firm’s value models
allow us to calculate the default probabilities fast by a double Laplace inversion
technique presented in Rogers (2000) and Madan and Schoutens (2007). The
fast calculation of the default probabilities implies a fast calculation of CDS
values which is important for calibration. The models ability to calibrate on a
CDS term structure has already been proven in Madan and Schoutens (2007).
Based on the single sided firm’s value model Jönsson and Schoutens (2007)
present how a dynamic spread generator can be set up that allows pricing of
exotic options on single name CDS by Monte Carlo simulations.

The paper is organized as follows. In the following section we present the
mechanics and valuation of Constant Maturity Credit Default Swaps. In Section
3 the singel sided firm’s value model is introduced. The Monte Carlo algorithm
and numerical results are given in Section 4. The paper ends with conclusions.

2 Constant Maturity Credit Default Swaps

2.1 The Mechanics of CMCDS

A single name Constant Maturity Credit Default Swap (CMCDS) has the same
features as a standard singel name CDS. It offers the protection buyer protection
against loss at the event of a default of the reference credit in exchange for a
periodically paid spread. The difference is that the spread paid is reset at pre-
specified reset dates. At each reset date the CMCDS spread is set to a reference
CDS market spread times a multiplier, the so called participation rate. The
reference CDS has a constant maturity which is not necessarily the same as the
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maturity of the CMCDS.

2.2 Valuation

We want to value a CMCDS with maturity T̂ and M reset dates 0 = t0 < t1 <

t2 < ...tM−1 < T̂ with a reference CDS with constant maturity tenor T . To
value the CMCDS is to find the participation rate, i.e. the factor we should
multiply the reference spread of the CDS. Just as for the CDS we equate the
present value of the loss leg and the payment leg. However, the loss leg of the
CMCDS and and the loss leg of a CDS written on the same reference name and
with the same maturity T̂ are identical. This implies that the premium legs of
the two contracts must be the same.

Denote by τ the default time of the reference credit.
Let D(t0, t) denote the t0-value of a defaultable zero-coupon bond with ma-

turity t. We will assume that the spot rate r = {rt, t ≥ 0} is deterministic so
that the value of the defaultable zero-coupon bond is

D(t0, t) = EQ
[
exp

(
− ∫ t

t0
rsds

)
1(τ > t)

]

= exp
(
− ∫ t

t0
rsds

)
PQ(τ > t),

under a risk -neutral measure Q.
Assuming a constant recovery rate R the fair spread of the reference CDS

with constant maturity tenor T at time t is

S(t, t + T ) =
(1−R)

(
− ∫ T

0
d(t, t + s)dPQ(τ > t + s|τ > t)

)

∫ T

0
d(t, t + s)PQ(τ > t + s|τ > t)ds

, (1)

where d(t, t + s) = exp
(
− ∫ t+s

t
rudu

)
is the riskless discount factor and the

probability of no default before time t + s, s ≥ 0, given that there was no
default before time t, that is, the probability that the firm survives at least to
time t + s given that it survived until t, is denoted by PQ(τ > t + s|τ > t).

The value of the payment at time tm+1 is based on the floating spread reset
at tm, that is, for m = 0, 1, . . . , M − 1,

Zm+1(tm+1) = ∆(tm, tm+1)S(tm, tm + T )1(τ > tm+1),

with tM = T̂ and where Zm+1(tm+1) is the time tm+1 value of the payment
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scheduled for tm+1, ∆(tm, tm+1) is the length of the period over which the spread
is payed, expressed in the appropriate day-count convention, S(tm, tm + T )
the market spread of the reference CDS at time tm, τ is the default time and
1(τ > tm+1) is the survival indicator until time tm+1.

Using the defaultable zero-coupon bond with maturity tm+1 as the numeraire
we can express the t0-value of the payment scheduled for tm+1 as

Zm+1(t0) = D(t0, tm+1)∆(tm, tm+1)EQm+1 [S(tm, tm + T )],

for m = 0, 1, . . . ,M − 1, where the expectation is taken with respect to the
risk-neutral probability measure corresponding to the numeraire.

The t0-value of the floating premium leg is thus

FL(t0, T̂ , T ) =
M−1∑
m=0

D(t0, tm+1)∆(tm, tm+1)EQm+1 [S(tm, tm + T )], (2)

with tM = T̂ . (We have omitted any premium accrued on default for ease of
presentation.)

As mentioned before, the values at the valuation date t0 of the fee leg of
the CMCDS and the fee leg of a CDS written on the same reference name and
with the same maturity T̂ must be equal. Hence we should find a participation
rate p(t0, T̂ , T ) such that the fee leg of the CMCDS equals the fee leg of a CDS
written on the same reference name with maturity T̂ at time t0, that is

p(t0, T̂ , T )FL(t0, T̂ , T ) = S(t0, T̂ )PV01(t0, T̂ ), (3)

where PV01(t0, T̂ ) is the time t0 risky annuity of a CDS with the same maturity
and written on the same reference credit as the CMCDS, that is, the t0-value
of the premium leg assuming a premium of 1 basis point

PV01(t0, T̂ ) =
∫ T̂

t0

exp
(
−

∫ s

t0

rudu

)
PQ(τ > s)ds.

Thus, from (3) we have that the participation rate is

p(t0, T̂ , T ) =
S(t0, T̂ )

∫ T̂

t0
exp

(
− ∫ s

t0
rudu

)
PQ(τ > s)ds

∑M−1
m=0 D(t0, tm+1)∆(tm, tm+1)EQm+1 [S(tm, tm + T )]

. (4)
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2.3 Caps and Floors

A natural extension of the floating premium CMCDS is to incorporate a cap.
Following Pedersen and Sen (2004) we will assume that the cap acts directly on
the reset spread. The cap is a portfolio of caplets. A caplet is an European call
option and is used to limit the spread paid.

Denote by KC the spread cap. The t0-value of the caplet at reset date tm+1,
ignoring premium accrual on default, is

Cm+1(t0) = D(t0, tm+1)∆(tm, tm+1)EQm+1 [(S(tm, tm + T )−KC)+].

The t0-value of the cap is the sum of the t0-values of the caplets

C(t0) =
M−1∑
m=0

Cm+1(t0).

Similarly, with KF denoting the spread floor, the t0-value of the floorlet at
the reset date tm+1 is

Fm+1(t0) = D(t0, tm+1)∆(tm, tm+1)EQm+1 [(KF − S(tm, tm + T ))+],

and t0-value of the floor, that is, the portfolio of floorlets,

F (t0) =
M−1∑
m=0

Fm+1(t0).

2.4 Mark-to-Market

The mark-to-market of a CMCDS is done by comparing the present value of the
contract floating fee leg with the market value of the protection leg. The value
of the protection leg at a time t, t0 ≤ t ≤ T̂ , is S(t, T̂ )PV01(t, T̂ ). The value
of the floating fee leg is pt0FL(t, T̂ , T ). The mark-to-market for the protection
seller is thus

MTMCMCDS(t) =

(
p(t0, T̂ , T )
p(t, T̂ , T )

− 1

)
S(t, T̂ )PV01(t, T̂ ),

since the floating fee leg at time t is equal to the protection leg at time t divided
by the participation rate at t, i.e., FL(t, T̂ , T ) = S(t, T̂ )PV01(t, T̂ )/p(t, T̂ , T ).

The mark-to-market of a standard CDS with maturity T̂ is for the protection
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seller
MTMCDS(t) =

(
S(t0, T̂ )− S(t, T̂ )

)
PV01(t, T̂ ).

2.5 Valuation Using Forward Spreads and Convexity Ad-

justment

A first approximation to the value of the floating fee leg is to approximate the
expected market spread at the reset dates with the forward spread at time t0.
The forward spread is the fair spread for a forward starting CDS. Denote by
S(t0, t, t + T ) the forward spread at time t0 of a CDS starting at time t with
maturity t + T . Its value is given by

S(t0, t, t + T ) =
S(t0, t + T )PV01(t0, t + T )− S(t0, t)PV01(t0, t)

PV01(t0, t + T )− PV01(t0, t)
.

Substituting the expected spreads in (2) with the forward spreads the t0-
value of the fee leg is approximated by

FL(t0, T̂ , T ) ≈
M−1∑
m=0

D(t0, tm+1)∆(tm, tm+1)S(t0, tm, tm + T ), (5)

where S(t0, t0, t0 + T ) = S(t0, t0 + T ).
We need however to adjust this approximation since the realized spread at

the reset dates are not equal to the forward spreads calculated at the valuation
date t0. The adjustment that has to be added to the fee leg is called the convexity
adjustment and is given by

A(t0; T̂ , T ) =
M−1∑
m=1

D(t0, tm+1)∆(tm, tm+1)A(tm, tm + T ), (6)

where for m = 1, . . . , M − 1

A(tm, tm + T ) = EQm+1 [S(tm, tm + T )]− S(t0, tm, tm + T ).

3 Single Sided Firm’s Value Model

Lévy models have proven their usefulness in financial modelling, such as in equity
and fixed income settings, over the last decade, see e.g. Schoutens (2003), and
has recently gained growing interest in credit risk modelling, see e.g. Cariboni
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(2007) and Cariboni and Schoutens (2007).
We will in this section set up the single sided firm’s value model presented in

Madan and Schoutens (2007). We thus model the value of the reference entity of
a CDS by exponential Lévy driven models with positive drift and only negative
jumps. Following the same methodology as Black and Cox (1976) default is
triggered the first time the firm’s value is crossing a low barrier. The models
were used to construct spread dynamics to price exotic credit default swaptions
in Jönsson and Schoutens (2007).

3.1 Single Sided Lévy Processes

We first introduce some notation. Let Y = {Yt, t ≥ 0} be a pure jump Lévy
process that has only negative jumps, that is, Y is spectrally negative, and let
X = {Xt, t ≥ 0} be given by

Xt = µt + Yt, t ≥ 0,

where µ is positive real number.
The Laplace transform of Xt

E[exp(zXt)] = exp(tψX(z)),

where ψX(z) is the Lévy exponent, which by the Lévy-Khintchin representation
has the form

ψX(z) = µz +
∫ 0

−∞
(ezx − 1 + z(|x| ∧ 1))ν(dx).

The Lévy measure ν(dx) satisfies the integrability condition

∫ 0

−∞
(|x| ∧ 1)ν(dx) < ∞.

For the processes we consider in this paper the Lévy measure has a density
and we can write ν(dx) = m(x)dx, where m(x) is the density function. For
the general theory of Lévy processes see, for example, Bertoin (1996) and Sato
(2000).
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3.2 Firm’s Value Model

Let X = {Xt, t ≥ 0} be a pure jump Lévyprocess. The risk neutral value of the
firm at time t is then

Vt = V0 exp(Xt), t ≥ 0,

and we work under an admissible pricing measure Q.
For a given recovery rate R default occurs the first time the firm’s value is

below the value RV0. That is, the time of default is defined as

τ := inf{t ≥ 0 : Vt ≤ RV0}.

Let us denote by P(t) := PQ(τ > t) the risk-neutral survival probability
between 0 and t:

P(t) = PQ (Xs > log R, for all 0 ≤ s ≤ t)

= PQ

(
min

0≤s≤t
XS > log R

)

= EQ
[
1

(
min

0≤s≤t
Xs > log R

)]

= EQ
[
1

(
min

0≤s≤t
Vs > RV0

)]

where we used the indicator function 1(A), which is equal to 1 if the event A is
true and zero otherwise; the subindex Q refers to the fact that we are working
in a risk-neutral setting.

As can be seen in (1) and (4) the price of the CDS and the participation
rate of the CMCDS, respectively, depends on the survival probability, or non-
default probability, of the firm. In our case, where we work under single sided
Lévymodels with positive drift and only negative jumps, the default probabilities
can be calculated by a double Laplace inversion based on the Wiener-Hopf
factorization as presented in Madan and Schoutens (2007).

3.3 Example - The Shifted Gamma-Model

Three well known examples of single sided jump models with positive drift were
presented in Madan and Schoutens (2007), namely: the Shifted Gamma, the
Shifted Inverse Gaussian and the Shifted CMY model. We present here in
detail only the Shifted Gamma model.
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The density function of the Gamma distribution Gamma(a, b) with param-
eters a > 0 and b > 0 is given by

fGamma(x; a, b) =
ba

Γ(a)
xa−1 exp(−xb), x > 0.

The characteristic function is given by

φGamma(u; a, b) = (1− iu/b)−a, u ∈ R.

Clearly, this characteristic function is infinitely divisible. The Gamma-
process G = {Gt, t ≥ 0} with parameters a, b > 0 is defined as the stochastic
process which starts at zero and has stationary, independent Gamma-distributed
increments. More precisely, the time enters in the first parameter: Gt follows a
Gamma(at, b) distribution.

The Lévy density of the Gamma process is given by

m(x) = a exp(−bx)x−1, x > 0.

The properties of the Gamma(a, b) distribution given in Table 1 can easily
be derived from the characteristic function.

Gamma(a, b)
mean a/b

variance a/b2

skewness 2/
√

a
kurtosis 3(1 + 2/a)

Table 1: Mean, variance, skewness and kurtosis of the Gamma distribution.

Note also that we have the following scaling property: if X is Gamma(a, b)
then for c > 0, cX is Gamma(a, b/c).

Let us start with a unit variance Gamma-process G = {Gt, t ≥ 0} with
parameters a > 0 and b > 0. As driving Lévy process (in a risk-neutral setting),
we then take

Xt = µt−Gt, t ≥ 0,

where in this case µ = r − log(φ(i)) = r + a log(1 + b−1). Thus, there is a
deterministic up trend with random downward shocks coming from the Gamma
process.
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The characteristic exponent is in this case available in closed form

ψ(z) = µz − a log(1 + zb−1).

3.3.1 Calibration

We have calibrated the Shifted Gamma model to the term structure of ABN-
AMRO CDSs minimizing the average absolute percentage error

APE =
1

mean CDS spread

∑

CDS

|market CDS spread−model CDS spread|
number of CDSs

.

Calibrating the Shifted Gamma model to the term structure of ABN-AMRO
on the 5th of January 2005 gives the parameters a = 0.74475 and b = 6.59491.
The fit of the Shifted Gamma model on the market CDSs is shown in Figure
1. The evolution of 1, 3, 5, 7 and 10 years par spreads of the ABN-AMRO
CDSs from 5th January 2005 to 8th February 2006 is shown in Figure 2. The
evolution over time of the parameters of the Shifted Gamma model calibrated
on the term structure is shown in Figure 3.

An extensive calibration study was performed by Madan and Schoutens
(2007) and the fitting error was typically around 1-2 basis points per quote.

4 A Monte Carlo Valuation Approach

As seen from (2) we need a model for the spread dynamics of the reference CDS
with constant maturity. We will use the spread dynamics developed in Jönsson
and Schoutens (2007).

The method is based on four steps. The first step is to calibrate the model
on a given term structure of market spreads. The calibration gives us the
model parameters that best matches the current market situation. Next we
precalculate for a fine grid of firm values {v1, . . . , vK} the corresponding spread
values {S(vi, R, r, T, θ), i = 1, . . . , K} by using the fast way of calculating the
default probabilities presented by Madan and Schoutens (2007). The third step
is to generate firm’s value paths on a time gride. Finally, for every path and each
value on the time grid the corresponding spread is obtained by interpolating
the simulated firm value in {v1, . . . , vK} and its corresponding spread values
{S(vi, R, r, T, θ), i = 1, . . . , K}.

For each reset date tm, m = 0, 1, . . . , M − 1, estimate the expected value in
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Figure 1: Calibration on ABN AMRO, January 5, 2005. Market spreads are
marked with ’o’ and model spreads are marked with ’+’. Underlying model is
the Shifted Gamma with a = 0.74475 and b = 6.59491.

(2) by simulating N spread paths of the reference CDS with constant maturity

EQm+1 [S(tm, tm+T )] ≈ ŝm =
1

NPQ(τ > tm+1)

N∑
n=1

s(n)(tm, tm+T )1(n)(τ > tm+1),

where s(n)(tm, tm + T ) is the spread at reset time tm of the n:th path and
1(n)(τ > tm) is the survival indicator function until tm of the n:th path.

The participation rate is then

p̂(t0, T̂ , T ) =
s(t0, T̂ )PV01(t0, T̂ )∑M−1

m=0 D(t0, tm+1)∆(tm, tm+1)ŝm

. (7)

To be more precise, we estimate q = 1/p by

q̂ =
∑M−1

m=0 D(t0, tm+1)∆(tm, tm+1)ŝm

s(t0, T̂ )PV01(t0, T̂ )
.
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Figure 2: The par spreads of a 1, 3, 5, 7 and 10 year CDS spreads on ABN-
AMRO, weekly data from 5th January 2005 to 8th February 2006.

The variance of this estimate is

V ar(q̂) =
∑M−1

m=0 (D(t0, tm+1)∆(tm, tm+1))
2
V ar (ŝm)(

s(t0, T̂ )PV01(t0, T̂ )
)2 ,

since we use independent paths to estimate each expected reset spread ŝm.
The variance of the estimate p̂ is given by noticing that

E[(q̂ − q)2] = E[(
1
p̂
− 1

p
)2] ≈ E[(p̂− p)2]

p4
,

if p̂ is close to its true value p. Thus,

V ar(p̂) = E[(p̂− p)2] ≈ p4V ar(q̂) ≈ p̂4V ar(q̂).

The standard deviation of our estimate is therefore

σp̂ ≈ p̂2
√

V ar(q̂).
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Figure 3: The parameters of Shifted Gamma model calibrated to the term
structure of the CDSs on ABN-AMRO, weekly data from 5th January 2005 to
8th February 2006. The objective function to be minimized was the average
absolute percentage error (APE).

The convexity adjustment for the premium leg between dates tm and tm+1,
that is, the difference between the expected spread realized at tm and the for-
ward spread for the same period, is approximated by

Â(t0; tm, tm + T ) = ŝm − S(t0; tm, tm + T ),

where S(t0; tm, tm + T ) is the t0 forward spread on a CDS starting at time tm

and maturing at tm + T . The convexity adjustment (6) is approximated by

Â(t0; T̂ , T ) =
M−1∑
m=1

D(t0, tm)∆(tm, tm+1)Â(tm, tm + T ).

4.1 Numerical Results

We calculated the participation rate of a 3 year CMCDS with a reference CDS
written on ABN-AMRO using the proposed Monte Carlo approach with 100, 000
paths for each reset date. Total time for calculating one participation rate is ap-
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proximately 30 minutes. In Table 2 we present the participation rate with stan-
dard errors estimated using the single sided firm’s value Monte Carlo approach,
the participation rate calculated using the forward spreads without convexity
adjustments, and the convexity adjustment for different constant maturities of
the reference CDS. The participation rate calculated using the Monte Carlo
approach and the forward rate approach (without convexity adjustment) are
shown for different constant maturities in Figure 4.

From Table 2 and Figure 4 we can see that the Monte Carlo participation
rate is always lower than the forward spread participation rate, which implies
that the forward rates underestimate the expected future reset spreads in this
case. The decrease of the participation rates is due to the fact that we have an
upward sloping term structure of the reference CDS.

TCDS Part. rate MC (s.e.) Part. rate F Conv. adj. (s.e.)
1.0 0.834099 (0.004879) 0.840152 0.000018 (0.000015)
2.0 0.700115 (0.002919) 0.715743 0.000066 (0.000013)
3.0 0.617491 (0.002000) 0.634810 0.000093 (0.000011)
4.0 0.563900 (0.001520) 0.579728 0.000102 (0.000010)
5.0 0.524616 (0.001230) 0.541190 0.000123 (0.000009)
6.0 0.498530 (0.001034) 0.513811 0.000126 (0.000009)
7.0 0.478470 (0.000899) 0.493920 0.000138 (0.000008)
8.0 0.462596 (0.000804) 0.479082 0.000157 (0.000008)
9.0 0.452172 (0.000728) 0.467648 0.000155 (0.000008)
10.0 0.444485 (0.000667) 0.458462 0.000145 (0.000007)

Table 2: The constant maturity of the reference CDS (TCDS), participation
rates using the Monte Carlo approach, standard errors, participation rate us-
ing forward spreads (without convexity adjustment), and convexity adjustment.
The CMCDS has a 3 year maturity and resets quarterly, the term structure of
interest rate is assumed to be flat at 3%, the underlying model is the Shifted
Gamma with parameters a = 0.74475 and b = 6.59491. Valuation date is 5th

January 2005.

The size of the convexity adjustment versus constant maturity is given in
Figure 5.

Valuation of a cap is done by valuating each individual caplet. A caplet is
an option to buy protection for the strike spread KC and is therefore similar to
a payer on the reference contant maturity tenor CDS. Payers and receivers were
valuated in Jönsson and Schoutens (2007) using the same spread dynamics we
use here.
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TCDS Part. rate Cap (s.e.) Cap (s.e.)
1.0 2.129509 (0.002020) 0.001423 (0.000015)
2.0 1.448004 (0.001181) 0.001411 (0.000012)
3.0 1.112441 (0.000843) 0.001340 (0.000011)
4.0 0.921242 (0.000671) 0.001236 (0.000009)
5.0 0.802036 (0.000568) 0.001144 (0.000009)
6.0 0.724393 (0.000500) 0.001046 (0.000008)
7.0 0.670125 (0.000452) 0.000964 (0.000007)
8.0 0.629794 (0.000419) 0.000892 (0.000007)
9.0 0.599598 (0.000398) 0.000804 (0.000006)
10.0 0.576215 (0.000384) 0.000714 (0.000006)

Table 3: Participation rate with cap estimated using the Monte Carlo approach
for different constant maturity tenors of the reference CDS (TCDS). The CM-
CDS has a 3 year maturity and resets quarterly, the term structure of interest
rate is assumed to be flat at 3%, the underlying model is the Shifted Gamma
with parameters a = 0.74475 and b = 6.59491. The cap strike was set to three
times the market CDS spread. Valuation date is 5th January 2005.

The impact of using a cap on the reset spread is clearly visible in Table 3
and Figure 6. If we have a cap on the reset spread the participation rate will, as
expected, increase to compensate for the fact that the seller (buyer) of protection
will not receive (pay) a higher spread than the cap strike. The cap strike was
set to three times the market spread of the reference CDS, see Figure 1 for the
1, 3, 5, 7 and 10 years market spreads. It is more likely for the reset spread
to be higher than the cap for the shorter maturities since the cap is a multiple
of the initial market spread and the market spread is increasing with maturity.
It is therefore not surprising that the cap plays a more significant role for the
shorter maturities than for the longer. Comparing the ”uncapped” participation
rates given in Table 2 with the participation rates in Table 3 we see that the
participation rate is significantly higher when a cap is present, especially for the
shorter constant maturities. The increase is ranging from 30% for the longest
maturity to 155% for the shortest maturity. The smaller standard error on the
cap participation rate is a natural effect of the cap since we cut off high values
of the reset spreads.

The participation rate with and without cap for different maturities of the
CMCDS are shown in Table 4 together with the price of the corresponding caps.
The cap strike (30 bp) was chosen to be three times the initial reset spread (10
bp). The increase is ranging from 48% for the shortest maturity up to 70% for
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Figure 4: Participation rate of a 3 years CMCDS on ABN-AMRO for differ-
ent constant maturities calculated using the Monte Carlo approach and forward
spreads, respectively. The underlying model is the Shifted Gamma with param-
eters a = 0.74475 and b = 6.59491. Valuation date 5th January 2005.

the longest maturity which is expected since it is more likely that the cap strike
will be reached for longer CMCDS maturities. The smaller standard error on
the cap participation rate is a natural effect of the cap since we cut off high
values of the reset spreads. The prices of the cap is increasing since the number
of reset dates, and hence the number of caplets, increases with the CMCDS
maturity.

If all contract parameters are kept constant except the cap strike the partic-
ipation rate and cap price are decreasing with increasing cap strike, as can be
seen in Table 5.

In Figure 7 the participation rate and mark-to-market of a T̂ = 3 year
CMCDS with quarterly reset indexed to a 5 year CDS on ABN-AMRO over
one year from the valuation date 5th of January 2005. At each mark-to-market
date t the Shifted Gamma model is calibrated on the given term structure of
the CDS on ABN-AMRO and the participation rate of a new CMCDS with the
same characteristics and same maturity, that is, the time to maturity of the new
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Figure 5: Convexity adjustment of a 3 years CMCDS on ABN-AMRO for differ-
ent constant maturity tenors. The underlying model is the Shifted Gamma with
parameters a = 0.74475 and b = 6.59491. Valuation date 5th January 2005.

Tcmcds Part.rate (s.e.) Part.rate Cap (s.e.) Cap (s.e.)
1 0.313751 0.000829 0.465747 0.000440 0.000117 0.000003
2 0.430554 0.001116 0.626417 0.000493 0.000535 0.000006
3 0.523892 0.001232 0.801649 0.000567 0.001148 0.000009
4 0.592256 0.001287 0.963917 0.000633 0.001941 0.000011
5 0.647413 0.001299 1.106990 0.000684 0.002800 0.000014

Table 4: The participation rates with and without cap using the Monte Carlo
approach. The CMCDS has a 1 to 5 years maturity and resets quarterly, the
constant maturity of the reference CDS is 5 years, the term structure of interest
rate is assumed to be flat at 3%, the initial reset spread is 10 bp and the
cap strike is KC = 30 bp. The underlying model is the Shifted Gamma with
parameters a = 0.74475 and b = 6.59491. Valuation date is 5th January 2005.

CMCDS is T̂ − t, is calculated using these parameters. The notional is assumed
to be 10 million. The mark-to-market is increasing because the participation
rate is decreasing with decreasing time to maturity, which is as expected.

The behaviour of the participation rate and the mark-to-market depends of
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Figure 6: Participation rate of a 3 years CMCDS on ABN-AMRO for different
constant maturities calculated using the Monte Carlo approach with and with-
out a cap on the reset spread. The underlying model is the Shifted Gamma with
parameters a = 0.74475 and b = 6.59491. Valuation date 5th January 2005.

course on the CDS term structure and the model parameters estimated from it.
There are three significant ”jumps” in the participation rate in week 3, 14 and
49 that results in ”jumps” in the mark-to-market. These jumps can be traced
back to changes of the reference CDS’ spread curve’s slope and level, which
forced the the calibrated model parameters to ”jump”, see Figure 2 and Figure
3. Further the changes of the spread curve’s level and slope influence the market
spread of the CDS with the same maturity as the CMCDS, T̂ , as can be seen in
Figure 8. It is interesting to note that the change of the mark-to-market in week
19 and 36 is not found in the participation rate. Looking at the spread curve
evolutions in Figure 2 we see a peak in week 19 and a downward movement in
week 36 over all maturities, which of course influence the market spread of the
CDS with maturity T̂ .
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Cap strike (bp) Part.rate Cap (s.e.) Cap price (s.e.)
20 0.884944 0.000488 0.001386 0.000009
30 0.802223 0.000568 0.001140 0.000009
40 0.756298 0.000623 0.000980 0.000008
50 0.726193 0.000667 0.000864 0.000008
60 0.704539 0.000703 0.000775 0.000008
70 0.688038 0.000734 0.000703 0.000008
80 0.674905 0.000762 0.000643 0.000008
90 0.664163 0.000787 0.000593 0.000007
100 0.655167 0.000810 0.000549 0.000007
110 0.647498 0.000831 0.000511 0.000007
120 0.640876 0.000851 0.000477 0.000007
130 0.635081 0.000869 0.000447 0.000007
140 0.629958 0.000886 0.000420 0.000007
150 0.625369 0.000902 0.000396 0.000006

Table 5: The participation rates with cap using the Monte Carlo approach. The
CMCDS has a 3 years maturity and resets quarterly, the constant maturity tenor
of the reference CDS is 5 years, the term structure of interest rate is assumed to
be flat at 3%, and the initial reset spread is 10 bp. The participation rate of the
CMCDS without cap is 52.5% (standard error 0.124%). The underlying model
is the Shifted Gamma with parameters a = 0.74475 and b = 6.59491. Valuation
date is 5th January 2005.

5 Conclusions

We have presented a Monte Carlo approach to value Constant Maturity Credit
Default Swaps (CMCDS) based on a single sided Lévy firm’s value model. A
CMCDS is linked to a reference CDS with constant maturity tenor. At speci-
fied dates the spread of the CMCDS is reset to the par spread of the reference
CDS. The pricing of a CMCDS is equivalent to determining the participation
rate, which is the proportion of the reference par spread to be paid at the next
payment. The estimation of the participation rate is done by estimating the
expected par spread of the reference CDS on each reset date. To achieve this we
set up a spread generator where, after the model has been calibrated on an ap-
propriate CDS term structure, the generated firm’s value paths are mapped into
spread paths of the reference CDS. With the proposed Monte Carlo approach we
have estimated the participation rate of a CMCDS for different constant matu-
rity tenors and we have compared this with the participation rate based on the
forward spreads without convexity adjustment. For both approaches the partic-
ipation rate is decreasing with increasing constant maturity tenor. However, the
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Figure 7: Participation rate and mark-to-market of a quarterly reseted CMCDS
indexed to a 5 year CDS on ABN-AMRO calculated on weekly data from 5th

January 2005 to 8th February 2006. The CMCDS has a 3 years maturity at
week 0. The underlying model is Shifted Gamma.

Monte Carlo estimate is always smaller than the non-adjusted forward spread
participation rate. The convexity adjustment, that is, the difference between
the expected reset spread and the forward spread, is increasing with increasing
constant maturity tenor. Furthermore, we showed how to price caps and how
the participation rate is affected if we introduce a cap on the reset spread. We
finally showed the evolution of the participation rate and the mark-to-market
of a CMCDS over time using weekly evolution of a 5 year CDS on ABN-AMRO
as reference.
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years maturity at week 0 calculated on weekly data from 5th January 2005 to
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