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1 Introduction

1.1 Motivation and overview

Since its invention in 1985 [15], the lace expansion has become a powerful tool for proving mean-field
behavior in various spatial stochastic systems, such as the self-avoiding walk, percolation, oriented
percolation, the contact process, lattice trees and -animals, and the Ising model. This paper provides a
generalized lace expansion approach that holds for self-avoiding walk, percolation and the Ising model.
We consider the classical nearest-neighbor model as well as various spread-out cases. Of particular
interest are those spread-out models where the underlying step distribution has infinite variance, so-
called long-range models. We show that a sufficiently long range can reduce the upper critical dimension,
above which the system shows mean-field behavior.

We shall not perform the complete lace expansion here, but rather use bounds on the lace expansion
coefficients proved elsewhere. Nevertheless, we give an analysis of the lace expansion inspired by [13],
which is simplified compared to previous work, and generalized so that it deals with long-range models.



Using this generalized framework, we do the analysis of the lace expansion in such a way that it
holds for any model provided that the expansion has a specific form and certain bounds on the lace
expansion coefficients are satisfied (see Section 2). These bounds are proved to follow from a related
random walk condition, which is relatively simple to verify.

1.2 The model

We study self-avoiding walk, percolation and the Ising model on the hypercubic lattice Zd. We consider
Zd as a complete graph, i.e., the graph with vertex set Zd and corresponding edge set Zd × Zd. We
will refer to the edges as bonds and to the vertices as sites. We assign each (undirected) bond {x, y} a
weight D(x−y), where D is a probability distribution specified in Section 1.2.1 below. If D(x−y) = 0,
then we can omit the bond {x, y}.

Our analysis is based on Fourier analysis. Unless specified otherwise, k will always denote an
arbitrary element from the Fourier dual of the discrete lattice, which is the torus [−π, π)d. The Fourier
transform of a function f : Zd → C is defined by f̂(k) =

∑
x∈Zd f(x) eik·x.

1.2.1 The step distribution D: 3 versions

Let D denote a probability distribution on Zd that is symmetric under reflections in coordinate hyper-
planes and rotations by π/2. We refer to D as a step distribution, having in mind a random walker
taking steps distributed according to D. Without loss of generality we henceforth assume that there is
no mass at the origin, i.e. D(0) = 0.

In this paper, we consider three different versions of D. While we explicitly state our main results
for these versions, they actually hold more generally under a random walk condition formulated in As-
sumption 2.1 below. The first version is the nearest-neighbor model, where D is the uniform distribution
on the nearest neighbors, i.e.,

D(x) =
1
2d
1{|x|=1}, x ∈ Zd. (1.1)

Here, and throughout the paper, we denote by | · | the Euclidian norm on Zd and 1E represents the
indicator function of the event E. This version of D corresponds to the classical model for the study
of self-avoiding walk, percolation, and the Ising model, see e.g. [20, 23, 33].

We further consider two versions of spread-out models. They involve some spread-out parameter
L, which is typically chosen large. In order to stress the L-dependence of D we will write DL in the
definitions, but later omit the subscript. In the finite-variance spread-out model we require DL to
satisfy the following conditions1:

(D1) There is an ε > 0 such that ∑

x∈Zd

|x|2+εDL(x) < ∞.

(D2) There is a constant C such that, for all L ≥ 1,

‖DL‖∞ ≤ CL−d.

(D3) There exist constants c1, c2 > 0 such that

1− D̂L(k) ≥ c1L
2|k|2 if ‖k‖∞ ≤ L−1, (1.2)

1− D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (1.3)
1− D̂L(k) < 2− c2, k ∈ [−π, π)d. (1.4)

1These conditions coincide with Assumption D in [31].
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Example. Let h be a non-negative bounded function on Rd which is almost everywhere continuous,
and symmetric under the lattice symmetries of reflection in coordinate hyperplanes and rotations by
ninety degrees. Assume that there is an integrable function H on Rd with H(te) non-increasing in t ≥ 0
for every unit vector e ∈ Rd, such that h(x) ≤ H(x) for all x ∈ Rd. Assume further that the (2 + ε)-th
moment of h exists for some ε > 0. The monotonicity and integrability hypotheses on H imply that∑

x h(x/L) < ∞ for all L, with x/L = (x1/L, . . . , xd/L). Then

DL(x) =
h(x/L)∑

y∈Zd h(y/L)
, x ∈ Zd, (1.5)

obeys the conditions (D1)–(D3), whenever L is large enough (cf. [31, Appendix A]). For h(x) =
1{0<‖x‖∞≤1} we obtain the uniform spread-out model with

DL(x) =
1

(2L + 1)d − 1
1{0<‖x‖∞≤L}, x ∈ Zd. (1.6)

In the spread-out power-law model we replace assumptions (D1) and (D3) by the condition that
there exists an α > 0 such that

(D1′) all ε > 0 satisfy ∑

x∈Zd

|x|α−εDL(x) < ∞;

(D3′) there exist constants c1, c2 > 0 such that

1− D̂L(k) ≥ c1L
α|k|α if ‖k‖∞ ≤ L−1, (1.7)

1− D̂L(k) > c2 if ‖k‖∞ ≥ L−1, (1.8)
1− D̂L(k) < 2− c2, k ∈ [−π, π)d. (1.9)

The condition (D2)=(D2′) remains unchanged.
As an example, let DL be of the form (1.5), but instead of the existence of the (2 + ε)-th moment

of h, require h to decay as |x|−d−α as |x| → ∞. In particular, there exist positive constants ch and lh
such that

h(x) ≥ ch|x|−d−α, whenever |x| ≥ lh. (1.10)

In this setting, the κth moment
∑

x∈Zd |x|κDL(x) does not exist if κ ≥ α, but exists and equals O(Lα)
if κ < α. Take e.g.

h(x) = (|x| ∨ 1)−d−α, (1.11)

so that DL has the form

DL(x) =
(|x/L| ∨ 1)−d−α

∑
y∈Zd (|y/L| ∨ 1)−d−α

, x ∈ Zd. (1.12)

Chen and Sakai [17, Prop. 1.1] showed that, analogously to the finite-variance spread-out model, the
spread-out power-law model (1.12) satisfies conditions (D1′)–(D3′).

Note that the spread-out power-law model with parameter α > 2 satisfies the finite variance con-
dition (D1), and hence is covered in the finite variance case. For simplicity we further write (2 ∧ α)
indicating the minimum of 2 and α in the spread-out power-law case, and 2 in the nearest-neighbor
case or in the finite-variance spread-out case.

For the finite-variance spread-out model and the spread-out power-law model we require that the
support of D contains the nearest neighbors of 0, see the discussion below (1.22).

We next introduce the models that we shall consider, i.e., self-avoiding walk, percolation and the
Ising model.
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1.2.2 Self-avoiding walk

For every lattice site x ∈ Zd, we denote by

Wn(x) = {(w0, . . . , wn) | w0 = 0, wn = x, wi ∈ Zd, 1 ≤ i ≤ n− 1} (1.13)

the set of n-step walks from the origin 0 to x. We call such a walk w ∈ Wn(x) self-avoiding if wi 6= wj

for i 6= j with i, j ∈ {0, . . . , n}. We define c0(x) = δ0,x and, for n ≥ 1,

cn(x) :=
∑

w∈Wn(x)

n∏

i=1

D(wi − wi−1)1{w is self-avoiding}. (1.14)

where D is as in Section 1.2.1.

1.2.3 Percolation

In percolation we consider the set of bonds, which are unordered pairs of lattice sites. We set each bond
{x, y} ∈ Zd×Zd occupied, independently of all other bonds, with probability zD(y−x) and vacant oth-
erwise. Thus for the nearest-neighbor model, each nearest-neighbor bond is occupied with probability
z/(2d). The corresponding product measure is denoted by Pz with corresponding expectation Ez. We
require z ∈ [0, ‖D‖−1∞ ] to ensure that zD(x− y) ≤ 1. We write {x ↔ y} for the event that there exists
a path of occupied bonds from x to y. When the event {x ↔ y} occurs we call the vertices x and y
connected. For x ∈ Zd, the set C(x) := {y ∈ Zd | y ↔ x} of connected vertices is called the cluster of
x. It is the size and geometry of these clusters that we are interested in. Due to the shift invariance of
the model, we can restrict attention to the cluster at the origin C := C(0).

Clearly, for z small, C is Pz-a.s. finite, whereas for d ≥ 2 and large z, the probability that the size
of the cluster C is infinite,

θ(z) := Pz(|C| = ∞), (1.15)

is strictly greater than zero. Since z 7→ θ(z) is non-decreasing, there exists some critical value zc where
this probability turns positive (see e.g. [23]).

1.2.4 Ising model

For the Ising model we consider the space {−1, 1}Zd
of spin configurations on the hypercubic lattice,

with a probability distribution thereon. For a formal definition, we consider a finite subset Λ ⊂ Zd, and
for every spin configuration ϕ = {ϕx|x ∈ Λ} ∈ {−1, 1}Λ the energy given by the Hamiltonian

HΛ(ϕ) = −
∑

{x,y}∈Λ×Λ

J(y − x) ϕx ϕy, (1.16)

where J and D are related via the identity

D(x) =
tanh(zJ(x))∑

y∈Zd tanh(zJ(y))
, (1.17)

and z is the inverse temperature. For example, in the nearest-neighbor case, D = J . For the Ising
model, J is known as the spin-spin coupling. If J ≥ 0 (and hence D ≥ 0, as in the cases we consider)
then the model is called ferromagnetic.
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1.2.5 Two-point function and susceptibility

We study self-avoiding walk, percolation and the Ising model in a unified way. For this, we need to
introduce some notation. We consider the function Gz(x), x ∈ Zd, with

Gz(x) =
∞∑

n=0

cn(x) zn (1.18)

being the Green’s function for self-avoiding walk, while for percolation

Gz(x) = Pz(0 ↔ x) (1.19)

being the probability of the event that there is a path consisting of occupied edges from 0 to x. For the
Ising model, we consider the spin correlation Gz as the thermodynamic limit

Gz(x) = lim
Λ↗Zd

∑
ϕ∈{−1,1}Λ ϕ0 ϕx exp(−zHΛ(ϕ))∑

ϕ∈{−1,1}Λ exp(−zHΛ(ϕ))
. (1.20)

Here the limit is taken over any non-decreasing sequence of Λ’s converging to Zd. This limit exists and
is independent from the chosen sequence of Λ’s due to Griffiths’ second inequality [22]. We will refer to
Gz as the two-point function. This is inspired by the fact that Gz(x) describes features of the models
depending on the two points 0 and x.

We further introduce the susceptibility as

χ(z) :=
∑

x∈Zd

Gz(x). (1.21)

For percolation, the susceptibility is the expected cluster size χ(z) = Ez|C|.
We define zc, the critical value of z, as

zc := sup {z |χ(z) < ∞} . (1.22)

For self-avoiding walk, zc is the convergence radius of the power series (1.18). For percolation, zc is
characterized by the explosion of the expected cluster size. Menshikov [34], as well as Aizenman and
Barsky [2], showed that this characterization coincides with the critical value described in Section 1.2.3.

For the spread-out models, we require that the support of D contains the nearest neighbors of 0.
In percolation and the Ising model, this enables a Peierls type argument showing that that a (finite)
critical threshold zc ∈ (0,∞) exists, where the susceptibility χ(z) diverges as z ↗ zc. This is exemplified
in [20, Sect. 2.1] for the Ising model, and [23, Sect. 1.4] for percolation.

For the Ising model, we define the magnetization M to be

M(z, h) = lim
Λ↗Zd

∑
ϕ∈{−1,1}Λ ϕ0 exp{−zHΛ(ϕ) + h

∑
y∈Λ ϕy}∑

ϕ∈{−1,1}Λ exp{−zHΛ(ϕ) + h
∑

y∈Λ ϕy} , (1.23)

and write M(z, 0+) for the limit limh↘0 M(z, h). The magnetization gives rise to another characteriza-
tion of zc, namely zc = inf{z |M(z, 0+) > 0}. As proved by Aizenman, Barsky and Fernández [3], this
is equivalent to (1.22).
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1.2.6 Critical exponents and mean-field behavior

All three models, self-avoiding walk, percolation and the Ising model, exhibit a phase transition at
some (model-dependent) critical value zc. The fundamental question in statistical mechanics is how
models behave at and nearby this critical value. We use the notion of critical exponents to describe
this behavior. While the existence of these critical exponents is folklore, there is no general argument
proving this.

We write f(z) ³ g(z) if the ratio f(z)/g(z) is bounded away from 0 and infinity, for some appropriate
limit. For self-avoiding walk, we define the critical exponents γS and ηS by

χ(z) ³ (zc − z)−γS as z ↗ zc, (1.24)

Ĝzc(k) ³ 1
|k|(2∧α)−ηS

as k → 0. (1.25)

For percolation we define the critical exponents γP, βP, δP and ηP by

χ(z) ³ (zc − z)−γP as z ↗ zc, (1.26)
θ(z) ³ (z − zc)

βP as z ↘ zc, (1.27)

Pzc(|C| ≥ n) ³ 1
n1/δP

as n →∞, (1.28)

Ĝzc(k) ³ 1
|k|(2∧α)−ηP

as k → 0. (1.29)

The exponent γP describes the asymptotic behavior in the subcritical regime {z < zc}, βP describes the
behavior in the supercritical regime {z > zc}, and δP and ηP describe the behavior at criticality. For
the Ising model, we consider the critical exponents γI, βI, δI, ηI defined by

χ(z) ³ (zc − z)−γI as z ↗ zc, (1.30)
M(z, 0+) ³ (z − zc)

βI as z ↘ zc, (1.31)
M(zc, h) ³ h1/δI as h ↘ 0, (1.32)

Ĝzc(k) ³ 1
|k|(2∧α)−ηI

as k → 0. (1.33)

For a discussion on the construction of Ĝzc(k) we refer to Section 2.1 below.
It is believed that critical exponents are universal, i.e., minor modifications of the model, like changes

in the underlying graph, leave the general asymptotic behavior, as described by the critical exponents,
unchanged. Their values depend on the dimension d. However, it is predicted that there is an upper
critical dimension dc, such that the critical exponents take the same value for all d > dc. These values
are the mean-field values of the critical exponents. For self-avoiding walk these are the values obtained
for simple random walk, i.e., γS = 1 and ηS = 0, whereas for percolation the mean-field values are
γP = 1, βP = 1, δP = 2 and ηP = 0, which coincide with the corresponding critical exponents obtained
for percolation on an infinite regular tree, see [23, Section 10.1]. For the Ising model, these mean-field
values are γI = 1, βI = 1/2, δI = 3 and ηI = 0, as obtained for the Curie-Weiss model.

The present paper uses the lace expansion to show that these critical exponents exist and take their
mean-field values in sufficiently high dimensions for the nearest-neighbor version of D, or d exceeding
some critical dimension dc and L sufficiently large for the spread-out models, respectively.

1.3 Results

We introduce the (small) quantity β by β = K/d for the nearest-neighbor model (K is a uniform
constant), or β = K L−d for the spread-out models (K is a constant depending on d and α). We make
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this relation more explicit in Proposition 2.2 below. Be aware that the critical exponents βP and βI

have no relation with the β introduced here.
We further introduce the function τ : z 7→ τ(z), where τ(z) = z for self-avoiding walk and percola-

tion, and
τ(z) =

∑

y∈Zd

tanh(zJ(y)) (1.34)

for the Ising model, cf. (1.17).
Our main result is the following infrared behavior:

Theorem 1.1 (Infrared bound). Fix s = 2 for self-avoiding walk and the Ising model, and s = 3 for
percolation. Let d sufficiently large in the nearest-neighbor case (at least d > 4s), or d > 2s and L
sufficiently large in the finite-variance spread-out case, or d > (2 ∧ α)s and L sufficiently large in the
spread-out power-law case. Then

Ĝz(k) =
1 + O(β)

χ(z)−1 + τ(z)[1− D̂(k)]
(1.35)

uniformly for z ∈ [0, zc) and k ∈ [−π, π)d.

The infrared bound is well-known in several cases. Hara and Slade proved the infrared bound for
the nearest-neighbor case and the finite-variance spread-out case, for self-avoiding walk [26, 27] (see
also [33, Theorem 6.1.6]) as well as for percolation [25]. Fröhlich, Simon and Spencer [21] proved the
upper bound in (1.35) for the Ising model under the reflection positivity assumption, which holds e.g.
for the nearest-neighbor case. We discuss reflection positivity in more detail in Section 1.4.

Note that the bound
Gz(x)− δ0,x ≤ τ(z) (D ∗Gz) (x). (1.36)

holds in all our three models: for self-avoiding walk this is an obvious estimate, for percolation it follows
from the BK-inequality [9], and for the Ising model we use [37, (4.2)] in the infinite-volume limit. Thus
for s = 2,

B(z) :=
∑

x

Gz(x)2 ≤ 1 +
∑

x

τ(z)2 (D ∗Gz) (x)2 ≤ 1 + τ(z)2
∫

[−π,π)d
D̂(k)2 Ĝz(k)2

dk

(2π)d
, (1.37)

and as a consequence of Theorem 1.1 we obtain that (under the assumptions formulated there)

Ĝz(k) ≤ 1 + O(β)
τ(z)[1− D̂(k)]

(1.38)

uniformly for z < zc. Hence

B(z) ≤ 1 + O(1)
∫

[−π,π)d

D̂(k)2

[1− D̂(k)]2
dk

(2π)d
≤ 1 + O(β), (1.39)

where we use that the integrated term is O(β) by Assumption 2.1 and Proposition 2.2 below. A similar
calculation gives the corresponding result for s = 3. More specifically,

T (z) :=
∑
x,y

Gz(0, x) Gz(x, y) Gz(y, 0) ≤ 1 + O(β) when s = 3. (1.40)

The bounds (1.37)–(1.40) hold uniformly for z < zc under the assumptions in Theorem 1.1. Note that
in (1.40) we write Gz(x, y) = Gz(x−y). We call B(z) the bubble diagram and T (z) the triangle diagram.
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For all our three models, the quantity Gz(x), seen as a function of z for fixed x, can be realized as
an increasing limit (finite volume approximation) of a function which is continuous and non-decreasing
in z, hence Gz(x) is left-continuous (cf. [24, Appendix A]). It follows that (1.37)–(1.40) even hold at
criticality, i.e. when z = zc. In particular, this implies the bubble condition (i.e., B(zc) < ∞) or the
triangle condition (i.e., T (zc) < ∞) for s = 2 or 3, respectively. We formulate this fact as a corollary:

Corollary 1.2 (Bubble/Triangle condition). Under the assumptions in Theorem 1.1, B(zc) ≤ 1+O(β)
for s = 2 (self-avoiding walk and Ising model), and T (zc) ≤ 1 + O(β) for s = 3 (percolation).

The bubble/triangle condition is important since it implies mean-field behavior of the model, which
is formulated in the next theorem. In fact, (1.35) extends to the critical case z = zc as

Ĝzc(k) =
1 + O(β)
1− D̂(k)

, (1.41)

and we refer to the discussion around (2.7) below for a construction of Ĝzc(k) and a derivation of (1.41).
We now use Theorem 1.1 to establish the existence of the formerly introduced critical exponents.

Theorem 1.3 (Critical exponents).

(i) Self-avoiding walk. Consider the self-avoiding walk model (s = 2). Under the assumptions in
Theorem 1.1, the critical exponent γS = 1 for the self-avoiding walk exists.

(ii) Percolation. Consider the percolation model (s = 3). Under the assumptions in Theorem 1.1,
the critical exponents γP = 1, βP = 1 and δP = 2 for percolation exist.

(iii) Ising model. Consider the Ising model (s = 2). Under the assumptions in Theorem 1.1, the
critical exponents γI = 1, βI = 1/2 and δI = 3 for the Ising model exist.

(iv) For all three models, under the assumptions in Theorem 1.1 and if 1− D̂(k) ³ |k|2∧α, then

Ĝzc(k) ³ 1
|k|2∧α

as k → 0, (1.42)

i.e., the critical exponents ηS = ηP = ηI = 0 exist.

The derivation of the critical exponents from the bubble-/triangle condition (Corollary 1.2) is well-
known in the literature. However, the mode of convergence required for the existence of the critical
exponents varies, and some derivations are stated only for finite range models. We therefore add a more
detailed discussion of the literature here.

For self-avoiding walk, the existence (and the value) of the critical exponent γS is based on the
inequality

zc

zc − z
≤ χ(z) ≤ B(zc)

(
zc

zc − z
+ 1

)
. (1.43)

Thus the bubble condition (1.37) is sufficient to prove that γS exists and that γS = 1. The inequality
(1.43) is derived from a differential inequality in [40, Theorem 2.3], which was proved there for uniform
spread-out models. The derivation still holds for infinite-range spread-out models due to the multiplica-
tive structure of the weights of the self-avoiding walks in (1.14). A version of (1.43) appeared earlier in
[14, (5.30)–(5.33)].

The derivation of the exponents γP = 1, βP = 1 and δP = 2 from the triangle condition is due to
Aizenman–Newman [6] and Barsky–Aizenman [8]. To apply these results in our settings, there are some
subtle issues to be resolved, and we discuss these in more detail in Appendix A.

8



For the Ising model, it has been proven by Aizenman [1, Proposition 7.1] that the bubble condition
implies γI = 1 as long as |J | =

∑
x J(x) < ∞ (which is equivalent to

∑
x D(x) < ∞). Under the

same condition, Aizenman and Fernández [5] proved the existence and mean-field values of the critical
exponents βI and δI.

The statement in (iv) is an immediate consequence of (1.41). The lower bound in 1−D̂(k) ³ |k|(2∧α)

follows from (D3)/(D3’). The upper bound indeed holds for a number of examples, and in particular
if D is chosen as in the nearest-neighbor model (1.1), the finite-variance spread-out model (1.6) or the
spread-out power-law model (1.12) with α 6= 2, cf. [17, 31]. However, if D is chosen as in (1.12) with
α = 2, then 1− D̂(k) ³ (L|k|)2 log(π/(L|k|)), cf. [17, Prop. 1.1].

The proof of Theorem 1.1, as well as the proof of Corollary 1.2, is given at the end of Section 2.

1.4 Discussion and related work

The infrared bound for the Ising model was proved in [21] for d > (α∧2) for a class of models obeying the
reflection positivity (RP) property. The class of models satisfying (RP) includes the nearest-neighbor
model (where D(x) = (2d)−11{|x|=1}), exponential decaying potentials (where D(x) ∝ exp{−µ‖x‖1} for
µ > 0), power-law decaying interactions (where D(x) ∝ |x|−s for s > 0), and combinations thereof. For
a definition of (RP) and a discussion of the above mentioned models, we refer to [12]. Nevertheless, (RP)
fails in most cases for small perturbations of these models, although it is believed that the asymptotics
still hold. Moreover, (RP) only implies the upper bound in (1.35), in that implying that the critical
exponent η (when it exists) is nonnegative. Our approach using the lace expansion does not require
reflection positivity, it is much more universal in the choice of D (cf. Section 1.2.1), and also gives a
matching lower bound in (1.35), yielding η = 0.

There is numerous work on the application of the lace expansion, see the lecture notes by Slade
[40] and references therein. We give more references below at places where we use lace expansion
methodology and need particular results. We now briefly summarize the results known for long-range
systems.

Long-range self-avoiding walk has rarely been studied. Klein and Yang [41] showed that weakly
self-avoiding walk in dimension d ≥ 3 jumping m lattice sites along the coordinate axes with probability
proportional to 1/m2 converges to a Cauchy process (as for ordinary random walk with such step
distribution). A similar result for strictly self-avoiding walk has been obtained by Cheng [18].

For percolation, Hara and Slade [25] proved the infrared bound for the finite-variance spread-out
case when D has exponential tails. The study of long-range percolation with power law spread-out
bonds started in the 1980’s by considering the one-dimensional case [7, 35, 38]. These authors study
the case where occupation probabilities are given by (1.12) with α ∈ (0, 1] and prove criterions for the
existence of an infinite cluster. For example, Aizenman–Newman [7] show that if D(x) = |x|−2 in one
dimension, then there exists a critical infinite cluster and hence the percolation probability z 7→ θ(z) is
discontinuous at zc. This is compatible with our results, which imply that there is no infinite cluster
at criticality for d > 3α (and here α = 1). Berger [10] uses a renormalization argument to show that
in dimension d = 1, 2 the infinite cluster (if it exists) is transient if 0 < α < d and recurrent if α ≥ d.
He further concludes that in the d-dimensional case (d ≥ 1) there is no infinite cluster at criticality
if 0 < α < d. The question whether there exists an infinite critical cluster for d ≥ 2 and α ≥ d [10,
Question 6.4] is answered negatively by the present paper for d > 6. Biskup [11] analyzed the graph
distance of two uniformly chosen points of the infinite cluster in the supercritical regime.

In a recent paper, Chen and Sakai [17] study oriented percolation in the spread-out power-law case.
Using similar methods, they prove that the two-point function in oriented percolation obeys an infrared
bound if d > 2(α ∧ 2), which implies mean-field behavior of the model.

A long-range Ising model in one dimension has been studied by Aizenman et al. [4].
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We conjecture that
Gzc(x) ³ |x|−d+(2∧α) (1.44)

holds in the general setting considered here. Partial results towards (1.44) have been obtained. Indeed,
Hara, van der Hofstad and Slade [28] proved (1.44) in the finite-range spread-out setting for self-avoiding
walk and percolation, Hara [24] proved it in the nearest-neighbor setting, and Sakai [37] proved it for the
Ising model in finite-range spread-out and nearest-neighbor settings. We discuss the critical two-point
function Gzc(x) at the end of Sect. 2.1.

2 A general framework

In order to study the various models in a unified way, we use this section to set up a generalized
framework. We make two assumptions in terms of the general framework, and use the subsequent two
sections to show that our models actually satisfy these assumptions. We then prove the results within
the abstract setting, based on the two assumptions made.

2.1 An expansion of the two-point function

Given a step distribution D, we consider the random walk two-point function or Green’s function of the
random walk defined by

Cz(x) =
∞∑

n=0

D∗n(x) zn, (2.1)

where D∗n is the n-fold convolution of D and D∗0(x) z0 = δx,0. We write δ for the Kronecker delta
function. By conditioning on the first step we obtain

Cz(x) = δ0,x + z (D ∗ Cz) (x). (2.2)

Taking the Fourier transform and solving for Ĉz(k) yields

Ĉz(k) =
1

1− zD̂(k)
, z < 1. (2.3)

Next we consider Gz(x) defined in (1.18)–(1.20). For each of the three models, i.e., for self-avoiding
walk, percolation and the Ising model, we use the lace expansion to obtain an expansion formula of the
form

Gz(x) = δ0,x + τ(z) (D ∗Gz) (x) + (Gz ∗ Φz) (x) + Ψz(x). (2.4)

The coefficients Φz(x) and Ψz(x) depend on the model, but above their respective upper critical di-
mension they obey similar bounds. Assuming the existence of Φ̂z(k) and Ψ̂z(k), Fourier transformation
yields

Ĝz(k) =
1 + Ψ̂z(k)

1− τ(z)D̂(k)− Φ̂z(k)
, z < zc. (2.5)

The full derivation of the lace expansion will not be carried out in this paper. However, in Section 4
we give a flavor of it, and cite bounds on the lace expansion coefficients from [13, 37, 40] by defining
Φz and Ψz and giving bounds on them. We will see that, for z = 0, Ψ̂0(k) ≡ 0 and Φ̂0(k) ≡ 0 for all
models. We recall that τ(z) = z for self-avoiding walk and Ising model, and τ(z) =

∑
y∈Zd tanh(zJ(y))

for the Ising model, see Sect. 1.3.
For the critical case (i.e., z = zc) we have

1 ≤ τ(zc) ≤ 1 + O(β), (2.6)
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where the lower bound is a consequence of (1.36), and the upper bound emerges from (2.18) and
(2.29) below. Diagrammatic bounds of the lace expansion coefficients (Prop. 2.5) and the dominated
convergence theorem guarantee the absolute convergence of the various sums involved defining Ψ̂z(k)
and Φ̂z(k). Thus the critical quantities Ψ̂zc(k) and Φ̂zc(k) are well-defined, and hence Ĝzc(k) can be
introduced via (2.5). Note that we do not assume any continuity of z 7→ Ψ̂z(k) and z 7→ Φ̂z(k). However,
we can extend (1.35) to the critical case z = zc, and obtain

Ĝzc(k) =
1 + O(β)
1− D̂(k)

. (2.7)

An issue of interest is the (left-) continuity of Ĝz(k) at z = zc. In particular, the identity

Gzc(x) := lim
z↗zc

Gz(x) =
∫

[−π,π)d
e−ik·x Ĝzc(k)

dk

(2π)d
, x ∈ Zd, (2.8)

would follow from the the fact that Ψ̂z(k) and Φ̂z(k) are leftcontinuous at p = pc, as explained by Hara
[24, Appendix A].

2.2 The random walk condition

Recall that the model parameter s is 2 for self-avoiding walk or Ising model, and 3 for percolation. We
now make an assumption on the step distribution D.

Assumption 2.1 (Random walk s-condition). There exists β > 0 sufficiently small such that

sup
x∈Zd

D(x) ≤ β (2.9)

and ∫

[−π,π)d

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ β. (2.10)

Remark: The specific amount of smallness required in (2.9)–(2.10) will be specified in the proofs in
Section 5.

For s = 2 we call (2.10) the random walk bubble condition. This is inspired by the fact that its
x-space analogue reads

(D ∗ C1 ∗D ∗ C1)(0) ≤ β. (2.11)

In other words, we have an (ordinary) random walk from 0 to x of at least one step, and a second
walk from x to 0 and subsequently sum over all x. Correspondingly, for s = 3, we obtain the x-space
representation

(C1 ∗D ∗ C1 ∗D ∗ C1)(0) ≤ β, (2.12)

and refer to (2.10) as the random walk triangle condition. See the graphical representation in Figure 1.

Proposition 2.2. Assumption 2.1 is satisfied for arbitrarily small β if d is chosen sufficiently large
in the nearest-neighbor model (at least d > 4s) or d > dc = s(2 ∧ α) and L is sufficiently large in the
spread-out models. More specifically, the assumption holds with β = O(d−1) in the nearest-neighbor
case, and β = O(L−d) in the spread-out cases.

We prove Proposition 2.2 in Section 3. We shall prove the following generalized version of Theorem
1.1. By Proposition 2.2, Theorem 2.3 below immediately implies Theorem 1.1.

Theorem 2.3. Fix s = 2 for self-avoiding walk and the Ising model, and s = 3 for percolation. If
Assumption 2.1 is satisfied for β sufficiently small, then (1.35) holds uniformly for z ∈ [0, zc) and
k ∈ [−π, π)d.

We remark that Theorem 1.3 generalizes in the same way.
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0

(y)

0 (x)

(x)

Figure 1: Graphical representation of the random walk bubble diagram in (2.11) and the random walk
triangle diagram in (2.12). A line between two points, say x and y, represents the two-point function
C1(y − x), a line with a double dash in the middle requires at least one step, e.g. a line between 0 and
x represents (D ∗ C1)(x). Vertices labeled in brackets are summed over Zd.

2.3 Diagrammatic bounds

We introduce the quantity

λz := 1− 1
Ĝz(0)

= 1− 1
χ(z)

∈ [0, 1]. (2.13)

Then λz satisfies the equality
Ĝz(0) = Ĉλz(0). (2.14)

The idea of the proof of Theorem 2.3 is motivated by the intuition that Ĝz(k) and Ĉλz(k) are comparable
in size and, moreover, the discretized second derivative

∆kĜz(l) := Ĝz(l − k) + Ĝz(l + k)− 2Ĝ(l) (2.15)

is bounded by

Uλz(k, l) := 200 Ĉλz(k)−1
{

Ĉλz(l − k)Ĉλz(l) + Ĉλz(l)Ĉλz(l + k) + Ĉλz(l − k)Ĉλz(l + k)
}

. (2.16)

More precisely, we will show that the function f : [0, zc) → R, defined by

f := f1 ∨ f2 ∨ f3 (2.17)

with

f1(z) := τ(z), f2(z) := sup
k∈[−π,π)d

Ĝz(k)
Ĉλz(k)

, (2.18)

and

f3(z) := sup
k,l∈[−π,π)d

|∆kĜz(l)|
Uλz(k, l)

, (2.19)

is small, given that β in Assumption 2.1 is sufficiently small. To make this rigorous, we need the
following assumption:

Assumption 2.4 (Bounds on the lace expansion coefficients). If, for some K > 0, the inequality
f(z) ≤ K holds uniformly for z ∈ (0, zc), then there exists a constant cK > 0 such that, for all
k ∈ [−π, π)d, ∣∣∣Ψ̂z(k)

∣∣∣ ≤ cKβ,
∣∣∣Φ̂z(k)

∣∣∣ ≤ cKβ (2.20)

and
∑

x

[1− cos(k · x)] |Ψz(x)| ≤ cKβ Ĉλz(k)−1,
∑

x

[1− cos(k · x)] |Φz(x)| ≤ τ(z) cKβ Ĉλz(k)−1. (2.21)

where Φz and Ψz refer to the model-dependent coefficients in the expansion formula (2.4).
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The key to our results is that the bounds (2.20)–(2.21) imply Theorem 2.3 (and hence Theorem
1.1):

Proof of Theorem 2.3 subject to (2.20)–(2.21). Let

mz = 1− τ(z)− Φ̂z(0). (2.22)

Then,

Ĝz(k) =
1 + Ψ̂z(k)

1− τ(z)D̂(k)− Φ̂z(k)
=

1 + Ψ̂z(k)
mz + τ(z)[1− D̂(k)] + [Φ̂z(0)− Φ̂z(k)]

. (2.23)

By the first inequality in (2.20) and the second in (2.21) in Assumption 2.4,

Ĝz(k) =
1 + O(β)

mz + τ(z) [1− D̂(k)] + τ(z) O(β) Ĉλz(k)−1
. (2.24)

Evaluating (2.5) for k = 0 yields

χ(z) = Ĝz(0) =
1 + Ψ̂z(0)

mz
, (2.25)

and the first inequality in (2.20) implies

mz = (1 + O(β))χ(z)−1. (2.26)

Furthermore, by (2.3) and (2.13),

Ĉλz(k)−1 = 1− λzD̂(k) = 1− D̂(k) + χ(z)−1D̂(k). (2.27)

A combination of (2.24), (2.26), (2.27) and the bounds |D̂(k)| ≤ 1, τ(z) ≤ O(1) leads to

Ĝz(k) =
1 + O(β)

(1 + O(β))χ(z)−1 + τ(z) (1 + O(β)) [1− D̂(k)]
, (2.28)

which implies (1.35).
We proceed by validating (2.20)–(2.21). First we realize that Assumption 2.4 indeed holds for the

models under consideration:

Proposition 2.5. Under the assumptions in Theorem 1.1, Assumption 2.4 holds for self-avoiding walk,
percolation and the Ising model.

The relevant bounds have been proven by Slade [40] for self-avoiding walk, by Borgs et al. [13]
for percolation (on finite graphs), and by Sakai [37] for the Ising model. In Section 4 we state the
diagrammatic bounds proved in these papers, and relate them to our version of Φz and Ψz, thus
proving Proposition 2.5 using [13, 37, 40].

2.4 Completion of the argument and organization of proofs

The proof of Theorem 2.3 will follow from the following proposition:

Proposition 2.6. Suppose we are given a model with some model-dependent constant s ∈ {2, 3, . . . },
and a two-point function Gz of the form (2.4), where the step distribution D satisfies Assumption 2.1,
and Φz and Ψz satisfy Assumption 2.4, both for the same sufficiently small β > 0. Assume further that
χ′(z) ≤ O(χ(z)2), z ∈ [0, zc). Then

f(z) ≤ 1 + O(β) (2.29)

uniformly for z < zc.
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The assumption χ′(z) ≤ constχ(z)2 in Proposition 2.6 can be replaced by assuming that f is
continuous on [0, zc), cf. Lemma 5.3 below. It is known as a mean-field bound, and a proof of it can be
found in [40, Theorem 3.2] for self-avoiding walk, and in [40, Prop. 9.2] for percolation. For the Ising
model, this mean-field bound is a consequence of the Lebowitz inequality [32].

In order for Theorem 2.3 (and hence Theorem 1.1 and Corollary 1.2) to hold, we need to show
(2.20)–(2.21). Indeed, (2.20)–(2.21) follow from the statements above, as we explain now. Propositions
2.2 and 2.5 validate Assumptions 2.1 and 2.4. With these assumptions, the prerequisites of Proposition
2.6 are satisfied and (2.29) holds for β sufficiently small by Proposition 2.2. The latter can be achieved
by taking d or L large enough. Then we again use Assumption 2.4 to obtain (2.20)–(2.21), thus proving
(1.35).

The remainder of the paper is organized as follows. In Section 3 we prove Proposition 2.2 by showing
that Assumption 2.1 is satisfied for our versions of D. For the proof of Proposition 2.5 we need the
lace expansion, which we state and explain briefly for self-avoiding walk and percolation in Section 4.
The diagrammatic bounds are not derived in the present paper. Instead we explain how to obtain
the statement of Proposition 2.5 from the diagrammatic bounds in [40] for self-avoiding walk, [13] for
percolation, and [37] for the Ising model. Finally, the proof of Proposition 2.6 is contained in the last
Section 5, and this completes the proof of Theorem 2.3 (and hence of Theorem 1.1 and Corollary 1.2).
Appendix A contains a derivation of the critical exponents γP and δP for percolation. In Appendix B
we show how the bounds on the lace expansion in Assumption 2.4 for the Ising model can be obtained
from the diagrammatic bounds in [37]. Our account in the appendix follows the proof of [37, Prop. 3.2],
but with a modified bootstrap hypothesis.

3 The random walk two-point function

In this section we prove Proposition 2.2. The estimates below are contained in [13, Sect. 2.2.2], where
finite tori are considered. Restriction to the infinite lattice gives rise to a noteworthy simplification,
which we shall present in the following.

Proof of Proposition 2.2 for the nearest-neighbor model. We follow [13, Sect. 2.2.2]. Since ‖D‖∞ =
(2d)−1, the bound (2.9) is satisfied for d sufficiently large, and it remains to prove (2.10).

By the symmetry of D we have

D̂(k) =
∑

x∈Zd

D(x) cos(k · x) =
1
d

d∑

j=1

cos(kj), k = (k1, . . . , kd) ∈ [−π, π)d. (3.1)

Since 1− cos t ≥ 2π−2t2 for |t| ≤ π, this implies the infrared bound

1− D̂(k) ≥ 2
π2

|k|2
d

. (3.2)

The Cauchy-Schwarz inequality2 yields

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤

(∫

[−π,π)d
D̂(k)4

dk

(2π)d

)1/2 (∫

[−π,π)d

1
[1− D̂(k)]2s

dk

(2π)d

)1/2

(3.3)

First we show that the first term on the right hand side of (3.3) is small if d is large. Note that∫
[−π,π)d D̂(k)4 (2π)−d dk = D∗4(0) is the probability that a nearest-neighbor random walk returns to its

2The Hölder inequality gives better bounds here. In particular, it requires d > 2s only, cf. (2.19) in [13].
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starting point after the fourth step. This is bounded from above by c(2d)−2 with c being a well-chosen
constant, because the first two steps must be compensated by the last two. Finally, the square root
yields the upper bound O(d−1).

It remains to show that the second term on the right of (3.3) is bounded uniformly in d. The infrared
bound (3.2) gives ∫

[−π,π)d

1
[1− D̂(k)]2s

dk

(2π)d
≤ π4s

22s

∫

[−π,π)d

d2s

|k|4s

dk

(2π)d
. (3.4)

The right hand side of (3.4) is finite if d > 4s. For A > 0 and m > 0,

1
Am

=
1

Γ(m)

∫ ∞

0
tm−1 e−tA dt. (3.5)

Applying this with A = |k|2/d and m = 2s yields

1
Γ(2s)

π4s

22s

∫ ∞

0
t2s−1

(∫ π

−π

(
e−tθ2 )1/d dθ

2π

)d

dt (3.6)

as an upper bound for (3.4). This is non-increasing in d, because ‖f‖p ≤ ‖f‖q for 0 < p ≤ q ≤ ∞ on a
probability space by Lyapunov’s inequality.

Proof of Proposition 2.2 for the spread-out models. We again follow [13, Sect. 2.2.2]. Obviously (2.9) is
implied by condition (D2)/(D2′) for sufficiently large L, hence it remains to prove (2.10).

The power-law spread-out model with α > 2 satisfies the finite variance condition (D1) with ε <
α−2. Note further that (D3) and (D3′) agree when the exponent in the first inequality is taken (2∧α).

We separately consider the regions ‖k‖∞ ≤ L−1 and ‖k‖∞ > L−1. By (1.2), (1.7) and the bound
D̂(k)2 ≤ 1, the corresponding contributions to the integral are

∫

k:‖k‖∞≤L−1

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ 1

cs
1L

(2∧α)s

∫

k:‖k‖∞≤L−1

1
|k|(2∧α)s

dk

(2π)d
≤ Cd,c1L

−d (3.7)

if d > (2 ∧ α)s, where Cd,c1 is a constant depending (only) on d and c1, and by (1.3), (1.8),
∫

k:‖k‖∞>L−1

D̂(k)2

[1− D̂(k)]s
dk

(2π)d
≤ c2

−s

∫

k:‖k‖∞>L−1

D̂(k)2
dk

(2π)d
≤ constL−d, (3.8)

for some positive constant. In the last step we used assumption (D2) / (D2′) to see that
∫

k∈[−π,π)d
D̂(k)2

dk

(2π)d
= (D ∗D)(0) =

∑

y∈Zd

D(y)2 ≤
∑

y∈Zd

D(y) ‖D‖∞ = ‖D‖∞ ≤ constL−d. (3.9)

4 The lace expansion

In this section, we discuss the lace expansion which obtains an expansion of the two-point function of
the form

Gz(x) = δ0,x + τ(z) (D ∗Gz) (x) + (Gz ∗ Φz) (x) + Ψz(x),

cf. (2.4). The key point is to identify the lace-expansion coefficients Φz and Ψz in a way that allows for
sufficient bounds, known as diagrammatic bounds. The derivation is not self-contained; full expansions
and detailed derivations of the diagrammatic bounds is performed in [30, 40] for self-avoiding walk, in
[13] for percolation and in [37] for the Ising model.
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4.1 The lace expansion for the self-avoiding walk

The lace expansion for self-avoiding walks was first presented by Brydges and Spencer [15]. They
provide an algebraic expansion using graphs. A special class of graphs that play an important role
here, the laces, gave the lace expansion its name. Here we follow a different approach, based on an
inclusion-exclusion argument, which was first presented by Slade [39]. We follow the presentation in
[30, Sect. 2.2.1].

Our aim is to derive an identity of the form

cn+1(x) = (D ∗ cn)(x) +
n+1∑

m=2

(πm ∗ cn+1−m) (x) (4.1)

and, taking Φz(x) = Πz(x) :=
∑∞

m=2 πm(x)zm and Ψz(x) = 0, we obtain (2.4).
Define R(1)

n+1(x) by
cn+1(x) =

∑

y∈Zd

D(y) cn(x− y)−R(1)

n+1(x). (4.2)

The term R(1)

n+1(x) is the contribution of walks that contribute to the first term on the right-hand side
of (4.2), but not on the left-hand side. Therefore, this contribution is due to paths that have at least
one self-intersection. Since the first term on the right-hand side of (4.2) can alternatively be seen as the
contribution from concatenations of a step from 0 to some y and a self-avoiding walk from y to x, this
self-intersection must be at the origin. The inclusion-exclusion derivation of the lace expansion studies
the correction term R(1)

n+1(x) in more detail by using inclusion-exclusion on the avoidance properties of
the paths involved.

Let P (1)

n+1(x) be the set of paths ω ∈ Wn+1(x) which contribute to R(1)

n+1(x), i.e., the walks ω for
which there exists an l ∈ {2, . . . , n + 1} (depending on ω) with ω(l) = 0 and ω(i) 6= ω(j) for all i 6= j
with {i, j} 6= {0, l}. For the special case x = 0, P (1)

n+1(0) is the set of (n+1)-step self-avoiding polygons.
For general x, P (1)

n+1(x) is the set of self-avoiding polygons followed by a self-avoiding walk from 0 to x,
with the total length being n+1 and with the walk and polygon mutually avoiding. Then, by definition,

R(1)

n+1(x) =
∑

ω∈P(1)
n+1(x)

W (ω). (4.3)

Diagrammatically the right-hand side of (4.2) can be represented by

∑
y∈Zd D(y)· y x − 0 x.

In the first term on the right hand side the line indicates an n-step walk from y to x which is uncon-
strained, apart from the fact that it should be self-avoiding.

We proceed by again applying the inclusion-exclusion relation to R(1)

n+1(x). Indeed, we ignore the
mutual avoidance constraint of the polygon and self-avoiding walk that together form ω ∈ P (1)

n+1(x), and
then make up for the overcounted paths by excluding the walks where the polygon and the self-avoiding
walk do intersect. For y ∈ Zd, let

π(1)
m (y) = δ0,y

∑

ω∈P(1)
m (0)

W (ω), (4.4)
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where W (ω) :=
∏|ω|

i=1 D(ωi − ωi−1) denotes the weight of the path ω, and define R(2)

n+1(x) by

R(1)

n+1(x) =
∑

y∈Zd

n+1∑

m=2

π(1)
m (y) cn+1−m(x− y)−R(2)

n+1(x). (4.5)

The next step is to investigate R(2)

n+1(x), which involves walks consisting of a self-avoiding polygon and
a self-avoiding walk from 0 to x, of total length n + 1, where the self-avoiding polygon and the self-
avoiding walk have an intersection point additional to their intersection at the origin. Let P (2)

n+1(x) be
the subset of walks of Wn+1(x) satisfying these requirements. Then we clearly have

R(2)

n+1(x) =
∑

ω∈P(2)
n+1(x)

W (ω). (4.6)

Diagrammatically, we can represent (4.5) as follows:

R(1)

n+1(x) =
n+1∑

m=2

(π(1)
m ∗ cn+1−m)(x) − x

0

The two thick lines are mutually avoiding, so that they together form a self-avoiding walk. The walk
and polygon may intersect more than once, and we focus on the first intersection point.

We then again perform inclusion-exclusion, neglecting the avoidance between the portions of the
self-avoiding walk before and after this first intersection, and again subtracting a correction term. Due
to the fact that we look at the first intersection point of the self-avoiding walk and the self-avoiding
polygon, the three self-avoiding walks in the Θ-shaped diagram are also mutually avoiding each other.
We define R(3)

n+1(x) by

R(2)

n+1(x) =
∑

y∈Zd

n+1∑

m=2

π(2)
m (y) cn+1−m(x− y)−R(3)

n+1(x), (4.7)

where π(2)
m (y) is defined by

π(2)
m (x) =

∑

m1, m2, m3 ≥ 1
m1 + m2 + m3 = m

3∏

j=1

∑

ωj∈Wmj (x)

W (ωi) I(ω1, ω2, ω3), (4.8)

and I(ω1, ω2, ω3) is equal to 1 if the ωi are all self-avoiding and mutually avoiding each other (apart
from their common start- and endpoint), and otherwise equals 0. We do not write down an explicit
formula for R(3)

n+1(x), as this already gets quite involved.
This inclusion-exclusion step can be diagrammatically represented as

R(2)
n+1(x) =

n+1∑
m=2

(π(2)
m ∗ cn+1−m)(x) −

x0

The process of using inclusion-exclusion is continued indefinitely assuming convergence, and leads to

cn+1(x) =
∑

y∈Zd

D(y) cn(x− y) +
∑

y∈Zd

n+1∑

m=2

πm(y) cn+1−m(x− y), (4.9)
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where

πm(y) =
∞∑

N=1

(−1)Nπ(N)
m (y). (4.10)

Explicit expressions for the π(N) for N ≥ 3 are given e.g. in [30, (2.2.32)].
We multiply (4.9) by zn+1 and sum over n. Recalling Πz(x) =

∑∞
m=2 πm(x)zm and Gz(x) =∑∞

n=0 cn(x)zn, this yields

Gz(x) = δ0,x + z(D ∗Gz)(x) + (Gz ∗Πz)(x), (4.11)

see also [40, (3.27)]. For the lace expansion coefficient Πz the following diagrammatic bound is proven:

Proposition 4.1 (Diagrammatic estimates for self-avoiding walk from [40, Lemma 5.11]). Fix z ∈
(0, zc). If f(z) of (2.17) obeys f(z) ≤ K, then there are positive constants cK and β0 = β0(K), such
that the following holds: If Assumption 2.1 holds for some β ≤ β0, then

∑

x∈Zd

|Πz(x)| ≤ cKβ, (4.12)

∑

x∈Zd

[1− cos(k · x)] |Πz(x)| ≤ cKβ Ĉλz(k)−1, k ∈ [−π, π)d. (4.13)

The term diagrammatic estimate originates from the fact that Πz is expressed in terms of diagrams.
The underlying structure expressed in terms of these diagrams is heavily used to obtain the bounds in
(4.12) and (4.13).

Instead of a proof, for which we refer the reader to [40], we shall briefly sketch the argument showing
f(z) ≤ K implies the bound (4.12). Recall that

πm(x) =
∞∑

N=1

(−1)Nπ(N)
m (x) = −

0=x

+
0

x

−
x0

+ · · · , (4.14)

where the double dashes represent lines that cannot shrink to a single point. Ignoring the mu-
tual avoidance between the lines in the diagrams, one obtains for the generating function |Πz(x)| =∑∞

m=2 πm(x)zm the following upper bound:

∑

x∈Zd

|Πz(x)| =
∑

x∈Zd

∞∑

m=2

πm(x)zm ≤
∑

x∈Zd

(
δ0,x G̃z(x) + (G̃z)(x)3 + Gz(x)

(
(G̃z)2 ∗ (G̃z)2

)
(x) + · · ·

)
,

(4.15)
where G̃z(x) = Gz(x)− δ0,x arises from the lines that cannot shrink to a single point, indicated with a
double dash in (4.14). By (1.36) with τ(z) = z,

G̃z(x) ≤ z (D ∗Gz)(x) ≤ z D(x) + z2 (D∗2 ∗Gz)(x). (4.16)

Thus we bound the first summand on the right hand side of (4.15) by

∑
x

δ0,x G̃z(x) = G̃z(0) ≤ z2 (D∗2 ∗Gz)(0) = z2

∫

[−π,π)d
D̂(k)2 Ĝz(k)

dk

(2π)d

≤ K3

∫

[−π,π)d
D̂(k)2 Ĉλz(k)

dk

(2π)d
≤ 2K3

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]2
dk

(2π)d
≤ 2K3β,

(4.17)

where the second line uses the bounds f1 ≤ K and f2 ≤ K in the first inequality, (4.46) and [1−D̂(k)] ≤ 2
in the second inequality, and Assumption 2.1 in the final inequality.
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For the second summand in (4.15), we bound
∑

x∈Zd

(G̃z)(x)3 ≤ ‖G̃z‖∞ (G̃z)∗2(0), (4.18)

where
(G̃z)∗2(0) ≤ z2 (D ∗Gz)

∗2 (0) ≤ z2

∫

[−π,π)d
D̂(k)2 Ĝz(k)2

dk

(2π)d
≤ O(β) (4.19)

by (4.16) and similar arguments as in (4.17). Similarly,

G̃z(x) ≤ z D(x) + z2 (D∗2 ∗Gz)(x) ≤ Kβ + 2K3β, (4.20)

where we have used (2.9) in Assumption 2.1 for the first summand. Hence,
∑

x∈Zd(G̃z)(x)3 ≤ O(β)2.
Continuing in the same fashion, one can prove

∑

x∈Zd

∞∑

m=2

π(N)
m (x) zm ≤ O(β)N , (4.21)

yielding
∑

x∈Zd

|Πz(x)| =
∑

x∈Zd

∞∑

N=1

∞∑

m=2

π(N)
m (x) zm ≤ O(β) (4.22)

if β is sufficiently small, which yields (4.12). A full proof of (4.12), and also of (4.13), is contained in
[40].

It is clear that (4.11) coincides with (2.4) if we choose

Φz(x) = Πz(x) =
∞∑

m=1

πm(x) zm, x ∈ Zd, (4.23)

and
Ψz(x) = 0, x ∈ Zd. (4.24)

Proof of Proposition 2.5 for self-avoiding walk. As Ψz(x) ≡ 0, there is nothing to show for Ψz. Also,
since Φz(x) = Πz(x), the second inequality in (2.20) is implied by (4.12), and it remains to show

∑

x∈Zd

[1− cos(k · x)] |Πz(x)| ≤ z cKβ Ĉλz(k)−1. (4.25)

This is slightly stronger than (4.13) in that there is an extra factor z on the right hand side. We now
argue that indeed a factor z can be extracted from Πz(x). Recall

|Πz(x)| =
∞∑

N=1

M∑

m=2

π(N)
m (x) zm, (4.26)

where π(N)
m (x) is illustrated on the right hand side of (4.14) for N = 1, 2, 3. The first term

∑∞
m=2 π(1)

m (x) zm

does not contribute to (4.25), since it is nonzero only for x = 0.
The contribution due to N = 2 can be decomposed as

∑

x∈Zd

[1− cos(k · x)]
∞∑

m=2

π(2)
m (x) ≤

∑

x∈Zd

[1− cos(k · x)] (G̃z)(x)3

≤
(

sup
x∈Zd

[1− cos(k · x)]G̃z(x)

)
 ∑

x∈Zd

G̃z(x)2


 . (4.27)
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The first term can be bounded above by O(1) Ĉλz(k)−1, see Lemma B.5 in the appendix. For the second
term in (4.27), we use (1.36) to bound

∑

x∈Zd

G̃z(x)2 ≤ z2(D ∗G ∗D ∗G)(0). (4.28)

With the bound f2 < K and Assumption 2.1 it can be shown that (4.28) is bounded above by zK3β.
Similar estimates apply for higher N contributions showing

∑

x∈Zd

[1− cos(k · x)]
∞∑

m=2

π(N)
m (x) ≤ z O(β)N−1 Ĉλz(k)−1, N = 2, 3, . . . . (4.29)

Summing over N we arrive at (4.25).

4.2 The lace expansion for percolation

The lace expansion for percolation was first derived in [25]. It is based on an inclusion-exclusion
argument, and holds quite generally for any connected graph, finite or infinite. The graph does not
even need to be transitive or regular. We follow the presentation in [13, Sect. 3.2] almost verbatim.

Our aim is to derive the expansion formula

G(x) = δ0,x + z (D ∗G) (x) + z (ΠM ∗D ∗G) (x) + ΠM(x) + RM(x) (4.30)

for each M = 0, 1, 2, . . . . The z-dependence of ΠM and RM is hidden, and throughout this section
we write G for Gz to enhance readability. The function ΠM : Zd → R is the central quantity in the
expansion, and RM(x) is a remainder term. The dependence of ΠM on M is given by

ΠM(x) =
M∑

N=0

(−1)Nπ(N)(x). (4.31)

The alternating sign in (4.31) arises via inclusion-exclusion, similarly as in (4.10). When the expansion
converges, one has

lim
M→∞

∑
x

|RM(x)| = 0. (4.32)

We shall later fix M so large that (4.44) and (4.45) below are satisfied for K = 4. Then the equality
(4.30) is equivalent to (2.4) if we let τ(z) = z, and

Φz(x) = z(D ∗ΠM)(x), x ∈ Zd, (4.33)

Ψz(x) = ΠM(x) + RM(x), x ∈ Zd. (4.34)

We now want to derive (4.30). We call the vertices 0 and x doubly connected (and write 0 ⇔ x), if
0 = x or there are (at least) two bond-disjoint paths from 0 to x consisting of occupied bonds. We call
an (occupied or vacant) bond (u, v) pivotal for an increasing event E, if E occurs if and only if (u, v) is
occupied, and denote by Piv(x) the set of pivotal bonds for the connection from 0 to x. To begin the
expansion, we define

π(0)(x) := P(0 ⇔ x)− δ0,x (4.35)

and distinguish configurations with 0 ↔ x according to whether or not there is a double connection, to
obtain

G(x) = δ0,x + π(0)(x) + P(0 ↔ x, 0 < x). (4.36)
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If 0 is connected to x, but not doubly, then Piv(x) is nonempty. There is therefore a unique element
(u, v) ∈ Piv(x) such that 0 ⇔ u (the first pivotal bond), and we can write

P
(
0 ↔ x, 0< x) =

∑

(u,v)

P(0 ⇔ u, (u, v) occupied, (u, v) ∈ Piv(x)
)
. (4.37)

Now comes the essential part of the expansion. Ideally, we would like to factor the probability on the
right hand side of (4.37) as

P(0 ⇔ u) P((u, v) is occupied) P(v ↔ x) =
(
δ0,u + π(0)(u)

)
zD(v − u)G(x− v). (4.38)

The expression (4.38) would lead to (4.30) with ΠM = π(0) and RM = 0. However, (4.37) does not
factor in this way, because the cluster C̃(u,v)(0), which is the cluster containing 0 after setting the bond
(u, v) vacant, is constrained not to intersect the cluster C̃(u,v)(x), since (u, v) is pivotal.

With the help of a combinatorial lemma (see e.g. [40, Lemma 10.1]), we deduce that

P
(
0 ⇔ u, (u, v) occupied, (u, v) ∈ Piv(x)

)
= zD(v − u)E

(
1{0⇔u}G C̃(u,v)(0)(v, x)

)
, (4.39)

where GA(v, x) := P(v ↔ x in Zd \A) denotes the probability that v is connected to x in the (possibly
modified) configuration where all bonds with an endpoint in A are made vacant. On the right hand
side, G C̃(u,v)(0)(v, x) is the restricted two-point function given the cluster C̃(u,v)(0) of the expectation E,
so that in the expectation defining G C̃(u,v)(0)(v, x), C̃(u,v)(0) should be regarded as a fixed set.

We write
G C̃(u,v)(0)(v, x) = G(x− v)− P

(
v ↔ x, v = x in Zd \ C̃(u,v)(0)

)
, (4.40)

and use (4.36) and (4.39) to obtain

G(x) = δ0,x + π(0)(x) +
∑

(u,v)

(
δ0,u + π(0)(u)

)
zD(v − u) G(x− v)

−
∑

(u,v)

zD(v − u) E
(
1{0⇔u} P

(
v ↔ x, v = x in Zd \ C̃(u,v)(0)

))
.

(4.41)

With R0(x) equal to the last term on the right hand side of (4.41) (including the minus sign), this
proves (4.30) for M = 0.

Continuing in this fashion, we obtain (rather involved) expressions for π(N) and RM (e.g. stated in
[13, Sect. 3.2]). Nevertheless, ΠM and RM satisfy useful diagrammatic bounds:

Proposition 4.2 (Diagrammatic estimates for percolation from [13, Prop. 5.2]). Fix z ∈ (0, zc). If
f(z) of (2.17) obeys f(z) ≤ K, then there are positive constants cK and β0 = β0(K), such that the
following holds: If Assumption 2.1 holds for some β ≤ β0, then for all M = 0, 1, 2, . . . ,

∑
x

|ΠM(x)| ≤ cKβ, (4.42)

∑
x

[1− cos(k · x)] |ΠM(x)| ≤ cKβĈλz(k)−1, (4.43)

and for M sufficiently large (depending on K and z),
∑

x

|RM(x)| ≤ β, (4.44)

∑
x

[1− cos(k · x)] |RM(x)| ≤ βĈλz(k)−1. (4.45)
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In fact, the bounds in Proposition 4.2 are not exactly as phrased in [13]. In the following we explain
how the proof of [13, Prop. 5.2] can be modified to obtain Prop. 4.2. There are two differences to
consider. First, in the definition of f3 there is a factor 16 in the denominator, whereas we have a
factor 200, cf. (2.19). This can be controlled easily by changing the factor appropriately throughout
the proof of [13, Prop. 5.2]. This changes the specific value of cK , but the statement of [13, Prop. 5.2]
remains unchanged. The second (and more important) issue is the replacement of 1− D̂(k) = Ĉ1(k)−1

in [13, Prop. 5.2] by 1−λzD̂(k) = Ĉλz(k)−1 in Prop. 4.2. We need to do this replacement for achieving
continuity of the function f3. Wherever the bound on f3 is used in the proof of [13, Prop. 5.2], which
is in [13, (5.63)], [13, (5.77)], below [13, (5.93)] and in [13, (5.97)], we replace the factor [1− D̂(k)] by
Ĉλz(k)−1. Other occurrences of [1 − D̂(k)], as in [13, (5.75)] and [13, (5.91)], can be treated with the
bound

0 ≤ 1− D̂(k) ≤ 2Ĉλz(k)−1, k ∈ [−π, π)d, (4.46)

which itself is a consequence of

0 ≤ Ĉλz(k) [1− D̂(k)] = 1 +
λz − 1

1− λzD̂(k)
D̂(k) ≤ 2. (4.47)

Again, this increases the value of the constant cK , but leaves the statement of [13, Prop. 5.2] otherwise
unchanged.

For a sketch of the argument of how f(z) ≤ K actually implies (4.42)–(4.45) we refer to [36, Sect.
3.2]. In the following we show how Proposition 4.2 implies Proposition 2.5 in the percolation case.

Proof of Proposition 2.5 for percolation. Recall (4.33)–(4.34). The bounds on Ψz(x) in (2.20)–(2.21)
follow directly from Proposition 4.2 if M is chosen so large that (4.44)–(4.45) is satisfied.

For the bounds on Φz(x) = z(D ∗ΠM)(x) we use the estimate

[1− cos(t1 + t2)] ≤ 3 ([1 + cos t1] + [1 + cos t2]) , t1, t2 ∈ R, (4.48)

(see [13, (4.51)]) to obtain
∑

x

[1− cos(k · x)] |Φz(x)| ≤ 3
∑

x

z
∑

y

(
[1− cos(k · y)] + [1− cos(k · (x− y))]

)
D(y) |ΠM(x− y)|

≤ 3z sup
y

∑
x

[1− D̂(k)] |ΠM(x− y)|

+3z sup
y

∑
x

[1− cos(k · (x− y))] |ΠM(x− y)|

≤ 3z
(
2cKβĈλz(k)−1 + cKβĈλz(k)−1

)
. (4.49)

by (4.42)–(4.43) and (4.46).

4.3 The lace expansion for the Ising model

The lace expansion for the Ising model has been established recently by Sakai [37]. It is similar in spirit
to a high-temperature expansion. A key point is to rewrite the two-point function (spin-spin correlation)
using the random-current representation. This gives rise to a representation involving bonds, in that
showing some similarities to percolation. The lace expansion is then performed using ideas from the
lace expansion for percolation, however, it is considerably more involved.

For the Ising model on a finite graph Λ, Sakai in [37, Prop. 1.1] proved the expansion formula

GΛ
z (x) = δ0,x + τ(z)

(
D ∗GΛ

z

)
(x) + τ(z)

(
D ∗ΠΛ

M ∗GΛ
z

)
(x) + ΠΛ

M(x) + RΛ
M(x), (4.50)
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where the z-dependence of ΠΛ
M and RΛ

M is omitted from the notation. Note that RΛ
M in this paper is

(−1)M+1R(M+1)

p;Λ in [37]. Here M refers to the level of the expansion, and GΛ
z denotes the finite-volume

two-point function. This is equivalent to (2.4) if we let

ΦΛ
z (x) = τ(z)

(
(D ∗ΠΛ

M)(x)
)
, x ∈ Zd, (4.51)

ΨΛ
z (x) = ΠΛ

M(x) + RΛ
M(x), x ∈ Zd, (4.52)

then choose M so large that (4.55) and (4.56) below are satisfied for a certain K, say K = 4, and
subsequently taking the thermodynamic limit Λ ↗ Zd. Note that, if comparing (4.50) to [37, (1.11)], we
explicitly extract the δ0,x-term from the Π-term in [37], i.e., Π(M)

p;Λ (x) in [37] corresponds to ΠΛ
M(x)+ δ0,x

in this paper. For ΠΛ
M and RΛ

M we know the following bounds:

Proposition 4.3 (Diagrammatic estimates for the Ising model from [37]). Fix z ∈ (0, zc). If f(z) of
(2.17) obeys f(z) ≤ K, then there are positive constants cK and β0 = β0(K), such that the following
holds: If Assumption 2.1 holds for some β ≤ β0, then for all M = 0, 1, 2, . . . ,

∑
x

|ΠΛ
M(x)| ≤ cKβ, (4.53)

∑
x

[1− cos(k · x)] |ΠΛ
M(x)| ≤ cKβĈλz(k)−1, (4.54)

and for M sufficiently large (depending on K and z),
∑

x

|RΛ
M(x)| ≤ β, (4.55)

∑
x

[1− cos(k · x)] |RΛ
M(x)| ≤ βĈλz(k)−1. (4.56)

These bounds hold uniformly in Λ.

Since the bootstrapping hypothesis used in Section 5 in this paper is different from that in [37], it
is not so obvious how Proposition 4.3 follows from the results in [37]. In Appendix B we explain how
the statement in [37, Prop. 3.2] can be modified to obtain the desired bounds (4.53)–(4.56).

We prove Proposition 2.5 for the Ising model as in the percolation case, now using Prop. 4.3 instead
of Prop. 4.2. We refrain from repeating the argument.

5 Analysis of the lace expansion

5.1 The bootstrap argument

In this section we prove Proposition 2.6 and, by doing so, complete the proof of Theorem 1.1. The
proof is based on the following lemma:

Lemma 5.1 (The bootstrap / forbidden region argument). Let f be a continuous function on the
interval [0, zc), and assume that f(0) ≤ 3. Suppose for each z ∈ (0, zc) that if f(z) ≤ 4, then in fact
f(z) ≤ 3. Then f(z) ≤ 3 for all z ∈ [0, zc).

Proof. This is a straightforward application of the intermediate value theorem for continuous functions,
see also [40, Lemma 5.9].
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The bootstrap argument in Lemma 5.1 is often used in lace expansion, see e.g. [33, Section 6.1]. An
alternative approach that involves an induction argument has been applied in [31], see also the lecture
notes by van der Hofstad [30].

In the remainder of the section, we prove that the function f defined in (2.17) obeys the prerequisites
of Lemma 5.1. We therefore have to show that f(0) ≤ 3, that f is continuous on [0, zc), and that f(z) ≤ 4
implies f(z) ≤ 3 for z ∈ (0, zc). The latter is referred to as the improvement of the bounds.

Let us first check that f(0) ≤ 3. Clearly, f1(0) = 0. Note that Ψ̂0(k) ≡ 0 and Φ̂0(k) ≡ 0. This leads
to Ĝ0(k) ≡ 1 and λ0 = 0, hence f2(0) = 1 and f3(0) = 0.

Next we want to prove continuity of f . To this end, we need the following lemma:

Lemma 5.2 (Continuity of equicontinuous functions). Let (fα)α∈A be an equicontinuous family of
functions on an interval [t1, t2], i.e., for every given ε > 0, there is a δ > 0 such that |fα(s)−fα(t)| < ε
whenever |s − t| < δ, uniformly in α ∈ A. Furthermore, suppose that supα∈A fα(t) < ∞ for each
t ∈ [t1, t2]. Then t 7→ supα∈A fα(t) is continuous on [t1, t2].

A proof of this standard result can be found e.g. in [40, Lemma 5.12].

Lemma 5.3 (Continuity). Assume that, for z ∈ (0, zc), χ′(z) ≤ cχ(z)2 for some constant c. Then, the
function f defined in (2.17) is continuous on (0, zc).

Proof. It is sufficient to show that f1, f2 and f3 are continuous. The continuity of f1 is obvious. We
show that f2 and f3 are continuous on the closed interval [0, zc − ε] for any ε > 0 by taking derivatives
with respect to z and bound it uniformly in k on [0, zc − ε].

We do f2 first. To this end, we consider the derivative

d
dz

Ĝz(k)
Ĉλz(k)

=
1

Ĉλz(k)2

[
Ĉλz(k)

dĜz(k)
dz

− Ĝz(k)
dĈλ(k)

dλ

∣∣∣∣
λ=λz

dλz

dz

]
. (5.1)

We proceed by showing that each of the terms on the right hand side is uniformly bounded in k and
z ∈ [0, zc − ε], and hence the derivative is bounded. First we recall the definition of λz in (2.13) to see
that

1
2
≤ 1

1− λzD̂(k)
= Ĉλz(k) ≤ Ĉλz(0) = χ(z). (5.2)

Furthermore, χ(z) ≤ χ(zc − ε), and the latter is finite by the definition of zc in (1.22). For every
k ∈ [−π, π)d, the two-point function is bounded from above by

|Ĝz(k)| ≤ |Ĝz(0)| = χ(z) ≤ χ(zc − ε), (5.3)

For the derivative of the two-point function, we bound

∣∣∣∣
d
dz

Ĝz(k)
∣∣∣∣ =

∣∣∣∣∣
∑

x

eik·x d
dz

Gz(x)

∣∣∣∣∣ ≤
∑

x

d
dz

Gz(x) =
d
dz

∑
x

Gz(x) = χ′(z), (5.4)

where the exchange in the order of sum and derivative is validated by the fact that both
∑

x eik·x Gz(x)
and

∑
x Gz(x) are uniformly convergent series of functions. By the assumed mean-field bound χ′(z) ≤

cχ(z)2, (5.4) is bounded above by cχ(zc − ε)2.
Moreover, we obtain from (2.3) that |dĈλ(k)/dλ| ≤ Ĉλ(k)2, and, for λ = λz, this is in turn bounded

by χ(zc − ε)2, cf. (5.2). Finally, |dλz/dz| = χ′(z)/χ(z)2 ≤ c by (2.13) and our assumption.
We treat f3 in exactly the same way as f2, and omit the details here.
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5.2 Improvement of the bounds

The following lemma covers the remaining prerequisite of Lemma 5.1 and thus proves the final ingredient
needed for the proof of Proposition 2.6.

Lemma 5.4 (Improvement of the bounds). If the assumptions of Proposition 2.6 are satisfied for some
sufficiently small β, and if f(z) ≤ 4, then there exists a constant c > 0 such that f(z) ≤ 1 + cβ for all
z ∈ (0, zc). In particular, if β is small enough, then f(z) ≤ 3.

The following lemma will help us for the improvement of the bound on f3.

Lemma 5.5 (Slade [40]). Suppose that a(x) = a(−x) for all x ∈ Zd, and let

Â(k) =
1

1− â(k)
. (5.5)

Then, for all k, l ∈ [−π, π)d,
∣∣∣∆kÂ(l)

∣∣∣ ≤
(
Â(l − k) + Â(l + k)

)
Â(l)

(
|̂a|(0)− |̂a|(k)

)
(5.6)

+ 8Â(l − k) Â(l) Â(l + k)
(
|̂a|(0)− |̂a|(l)

) (
|̂a|(0)− |̂a|(k)

)
.

By |̂a| we denote the Fourier transform of the absolute value of a. The proof of Lemma 5.5 uses
several bounds on trigonometric quantities, and can be found in [40, Lemma 5.7].

Proof of Lemma 5.4. Fix z ∈ (0, zc) arbitrarily and assume f(z) ≤ 4. Our general strategy will be to
show that fi for i = 1, 2, 3 is smaller then (1 + constβ) and thus, by taking β small, f(z) ≤ 3.

The bound on f1 is easy. First note that λz = 1 − χ(z)−1 ≤ 1. Using (2.13) and Propsition 2.5
(with K = 4) we obtain

f1(z) = λz

(
1 + Ψ̂z(0)

)
− Φ̂z(0)− Ψ̂z(0)

≤ λz

(
1 + |Ψ̂z(0)|

)
+ |Φ̂z(0)|+ |Ψ̂z(0)|

≤ 1 + 3 c4β. (5.7)

The bound on f2 is slightly more involved. We write Ĝz = N̂/F̂ , with

N̂(k) =
1 + Ψ̂z(k)
1 + Ψ̂z(0)

, F̂ (k) =
1− τ(z)D̂(k)− Φ̂z(k)

1 + Ψ̂z(0)
. (5.8)

Recall from (2.3) that Ĉλz(k) = [1− λzD̂(k)]−1 and, by (2.5) and (2.13),

λz = 1− 1− τ(z)− Φ̂z(0)
1 + Ψ̂z(0)

. (5.9)

This yields

Ĝz(k)
Ĉλz(k)

= N̂(k) + Ĝz(k)
[
1− λzD̂(k)− F̂ (k)

]
, (5.10)

where

1− λzD̂(k)− F̂ (k) =
[1− D̂(k)]Ψ̂z(0) + [Φ̂z(k)− Φ̂z(0)]D̂(k) + [1− D̂(k)]Φ̂z(k)

1 + Ψ̂z(0)
.
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By taking c4β ≤ 1/2, we obtain the bound

1 + `c4β

1− c4β
≤ 1 + (2` + 2) c4β, ` = 0, 1, 2, . . . , (5.11)

which we use frequently below. For example, together with Assumption 2.4, it enables us to bound

∣∣∣N̂(k)
∣∣∣ =

∣∣∣∣∣
1 + Ψ̂z(k)
1 + Ψ̂z(0)

∣∣∣∣∣ ≤
1 + |Ψ̂z(k)|
1− |Ψ̂z(0)| ≤ 1 + 4 c4β.

Together with (4.46) we obtain in the same fashion that

∣∣∣1− λzD̂(k)− F̂ (k)
∣∣∣ ≤ [1− D̂(k)] |Ψ̂z(0)|+ |Φ̂z(k)− Φ̂z(0)|+ [1− D̂(k)] |Φ̂z(k)|

1− |Ψ̂z(0)|

≤ 2c4β[1− D̂(k)] + c4βĈλz(k)−1

1− c4β
≤ 12 c4β Ĉλz(k)−1

By our assumption that Ĝz(k) ≤ 4Ĉλz(k) (which follows from f(z) ≤ 4) and the above inequalities, we
can bound (5.10) from above by

∣∣∣∣∣
Ĝz(k)
Ĉλz(k)

∣∣∣∣∣ ≤ 1 + 4 c4β + 4 · 12 c4β
∣∣∣Ĉλz(k) Ĉλz(k)−1

∣∣∣ = 1 + 52 c4β. (5.12)

for every k ∈ [−π, π)d. This proves the bound on f2.

It remains to show the bound on f3. In the following, we write K for a positive constant, whose
value may change from line to line. Furthermore, we write

Ĝz(k) =
b̂(k)

1− â(k)
, where b̂(k) = 1 + Ψ̂z(k), â(k) = τ(z)D̂(k) + Φ̂z(k). (5.13)

A straightforward calculation (see also [17, (4.18)]) shows that

∆kĜz(l) =
∆k b̂(l)
1− â(l)

+
∑

σ∈{1,−1}

(
â(l + σk)− â(l)

) (
b̂(l + σk)− b̂(l)

)

(1− â(l)) (1− â(l + σk))
+ b̂(l)∆k

[
1

1− â(l)

]
. (5.14)

We now bound all three summands in (5.14), and start with the first one:
∣∣∣∣∣
∆k b̂(l)
1− â(l)

∣∣∣∣∣ =

∣∣∣∣∣
∆k b̂(l)

b̂(l)

∣∣∣∣∣
∣∣∣Ĝz(l)

∣∣∣ =

∣∣∣∣∣
∆k Ψ̂z(l)
1 + Ψ̂z(l)

∣∣∣∣∣
∣∣∣Ĝz(l)

∣∣∣ ≤
∣∣∣∆k Ψ̂z(l)

∣∣∣ 2(1 + Kβ) Ĉλz(l), (5.15)

where the last bound uses (2.21) to bound the denominator, and (5.12). A basic calculation shows that
any function g : Zd → R with g(x) = g(−x) satisfies

|∆kĝ(l)| ≤
∑

x

[1− cos(k · x)] |g(x)| , (5.16)

cf. [13, (5.32)]. We apply this bound with g(x) = Ψz(x), combine it with (5.15) and (2.21) to obtain
∣∣∣∣∣
∆k b̂(l)
1− â(l)

∣∣∣∣∣ ≤ Kβ Ĉλz(k)−1Ĉλz(l) ≤ O(β) Uλz(l, k). (5.17)
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The second term in (5.14) is bounded as follows. First, since

| eil·x(ei(±k·x)−1)| ≤ | sin(k · x)|+ 1− cos(k · x), (5.18)

we obtain
∣∣b̂(l ± k)− b̂(l)

∣∣ =
∣∣Ψ̂z(l ± k)− Ψ̂z(l)

∣∣ ≤
∑

x

| sin(k · x)| ∣∣Ψz(x)
∣∣ +

∑
x

[1− cos(k · x)]
∣∣Ψz(x)

∣∣. (5.19)

The second term on the right hand side of (5.19) is bounded by O(β) Ĉλz(k)−1; on the first term we
apply the Cauchy-Schwarz inequality and (2.20)–(2.21):

∑
x

| sin(k · x)| ∣∣Ψz(x)
∣∣ ≤

(∑

x6=0

|Ψz(x)|
)1/2( ∑

x 6=0

sin(k · x)2 |Ψz(x)|
)
1/2

≤ O(β)1/2
(∑

x 6=0

[1− cos(k · x)] |Ψz(x)|
)1/2

≤ O(β) Ĉλz(k)−1/2. (5.20)

Furthermore,
â(l ± k)− â(l) = τ(z)

(
D̂(l ± k)− D̂(l)

)
+

(
Φ̂z(l ± k)− Φ̂z(l)

)
. (5.21)

In a similar fashion as (5.19)–(5.20), we bound
∣∣∣Φ̂z(l ± k)− Φ̂z(l)

∣∣∣ ≤ O(β) Ĉλz(k)−1/2 and

∣∣∣D̂(l ± k)− D̂(l)
∣∣∣ ≤

( ∑
x

D(x)
)1/2( ∑

x

[1− cos(k · x)]D(x)
)1/2

+
∑

x

[1− cos(k · x)]D(x)

= 1 · [1− D̂(k)]1/2 + [1− D̂(k)]
≤ 2Ĉλz(k)−1/2 + 2Ĉλz(k)−1 ≤ O(1) Ĉλz(k)−1/2, (5.22)

where the last line uses (4.46). The combination of (5.19)–(5.22) and (5.7) yields
(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

) ≤ O(β) Ĉλz(k)−1. (5.23)

On the other hand, by (5.12)–(5.13),

1
1− â(l + σk)

=
1

b̂(l + σk)
Ĝ(l + σk) ≤ (1 + O(β)) Ĉλz(l + σk), σ ∈ {−1, 0, 1}. (5.24)

Combining (5.23) and (5.24) yields
(
â(l ± k)− â(l)

) (
b̂(l ± k)− b̂(l)

)

(1− â(l)) (1− â(l ± k))
≤ O(β) Ĉλz(k)−1 Ĉλz(l) Ĉλz(l ± k) ≤ O(β) Uλz(l, k). (5.25)

For the third term in (5.14) we argue that |b̂(l)| = 1 + |Ψ̂z(l)| ≤ 1 + c4β by our assumption on Ψ̂z.
In order to apply Lemma 5.5 to bound ∆k(1− â(l))−1, we bound

Â(l) :=
1

1− â(l)
=

1

b̂(l)
Ĝz(l) ≤ (1 + 2c4β) (1 + 51c4β) Ĉλz(l) ≤ (1 + Kβ)Ĉλz(l) (5.26)
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by Assumption 2.4 and (5.12), and

|̂a|(0)− |̂a|(k) =
∑

x

[1− cos(k · x)]
∣∣τ(z)D(x) + Φz(x)

∣∣

≤ τ(z)[1− D̂(k)] +
∑

x

[1− cos(k · x)]
∣∣Φz(x)

∣∣

≤ (2(1 + c4β) + c4β) Ĉλz(k)−1 ≤ 5 Ĉλz(k)−1,

where the last line uses again (4.46) and, as usual, requires a certain smallness of β (here we need
c4β ≤ 1). Plugging these estimates into (5.6) yields

∆k
1

1− â(l)
≤ (1+Kβ)3 ·8·52 ·Ĉλz(k)−1

{
Ĉλz(l − k)Ĉλz(l) + Ĉλz(l)Ĉλz(l + k) + Ĉλz(l − k)Ĉλz(l + k)

}
,

(5.27)
so that finally

|∆kĜz(l)|
Uλz(k, l)

≤ (1 + Kβ), (5.28)

as required. In conclusion f3(z) ≤ 1+Kβ, and thus we obtain the improved bound f(z) ≤ 1+O(β).

Proof of Proposition 2.6. Note first that f is continuous on (0, zc) by Lemma 5.3 and the assumed
mean-field bound χ(z)′ ≤ constχ(z)2. Whence the prerequisites of Lemma 5.1 are satisfied by Lemma
5.4 and the fact that f(0) = 1. Hence, f(z) ≤ 3 for all z < zc. Moreover, Lemma 5.4 shows that, if
f ≤ 4, then in fact f ≤ 1 + O(β). Hence f(z) ≤ 1 + O(β), uniformly for z < zc.

A Derivation of critical exponents for percolation

A.1 Derivation of γP = 1

We aim to prove that T (zc) small enough implies that the critical exponent γP for percolation exists,
and satisfies γP = 1. That is to say, we show χ(z) ³ (zc − z)−1 as z ↗ zc. Aizenman and Newman [6]
proved this for finite-range models. We are following their line of arguments, applying modifications to
allow for long-range percolation.

We fix z < zc. We denote by
Tr := [−r, r]d ∩ Zd

a cube of sidelength 2r + 1. In order to achieve translation invariance, we equip the cube with periodic
boundary conditions, that is, Tr is a torus. Write G(R)

z,Tr
(x, y) for the probability that the points x and

y are connected on the torus using only bonds {u, v} of length |u−v| ≤ R. For r > R (which we always
assume), this is equivalent to removing all bonds from Tr with length larger than R. Define accordingly
the restricted expected cluster size by

χ(R)

Tr
(z) :=

∑

x∈Tr

G(R)

z,Tr
(0, x). (A.1)

We proceed as follows. In a first step we show that for z < zc,

(2− T (zc)− ε) (zc − z) ≤ 1
χ(R)

Tr
(z)

− 1
χ(R)

Tr
(zc)

≤ zc − z (A.2)

holds uniformly in r and R, where T (zc) is the critical triangle diagram and ε can be taken arbitrarily
close to 0. Secondly, we show that limR→∞ limr→∞ χ(R)

Tr
(zc)−1 = 0. Finally we argue that indeed

lim
R→∞

lim
r→∞χ(R)

Tr
(z) = χ(z). (A.3)
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It is important that (for z < zc) the order of the limits in (A.3) is interchangeable, since χ(R)

Tr
(z) is

increasing in R and r, and χ(z) dominates the limit.
We start by proving (A.2). We call an (occupied or vacant) bond (u, v) pivotal for an increasing

event E, if E occurs if and only if (u, v) is occupied. A crucial tool in the proof is Russo’s formula [23,
Theorem 2.25], stating that

d

dz
G(R)

z,Tr
(x, y) =

∑

(u,v)∈Tr×Tr

D(u− v) P(R)

z,Tr
((u, v) is pivotal for x ↔ y), x, y ∈ Tr. (A.4)

The factor D(u − v) arises from the chain rule and the fact that the bond (u, v) is occupied with
probability zD(v − u). Since

{(u, v) is pivotal for x ↔ y} ⊂ {{x ↔ u} ◦ {v ↔ y}} ∪ {{x ↔ v} ◦ {u ↔ y}}, (A.5)

(A.4) and the BK-inequality [9] imply

d

dz
G(R)

z,Tr
(x, y) ≤

∑

u,v∈Tr

D(v − u) P(R)

z,Tr
(x ↔ u)P(R)

z,Tr
(v ↔ y). (A.6)

Summing over y yields the upper bound

d

dz
χ(R)

Tr
(z) ≤

( ∑

u∈Tr

G(R)

z,Tr
(x, u)

)(
max
u∈Tr

∑

v∈Tr

D(v − u)
)(

max
v∈Tr

∑

y∈Tr

G(R)

z,Tr
(v, y)

)

≤ χ(R)

Tr
(z)2. (A.7)

Therefore,
d

dz

[
− 1

χ(R)

Tr
(z)

]
≤ 1. (A.8)

Integration over the interval (z, z′) and letting z′ ↗ zc yields

1
χ(R)

Tr
(z)

− 1
χ(R)

Tr
(zc)

≤ zc − z. (A.9)

For the lower bound in (A.2) we use arguments as in [40, Section 9.4] to obtain

P(R)

z,Tr
({x ↔ u} ◦ {v ↔ y})

≥ G(R)

z,Tr
(x, u) G(R)

z,Tr
(v, y)−

∑

s,t∈Tr

G(R)

z,Tr
(x, t) G(R)

z,Tr
(t, s) G(R)

z,Tr
(t, u)G(R)

z,Tr
(s, v) G(R)

z,Tr
(s, y). (A.10)

=
−

x

t s

y

vu

yx

u v

With Russo’s formula (A.4),

d

dz
χ(R)

Tr
(z) ≥ χ(R)

Tr
(z)2

( ∑

|v|≤R

D(v)
)
− χ(R)

Tr
(z)2

( ∑

|v|≤R
s,t∈Tr

D(v) G(R)

z,Tr
(v, s) G(R)

z,Tr
(s, t) G(R)

z,Tr
(t, 0)

)
. (A.11)
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Since
∑

v∈Zd D(v) = 1, the quantity
∑
|v|≤R D(v) can be taken arbitrarily close to 1 (say greater than

1− ε) by allowing r and R large enough. On the other hand,
∑

|v|≤R
s,t∈Tr

D(v) G(R)

z,Tr
(v, s) G(R)

z,Tr
(s, t) G(R)

z,Tr
(t, 0) ≤ T (z)− 1, (A.12)

where T (z) denotes the triangle diagram, cf. (1.40). The subtracted 1 arises from the fact that there
is a non-zero displacement caused by the extra D. Wrapping up, we arrive at

d

dz

[
− 1

χ(R)

Tr
(z)

]
≥ (1− ε)− (T (z)− 1) = 2− T (z)− ε, (A.13)

and an integrated version of this proves (A.2).
We now show that

lim
R→∞

lim
r→∞χ(R)

Tr
(zc)−1 = 0. (A.14)

The bound (A.8) implies that χ(R)

Tr
(z)−1 is equicontinuous on [zc, zc+ε] for a suitable ε > 0. Using Lemma

5.2 twice (once for r → ∞, and once for R → ∞), it follows that limR→∞ limr→∞ χ(R)

Tr
(z)−1 = χ(z)−1

is continuous on [zc, zc + ε]. Since χ(z)−1 = 0 for all z > zc, this implies (A.14).
It remains to prove (A.3). We write E(R)

z,Tr
|C| for the expected cluster size under the measure P(R)

z,Tr
,

i.e., E(R)

z,Tr
|C| = χ(R)

Tr
(z). We further denote by ∂RTr := Tr+R \ Tr the boundary of Tr of thickness R.

Hence,
E(R)

z,Tr+R
|C| = E(R)

z,Tr+R
|C|1{0=∂RTr} + E(R)

z,Tr+R
|C|1{0↔∂RTr}. (A.15)

In the first summand, E(R)

z,Tr+R
can be replaced by E(R)

z (the expected cluster size on the infinite lattice,
where bonds are restricted to have length ≤ R), because the indicator guarantees C ⊂ Tr. This leads
to

E(R)

z,Tr+R
|C| = E(R)

z |C| − E(R)
z |C|1{0↔∂RTr} + E(R)

z,Tr+R
|C|1{0↔∂RTr}. (A.16)

By the tree graph bound [6],

E(R)
z |C|2 ≤ (

E(R)
z |C|)3 = χ(R)(z)3 ≤ χ(z)3, (A.17)

and hence the Cauchy-Schwarz inequality yields

E(R)
z |C|1{0↔∂RTr} ≤ χ(z)3/2 Pz(0 ↔ ∂RTr)1/2. (A.18)

For z < zc, the first factor on the right is finite, and the latter vanishes as r →∞. For the last summand
in (A.16), we bound as follows:

E(R)

z,Tr+R
|C|1{0↔∂RTr} ≤ (2(r + R) + 1)d P(R)

z,Tr+R
(0 ↔ ∂RTr), (A.19)

but, for r > R,

P(R)

z,Tr+R
(0 ↔ ∂RTr) ≤ Pz,Tr+R

(|C| ≥ r/R) ≤ Pz(|C| ≥ r/R) ≤ exp
{
− r

2Rχ(z)2

}
, (A.20)

where we used [29, Prop. 2.1] in the second bound, and [6, Prop. 5.1] in the third. The expression on
the right hand side of (A.20) decays exponentially as r increases, hence the right hand side of (A.19)
vanishes and (A.3) is established once we have shown that E(R)

z |C| → Ez|C| as R →∞.
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This is done as follows. Writing G(R)
z and χ(R) for the restricted model, so that, obviously, χ(z) ≥

χ(R)(z). Furthermore,

Gz(x)−G(R)
z (x) = Pz (0 ↔ x,∃ pivotal bond (u, v) for {0 ↔ x} with |u− v| > R) ,

hence

χ(z)− χ(R)(z) ≤ χ(z)2


z

∑

v:|v|>R

D(v)


 .

Again, this vanishes as R →∞, because z < zc and
∑

v D(v) < ∞.

A.2 Derivation of δP = 1

Barsky and Aizenman [8] showed that the triangle condition implies also βP = 1 and δP = 2, where
they used the general bounds βP ≤ 1 and δP ≥ 2 due to [16] and [2], respectively. It should be noted,
that in these references a different version of δP is considered, namely δ̂P given by

M(zc, h) :=
∞∑

k=1

[1− e−kh]Pzc(|C| = k) ³ h1/δ̂P as h →∞. (A.21)

The quantity M is known as magnetization. If we consider the critical exponents in terms of slowly
varying functions only (and not our stronger version ³), then the equivalence of δP and δ̂P can be seen
directly via a Tauberian Theorem (e.g. [19, Theorem XIII.5.2]).

Our version of δP can be derived from (A.21), as we show now for the mean-field value δP = 2. In
particular, we show that

c/
√

n ≤ M(zc, 1/n) ≤ C/
√

n, 0 < c ≤ C < ∞, (A.22)

implies c̃/
√

n ≤ Pzc(|C| ≥ n) ≤ C̃/
√

n for certain constants c̃, C̃ ∈ (0,∞).
For an upper bound on Pzc(|C| ≥ n) we bound

Pzc(|C| ≥ n) =
∞∑

k=n

Pzc(|C| = k) ≤
∞∑

k=n

1− e−k/n

1− e−1
Pzc(|C| = k)

≤ [
1− e−1

]−1
∞∑

k=1

[
1− e−k/n

]
Pzc(|C| = k)

=
[
1− e−1

]−1
M(pc, 1/n), (A.23)

and hence Pzc(|C| ≥ n) ≤ C̃/
√

n for C̃ = [1− e−1]−1C.
The lower bound is more involved. For every ε > 0 we obtain

Pzc(|C| ≥ n) ≥
∞∑

k=n

[
1− e−εk/n

]
Pzc(|C| = k)

= M(pc, ε/n)−
n−1∑

k=1

[
1− e−εk/n

]
Pzc(|C| = k).

We exploit 1− e−x ≤ x to bound further

n−1∑

k=1

[
1− e−εk/n

]
Pzc(|C| = k) ≤ ε

n

n−1∑

k=1

k Pzc(|C| = k).
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Note
n−1∑

k=1

k Pzc(|C| = k) ≤
n−1∑

k=1

k∑

l=1

Pzc(|C| = k) ≤
n−1∑

l=1

n−1∑

k=l

Pzc(|C| = k) ≤
n−1∑

l=1

Pzc(|C| ≥ l),

whence

Pzc(|C| ≥ n) ≥ M(pc, ε/n)− ε

n

n−1∑

k=1

Pzc(|C| ≥ k).

We apply (A.23) and compare with (A.22) to obtain

Pzc(|C| ≥ n) ≥ c
√

ε√
n
− ε

n

n−1∑

k=1

C

[1− e−1]
√

k
︸ ︷︷ ︸
≤2C[1−e−1]−1

√
n

. (A.24)

This proves that Pzc(|C| ≥ n) ≥ c̃/
√

n with c̃ = c
√

ε − 2εC[1 − e−1]−1, and c̃ > 0 as long as ε is small
enough. With a modification in (A.24), the argument can be extended to the case δP 6= 2, but we
refrain from giving this argument.

B Diagrammatic bounds for the Ising model

This appendix is devoted to the proof of Proposition 4.3 for the Ising model. We proceed by considering
the quantities π(M)

Λ (M = 0, 1, 2, . . . ) defined in [37], which give rise to ΠΛ
M and RΛ

M+1 by [37, (1.12) and
(1.13)]:

δ0,x + ΠΛ
M(x) =

M∑

N=0

(−1)Nπ(N)

Λ (x), 0 ≤ ∣∣RΛ
M(x)

∣∣ ≤ τ(z)
∑
u,v

π(M)

Λ (u)D(v − u) G(v, x). (B.1)

We first discuss a bound on π(N)

Λ , and use this to prove Proposition 4.3.

Proposition B.1 (Diagrammatic bounds for the Ising model). Suppose that, for the Ising model,
f(z) ≤ K for some z ∈ (0, zc), K > 1. Then there exists a constant c̄K > 0, such that

δ0,N ≤
∑

x

π(N)

Λ (x) ≤
{

1 + c̄Kβ2 (N = 0),
(c̄Kβ)N (N ≥ 1),

(B.2)

and ∑
x

[1− cos(k · x)]π(N)

Λ (x) ≤ Ĉλz(k)−1(c̄Kβ)N∨1, (B.3)

uniformly in Λ.

This proposition is a variation of [37, Proposition 3.2]. However, it is important that the bounds of
the type

∑
x |x|2π(N)

Λ (x) in [37] have been replaced by bounds involving the factor 1− cos(k · x), as in
(B.3). This replacement is a basic philosophy for this paper. The following heuristic reasoning explains
why the factor |x|2 is not sufficient in the case of infinite variance spread-out models.

By (B.27) below, π(0)
z (x) ≤ Gz(x)3. Let us assume that Gz(x) ≈ Cλz(x), as suggested by Theorem

1.1. For z = zc, and using that C1(x) ≈ const /|x|d−(α∧2), that would lead to

∑
x

|x|2π(0)
zc

(x) ≈
∑

x

|x|2 1
|x|3(d−(α∧2))

,
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and this is finite if and only if d < 3(d − (α ∧ 2)) − 2. In particular, this suggests that for α < 2 and
2(α ∧ 2) < d < 1 + 3/2(α ∧ 2),

∑
x |x|2π(0)

zc (x) = ∞ but
∑

x[1 − cos(k · x)]π(0)
zc (x) < ∞. Thus, using∑

x |x|2π(0)
zc (x) < ∞ as a criterion for d > dc suggests a wrong value for the critical dimension. Rather,

it appears that we must assume
∑

x |x|(α∧2)π(0)
zc (x) < ∞ instead.

We first show how Proposition B.1 implies Proposition 4.3, and afterwards discuss its proof.

Proof of Proposition 4.3 subject to Proposition B.1. We proceed as in the proof of [13, Prop. 5.2]. The
bounds (4.53)–(4.54) follow immediately with cK = 2c̄K , where the extra 1 in the (N = 0)-case is
compensated by the substraction of δ0,x, and the factor 2 comes from summing the geometric series
(where we required β small enough to ensure c̄Kβ ≤ 1/2). For the bounds on the remainder term RM ,
we see by (B.1) that ∑

x

|RΛ
M(x)| ≤ Kπ̂(M)

Λ (0)χ(z). (B.4)

However, by (B.2), (4.55) follows if z < zc and M = M(z) is so large that (cKβ)Mχ(z) ≤ cKβ. Finally,
for (4.56), we use (B.57) below with j = 3 to see that

∑

x∈Zd

[1− cos(k · x)] |RΛ
M(x)| ≤7K[1− D̂(k)]π̂(M)

Λ (0)χ(z) + 7K
(
π̂(M)

Λ (0)− π̂(M)

Λ (k)
)
χ(z)

+ 7Kπ̂(M)

Λ (0)
(
Ĝz(0)− Ĝz(k)

)
.

(B.5)

For the first term, we use (4.46) and (B.2) to bound

7K[1− D̂(k)]π̂(M)

Λ (0)χ(z) ≤ 14K(c̄Kβ)Mχ(z)Ĉλz(k)−1.

For the second term, we use (B.3) to see that π̂(M)

Λ (0)− π̂(M)

Λ (k) ≤ Ĉλz(k)−1(c̄Kβ)M∨2. Finally, for the
third term in (B.5), we use the upper bound on f3 and the uniform bound Ĉλz(k) ≤ (1− λz)−1 = χ(z)
to obtain

|Ĝz(0)− Ĝz(k)| = 1
2
|∆kĜz(0)| ≤ 16KĈλz(k)−1

(
3 (1− λz)

−2
)

= 48KĈλz(k)−1χ(z)2. (B.6)

Together with (B.2), this yields the desired bound.

We now prove Proposition B.1 subject to the diagrammatic bounds in [37], which will occupy the
remainder of the paper. Our proof is an adaptation of the proof of [37, Prop. 3.2], with a modified
bootstrap hypothesis. In particular, the factor |x|2 at various places in that proof is replaced by the
factor 1−cos(k ·x) here. We fix z ∈ (0, zc) and throughout the remainder of the section omit it from the
notation (e.g., we write τ for τ(z)). Also we fix some subset Λ containing the origin. We keep in mind
that we are interested in the thermodynamic limit Λ ↗ Zd, and in fact our bounds hold uniformly in Λ.
We elaborate on this after Prop. B.2 below. All sums below are taken over Zd, unless stated otherwise.

We define the quantity
G̃(x) := τ(D ∗G)(x), (B.7)

and note the basic estimate
G(x) ≤ δ0,x + G̃(x) (B.8)

resulting from the random-current representation and the source switching lemma (cf. [37, (4.2)]).
In line with (1.37), we write B = (G ∗ G)(0) =

∑
x G(x)2 for the bubble diagram, and similarly

B̃ = (G̃ ∗ G̃)(0) for the “non-vanishing bubble diagram”. For the latter we bound

B̃ = τ2

∫

[−π,π)d

(
D̂(k)Ĝ(k)

)2 dk

(2π)d
≤ K4

∫

[−π,π)d

(
D̂(k)Ĉλz(k)

)2 dk

(2π)d

≤ 4K4

∫

[−π,π)d

D̂(k)2

[1− D̂(k)]2
dk

(2π)d
≤ 4K4β
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using that τ = f1(z) ≤ K and f2(z) ≤ K in the first line, and (4.46) and Assumption 2.1 in the second
line. On the other hand, by (B.8),

B =
∑

x

G(x)2 = 1 +
∑

x 6=0

G(x)2 ≤ 1 +
∑

x

G̃(x)2 = 1 + B̃ ≤ 1 + 4K4β. (B.9)

Furthermore, it is easy to see that, by the Cauchy-Schwarz inequality, “open bubbles” are bounded by
a “closed bubble”, i.e., for all x ∈ Zd,

(G ∗G)(x) =
∑

v

G(v) G(x− v) ≤ B, (G̃ ∗ G̃)(x) ≤ B̃. (B.10)

Here is an outline of the proof. We bound certain diagrams to be defined below in terms of B and
B̃. In turn, these diagrams bound the lace expansion coefficients π(j), [37]. Hence, by exploiting (B.9)
and (B.9), we prove a sufficient decay of the lace expansion coefficients subject to β being sufficiently
small.

We now define various quantities needed to describe the bounding diagrams. All notation is chosen
consistently with [37], which provides our basic estimates. In order to emphasize the diagrammatic
structure, we write G and G̃ with two arguments, with the understanding that G(y, x) = G(x− y), and
for G̃ appropriately.

Let

ψ(y, x) :=
∞∑

j=0

(G̃2)∗j(y, x) = δy,x +
∞∑

j=1

∑
u0,u1,...,uj∈

{x}×(Zd)j−1×{y}

j∏

l=1

G̃(ul−1, ul)2 (B.11)

denote a “chain of bubbles”, and
ψ̃(y, x) = ψ(y, x)− δy,x. (B.12)

If β is so small that B̃ < 1/2 (which we shall assume from now on), then a basic calculation shows that

ψ̃ := sup
y

∑
x

ψ̃(y, x) ≤ 2B̃ = O(β). (B.13)

Let

P ′(0)
u (y, x) := G(y, x)2G(y, u)G(u, x) =

y
u

x
,

(B.14)

P ′′(0)
u,v (y, x) := G(y, x) G(y, u) G(u, x)

∑

v′
G(y, v′)G(v′, x) ψ(v′, v) =

y
u

x

(v )’

v

.
(B.15)

In the last equalities of (B.14)–(B.15) we used the pictorial representation introduced in Figure 1. Recall
that a line between two points, say y and x, represents the two-point function G(y, x), and vertices in
brackets are summed over. The quantities P ′(0) and P ′′(0) are the leading terms in the quantities P ′

and P ′′, defined in (B.22) below.
We further define

P (1)(v1, v
′
1) := 2ψ̃(v1, v

′
1) G(v1, v

′
1), (B.16)

and, for j = 2, 3, . . . ,

P (j)(v1, v
′
j) :=

∑
v2,...,vj

v′1,...,v′j−1

G(v1, v2) G(v2, v
′
1)

(
j∏

i=1

ψ̃(v1, v
′
1)

)

×
(

j−1∏

i=2

G(v′i−1, vi+1) G(vi+1, v
′
i)

)
G(vj , v

′
j−1).

(B.17)
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The first three elements of the sequence look diagrammatically like

P (1)(v1, v
′
1) =

v1 v’1 ,
P (2)(v1, v

′
2) =

(v’)1

v’2(v )2

v1 ,
P (3)(v1, v

′
3) =

v3(v )3(v’)1

(v’)2
(v )2

v1 .

Recall that vertices in brackets are summed over.
We now obtain quantities P ′ and P ′′ as variations on P . To this end, we define P ′(j)

u (v1, v
′
j) by

replacing one of the 2j − 1 two-point functions, say G(z, z′), on the right-hand side of (B.16)–(B.17)
by the product of two two-point functions, G(z, u) G(u, z′), and then summing over all 2j − 1 choices
of this replacement. For example, we define

P ′(1)
u (v1, v

′
1) = 2ψ̃(v1, v

′
1) G(v1, u)G(u, v′1) =

v1

u

v’1 ,
(B.18)

and

P ′(2)
u (v1, v

′
2) =

∑

v2,v′1

( 2∏

i=1

ψ̃(vi, v
′
i)

)(
G(v1, u) G(u, v2) G(v2, v

′
1) G(v′1, v

′
2)

+ G(v1, v2) G(v2, u) G(u, v′1) G(v′1, v
′
2)

+ G(v1, v2) G(v2, v
′
1) G(v′1, u) G(u, v′2)

)
. (B.19)

We define P ′′(j)
u,v (v1, v

′
j) similarly as follows. First we take two two-point functions in P (j)(v1, v

′
j), one

of which (say, G(y1, y
′
1) for some y1, y

′
1) is among the aforementioned 2j − 1 two-point functions, and

the other (say, G̃(y2, y
′
2) for some y2, y

′
2) is among those of which ψ(vi, v

′
i) − δvi,v′i for i = 1, . . . , j are

composed. The product G(y1, y
′
1)G̃(y2, y

′
2) is then replaced by

(∑

v′
G(y1, v

′) G(v′, y′1) ψ(v′, v)
)(

G(y2, u)G̃(u, y′2) + G̃(y2, y
′
2) δu,y′2

)

+ G(y1, u) G(u, y′1)
∑

v′

(
G(y2, v

′)G̃(v′, y′2) + G̃(y2, y
′
2) δv′,y′2

)
ψ(v′, v). (B.20)

In our pictorial representation,

1y1 y’

2y 2y’

is replaced by

v

(v )’

u

1y1 y’

2y 2y’

+
v

(v )’

u 1y1 y’

2y 2y’ .

Finally, we define P ′′(j)
u,v (v1, v

′
j) by taking account of all possible combinations of G(y1, y

′
1) and G̃(y2, y

′
2).

For example, we define P ′′(1)
u,v (v1, v

′
1) as

P ′′(1)
u,v (v1, v

′
1) =

∑

u′,u′′,v′

(
2ψ(v1, u

′) G̃(u′, u′′)
(
G(u′, u) G̃(u, u′′) + G̃(u′, u′′) δu,u′′

)
ψ(u′′, v′1)

×G(v1, v
′)G(v′, v′1)ψ(v′, v) + (permutation of u and v′)

)
(B.21)

=
v1

u
v’1

(v )’

v

+ v1

u

v’1
(v )’

v ,
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where the permutation term corresponds to the second diagram.
We let

P ′
u(y, x) =

∑

j≥0

P ′(j)
u (y, x) =

y

u x ,
P ′′

u,v(y, x) =
∑

j≥0

P ′′(j)
u,v (y, x) =

y

u x

v

,
(B.22)

where P ′(0)
u (y, x) and P ′′(0)

u,v (y, x) are the leading contributions to P ′
u(y, x) and P ′′

u,v(y, x), respectively.
Finally, we define

Q′
u(y, x) =

∑
z

(
δy,z + G̃(y, z)

)
P ′

u(z, x) =

y

u x

(z)

,
(B.23)

Q′′
u,v(y, x) =

∑
z

(
δy,z + G̃(y, z)

)
P ′′

u,v(z, x)

+
∑

v′,z

(
δy,v′ + G̃(y, v′)

)
G̃(v′, z) P ′

u(z, x) ψ(v′, v), (B.24)

that is, pictorially,

Q′′
u,v(y, x) =

y

u x

v

Q’’ =

y

u x

v
(z)

+

y

u x

v
(v’

(z)

)

.
(B.25)

Based on the lace expansion, Sakai proved the following diagrammatic bound:

Proposition B.2 (Diagrammatic bounds [37, Prop. 4.1]). For the ferromagnetic Ising model,

π(N)

Λ (x) ≤





P ′(0)
0 (0, x) (N = 0),

∑

b1,...,bj
v1,...,vj

P ′(0)
v1

(0, b1)

(
N−1∏

i=1

τD(bi) Q′′
vi,vi+1

(bi, bi+1)

)
τD(bj)Q′

vi,vi+1
(bi, x) (N ≥ 1), (B.26)

where the sum is taken over vertices vi and (directed) bonds bi = (bi, bi), i = 1, . . . , j. We denote
D(bi) = D(bi− bi) and regard the empty product as 1 by convention. The bound (B.26) holds uniformly
in Λ.

It should be noted that Sakai [37] proved the bound (B.26) on a finite graph Λ, where in particular
all quantities on the right hand side are defined on Λ. By Griffith’s second inequality [22], the two-point
correlation function Gz is monotonically increasing in Λ, and thus so are P ′, Q′ and Q′′. Hence, the right
hand side in (B.26) is monotonically increasing in Λ, and we consider the thermodynamic limit Λ ↗ Zd

as a uniform upper bound on π(N)

Λ (x). However, it is not obvious how to obtain the thermodynamic
limit on the left hand side directly, since the quantities π(N)

Λ (x) are not monotone in Λ.

Proof of (B.2). We first show that 1 ≤ ∑
x π(0)

Λ (x) ≤ 1+O(β2). By the definition of π(0)

Λ (x) and (B.14),
δ0,x ≤ π(0)

Λ (x) ≤ G(x)3. Whence

1 ≤
∑

x

π(0)

Λ (x) ≤ 1 +
∑

x 6=0

G(x)3 ≤ 1 +

(
sup
x6=0

G(x)

)∑

x 6=0

G̃2(x). (B.27)

The term
∑

x 6=0 G̃2(x) is bounded above by a non-vanishing bubble B̃, yielding a factor O(β) by (B.9).
The term supx 6=0 G(x) can be bounded as follows. We first apply (1.36), to obtain

sup
x6=0

G(x) ≤ τ‖D‖∞ + ‖τD ∗ G̃‖∞. (B.28)
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The first summand is bounded by Kβ, by our bound on f1 and (2.9). Furthermore, ‖τD∗G̃‖∞ ≤ 4K3β
by a calculation similar to (B.9) and using 1 ≤ 2[1− D̂(k)]−1. We thus obtain the bound on

∑
x π(0)

Λ (x).
We next consider the bound on

∑
x π(N)

Λ (x) for N ≥ 1. Here is a diagrammatic representation of
the bounds on

∑
x π(N)

Λ (x) for N = 3:

b

0 x

v

Q’’ Q’’

2

b1 b3

v v

2

31

where all vertices v1, v2, v3 and bonds b1, b2, b3 are summed over. Since the diagrammatic bound
(B.26) implies

∑
x

π(N)

Λ (x) ≤
(∑

v,x

P ′(0)
v (0, x)

)(
sup

y

∑
w,v,x

τD(w − y)Q′′
0,v(w, x)

)N−1 (
sup

y

∑
w,x

τD(w − y)Q′
0(w, x)

)
,

(B.29)
it is sufficient to show that

(i)
∑

v,x P ′(0)
v (0, x) ≤ O(1),

(ii) supy

∑
w,x τD(w − y)Q′

0(w, x) ≤ O(β),

(iii) supy

∑
w,v,x τD(w − y)Q′′

0,v(w, x) ≤ O(β).

We will now prove these bounds one at a time.
(i) We first show that

∑
v,x P ′(0)

v (0, x) is uniformly bounded. Indeed, by (B.10) and (B.14),

∑
v,x

P ′(0)
v (0, x) =

∑
v,x

G(x)2G(v)G(v − x) ≤
(

sup
y

∑
v

G(v)G(v − y)

)∑
x

G(x)2 ≤ B2. (B.30)

(ii) We bound

∑
w,x

τD(w − y)Q′
0(w, x) =

∑
u,x

(∑
w

τD(w − y)
(
δw,u + G̃(u− w)

)
)

P ′
0(u, x), (B.31)

cf. (B.23). The factor β comes from the nonzero line segment
∑

w τD(w − y)
(
δw,u + G̃(u− w)

)
, as we

have seen in the discussion around (B.28).
It remains to show that

∑
u,x P ′

0(u, x) =
∑

u,x

∑∞
j=0 P ′(j)

0 (u, x) is uniformly bounded.

Claim B.3 (Bound on P ′). ∑
u,x

P ′
0(u, x) ≤ O(1). (B.32)

Proof. To this end, it suffices to show
∑
u,x

P ′(j)
0 (u, x) ≤ (2j − 1)O(β)j , (j ≥ 1), (B.33)

since the case j = 0 has been treated in (B.30). The bound (B.33) will be achieved by decomposing the
diagrams describing P ′(j) into bubble diagrams, and we demonstrate this for the case j = 4 explicitly.
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Recall from (B.17) that

P (4)(u, x) =
u

x

,
(B.34)

and we obtain P ′(4)(u, x) from P (4)(u, x) by replacing one of the 7(= 2j − 1) factors of the form G(u, v)
by

∑
w G(u,w) G(w, v). In terms of diagrams, there is an extra vertex added to either of the 7 straight

lines in (B.34). This explains the factor (2j − 1) in (B.33).
In case this extra vertex falls to one of the horizontal lines, say the lower one, we bound as follows.

We first extend our diagrammatical notation in the following way: we mark vertices that are summed
over by a full dot, and fixed vertices (possibly with a supremum) are marked with an open dot, i.e.,

∑
u,x u

x

0

=
.

By multiple use of translation invariance of the model, we obtain

=
∑

x1,x2,x3,x4,
x5,x6,x7,x8

x6

x1 x3 x4 x7

x2 x5 x8

y

=
∑

x1,x2,x3,x4,
x5,x6,x7,x8

G(x1, x2) G(x2, x3) G(x3, y) G(y, x4) G(x4, x5) G(x5, x6)

×G(x6, x7) G(x7, x8) ψ̃(x1, x3) ψ̃(x2, x5) ψ̃(x4, x7) ψ̃(x6, x8)

=
∑

x1,x2,y,x4,
x5,x6,x7,x8

· · · (expression as above with x3 fixed)

≤
(∑

x1

ψ̃(x1, x3)

)(
sup
x̄1

∑
x2

G(x̄1, x2) G(x2, x3)

)

×
(

sup
x̄2

∑
x5

ψ̃(x̄2, x5)

)(
sup
x̄4

∑
y

G(x3, y) G(y, x̄4)

)

×
(

sup
x5

∑
x4,x6,x7,x8

G(x4, x5) G(x5, x6) G(x6, x7) G(x7, x8) ψ̃(x4, x7) ψ̃(x6, x8)

)

= (B.35)

For the remaining component on the right hand side, we again use translation invariance and bound
further as

= ≤
,

= ≤ ≤ ψ̃ B. (B.36)

Hence,

≤ B4ψ̃4, (B.37)

38



and this can be made smaller than O(β)4, cf. (B.9) and (B.13).
However, if the extra vertex falls to one of the vertical lines, then the details are slightly different:

= ≤ ≤ B2 ψ̃2

.
(B.38)

The remaining diagram in (B.38) is bounded by multiple use of translation invariance, as we will show
now:

= sup
w

∑
v,x,y,z

0 x

yw

v

z

= sup
w

∑
x,y,z,v

0 x+v

y+vw

v

z+v

≤
(

sup
w,y

∑
v 0

v

w-y
)




∑
x,y,z

0 x

y z


≤ B2 · ψ̃2. (B.39)

This proves (B.33) for j = 4. The cases j 6∈{0, 4} are omitted, since the same methods will lead to
the desired bounds.

(iii) We now turn to the bounds involving Q′′, i.e., we prove

sup
y

∑
w,v,x

τD(w − y)Q′′
0,v(w, x) ≤ O(β). (B.40)

Recalling the definition of Q′′ in (B.24), (B.40) is established once we have shown

sup
y

∑

w,v,v′,z,x

τD(w − y)
(
δw,v′ + G̃(w, v′)

)
G̃(v′, z) P ′

0(z, x) ψ(v′, v) ≤ O(β) (B.41)

and
sup

y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′

0,v(z, x) ≤ O(β). (B.42)

A decomposition of the left hand side of (B.41) yields as an upper bound

sup

z

∑

w,v′
τD(w − y)

(
δw,v′ + G̃(w, v′)

)
G̃(v′, z)




(
sup
v′

∑
v

ψ(v′, v)

)(∑
z,x

P ′
0(z, x)

)
, (B.43)

where the first term is bounded by O(β), the second term is bounded by 1 + ψ̃ = O(1) and the final
term is bounded by O(1), by Claim B.3.

It thus remains to show the following claim:

Claim B.4 (Bound on P ′′). The estimate (B.42) is true.

Proof. In our pictorial representation, (B.42) can be expressed like

≤ O(β). (B.44)
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Similarly to the proof of (B.32), it is sufficient to show

sup
y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(j)

0,v (z, x) ≤ O(β)j∨1 (B.45)

for j = 0, 1, 2, . . . . We explicitly perform this bound for j = 0, 1, and omit the details for j ≥ 2.
For j = 0, we bound

≤
,

(B.46)

i.e.,
sup

y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(0)

0,v (z, x) ≤ O(β) B2 (1 + ψ̃), (B.47)

where the O(β)-factor arises from the open bubble involving the extra vertex, and the chain of bubbles
hanging off from the top produces a factor 1 + ψ̃.

For j = 1 we proceed similarly by recalling the definition of P ′′(1) in (B.21) and bound

sup
y

∑
w,v,z,x

τD(w − y)
(
δw,z + G̃(w, z)

)
P ′′(1)

0,v (z, x) = +

≤
1

2
3

4

5

+

1
2

3

4

5 ,

where the numbers indicate the order in the decomposition. A calculations similar to (B.39) shows that
≤ ( ) ( ) = B(1+ ψ̃) (if the initial two-point function is dashed, then we obtain

B̃(1 + ψ̃) as an upper bound). Hence (B.45) for j = 1 follows. The terms for j ≥ 2 are bounded in the
same fashion.

This completes the proof of (B.2).

Proof of (B.3). We now turn towards the proof of the bound (B.3) in Proposition B.1, which we restate
here for convenience: ∑

x

[1− cos(k · x)]π(N)

Λ (x) ≤ Ĉλz(k)−1(c̄Kβ)N∨1.

We start by considering the case N = 0. By (B.26) and (B.14),
∑

x

[1− cos(k · x)]π(0)

Λ (x) ≤
∑

x 6=0

[1− cos(k · x)]G3(x). (B.48)

This is bounded above by

(
sup

x
[1− cos(k · x)]G(x)

)
∑

x6=0

G2(x)


 ≤

(
sup

x
[1− cos(k · x)]G(x)

)
B̃. (B.49)

Then the desired bound follows from (B.9) and the following lemma:
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Lemma B.5. Under the assumptions of Proposition B.1,

sup
x

[1− cos(k · x)]G(x) ≤ 200K Ĉλz(k)−1(Cλz ∗ Cλz)(0). (B.50)

Casually speaking, the multiplication by [1− cos(k · x)] yields a factor Ĉλz(k)−1 at the expense of
adding an extra vertex in the bounding (C-)diagram. In fact, we need only that Ĉλz(k)−1O(1) is an
upper bound.

Proof of Lemma B.5. Since

sup
x

[1− cos(k · x)]G(x) = sup
x

∫

[−π,π)d
e−il·x

(
Ĝz(l)− 1

2

(
Ĝz(l − k) + Ĝz(l + k)

))
dl

(2π)d

≤
∫

[−π,π)d

∣∣∣∣Ĝz(l)− 1
2

(
Ĝz(l − k) + Ĝz(l + k)

)∣∣∣∣
dl

(2π)d

=
∫

[−π,π)d

∣∣∣∣
1
2
∆k Ĝ(l)

∣∣∣∣
dl

(2π)d
, (B.51)

our bound f3 ≤ K implies that

sup
x

[1− cos(k · x)]G(x)

≤ 100K Ĉλz(k)−1

∫

[−π,π)d

(
Ĉλz(l − k) Ĉλz(l + k) + Ĉλz(l − k) Ĉλz(l) + Ĉλz(l) Ĉλz(l + k)

) dl

(2π)d
.

(B.52)

Denoting Cλz ,k(x) := cos(k · x)Cλz(x), we observe that |Cλz ,k(x)| ≤ Cλz(x) and

Ĉλz ,k(l) =
1
2

(
Ĉλz(l − k) + Ĉλz(l + k)

)
. (B.53)

Hence,
∫

[−π,π)d

(
Ĉλz(l − k) Ĉλz(l) + Ĉλz(l) Ĉλz(l + k)

) dl

(2π)d
= 2

∫

[−π,π)d
Ĉλz(l) Ĉλz ,k(l)

dl

(2π)d
(B.54)

= 2(Cλz ∗ Cλz ,k)(0) ≤ 2(Cλz ∗ Cλz)(0).

Furthermore,

Ĉλz(l − k) Ĉλz(l + k) =
1
4

[
Ĉλz(l − k) + Ĉλz(l + k)

]2
− 1

4

[
Ĉλz(l − k)− Ĉλz(l + k)

]2

≤ 1
4

[
Ĉλz(l − k) + Ĉλz(l + k)

]2
= Ĉλz ,k(l)2, (B.55)

so that
∫

[−π,π)d
Ĉλz(l − k) Ĉλz(l + k)

dl

(2π)d
≤

∫

[−π,π)d
Ĉλz ,k(l)2

dl

(2π)d
= (Cλz ,k ∗ Cλz ,k)(0) ≤ (Cλz ∗ Cλz)(0).

(B.56)
The combination of the above inequalities implies the claim.

For N > 0, our strategy is to break the term 1− cos(k · x) into parts using

1− cos t ≤ (2N + 3)
N∑

n=0

[1− cos tn] for t =
N∑

n=0

tn (B.57)
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from [13, (4.51)], which is reminiscent of the decomposition of squares in [37, (5.39)].
In the case N = 1 this allows for the following calculation. Recall from Prop. B.2 the upper bound

on π(1)

Λ (x). An application of (B.57) for N = 1 yields

∑
x

[1− cos(k · x)]π(1)

Λ (x) ≤
∑

x

[1− cos(k · x)] 0 x

≤ 5

(
+

)
. (B.58)

In (B.58) we extend our pictorial representation to incorporate factors of the form [1− cos(k ·x)]. Here
a double line between two points, say y1 and y2, represents a factor [1− cos(k · (y1 − y2))]G(y1 − y2),
while, as before, a normal line represents a factor G(y1−y2). For the second summand in (B.58) , there
is not a single two-point function between the two endpoints of the double line. Here our understanding
is that

=
∑
x,y

[1− cos(k · (x− y))] 0 x

y .

(B.59)

In other words, the double line between the two points y and x gives rise to the factor [1−cos(k ·(x−y))].
The first term in (B.58) is estimated like

≤
(i)

(iii)

(iv)

(ii)

,
(B.60)

which yields factors BĈλz(k)−1 arising from (i) by Lemma B.5, B from (ii), B̃ from (iii), and O(1)
from (iv) by Claim B.3. Thus,

≤ Ĉλz(k)−1O(β). (B.61)

For the second term in (B.58) we bound

≤ ≤ B2 ·
,

(B.62)

The remaining factor supy

∑
w,x[1− cos(k · x)] τD(w − y)Q′

0(w, x) is bounded by the following claim:

Claim B.6. Under the assumptions of Proposition B.1,

= sup
y

∑
w,x

[1− cos(k · x)] τD(w − y)Q′
0(w, x) ≤ Ĉλz(k)−1O(β). (B.63)

Proof. By (B.23),

sup
y

∑
w,x

[1−cos(k·x)] τD(w−y)Q′
0(w, x) = sup

y

∑
w,x,z

[1−cos(k·x)] τD(w−y)
∞∑

j=0

(
δw,z + G̃z(w, z)

)
P ′(j)

0 (z, x).

(B.64)
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In diagrams, that is

≤ + +

(
+ +

)
+ · · · , (B.65)

where contributions according to j = 0, 1, 2 are shown explicitly and higher order contributions are
indicated by dots. When we have a series of connected double lines (like in the first term in parenthesis),
this indicates a factor [1 − cos(k · (y1 − y2))], where y1 is the starting point of the lines, and y2 is the
endpoint. We then use (B.57) to decompose the series of double lines. For example, for the first term
in parenthesis we obtain

≤ 7

(
+ +

)
,

and a similar bound holds for the second term. With Lemma B.5 it follows that the contribution from
j = 2 in (B.65) (the term in parenthesis) is bounded by O(β)3Ĉλz(k)−1. The method can be generalized
to j ≥ 3 showing

sup
y

∑
w,x,z

[1− cos(k · x)] τD(w − y)
(
δw,z + G̃z(w, z)

)
P ′(j)

0 (z, x) ≤ O(j2) O(β)j+1Ĉλz(k)−1. (B.66)

By (B.64), this is sufficient for (B.63).

For N > 1, we proceed by distributing the spatial displacement 1 − cos(k · x) along the “bottom
line” of the diagram. E.g., for N = 3, this yields

∑
x

[1− cos(k · x)]π(3)

Λ (x) ≤
∑

x

[1− cos(k · x)] 0 xQ’’ Q’’

= Q’’ Q’’

.
(B.67)

By (B.57), the right hand side of (B.67) is bounded above by 9 times

Q’’ Q’’ + Q’’ Q’’

+ Q’’ Q’’ + Q’’ Q’’

.
(B.68)

In the following we refer by (I), (II), (III) and (IV) to the four terms in (B.68), respectively. In fact,
all 4 terms are bounded by Ĉλz(k)−1 O(β)N , as we will show now.

The bound on (IV) is an immediate consequence of (i) and (iii) below (B.29), and Claim B.6. For
the bound on (I), we use translation invariance to obtain the factorization

︸ ︷︷ ︸
(I-1)

Q’’

︸ ︷︷ ︸
(I-2)

Q’’

︸ ︷︷ ︸
(I-3)

︸ ︷︷ ︸
(I-4)

.
(B.69)
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The terms indicated by
←−
Q ′′ in the diagram are obtaines from Q′′ by shifting the two-point functions

hanging off the left side of the Q′′-box to the next factor on the left hand side, i.e. (compare with (B.25))
←−
Q ′′

0,v(y, x) =
∑

z,z′
P ′′

0,v(y, z) τD(z′ − z)
(
δz′,x + G̃(z′, x)

)

+
∑

z,z′,w

G̃(y, w) P ′
0(w, z)ψ(y, v) τD(z′ − z)

(
δz′,x + G̃(z′, x)

)
(B.70)

= Q’’

vy

x0 z
z’

.

The first factor (I-1) is bounded by Ĉλz(k)−1O(β) as in (B.60). The middle terms (I-2) and (I-3)
are equal to supx

∑
v,y

←−
Q ′′

0,v(y, x). Performing calculations as in (B.40)–(B.42), it can be shown that
actually

sup
x

∑
v,y

←−
Q ′′

0,v(y, x) ≤ O(β), (B.71)

and this term occurs N − 1 times in (I). The last term (I-4) is bounded by O(1), cf. Claim B.3. The
bounds on (I-1)–(I-4) show that (I) ≤ Ĉλz(k)−1O(β)N .

The terms (II) and (III) are bounded in a similar fashion by product structures:

(II) ≤ Q’’ Q’’Q’’

,
(B.72)

(III) ≤ Q’’ Q’’

.
(B.73)

The term
∑

v,x P ′(0)
v (0, x) on the left hand side is bounded by O(1) by (B.30); the term

∑
u,x P ′

0(u, x)

(the gray triangle on the right) is bounded by O(1) by Claim B.3. The terms involving Q′′ and
←−
Q ′′ are

bounded by O(β) by (B.40) and (B.71), and together there are N − 2 of these terms.
It remains to show that

Q’’ ≤ Ĉλz(k)−1O(β)2, Q’’ ≤ Ĉλz(k)−1O(β)2. (B.74)

Here the dashed arrow indicates that the supremum is taken over the difference between the two
vertices at top and bottom of the arrow; see also [37, (5.46)]. In order to achieve the bounds in (B.74)
we proceed as follows. First we use (B.57) to distribute the spatial displacement of 1 − cos(k · x) to
single two-point functions G or G̃. Secondly, from each of the emerging summands, we eliminate the
term of the form supx,y[1−cos(k · (y−x))]G(x, y) (where x and y are chosen appropriately), and bound
it by Ĉλz(k)−1O(1), cf. Lemma B.5. Finally, we bound the remaining quantity in the same fashion
as in (B.40)–(B.42). Note that the removed bond is compensated by an extra bond hanging off the
lower / upper right corner. The factor β2 arises from the bubbles involving the two non-zero two-point
functions hanging off the box. This finally leads to the required bound

(II) + (III) ≤ Ĉλz(k)−1O(β)N , (B.75)

and thus proves (B.3). This completes the proof of Proposition B.1.
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pages 91–181. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
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