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Abstract

This paper considers a batch service polling system. We first study the case

in which the server visits the queues cyclically, considering three different service

regimes: gated, exhaustive, and globally gated. We subsequently analyze the case in

which the server first visits the queue with the ‘oldest’ customer. In both cases, queue

lengths and waiting times are the main performance measures under consideration.

1 Introduction

A polling system is a collection of queues, say Q1, . . . , QN , attended to by a single server. It

is usually assumed that the server visits the queues in a cyclic order: Q1, . . . , QN , Q1, . . . ,

employing some service discipline like exhaustive, gated or 1-limited service to serve the

customers at the various queues. Polling systems find their applications in a wide range
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of fields, from manufacturing (the server is a machine which produces items of various

types) via road traffic (the server is a traffic light at an intersection) to communications

(the server is a communication channel via which messages from various workstations and

file servers are being transmitted in a conflict-free way).

There exists a remarkably sharp distinction in the complexity of the analysis of polling

systems. If the service discipline of the server at each queue satisfies a certain branching

property, that allows the joint queue length process to be represented by a multi-type

branching process, then a detailed analysis is possible; cf. [6] and [11]. The exhaustive and

gated service policies do satisfy this branching property, but the 1-limited service policy

does not. Relatively little is known for polling systems in which the branching property is

violated, although so-called pseudo-conservation laws have been obtained for a very general

class of polling systems [4], which in turn have given rise to rather accurate approximations

of, in particular, mean waiting times.

There is a huge literature on the performance analysis of polling systems; see several surveys

of Takagi, like [14]. Remarkably, hardly any papers have been devoted to polling systems

in which the customers are not served individually but in batches. That is the topic of the

present paper.

In some applications, such ‘unlimited’ batch service arises quite naturally. Think of a

manufacturing system in which the server is an oven in which all available items of a

particular type may be heated at the same time, or a paint bath in which all available

items of a particular type, say textiles, may be painted simultaneously. Certain road traffic

situations (including the transportation of a group of items) and computer-communications

protocols may also reasonably accurately be modeled via a polling system with batch

service. Below we review a few studies in which polling systems with batch service were

studied, motivated by applications in computer-communications.
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Unlimited batch service models are considered in the context of teletext, videotex and

TDMA systems, as well as for central data-base operations. Ammar and Wong [2] studied

a teletext system with N queues, fed by independent Poisson arrival streams. Service times

in all queues are deterministic (slotted, unit time each), there are no switch-over times,

and the service discipline is locally gated. They showed that the policy which minimizes

mean response time is of a cyclic nature, with cycle length L ≥ N slots, in which queue i

is visited ki times, where
∑N

i=1 ki = L. Yet, the problem of finding the exact length L was

only partially resolved. Liu and Nain [9] examined a TDMA model with both the locally

gated and exhaustive regimes for the case of zero switching times and homogeneous arrival

process to all queues. Dykeman et al. [5] used Howard’s policy-iteration algorithm to

control a videotex system. They indicated that, even with equal and deterministic service

requirements, and with no switching times, the structure of the optimal policy could be

very complicated. Van Oyen and Teneketzis [10] formulated both a central data base sys-

tem and an Automated Guided Vehicle in a manufacturing system as a polling system with

an infinite-capacity batch service and zero switching times, where the controller observes

only the length of the queue at which the server is located. Van der Wal and Yechiali

[18] explored dynamic server’s visit-order policies in non-symmetric polling systems with

switch-in and switch-out times, where service is in batches of unlimited size. They concen-

trated on so-called ‘Hamiltonian tour’ policies in which - in order to give a fair treatment

to the various queues - the server attends every non-empty queue exactly once during each

cycle. The server then dynamically generates a new visit schedule at the start of each

round, depending on the current state of the system and on the various non-homogeneous

system parameters. Three service regimes were considered: Locally Gated, Exhaustive

and Globally Gated, and three different performance measures were examined. For each

combination of service regime and performance measure, the characteristics of the optimal

Hamiltonian tour were derived. Some of the resulting optimal policies are elegant index-
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type rules; others are the solutions of NP-Hard problems; while special cases are reduced

to Assignment problems with specific cost matrices.

Model description

We shall study the following polling model. A single server S visits N queues Q1, . . . , QN .

Customers arrive at these queues according to independent Poisson processes, with rate λi

at Qi, i = 1, . . . , N . S serves customers at Qi in a batch. The service time of this batch

is a random variable, that we shall generically denote by Bi, with Laplace-Stieltjes Trans-

form (LST) B̃i(·). We consider several service disciplines. The gated discipline operates

as follows. If, upon the arrival of S at Qi, there are X i
i > 0 customers present at Qi, then

S serves exactly those customers, in one batch, and then moves to the next queue. The

exhaustive service discipline operates as follows. If, after the batch service of X i
i , Qi is still

empty, then S moves to the next queue. Otherwise, S serves all waiting customers at Qi

in one batch, requiring another independent service time with the same distribution as Bi.

S continues serving such batches until Qi has become empty. Under the globally gated

discipline, S starts the cycle at Q1, recording Xj
1 customers present at that moment in Qj,

j = 1, . . . , N . Then, when visiting Qj thereafter, only those Xj
1 customers are served in

one batch. All jobs that arrive during the cycle will be served in the next cycle. In all

cyclic disciplines, when S leaves Qi, he switches to Qi+1. The switch-over time of S from

Qi to Qi+1 is a random variable that we shall generically denote by Di, with LST D̃i(·).

We shall furthermore make all the usual independence assumptions regarding the involved

inter-arrival intervals, service times and switch-over times.

Outline of the paper

In sections 2, 3 and 4 we study three variants in which the queues are polled cyclically.

Section 2 deals with the case in which all queues are served according to the gated discipline.
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We refer to the corresponding model as the locally gated model. In section 3 the case

is treated in which all queues are served exhaustively. In both sections we derive the

Probability Generating Function (PGF) of the joint queue length distribution as well as

the LST of the waiting time distribution at each queue. Section 4 considers the globally

gated case. We derive cycle time and waiting time distributions. Section 5 deals with the

non-cyclical variant in which after the visit of a queue the next queue to be visited is the

one with the most senior job, thus a First-Come-First-Served (FCFS) polling variant.

2 Locally gated batch service

2.1 Preliminaries

The single server S cyclically visits N queues Q1, . . . , QN . When S visits Qi, he serves all

customers present in one batch, and then moves to Qi+1. For this locally gated batch-service

polling model, we determine the PGF of the joint steady-state queue length distribution,

as well as the LST of the waiting time distribution of a class-i customer, i = 1, . . . , N .

Let us now introduce some further notation. In the sequel, I[·] shall denote an indicator

function. Furthermore, for i = 1, . . . , N :

Ai(t) = number of arrivals to Qi during a time interval of length t.

Xj
i = number of jobs in queue Qj when Qi is polled.

Vi = Vi(X
i
i ) = BiI[Xi

i>0] = the visit time of S to Qi.

Gi(z1, . . . , zN) = E [
N∏

j=1

z
Xj

i
j ].
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It is easily seen that the following ”laws of motion” hold for the Xj
i :

Xj
i+1 = Xj

i + Aj(Vi(X
i
i )) + Aj(Di), j 6= i, (1)

Xj
i+1 = Aj(Vi(X

i
i )) + Aj(Di), j = i.

While we present these laws of motion in terms of steady-state quantities, in reality we are

expressing the number of jobs in Qj at the nth visit of S to Qi+1 into that at Qj at the

nth visit of S to Qi. So we look one queue ahead. By doing this N successive times, we

can express the number of jobs in Qj at the (n+1)th visit of S to Qi into those at the nth

visit of S to Qi.

Introducing σ(z1, . . . , zN) =
∑N

j=1 λj(1−zj), it follows that, for i = 1, . . . , N (with GN+1 =

G1):

Gi+1(z1, . . . , zN) = E[z
X1

i
1 . . . z

Xi−1
i

i−1 z
Xi+1

i
i+1 . . . z

XN
i

N I[Xi
i>0]]B̃i(σ(z1, . . . , zN))D̃i(σ(z1, . . . , zN))

+ E[z
X1

i
1 . . . z

Xi−1
i

i−1 z
Xi+1

i
i+1 . . . z

XN
i

N I[Xi
i=0]]D̃i(σ(z1, . . . , zN)) (2)

= Gi(z1, . . . , zi−1, 1, zi+1, . . . , zN)B̃i(σ(z1, . . . , zN))D̃i(σ(z1, . . . , zN))

+ Gi(z1, . . . , zi−1, 0, zi+1, . . . , zN)[1 − B̃i(σ(z1, . . . , zN))]D̃i(σ(z1, . . . , zN)).

To develop insight into the structure of the solution of this recursion, we first consider the

special case of N = 2 queues in Subsection 2.2; the general case will subsequently be solved

in Subsection 2.3.
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2.2 The two-queue case

For N = 2, Formula (2) becomes:

G1(z1, z2) = G2(z1, 1)B̃2(σ(z1, z2))D̃2(σ(z1, z2)) (3)

+ G2(z1, 0)[1 − B̃2(σ(z1, z2))]D̃2(σ(z1, z2)),

G2(z1, z2) = G1(1, z2)B̃1(σ(z1, z2))D̃1(σ(z1, z2)) (4)

+ G1(0, z2)[1 − B̃1(σ(z1, z2))]D̃1(σ(z1, z2)).

It follows from (4) that G2(z1, 1) is expressed in G1(1, 1) and G1(0, 1); similarly, G2(z1, 0)

is expressed in G1(1, 0) and G1(0, 0). By substituting (4) with z2 = 1 (respectively, z2 = 0)

into (3), we are able to express G1(z1, z2) into known terms plus the four unknown constants

G1(1, 1) (which actually equals 1), G1(0, 1), G1(1, 0) and G1(0, 0):

G1(z1, z2) = {G1(1, 1)B̃1(σ(z1, 1))D̃1(σ(z1, 1))

+ G1(0, 1)[1 − B̃1(σ(z1, 1))]D̃1(σ(z1, 1))}

× B̃2(σ(z1, z2))D̃2(σ(z1, z2))

+ {G1(1, 0)B̃1(σ(z1, 0))D̃1(σ(z1, 0))

+ G1(0, 0)[1 − B̃1(σ(z1, 0))]D̃1(σ(z1, 0))}

× [1 − B̃2(σ(z1, z2))]D̃2(σ(z1, z2)). (5)

It remains to determine G1(0, 1), G1(1, 0) and G1(0, 0). Those three unknown constants

may be found by the substitutions {z1 = 0, z2 = 1}, {z1 = 1, z2 = 0} and {z1 = 0, z2 = 0}

into (5), resulting in three linear equations with three unknowns.
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The above yields the following insight. To determine the PGF Gi(z1, z2), what really

matters is whether a queue is empty or not when server S visits it. If it is non-empty, the

actual queue size does not have an effect on the visit time. Hence the joint queue length

distribution at a visit epoch of S at, say, Q1 is determined by the four possible events both

Q1 and Q2 non-empty at the last previous visit of S to Q1, . . . , both Q1 and Q2 empty at

the last previous visit of S to Q1. Q1 being non-empty at the previous visit has probability

P(X1
1 > 0) = G1(1, 1) − G1(0, 1) = 1 − G1(0, 1), etc.

It should be noticed that the process {(U (n)
1 , U

(n)
2 ), n = 1, 2, . . . }, with U

(n)
i = 1 (0)

denoting that Qi is non-empty (resp., empty) at the nth visit of S to Q1 is a two-dimensional

Markov chain. This Markov chain is irreducible, aperiodic and positive-recurrent, and

hence has a unique non-negative steady-state solution. With an obvious notation, we have:

P(U1 = 1, U2 = 1) = 1 − G1(1, 0) − G1(0, 1) + G1(0, 0), . . . , P(U1 = 0, U2 = 0) = G1(0, 0).

2.3 The N-queue case

The insight obtained in the previous subsection for the case of 2 queues readily allows

us to obtain the structure of the solution of the case of an arbitrary number of queues.

N successive substitutions of (2) result in an expression of G1(z1, . . . , zN) into the 2N

unknown constants G1(1, 1, . . . , 1), . . . , G1(0, 0, . . . , 0). These 2N constants (of which

the first actually equals 1) can be obtained by determining the unique steady-state so-

lution of an N -dimensional irreducible, aperiodic and positive-recurrent Markov chain

{(U (n)
1 , . . . , U

(n)
N ), n = 1, 2, . . . }, with U

(n)
i = 1 (0) denoting that Qi is non-empty (resp.

empty) at the nth polling instant of S to Q1.

The rationale behind this solution structure is that, for determining the steady-state joint

queue length distribution at a visit of S to Q1, what really matters is whether Q1, . . . , QN

were empty or not at the last previous visit of S to Q1; not what their actual queue lengths
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were. The probabilities of those events are obtained by solving an N -dimensional Markov

chain with 2N states.

Remark 2.1

It easily follows from (1) that the mean number of customers in Qj when S polls Qi,

f j
i := EXj

i , satisfies (with EVi the mean visit period of S at Qi):

f j
i+1 = f j

i + λjEVi + λjEDi, j 6= i, (6)

f j
i+1 = λjEVi + λjEDi, j = i.

Summing (6) over all i yields:

f j
j = λj

N∑
i=1

(EVi + EDi), (7)

where EVi = P(X i
i > 0)EBi = [Gi(1, . . . , 1, . . . , 1) − Gi(1, . . . , 0, . . . , 1)]EBi, the 1 (resp.

0) appearing at the ith position. Notice that those Gi(. . . ) have to be determined via

the solution of a Markov chain, as discussed above. Also notice that f j
j equals the mean

number of arrivals at Qj during one cycle time and that, via (6), f j
i is readily expressed in

f j
j and the mean visit periods at Qj, . . . , Qi−1. In particular, focussing on the number of

customers in Q1, f 1
1 is given by (7) while

f 1
i = λ1

i−1∑
k=1

(EVk + EDk), i = 2, . . . , N. (8)

2.4 Waiting times

In this subsection we study the waiting time Wi of an arbitrary customer at Qi in steady

state. First we make the following observation about queue lengths. Once the PGF
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Gi(z1, . . . , zN) of the joint queue length distribution when S polls Qi has been determined

for i = 1, . . . , N , it is straightforward to derive the PGF of the joint queue length distri-

bution at the instant at which S begins a switch-over time from Qi to the next queue,

i = 1, . . . , N . Subsequently, it is not hard to determine the PGF Gvisit
i (·) of the joint queue

length distribution during a visit to Qi (respectively, the PGF Gswitch
i (·) of the joint queue

length distribution during a switch from Qi to Qi+1). Taking an appropriate weighted

average, one finally obtains the PGF of the joint steady-state queue length distribution,

and hence also the mean steady-state queue length at any queue Qi. That brings us back

to waiting times: Application of Little’s formula yields the mean time a type-i customer

spends in the system (waiting plus in service).

It is somewhat more complicated to derive the (LST of the) waiting time distribution.

Consider a tagged type-i customer. Conditioning on the type of interval during which

that tagged customer arrived: a visit of S to Qj, or a switch-over from Qj to Qj+1,

one can determine the conditional waiting time LST. We refrain from working out the

details. Instead, we sketch the approach by determining the conditional LST of the waiting

time of a tagged type-3 customer who has arrived during a non-empty visit of S to Q1

(respectively, during a switch of S from Q1 to Q2). Let p
(0)
1,2 = Gvisit

1 (1, 0, 1, . . . , 1) denote

the probability that Q2 is empty at an arbitrary visit epoch of S to Q1. Similarly, define

q
(0)
1,2 = Gswitch

1 (1, 0, 1, . . . , 1) to be the probability that Q2 is empty at an arbitrary switch-

over epoch of S from Q1 to Q2. Let B
(res)
1 denote the residual part (overshoot) of the

ongoing batch service at Q1, with density P(B1 > x)/EB1. We define D
(res)
1 similarly.
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Then

E[e−ωW3 |the tagged customer arrived while S was serving Q1]

= (1 − p
(0)
1,2)E[e−ω(B

(res)
1 +D1+B2+D2)]

+ p
(0)
1,2

∫ ∞

0

e−ωtdP(B
(res)
1 + D1 < t)e−λ2tE[e−ωD2 ]

+ p
(0)
1,2

∫ ∞

0

e−ωtdP(B
(res)
1 + D1 < t)(1 − e−λ2t)E[e−ω(B2+D2)]

= E[e−ω(B
(res)
1 +D1+B2+D2)]

+ p
(0)
1,2E[e−(ω+λ2)(B

(res)
1 +D1)]E[e−ωD2 ][1 − E[e−ωB2 ]]. (9)

Similarly,

E[e−ωW3|the tagged customer arrived while S was switching from Q1 to Q2]

= (1 − q
(0)
1,2)E[e−ω(D

(res)
1 +B2+D2)]

+ q
(0)
1,2

∫ ∞

0

e−ωtdP(D
(res)
1 < t)e−λ2tE[e−ωD2 ]

+ q
(0)
1,2

∫ ∞

0

e−ωtdP(D
(res)
1 < t)(1 − e−λ2t)E[e−ω(B2+D2)]

= E[e−ω(D
(res)
1 +B2+D2)] + q

(0)
1,2E[e−(ω+λ2)D

(res)
1 ]E[e−ωD2 ][1 − E[e−ωB2 ]]. (10)
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3 Exhaustive batch service

The model studied in this section differs from the batch-service gated polling model of the

previous section in only one respect: When S visits a non-empty queue, and the queue has

not become empty at the end of a batch service, then S performs yet another batch service

for those customers who have arrived at that queue during the previous batch service, and

so on, until the queue has become empty. It follows from [18] that the LST φi(s) of a

non-zero visit period of Qi is now given by

φi(s) =
B̃i(s + λi)

1 − B̃i(s) + B̃i(s + λi)
. (11)

The ”laws of motion” for the numbers of customers Xj
i at Qj when S visits Qi are now

given by:

Xj
i+1 = Xj

i + Aj(Vi(X
i
i )) + Aj(Di), j 6= i, (12)

Xj
i+1 = Aj(Di), j = i.

This leads to the following recursion for the PGF’s Gi(z1, . . . , zN) of the numbers of cus-

tomers at the various queues when S arrives at Qi: With σi(z1, . . . , zN) :=
∑

j 6=i λj(1−zj),

Gi+1(z1, . . . , zN) = E[z
X1

i
1 . . . z

Xi−1
i

i−1 z
Xi+1

i
i+1 . . . z

XN
i

N I[Xi
i>0]]φi(σi(z1, . . . , zN))D̃i(σ(z1, . . . , zN))

+ E[z
X1

i
1 . . . z

Xi−1
i

i−1 z
Xi+1

i
i+1 . . . z

XN
i

N I[Xi
i=0]]D̃i(σ(z1, . . . , zN))

= Gi(z1, . . . , zi−1, 1, zi+1, . . . , zN)φi(σi(z1, . . . , zN))D̃i(σ(z1, . . . , zN)) (13)

+ Gi(z1, . . . , zi−1, 0, zi+1, . . . , zN)[1 − φi(σi(z1, . . . , zN))]D̃i(σ(z1, . . . , zN)).

The PGF Gi(z1, . . . , zN) can be solved in exactly the same way as for the gated case, ex-

pressing it into the 2N constants G1(1, 1, . . . , 1), . . . , G1(0, 0, . . . , 0).
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Remark 3.1

It follows from (13) that the mean numbers of customers f j
i := EXj

i satisfy (with EVi the

mean visit period of S at Qi):

f j
i+1 = f j

i + λjEVi + λjEDi, j 6= i, (14)

f j
i+1 = λjEDi, j = i.

Summing (14) over all i yields:

f j
j = λj

∑
i6=j

(EVi + EDi) + λjEDj, (15)

where EVi = EBi
P(Xi

i>0)

B̃i(λi)
= EBi

Gi(1,...,1,...,1)−Gi(1,...,0,...,1)

B̃i(λi)
, with a 1 (resp., 0) in Gi appear-

ing at the ith position. Again, those Gi(. . . ) have to be determined via the solution of a

Markov chain.

Remark 3.2

The cyclic polling model with exhaustive batch service is closely related to the cyclic polling

model with a single buffer at each station. In the latter model, there can be at most one

customer in each station, and customers finding a full buffer are rejected. The similarity

becomes clear by identifying the visit time at Qi in our exhaustive batch service model

with the service time at Qi in the single buffer model. In the analysis of the single buffer

model, the Markov process of numbers of customers (0 or 1) at particular embedded epochs

like server visit epochs or service completion epochs plays a key role. We refer to [13, 16]

(non-zero switchover times) and [17] (zero switchover times). See also Takine et al. [15]

who analyse the departure process of a symmetric polling system with a single buffer at
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each station, and Lee & Sunjaya [8] who study a random polling system with single buffers

and correlated inputs.

Remark 3.3

Resing [11] has pointed out that there exists a close connection between multi-class branch-

ing processes and polling models with the following service discipline: When S visits a

queue, it treats all customers initially present at that queue in stochastically the same

way. E.g., it serves exactly those customers and nobody else (gated service), or it serves

those customers, plus all those arriving during their service, and those arriving during the

services of those, etc. (exhaustive service). Binomial gated also falls in this ”multitype

branching” class: Each customer is included in the batch with the same probability p. If

we allow binomial gated in our batch service case, then we loose the nice feature that it is

sufficient to know the probability that a queue is empty upon its visit. We do retain that

feature if all those present upon the visit of S are served in one batch service, while each

of those who have arrived during that batch service are served in a second batch service

with the same probability p. More generally: If we are able to determine the PGF of the

number of customers who are present in Qi at the end of a non-zero visit of S to Qi, and

that number does not depend on the number of customers present at the beginning of that

visit, then the approach of this and the previous section can be applied. In particular,

our approach can in principle be applied when S serves a batch of all customers present

at the beginning of his visit, and subsequently applies some - any - rule to proceed af-

ter that batch service, as long as this rule does not depend on the number of customers

in that first batch. Formula (2) then is still valid, when we replace B̃i(σ(z1, . . . , zN)) by

Ṽi(σ̃(z1, . . . , zN)), where Ṽi denotes the LST of the length of a non-empty visit period and

σ̃ is a function that has to be specified. We’ll briefly outline the approach for the case

in which those who have arrived during the first batch service in Qi are, with a fixed
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probability pi, served during a second batch service. Then

Ṽi(σ̃(z1, . . . , zN)) = B̃i(
∑
j 6=i

λj(1 − zj) + λipi + λi(1 − pi)(1 − zi))

+ [B̃i(
∑
j 6=i

λj(1 − zj) + λi(1 − pi)(1 − zi)) (16)

− B̃i(
∑
j 6=i

λj(1 − zj) + λipi + λi(1 − pi)(1 − zi))]B̃i(
N∑

j=1

λj(1 − zj)).

The first term in the RHS corresponds to the case in which the first batch service is not

followed by a second batch service: Either there was no arrival at Qi, or if there were

arrivals, they were not chosen for service. Notice that the customers who arrive at Qi

during a first batch service and are not chosen for service form a Poisson process with rate

λi(1 − pi). The second term in the RHS corresponds to the case in which the first batch

service is followed by a second batch service. Its final factor, B̃i(
∑N

j=1 λj(1− zj)), denotes

the generating function of the joint distribution of numbers of arrivals at all N queues

during that second batch service.

We end this section with the observation that it should be apparent from the foregoing that

our approach also allows one to analyse a cyclic batch-service polling model in which some

queues are served according to the gated discipline and others according to the exhaustive

discipline.

4 Globally gated; cycle time and waiting time

In this section we consider the Globally Gated regime. Again, the queues are visited in

cyclic order: Q1, Q2, . . . , QN , Q1, etc. Whenever the server visits or passes Qi he always

needs a switch-over time Di, so the total switch-over time in a cycle is the sum over all

Di, even if one or more of the queues are empty and will not be served. The sum of the
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switch-over times is denoted by D, D =
∑N

i=1 Di, with D(t) as its distribution and D̃(·)

as its LST. In each cycle S serves only those queues that are non-empty at the start of

the cycle. So the cycle duration is D plus the sum of the Bi over the queues that are

non-empty. We shall obtain the cycle and waiting time distributions.

4.1 Queues visited in a cycle

Let A be the set of indices of the queues visited in the present cycle. So A can be any,

possibly empty, subset of {1, 2, . . . , N}. Define BA to be the total visit time to the queues

with indices in A, with BA(t) as its distribution and B̃A(·) as its LST.

Define pAA′ to be the probability that in the next cycle exactly the queues belonging (with

a slight abuse of notation) to A′ will be visited, so none of the queues not in A′, given that

in the present cycle the queues in A are visited.

Then

pAA′ =

∫ ∞

x=0

∫ ∞

y=0

∏
i∈A′

(1 − e−λi(x+y))
∏
j /∈A′

e−λj(x+y)dD(x)dBA(y).

4.2 Cycle time distribution

Given the total duration, t say, of cycle n, the duration of cycle n + 1 is just the sum of

the switch-over times and of the service times of the non-empty queues. Let the random

variable Cn denote the n-th cycle duration, Cn(t) be its distribution and C̃n(·) its LST.

Then
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E[e−ωCn+1|Cn = t] = D̃(ω)
N∏

i=1

[
(1 − e−λit)B̃i(ω) + e−λit

]
= D̃(ω)

N∏
i=1

[
B̃i(ω) + e−λit(1 − B̃i(ω))

]
. (17)

And without the conditioning

C̃n+1(ω) = E[e−ωCn+1 ] = D̃(ω)

∫ ∞

0

N∏
i=1

[
B̃i(ω) + e−λit(1 − B̃i(ω))

]
dCn(t)

= D̃(ω)
∑

A⊂{1,...,N}

∫ ∞

0

∏
i∈A

B̃i(ω)
∏
j /∈A

(1 − B̃j(ω)) e−
P

l/∈A λltdCn(t)

= D̃(ω)
∑

A⊂{1,...,N}

∏
i∈A

B̃i(ω)
∏
j /∈A

(1 − B̃j(ω)) C̃n(Σl /∈Aλl) . (18)

In steady state, denote the LST of the cycle time distribution by C̃(·). It satisfies (18) with

C̃n(·) replaced by C̃(·). As B̃(ω) is known, C̃(ω) is known once the coefficients C̃(Σi/∈A)λi)

are known. To obtain these coefficients one may substitute ω = Σi/∈Aλi for all A which

results in a linear system of 2N equations from which (in principle) the C̃(Σi/∈Aλi) can be

computed.

The fully symmetric case

In the fully symmetric case, i.e., with equal λi and equal Bi(·), (18) simplifies to

C̃n+1(ω) = D̃(ω)
N∑

l=0

(
N

l

)
B̃(ω)N−l(1 − B̃(ω))lC̃n(λl) .

In this case, instead of having to solve a system with 2N equations, we only get N equations

for the N unknowns C̃(λl) for l = 1, . . . , N .
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Empty cycles

So far we assumed that the server continues his trip along the queues even if it is known

that the next cycle will be ‘empty’, i.e., all queues are empty at the beginning of the cycle.

An alternative assumption would be that, if at the end of a cycle all queues are empty, the

server waits for the first arrival and only then starts the next cycle (in which thus exactly

one non-empty queue will be visited).

In this case the expressions of the previous section have to be modified a bit. The term

D̃(ω)
∏N

i=1 e−λit in (17) that corresponds to the next cycle starting with all queues empty

has to be replaced by

D̃(ω)e−
PN

i=1 λit

N∑
j=1

λj∑N
l=1 λl

B̃j(ω).

Of course, this modification also changes Equation (18).

4.3 Waiting times

Next let us consider the waiting time of an arbitrary customer. Recall that the queues are

always visited in the order Q1, Q2, . . . , QN , skipping empty queues. Consider a Qm job.

Now condition on the duration t of the cycle in which the job arrives. For an arbitrary

arrival the density of its arrival cycle duration is tdC(t)
E(C)

. Further, given the present cycle

duration t, the probability that queue l < m will be visited in the next cycle is 1 − e−λlt.

The waiting time Wm of a job of class m consists of two parts: the residual duration of

the arrival cycle and the waiting time in the next cycle. By (our) definition, a cycle starts

with a service time for Q1 or, if Q1 is empty, with the switch-over time D1 from Q1 to Q2.

Conditioning on the cycle duration t, the first part is U [0, t] distributed (uniform on [0, t]).

The second part consists of the switch-over times needed to reach Qm and the m− 1 visit

18



times (with possibly 0 duration) to the queues 1 up to m − 1.

This results in:

Ee−ωWm =
m−1∏
i=1

D̃i(ω)

∫ ∞

0

(
1 − e−ωt

tω

) m−1∏
l=1

(
(1 − e−λlt)B̃l(ω) + e−λlt

) t

E(C)
dC(t)

=
m−1∏
i=1

D̃i(ω)

∫ ∞

0

(
1 − e−ωt

tω

) m−1∏
l=1

(
B̃l(ω) + (1 − B̃l(ω))e−λlt

) t

E(C)
dC(t)

=
m−1∏
i=1

D̃i(ω)
1

ωE(C)

∫ ∞

0

(1 − e−ωt)
∑

A⊂{1,...,m−1}

∏
l∈A

B̃l(ω)
∏
k/∈A

(1 − B̃k(ω))e−
P

l/∈A λltdC(t)

=
m−1∏
i=1

D̃i(ω)
1

ωE(C)

∑
A⊂{1,...,m−1}

∏
l∈A

B̃l(ω)
∏
k/∈A

(1 − B̃k(ω))
(
C̃(Σl /∈Aλl) − C̃(ω + Σl /∈Aλl)

)
.

In case all λl and all Bl(·) are equal, this simplifies to

Ee−ωWm =
m−1∏
i=1

D̃i(ω)
1

ωE(C)

m−1∑
l=0

(
m − 1

l

)
B̃(ω))m−1−l(1 − B̃(ω))l

(
C̃(λl) − C̃(ω + λl)

)
.

4.4 Mean waiting times and elevator polling

The (mean) waiting time of a class m job consists of three parts. The first part is the

residual duration of the cycle in which the job arrives. The second part is the sum of the

switch-over times in the next cycle before Qm is reached. The third part is the sum of the

visiting times to the non-empty queues among Q1 up to Qm−1. This results in:

EWm = ECres +
m−1∑
i=1

EDi +
m−1∑
i=1

∫ ∞

0

(1 − e−λit)EBi
t

EC
dC(t) (19)

= ECres +
m−1∑
i=1

EDi +
m−1∑
i=1

EBi(1 +
d

dλi

C̃(λi)

EC
)
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From this we immediately see that, as expected, the mean waiting time for jobs of class m

is increasing in m.

Elevator polling

To increase fairness one might use elevator polling [1]. In elevator polling the queues are

visited in the order Q1 up to QN in the odd cycles and in the order QN down to Q1 in

the even cycles. So the visit order is Q1, Q2, . . . , QN , QN , QN−1, . . . , Q1, Q1, Q2, etc. It

is assumed that the switch-over times from Qi to Qi+1 and from Qi+1 to Qi are equal

and both equal to Di. When changing directions, the switch-over times from QN to QN

and from Q1 to Q1 are zero. Then for the globally gated case the characteristics of ‘up’

cycles (Q1, Q2, . . . , QN) and ‘down’ cycles (QN , QN−1, . . . , Q1) are identical; the order has

no effect on the duration, hence no effect on the next cycle. To simplify the notation let

us write C̃
′
(λi) = d

dλi
C̃(λi). Then, using the expression (19) for both service orders, we

get the following mean waiting times for elevator polling :

EWm = ECres +
1

2

[
m−1∑
i=1

EDi +
m−1∑
i=1

EBi(1 +
C̃

′
(λi)

EC
) +

N−1∑
i=m

EDi +
N∑

i=m+1

EBi(1 +
C̃

′
(λi)

EC
)

]

= ECres +
1

2

[
N−1∑
i=1

EDi +
N∑

i=1

EBi(1 +
C̃

′
(λi)

EC
) − EBm(1 +

C̃
′
(λm)

EC
)

]
.

So, for elevator polling the only difference between the mean waiting times of the queues

is in the term EBm(1 + C̃
′
(λm)

EC
). From this we see that if all EBm and all λm are equal,

then so are the mean waiting times. But even if the EBm and λm are different then the

differences between the mean waiting times of the various queues are much smaller than

in (19).
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5 FCFS among queues

In this section it is assumed that the order in which the queues are served is not cyclic but

FCFS, i.e., based upon the first arrival in each non-empty queue. In other words, once the

server concludes a visit to a queue, the next queue to visit is the one with the most senior

job, i.e., the job that arrived first among all jobs present. As before, the server provides

batch service, and the number of jobs in a queue is not relevant for the batch service time.

Switch-over (set-up) times are assumed to be 0. Alternatively, if there is a set-up time when

a non-empty queue is polled, this set-up time is assumed to be part of the batch-service

time. We restrict ourselves to the case that all batch service times are i.i.d. and exponen-

tially distributed, with mean 1/µ, and that all classes have the same arrival rate λ (see also

Remarks 5.1 and 5.2). Some thought will reveal (see below) that the model under consid-

eration has the same structure as the classical ‘machine-repairman’ model, a relation that

has also been observed and used by Takagi [13] in a related model of single-message buffers.

We focus our attention on the distribution of the waiting time of an arbitrary customer.

In Subsection 5.1 the case of gated service, where gating is done at the end of the service

time, will be studied. Subsections 5.2 and 5.3 respectively consider the cases of exhaustive

service and of gated service, with gating at the beginning of service times.

5.1 Gated service with gating at the end of service

For the regime of gated service with gating at the end of service, when the server visits

Qi, all class-i jobs that arrive during the service at Qi are served in the same batch. So,

at the end of the service time, Qi is empty again. Note that gating at the end of a service

represents a very efficient service operation in which a queue is in fact exhaustively served

in one batch service.
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In the analysis it is useful to distinguish between the jobs arriving in an empty queue,

called first-arrivals, and the jobs that arrive when the queue is non-empty. Note that one

may associate with each job that is a first-arrival a ‘family’ of jobs that arrive during this

first-arrival’s response time. Conditioning on the first-arrival’s response time, x say, the

size of its family is Poisson distributed with mean λx and each job in its family will have

a uniformly U [0, x] distributed response time.

Let us first consider only the first-arrivals within a batch and ignore the other arrivals.

Then this system can be seen as a machine-repairman system. Each class alternates be-

tween two situations: 1) there is a job waiting to be served or in service, and 2) there is

no job to be served. If the server is seen as the ‘repairman’ and each class as a machine

(if the queue is empty the machine is ‘up’, and if the queue is non-empty, the machine is

‘down’), then the similarity with the machine-repairman model is clear.

As all service times are exponential and all arrival processes are independent Poisson pro-

cesses, the equilibrium distribution for the number of non-empty queues is easily obtained

from the balance equations. With p
(N)
k denoting the probability that k queues are non-

empty (k machines down) and N − k queues are empty (N − k machines up), one has – as

in the machine repairman model:

λ(N − k)p
(N)
k = µp

(N)
k+1 , k = 0, . . . , N − 1.

Hence, with ρ = λ/µ, the equilibrium state probabilities are

p
(N)
k = K(N) ρkN !

(N − k)!
, k = 0, . . . , N,

where K(N) = (
∑N

k=0
ρkN !

(N−k)!
)−1.
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The first-arrival’s waiting time

By the arrival theorem [12] that holds for the closed product-form network underlying the

machine-repairman model, each first-arrival sees the repairman queue in equilibrium as if

its own class has never been active – so as if there are only N −1 classes. Let Wfirst denote

the waiting time (not including service time) for a first-arrival. Then, with probability

p
(N−1)
k the first-arrival of a queue has to wait an Erlang(k, µ) time. Thus (cf. also [7] or [3]

for this result for the machine-repairman model):

E[e−ωWfirst ] = K(N−1)

N−1∑
k=0

ρk(N − 1)!

(N − 1 − k)!

(
µ

µ + ω

)k

.

Hence,

P [Wfirst = 0] = p
(N−1)
0 = K(N−1) ,

and the density fWfirst
(t), t > 0, of Wfirst satisfies

fWfirst
(t) = K(N−1)

N−1∑
k=1

ρk(N − 1)!

(N − 1 − k)!

µ(µt)k−1e−µt

(k − 1)!
, t > 0 .

Further,

EWfirst = K(N−1)

N−1∑
k=0

ρk(N − 1)!

(N − 1 − k)!

k

µ

=
K(N−1)

µ

N−1∑
k=0

ρk(N − 1)!

(N − 1 − k)!
[(N − 1) − (N − 1 − k)] (16)

=
N − 1

µ
− K(N−1)

µ

N−2∑
k=0

ρk(N − 2)!

(N − 2 − k)!
(N − 1)

=
N − 1

µ

(
1 − K(N−1)

K(N−2)

)
.
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The family member’s response time

For family members, the ‘non-first-arrivals’, it is more convenient to talk about response

times. The first-arrival’s response time Sfirst is the (independent) sum of its waiting

time and its (exponential) service time. All family members arrive during a first-arrival’s

response time. As the arrival processes are Poisson, the unconditional family member’s

response time is a residual first-arrival’s response time, with density P (Sfirst > t)/E(Sfirst).

The response time, overall

In order to get the response time of an arbitrary job, one only needs the probability that

an arrival is a first-arrival. Since per first-arrival there are on the average λE(Sfirst) non-

first-arrivals, the probability pfirst that a job is a first-arrival is 1/(1+λE(Sfirst)). So, with

probability pfirst a job has a first-arrival’s response time and with probability 1 − pfirst it

has a residual first-arrival’s response time.

5.2 Exhaustive service, gating at the beginning of service

Now consider the case of exhaustive service, with gating at the beginning of service. Then,

after the first arrival there is a stream of arrivals of the same class during the first-arrival’s

waiting time which are served together with it. However, customers of the same class

arriving during the batch service are not included in the current batch and form a new

batch. When a Qi service time is completed, it is checked whether there have been arrivals

to Qi during this service time. Such an event occurs with probability λ/(λ + µ). If so, a

new batch-service at Qi is started in which all jobs that arrived during the previous service

time are served in one batch. If at the end of this (second) service time again new arrivals

are found in Qi, then Qi gets yet another service time, etc. If we now consider the sum

of all these service times as the new generalized service time of Qi, then this generalized
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service time is again exponential, but with mean

1

1 − λ
λ+µ

1

µ
=

λ + µ

µ2
.

We can now use the results of the analysis of the previous subsection to determine the wait-

ing time distribution of a first-arrival: Just replace the exp(µ) service times by exp(µ2/(λ+

µ)) service times. The ones that arrive during the first-arrival’s waiting time get a response

time equal to a residual first-arrival’s waiting time plus an ordinary service time. All other

jobs arrive during a service time, so their response time is a residual service time. The

occurrence fractions of these three types of arrivals are determined by observing the fol-

lowing. Per first-arrival there are on average λE(Wfirst) arrivals during the waiting time.

The mean number of arrivals during the generalized service time is λ (λ + µ)/µ2.

Remark 5.1

When the arrival rates of the various classes are not the same, one still has a machine-

repairman model and it is possible to derive the waiting time distribution of a customer of

class i, i = 1, . . . , N . However, the analysis becomes more intricate and less elegant, and

it is omitted.

5.3 Gated service, gating at the beginning of service

There is an essential difference between the cases of Sections 5.1 and 5.2 and the case

of gated service with gating at the beginning of service. In these previous models, if the

(generalized) service time is completed, the queue is empty. For gating at the beginning of

service it is possible that during this service time a job corresponding to the same queue

arrives and initiates a new batch for the same queue as the one in service. Then this new

job (batch) has to join the tail of the repairman queue.
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When describing the state of the system let us again look at the number of ‘batch jobs’ at

the server and not at individual jobs.

Detailed state description

A detailed state description would contain the batch jobs at the server as well as their

order. In that set of jobs at most one class can be present twice; once in service and once

waiting. The one waiting can be anywhere in the line. We will not pursue this any further.

As we will see below, a simpler state description suffices.

Aggregated state description

A more aggregated state description is obtained using as states the pairs (k, s) and (k, d),

with k the number of different classes present at the server (including the one in service)

and s and d indicating whether these classes all have a single queue or that there is one

class having a double queue. So, in this state description, the order of the jobs (queues)

at the repairman is ignored. State 0 is the situation that the server is idle. With this

state description only two types of events are possible: a service completion or an arrival.

Immediately after the service completion each Q has at most one job at the repairman and

by symmetry all orders are ‘the same’.

Thus one gets the following (finite) set of balance equations for the steady-state probabil-

ities p(0), p(k, s) and p(k, d) for the states 0, (k, s) and (k, d); k = 1, . . . , N :

p(k, s)[ λ(N − k + 1) + µ ] = p(k, d)µ + p(k + 1, s)µ + p(k − 1, s)λ(N − k + 1), 0 < k < N,

p(N, s)[ λ + µ ] = p(N, d)µ + p(N − 1, s)λ,

p(k, d)[ λ(N − k) + µ ] = p(k, s)λ + p(k − 1, d)λ(N − k + 1), k = 2, . . . , N,

p(1, d)[ λ(N − 1) + µ ] = p(1, s)λ,

p(N, d)µ = p(N, s)λ + p(N − 1, d)λ,

p(0)λN = p(1, s)µ .
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These, together with the normalizing condition, easily yield the steady-state probabilities.

Computing the waiting time distribution from this equilibrium distribution is not straight-

forward. The distribution of the position of the second queue of the class in service is

needed. Consider an arbitrary arrival. With probability p(0) the arrival finds the server

idle, thus has a waiting time 0. For arrivals that find the server busy, consider the number

of classes at the end of the last service. With probability qk this number is k. We distin-

guish between three cases.

(i) This number is 0 as the result of a service completion in (1, s). Then it takes an exp(Nλ)

delay to generate a new arrival in state 0.

(ii) It is k (1 ≤ k < N) as the result of a service completion in either (k + 1, s) or (k, d).

(iii) It is N as the result of a service completion in (N, d).

Since all service times have the same exp(µ) distribution, the steady-state probabilities are

equal to the probabilities just before a service completion.

So we have for k = 1, . . . , N − 1:

q0 : qk : qN = p(1, s) : [p(k + 1, s) + p(k, d)] : p(N, d) .

So,

q0 = [1 − p(0)]−1p(1, s),

qk = [1 − p(0)]−1[p(k + 1, s) + p(k, d)] , k = 1, . . . , N − 1,

qN = [1 − p(0)]−1p(N, d).

Consider an arrival that finds the server busy. The probability that it arrives in a service

interval that started with k jobs left behind is qk. As it is well-known, the ’age’ of this

service time and its residual are independent and both exponential with rate µ. Let qk,l
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be the probability that, if the interval started with k batch jobs waiting, just before the

arrival there are exactly l classes not present in the repairman queue. Integration with

respect to the age distribution gives, for l = 0, 1, . . . , N − k, k = 1, . . . , N :

qk,l =

∫ ∞

0

(
N − k

l

)
(e−λx)l(1 − e−λx)N−k−lµe−µxdx

=

(
N − k

l

) N−k−l∑
j=0

(−1)N−k−l−j

(
N − k − l

j

)
µ

µ + λl + (N − k − l − j)λ
.

It should be noted that q0,l = q1,l: When the previous service completion left the system

empty, a new arrival after exp(Nλ) returns the system to state (1, s).

Next, given that l classes are absent just before the arrival, the probability that the new

arrival belongs to an absent class is l/N in which case it joins the tail of the line and gets

a waiting time that is Erlang(N − l + 1, µ). However, with probability (N − l)/N its class

is already present, in which case the arrival belongs to each class in the line with equal

probability: The position in the line of its class is uniform on [1, . . . , N − l]. Thus, given

the number of absent classes l, its waiting time density fW |l will be

fW |l(t) =
l

N

µ(µt)N−l

(N − l)!
e−µt +

N−l∑
m=1

1

N

µ(µt)m

m!
e−µt .

So the waiting time of an arbitrary job satisfies

P [W = 0] = p(0) ,

and has density

fW (t) =
N∑

k=0

qk

N−k∑
l=0

qk,lfW |l(t) , t > 0.

Remark 5.2

28



For the asymmetric case, with different arrival rates but the same service rate, the situation

is far more complicated. It seems that the states have to describe the order in the queue,

so that a detailed state description is needed.
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