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Abstract

To obtain insight in the quality of heavy-traffic approximations for queues with many
servers, we consider the steady-state number of waiting customers in an M/D/s queue
as s — oo. In the Halfin-Whitt regime, it is well known that this random variable con-
verges to the supremum of a Gaussian random walk. This paper develops methods that
yield more accurate results in terms of series expansions and inequalities for the proba-
bility of an empty queue, and the mean and variance of the queue length distribution.
This quantifies the relationship between the limiting system and the queue with a small
or moderate number of servers. The main idea is to view the M/D/s queue through
the prism of the Gaussian random walk: as for the standard Gaussian random walk, we
provide scalable series expansions involving terms that include the Riemann zeta function.
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mum; Riemann zeta function; Lerch’s transcendent; Spitzer’s identity; queues in heavy
traffic; Lambert W Function; corrected diffusion approximation.

AMS 2000 Subject Classification: 11M06, 30B40, 60G50, 60G51, 65B15.

1 Introduction

Heavy-traffic analysis is a popular tool to analyze stochastic networks, since the analysis of
a complicated network often reduces to the analysis of a much simpler (reflected) diffusion,
which may be of lower dimension than the original system. This makes the analysis of complex
systems tractable, and from a mathematical point of view, these results are appealing since
they can be made rigorous.

A downside of heavy-traffic analysis is that the results are of an asymptotic nature, and
only form an approximation for a finite-sized system. In a pioneering paper, Siegmund [31]
proposed a corrected diffusion approrimation for the waiting time in a single-server queue
(actually, Siegmund formulated his result in terms of a random walk). In heavy traffic,
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the workload distribution is approximated by an exponential distribution. Siegmund gave
a precise estimate of the correction term, nowadays a classic result and textbook material,
cf. Asmussen [2], p. 369. Siegmund’s first order correction has been extended recently by
Blanchet & Glynn [5], who give a full series expansion for the tail probability of the GI/GI/1
waiting time distribution in heavy traffic.

The results in [5, 31] correspond to the conventional heavy-traffic scaling. The present
paper considers corrected diffusion approximations for a heavy-traffic scaling known as the
Halfin-Whitt [12] regime. This regime considers queues where the number of servers grows
large as the system becomes critically loaded. The number of servers s is chosen according
to s = A + BV/\, where 8 is some positive constant. As the scaling parameter A tends to
infinity, the traffic intensity tends to one according to 1 — O(1/+/)). The Halfin-Whitt regime
is also known as the QED (Quality and Efficiency Driven) regime, due to the fact that, in
the limit, a system can be highly utilized (efficiency) while the waiting times stay relatively
small (quality). Also, setting the number of servers as s = A+ BV is often called square-root
staffing. This terminology is motivated by the emergence of large customer contact centers
which need to be staffed with agents, thus calling for accurate and scalable approximations
of multi-server queues. We refer to Gans et al. [11] and Mandelbaum [26] for overviews.

The Halfin-Whitt regime was formally introduced in [12] for a system with exponential
service times (G/M/s queue), although in [19] the same type of scaling was already applied
to the Erlang loss model (M/M/s/s queue). The extension of the results on the G/M/s
queue to non-exponential service times turned out to be challenging. The past few years
have witnessed a substantial effort to rise to this challenge, resulting in several papers on the
Halfin-Whitt regime for various types of service time distributions, cf. Puhalskii & Reiman
[29], Jelenkovié¢ et al. [20], Whitt [40], Mandelbaum & Momeéilovic [25], and Reed [30].

Although these results offer important qualitative insights and are useful to solve concrete
staffing problems, one would like to have a better understanding of the quality of the asymp-
totic approximations. For instance, how fast does convergence to the heavy-traffic limit take
place? It would be helpful to have asymptotic estimates or even inequalities from which we
could judge just how close the scaled queueing model is to its heavy-traffic limit. Borst et
al. [4] consider optimal staffing of an M/M/s queue in the Halfin-Whitt regime, and show
numerically that optimizing the system based on the Halfin-Whitt approximation (with s
infinite instead of finite) of the cost function is rarely off by more than a single agent from
systems with as few as 10 servers. As mentioned in the conclusions of [4], these observations
call for a theoretical foundation—a task we take up in the present paper.

1.1 Goals, results and insights

We now give a general description of the results obtained in this paper. We consider a multi-
server queue with arrival rate A, s servers and deterministic service times (set to 1). We let
the arrival rate of the system grow large and set s = A + 8v/\ for some constant 3 > 0. Our
main performance measure is the probability that the queue is empty. The model at hand
has been considered before by Jelenkovié¢ et al. [20] who showed that the scaled number of
waiting customers Q » converges to the maximum Mg of a Gaussian random walk with drift
—f, for which the emptiness probability is known. As A — oo, for 8 < 24/, there is the
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with ¢ the Riemann zeta function, see Chang & Peres [7], and Janssen & Van Leeuwaarden [15,
16]. The limiting result for P(Mg = 0) has the appealing property that the time to compute
it does not depend on the number of servers, which is the case for standard computational
procedures for the M/D/s queue, see e.g. Tijms [37] and Franx [10] and references therein.

The main aim of this paper is to obtain series expansions refining this asymptotic result.
These series expansions can be used in two ways. First of all, the series expansions quantify
the relationship between the limiting system and the queue with a small or moderate number
of servers. In addition, the first term (or first few terms) of these expansions have the correct
behavior as the number of servers grows large.

One insight we find particularly interesting is that our approximations are not based on the
parameter 3, but on a modification of it, which depends on s and is given by

a(s) = (=2s(1 = p+1np))/?, (2)

with p = A/s. This function converges to (3 as s — oo, cf. Lemma 7. Another insight we obtain
is that the resulting approximation P(M, ) = 0) is, in fact, a lower bound for P(Qx = 0).
We also obtain an upper bound, again involving the function «(s).

The model we consider may seem rather specific, but one should realize that obtaining
series expansions and bounds of this type is by no means a trivial task. The state of the
art for traditional corrected diffusion approximations does not go beyond the random walk,
and relies on the availability of the Wiener-Hopf factorization. In the Halfin-Whitt regime,
the limiting no-wait probability has been found in two cases only, namely for exponential
service times and for deterministic service times. We believe that the latter case is the most
challenging one.

We apply the methods developed in this paper to the M/M/s queue in [17], in which case the
Halfin-Whitt regime results in a non-degenerate limit for the Erlang C formula (probability
that a customer has to wait). There we obtain the same important insight: the Halfin-Whitt
approximation can be substantially improved when [ is replaced with a(s); this function is
the same for both models.

We finally like to point out that the results in this paper are all formulated for the special
case of Poisson arrivals, but the methodology we develop is applicable to more general models
(see Section 6). An additional motivation for considering deterministic service times is that
the number of waiting customers in the queue is related to a discrete bulk-service queue, which
has proven its relevance in a variety of applications (see [24], Chapter 5, for an overview).

1.2 Methodology

We now turn to a discussion and motivation of the techniques we use and develop in this

paper. The ratio of P(Qx = 0) and P(Ms = 0) serves as a primary measure of convergence
and should tend to one as A grows large. This ratio can be expressed as (using Spitzer’s
identity, cf. (17))

P(Qy = 0) 1.
st =exp { Y S (B(Ax < BVD) = P(3VI) ], (3)
where Ay, = (A — 1N/ VI and A;, a Poisson random variable with mean [\, and

P(z) = \/%_W /_x e " 2 du 4)
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the normal distribution function. To estimate (3) one can use Berry-Esseen bounds, but these
do not lead to sharp results (cf. Lemma 1). In order to get more precise estimates one can use
classical approximations for sums of i.i.d. random variables like saddlepoint approximations
or Edgeworth expansions (see [3, 21]). However, these require each quantity P(Ay < BVI) —
P(3V1) to be approximated separately and uniformly in I.

To get convenient asymptotic expansions, we follow a different approach: we bring IP’(AM <
BV1) into quasi-Gaussian form, a method that is standard in asymptotic analysis (for an
illuminating discussion see De Bruijn [6], pp. 67-71). The resulting asymptotic expansion for
e.g. the probability of an empty queue then contains terms of the type

Gr(a) = Zlk+1/2/ e_%l”Qz(:c)d:c, a,s ERT, ke, (5)
=1 a

where z(x) is some function that does not depend on [. This approach seems technical at
first sight but we believe it to be elegant and even intuitively appealing, as there is a clear
interpretation in terms of a change-of-measure argument, see the end of Section 2.

A large part of this paper deals with obtaining the quasi-Gaussian form, analyzing z(z),
and reformulating and estimating Gy (a) which is done in Section 4. A key result is Theorem
3, which gives a representation of Gy (a) for a large class of functions z(z); the only condition
that is imposed on z(z) is that z : [0,00) +— C is a continuous function satisfying z(z) =
O(exp(ex?)) for any € > 0 and that z(z) has a Taylor series around zero. To illustrate the
generality of our result, we note that Chang & Peres’ result (1) on the Gaussian random walk
can be viewed as a special case by taking z(z) = 1.

We focus on the case in which Ay has a Poisson distribution, which ensures a particularly
tractable form of z(x) yielding convenient computational schemes. This form is given in
Subsection 2.2 and studied in detail in Appendix A. The derivative of z(z) is related to
the Lambert W function; our treatment is self-contained, produces some important auxiliary
results, and is based on earlier results obtained by Szeg6 [33]. We include our analysis in a
separate appendix, since we believe it is interesting in its own right.

Theorem 3 yields a series expansion which can be truncated at a convenient point to obtain
high precision estimates of performance measures. Using classical methods, we can even
estimate the optimal truncation point of the series expansion. We illustrate these general
ideas by specializing them to the M/D/s queue in Subsection 4.3.

1.3 Organization

This paper is organized as follows. In Section 2 we introduce our model and provide short
proofs of results which can also be found in [20]. In particular we establish convergence of
the number of waiting customers to the maximum of the Gaussian random walk, and give a
rough Berry-Esseen bound. These results form a point of departure for the rest of the paper.
We also explain in Section 2 how our asymptotic analysis will be carried out. In Section 3,
for the emptiness probability, and the mean and variance of the queue length distribution,
we rewrite the Spitzer-type expressions into quasi-Gaussian expressions. The reformulation
and estimation of Gi(a) is carried out in Section 4. Section 5 focuses on lower and upper
bounds which have the correct asymptotic behavior in the Halfin-Whitt regime. We use the
quasi-Gaussian expression for the emptiness probability obtained in Section 3 to derive these
bounds. Conclusions and possible extensions are presented in Section 6.



2 The M/D/s queue and the Halfin-Whitt regime

We consider the M/D/s queue and keep track of the number of customers waiting in the
queue (without those in service) at the end of intervals equal to the constant service time
(which we set to one). Customers arrive according to a Poisson process with rate A and are
served by at most s servers. Let ), denote the number of customers waiting in the queue
at the end of interval n. The queueing process is then described by

Qant1=(Qxn+Arn—5)T, n=01,.... (6)

where 1 = max{0,z}, and A, , denotes the number of customers that arrived at the queue
during interval n. Obviously, the A, are ii.d. for all n, and copies of a Poisson random
variable Ay with mean \. It should be noted that due to the assumption of constant service
times, the customers which are being serviced at the end of the considered interval should
start within this interval, and for the same reason, the customers whose service is completed
during this interval should start before its beginning.

Assume that EAy, = A < s and let ) denote the random variable that follows the
stationary queue length distribution, i.e., @y is the weak limit of @) ,. Let

s=A+06VA, >0 (7)

Let {S, : n > 0} be a random walk with Sp =0, S,, = X; +... + X,, and X, X1, Xo,...
iid. random variables with EX < 0, and let M := max{S, : n > 0} denote the all-time
maximum. When X is normally distributed with mean —§ < 0 and variance 1 we speak
of the Gaussian random walk and denote its all-time maximum by Mg. We often use the
following notation which is standard in asymptotic analysis:

f(x) ~ an(x)a
n=0

by which we denote that, for every fixed integer k£ > 1,
k—1
Fl@) =" fal@) = fr(@)(1 +o(1)).
n=0

d . C . .
Let — denote convergence in distribution.

2.1 Basic results

The following theorem can be proved using a similar approach as in Jelenkovi¢ et al. [20].

Theorem 1. Define Q) = Qx/VA. As A — oo,

. A d
(i) Qx — Mg;

(i) P(Qx = 0) — P(Mp = 0);

(i) E[Q}] — E[Mﬁ] for any k > 0.



Proof. Proof of (i): Note that

Or 2 (Qx+ Ay — )T, (8)

with Ay = (A — A\)/V/A. Since Ay converges in distribution to the standard normal random
variable as A — 00, (i) follows from Theorem X.6.1 in Asmussen [2], if the family (A, A > 0)
is uniformly integrable. But this follows simply from the fact that E[fli] =1 for all \.
Proof of (ii): The result limsup,_,.. P(Qx = 0) < P(Mz = 0) follows from (i). To show the
liminf, note that from Spitzer’s identity (see (14))

A 1 .
InP =0)=-— -P(A 13). 9
nP(Qx=0) Zl(u>ﬂ) (9)
Taking the lim inf, applying Fatou’s lemma, and using that P(Al x> 18) — P(—BV1) yields

[e.9]
1
li fInP(Q -P(— =InP(Mz=0 10
im nf In ; l nP(Ms = 0), (10)
which proves (ii). Statement (iii) follows from (i) if we can prove the additional uniform
integrability condition supys y E[Q ¥ < oo for some constant N and any k. To prove this,
note that the Cramér-Lundberg-Kingman inequality states that P(Qy > 2) < e™5%, for any

s > 0 such that E[es(“i*_ﬁ)] < 1. After some straightforward computation, this inequality can
be rewritten into

A es/ﬁ—1—i>—s <0. 11
( ) s (11)
Since e — 1 —x < %xQe“, we see that any s is admissible that satisfies
2
%es/ﬁ - s <0. (12)
It is easy to see that s = (3 satisfies this inequality if A > N := (3/1n2)2. We conclude that
P(Qy > x) < e P" (13)

for any > 0 and any A > N. The uniform integrability condition supy. y E[Q%] < oo now
follows directly using for example the formula E| Q X fo v 1]P’(Q A > z)dz. O

As a consequence of Theorem 1 we know that P(Q = 0) (which equals P(Qy = 0)) tends
to P(Mg = 0) as X tends to infinity. We are interested in how fast the M/D/s queue in
the Halfin-Whitt regime approaches the Gaussian random walk, and so we take the ratio of
P(Qx = 0) and P(Mg = 0) as our measure of convergence. From Spitzer’s identity for random
walks (see Theorem 3.1 in [32]) we have

=1
—InP(M = :ZYPSZ>O (14)

which gives for the M/D/s queue

1 ol RO l)\
—InP(Qy = 0) ZI]ID Apy > 1s) :Z7 d e n(AY = (15)



where we choose A such that s = A+ v\ is integer-valued, i.e. A = %(23—1—52 —(4s8%4H1/?)
with s = 1,2,.... For the Gaussian random walk we have InPP(Mg = 0) as in (10). The
following can be proved using a Berry-Esseen bound.

Lemma 1. For w := %C(%) ~ 2.0899 there are the bounds

exp{;—;} < m < exp{%}. (16)

Proof. Along the same lines as Theorem 2 in [20]. From (15) and (10) we get

P(Qx = 0) — 1
m exp { ZZ; 7(P(—ﬂ\ﬁ) —P(Ap > ls))}
< oxp > TP(-BVT) ~ B(An > 19)] ). (a7)
Rewriting
|P(—BV1) — P(Ajp > 1s)| = [P(Ay < BVI) — P(BVI)] (18)

with Ay; = (Ax —Al)/v/Al and using the Berry-Esseen bound for the Poisson case (see Michel

[27])
- 4 30.6 1 4
P(Ay < 8V1) — P(BV1)| < min? -, } < .
| ( )\l_ﬂ ) (ﬁ )| = {5 1+ﬂ3l3/2 m = 5m
yields, upon substituting (19) into (17), the second inequality in (16). The first inequality in
(16) follows in a similar way. O

(19)

We should stress that the occurrence of ((2) in Lemma 1 is unrelated to the result (1) of
Chang & Peres [7].

2.2 Quasi-Gaussian form: motivation and outline

The bound in (16) does not reveal much information, except that convergence takes place at
rate O(1/ \/X) In order to get more precise estimates one can use a saddlepoint approximation
or an Edgeworth expansion. However, these are not very convenient, as they require each
element P(A,\l < ﬁﬂ) — P(ﬁﬂ) to be approximated separately due to its dependence on
[. One example would be the Edgeworth expansion for the Poisson distribution (see [3],
Eq. (4.18) on p. 96)

1

3852 _
o, (B2 — 1) + O(1/AD), (20)

P(Ai < pV1) = P(BV1)

which leads to the approximation

% (P(Ax < VD) - P(V)) = —#(i T 4. o)
AN T 6Vam = 2 Bre )

=1

It may not come as a surprise that (21) is not a good approximation because we neglect
all O(1/Al) terms in (20). Although including more terms in the Edgeworth expansion is
an option, we choose to get more convenient asymptotic expansions for IP’(AM < ﬁ\/Z) by
bringing it into quasi- Gaussian form.

Specifically, we prove the following theorem in Section 3.



Theorem 2.

—InP(Q ip / e~ 12y (x/V1s)da (22)

ﬁ\

in which ) A 12
a = (—25<1——+1n—)) : (23)
s s
a— 3 as A — oo,
p(n) =n"e”"v2mn/nl, (24)
and y' is a function analytic in |x| < 24/7 (see Appendix A, (138)).
For p there is Stirling’s formula, see Abramowitz-Stegun [1], 6.1.37 on p. 257,

1 1 > Dk
p) ~ 1= g T T D (25)
k=0

and for ¢/ there is the power series representation

2 1 > .
y(z) = 1— 3%+ ﬁx +. Zbix’, lz| < 24/ (26)
i=0

From an aesthetic viewpoint, expression (22) conveys much understanding about the character
of the convergence, since we have complete agreement with the Gaussian random walk (10)
when we would have A — oo. The deviations from the quasi-Gaussian random walk are
embodied by p Z 1, ¥ # 1 and a #Z . From (22) we see that there is the asymptotic
expansion

—InP(Q\=0) ~ \/_Zpks FHEG oy (@/V5), (27)

where -
Grla) =) 1FH1/2 / e 2157/ (1) dx. (28)
=1 a

Similar expressions, though somewhat more complicated than the one in (27), exist for
EQ) and Var@), (see Subsection 3.2) and these involve G} with & = 0,—1,—2... and
k = 1,0,—1..., respectively. We shall study Gj thoroughly, leading to series expansions,
asymptotics and bounds.

We close this section by giving an interpretation of the quasi-Gaussian form (22). Using,

see Appendix A, (132),
1 o0
ey ®

/ /2 (z/VTs)de = Vs / e 1572/ (3)da (30)
i "

we find from (22) that

and

_ oy =S L e ey ) s)da
InP(Qy = 0) _lz; I foooo —la?/2 (g /\/5)dx
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Figure 1: The function y/(z) for = € [—2,4].

As mentioned in the introduction, the resulting formula reveals that the summands of the
random walk associated with the M/D/s queue, and the summands of the Gaussian ran-
dom walk are absolutely continuous with respect to each other. The connecting measure
between the two densities has a density as well, and equals y'(-/y/s). Another interpretation
is that P(Q)\ = 0) is obtained by twisting the Gaussian distribution associated with Mg. The
associated Radon-Nikodym derivative can again be described in terms of y/(-/1/s).

3 From Spitzer-type expressions to quasi-(zaussian forms

In this section we show how to obtain the expression (22). In addition, we present similar
results for the mean and variance of the queue length.

3.1 Proof of Theorem 2

For n=0,1,... we let
P
Z L (32)
k=0
With p = A/s and n = [s (so that A\l =np), a

g(§) =€'"%, €eC, (33)

we then have from Szegd [33], p. 50 (also see Abramowitz-Stegun [1], 6.5.13 on p. 262),

00 nm le*n P
S e QY 1— e M, (N) = +7/0 q"(€)dE. (34)

il |
i 7! n!

Using this relation we can rewrite the Spitzer-type expression (15) as

~InP(Qr=0) = 1/22 B(e)de, (35)



with p(n) as defined in (25). We then consider the equation
f(y) = ~Ing(l—y) = g2°, (36)
with € C from which y is to be solved. We note that
F) =59 +39° + 3" + .., (37)

whence there is an analytic solution y(z) around x = 0 that satisfies y(x) = = + O(2?) as
x — 0. Furthermore, since f increases from 0 to oo as y increases from 0 to 1, we have
that y(x) increases from 0 to oo, and for any = > 0 there is a unique non-negative solution
y(x) =y of (36). Furthermore, we let

v=-21—-p+Inp), a= (s (38)
Then it holds that L 1 9
¢(p) = e 37 = ¢3!, (39)
and p 0o 1 o
ls —Lisa? —ga?
g5 (€)de = / e72 7y (2)de = —/ e 2"y (¢/Vis)dx. (40)
/0 A Vis Javi

Substituting (40) into (35) yields (22).

Lemma 2. The parameters o and (8 are related according to

e
= T stafva (41)

Proof. Follows from 1 — p = y(v'/?) = y(a/\/s), see Table 3.2, and

S — S — 1/2
g = A =2 L = e - L

s A\ VBTV T
O
We have that y(z)(1 — y(z))" Y2 =2 + t2?+ Za%+ .. (see Appendix A), and hence
1.2, 5 3
ﬁ:a—|—6\/§a + gz’ + (43)

3.2 Mean and variance of the queue length

Our primary characteristic in this paper is the probability of an empty queue. However, the
techniques that we develop can be applied to other characteristics like the mean and variance
of the queue length. From Spitzer’s identity it follows that the mean and variance of the
maximum M are given by Y7o, TE((S;")¥) with & = 1 and k = 2, respectively. For the
M/D/s queue this yields

EQ\ = Z% _Z —u(lj')7 (44)
Var@, = Z% Z (j—ls)Qe_l)‘(lj\T)]. (45)

~
Il
—
<
I
o~
)
+
=

10



This leads after considerable rewriting to

1/22 ( —Is(1 - )/Opq“(f)df) (46)

and
VarQ, = 1/22 P (= o1 = ) = (o) + (1= 25" 13p) [ ©)a€). (4

In a similar way as for P(Qx = 0), (46) and (47) can then be brought into the forms

ezl X s) [ 2
Nor —ZQR( )Zi}Q e " ﬂy'(x/@)dx], (48)
=1

efx2/2y/(:c/\/g)dx
avl

1,

EQx x/E[ pp(ls)
=1
G p(ls)
VarQ, = s[ll(a2lR2(p)+p) N

-3 (aVIor(e) o/ Vs)ot 9], (49)
where 1= 1
Rip)= L =1- 30—+ (50)
For the Gaussian random walk we have that (see [15])
EM; = i ( e *x2/2dx), (51)
—~\ Vol \/% N
VarMs = li:; ((525 + 1)\/—27 /M e 2dy — \/%_Wzl/?e—%ﬂ“). (52)

Ignoring the factors /s and s, we again have complete agreement with the Gaussian random
walk when A — co. The deviations from the Gaussian random walk are embodied by p # 1,
y' £ 1, 8 # « and the fact that R(p) #Z 1 when p < 1. The introduced notation is summarized
in Table 3.2.

4 Results for G},

In this section we give a reformulation of the function G in terms of a principal series
expansion. The level of generality is higher than needed for the M/D/s queue, as we consider
a large class of functions z(x) of which /() is just a special case. In Subsection 4.1 we derive
the Taylor series for the most general case. We also discuss some special cases that lead
to considerable reductions in complexity of the expressions. The principal series expansion
comprises terms involving s, z, a = «a/y/s and elementary functions, as well as a constant
Ly, not depending on a = «/+/s, which is more complicated. For this Ly we present an
asymptotic series as s — oo that can be used conveniently when the radius of convergence
ro of z(z) = 3772, b;z7 is not small (for instance 2,/ as in the pilot case z(z) = y/(z)). In

11



= A+BVA

S

p = /s

Y = —2(1—-p+1np)

o = Vm

« = afi= A
y(z) =  z-ta?+tat+. |zl <2y7

5= VA0 - yla/VE)

B = atgsPaligslal g g a/VEl <2vE
p(n) = n"e”"/2mn/nl ~ 1+ Hnt 4 sen T+

Table 1: Interrelations between some parameters and functions.

Subsection 4.1 we derive the principal series expansion. In Subsection 4.2 we investigate the
numerical evaluation of L in terms of the optimal truncation value of the series expansions.
In Subsection 4.3 we use this general result for the specific case of z(z) = ¢/(x) to derive series
expansions and asymptotics for P(Qx = 0). There is a clear connection with the Gaussian
random walk. In fact, results for the Gaussian random walk involve the function Gy for the
special case z(z) = 1.

4.1 Principal series expansion

We let z : [0,00) — C be a continuous function satisfying z(z) = O(exp(ez?)) for any & > 0,
and we assume that there is an ro > 0 such that z(x) is represented by its Taylor series
Z;‘io bjx’? for 0 < x < rg. We consider for s > 0 and integer %k the function

oo

Gi(a) = Zlk+1/2/ efélstZ(x)dx, a>0. (53)

=1 a

In the case that z(z) = 2 we have

Gi(a) = SiiEITk,i(a\/g)a (54)
where T}, ; is defined as
Ty.,i(b) = ZlkH/Q/ e 2l idy (55)
=1 b

with ¢ = 0,1,... and k € Z. The functions T} ; have been thoroughly investigated in [16],
Section 5, leading to analytic expressions. We now generalize this result to Gg.

Theorem 3. For k € Z and a < 2\/7/s we have that

2k+-2

9\ F+3/2 A1y = 2k—2 @ z(x) — S 4 bad
Gr(a) = (g) F(k+3/2){ Z 2;]{+72_] — bajr2 hla—/o kair:s : dx}

J=0

00 —18 r a
+ Lp-— Z C(=k—1r— 1/2)( 29) /0 2% 2 (x)dz, (56)
r=0

r!

12



where

00 o % i 2k+2 | 241 F41\ /2 it
_ k+1/2 —=lsx d - . Z _ i
Ly = Y I /0 ez (z(x)—ijxJ)dx+2ijF< : ><5> C(—k+3j/2)
=1 7=0 j=0
9\ k+3/2 koo /o
+ bopso <;) T(k+ 3/2)(;:; T 23>. (57)
Proof. We have -
Gl(a) = —z(a) ZlkH/Qe*%ls“Q. (58)
=1

The right-hand side of (58) can be expressed in terms of Lerch’s transcendent ®, defined as
the analytic continuation of the series

o0

O(z,t,0) =Y (v+n)'2", (59)
n=0
which converges for any real number v # 0,—1,—2,... if z and ¢ are any complex numbers

with either |z| < 1, or |z] = 1 and Re(t) > 1. Note that {(t) = ®(1,¢,1). Thus,
Gila) = —z(a)e 2 (e 25—k — L 1), (60)

We then use the important result derived by Bateman [9], §1.11(8) (with ((¢,v) := ®(1,¢,v)
the Hurwitz zeta function)

T(1-t)

1 en (Inz)"
O (z,t,v) = o (In1/2)" 1t + 2 ZOC(t—r,v) T (61)
which holds for |Inz| < 27, ¢t #1,2,3,..., and v # 0,—1,—2,..., as to obtain
9\ k+3/2 . o0 (—1sa2)"
G.(a) = —z(a) [r(k +3/2) (;> a LN (k- - 1/2)2T . (62)
r=0
Therefore
o\ F+3/22k42
Gi(a) + T(k +3/2) <g) Z bjal 23 =
§=0
o\ F+3/2 2%k+2 s o0 (—Lsa?)"
—I'(k+3/2) (;) (z(a)— Z(:) bja,j>a —z(a)ZOC(—k—r—l/Q)T
j= r=
(63)

The series on the second line of (63) converges uniformly in a with s'/2a € [0, ] and ¢ < 24/T,

13



so upon integrating the identity in (63) we get for %sa2 <c<2m

9\ k+3/2 2k+1 bjaj—2k—2
Gutw vk (2) 2 G gr e Ina} =
o\ F+3/2 ra k42
L —T(k+3/2) (;) / (z(x) - Z bjx3>x72k—3dx
> (_%S)T g
— Z ((=k—r—1/2) I / " z(x)dz, (64)
r=0 ) 0
where
. 9 k+3/2  2k+1 bjajf2k72
Lk = Efrol [Gk(a) =+ F(k + 3/2) <g> { ]:ZO m =+ b2k+2 1na}] . (65)

We shall determine L. It holds that, as a | 0O,

00 0o 2k+2 2k+2 oo 0o
Gk(a) — Z lkJrl/Q / e*%lst (Z(II,') _ Z blxl>dx + Z bz Z lk+l/2 / eiélSIQ{I;idx
=1 a i=0 i=0 =1 @
o o, 2%k+2 2k+2 -
Zlk“/Q/ e 2lsT (z(:c) - Z bixl>dx +o(1) + Z bis~ 2 Tri(av/s).
I=1 0 i=0 i=0

(66)

Here (54) has been used and the o(1) comes from the fact that z(z) — Z-forz bizt = O(2%+3)

(3
so that
2k+2

/Oa ¢ 3lse? (z(m) - Z; bixl’)dx - o((ls)%ﬁ) (67)

Now from Janssen & van Leeuwaarden [16], Section 5,

1- i [T 2 -
T = o [GEE a2 4 L Oa)

k+3/2 qi—2k—2 1

fori=0,1,...,2k+ 1 and

2k+43

5T Thopra(ay/s) = s 2 [ — T(k + 3/2)28"3/2 In(av/3) + Ly aps2 + O(a)
k+3/2
= —T(k+3/2) (;) In(ay/s) + s FT3/D Ly o0 4+ O(a).
Here

i+1

1 _/i+1
L,“-:—F(Z+ )22((—k—|—i/2), i=0,1,...,2k+1, (70)
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Lioys =Tk +3/2)2%2 (32

Therefore, as a | 0, we get

Gi(a)

Adding

OO oo
Zlk—l—l/Q/ e—ézsﬁ(
=1 0

2k+1

2k+2

z(x) — Z bl-:cZ)dx +o(1)
=0

k

= 27 +1

oNFF3/2 gim2k—2 1 i
;bi{r(k‘%m(g) 2k+2—¢+§r( 2 )(

2\ F13/2 1
bojesoD(k + 3/2) (g) [—1na—1n\/§+ j——ln\/ﬂ.
J

1 1
L)
2

9\ k+3/2 2k+1 bl —2k—2
7=0

(71)

at either side of (72) and letting a | 0, we find that Ly has the required value (57). Then (56)
follows from (64).

Some values of the Riemann zeta function ¢ are given in Table 4.1.

z (@) z (@)

-5.5 | -0.00267145801990 | 0.0 | -0.50000000000000
-5.0 | -0.00396825396825 | 0.5 | -1.46035450880959
-4.5 | -0.00309166924722 | 1.5 | 2.61237534868549
-4.0 0 2.0 1.64493406684823
-3.5 0.00444101133548 2.5 1.34148725725092
-3.0 | 0.00833333333333 3.0 1.20205690315959
-2.5 | 0.00851692877785 3.5 1.12673386731706
-2.0 0 4.0 1.08232323371114
-1.5 | -0.02548520188983 | 4.5 1.05470751076145
-1.0 | -0.08333333333333 | 5.0 1.03692775514337
-0.5 | -0.20788622497735 | 5.5 1.02520457995469

Table 2: Some values of the Riemann zeta function (.

0

We now give several special cases of Theorem 3. The next two corollaries focus on negative

values of k.

Corollary 1. For %sa2 <2m and k= -2,-3,..

Gi(a) =

-

2

S

/ a
)k+3 2 L'k + 3/2)/ 232 () da
0

. we have that

00 —lS r a
+ Lk—ZC(—k—r—l/Q)( 2') /Oxz’"z(x)dx,
r=0 ’

r

(74)

where Ly, = 72 1FH1/2 I e_%lst,z(x)dx (which follows from the definition of Ly, in (57) in

which all series over j vanish for k = —2,-3,..

15
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Corollary 2. For %sa2 < 27 and k = —1 we have that

G_i(a) — —<2§>1/2{1na+/0a@dx}

00 —lS r a
+ L_;— ZC(—T + 1/2)( 39) / 2% 2(x)dz, (75)
r=0 0

r!

where L_y = Y02, 1712 [2° ¢~ 3159 (5(z) — bo)dx — (2£)/*1n v/25.

Theorem 3 is meant for the case that a and the convergence radius rg of Z?io bjxj are gen-
eral. In the case that a < rg the expressions can be simplified considerably, as demonstrated
below. If a < ry we have

k j 00 i
[HTEE, S b
0

x2k+3 j—2k—2 (76)

j=2k+3

. )
. qJ+2r+1
bja

/0 ¥ 2 (x)dr = Z T (77)

J=0

As a consequence of (76) we have that the expression on the first line of (56)

N B> o .
ZQ]{:—I—Q—]'_ 2k+2 1A — 0 22k+3 z (78)
j=0

simplifies to
i bjai 2k
—=———— —by42Ina. (79)
§=0,j£2k+2 2k+2-7

Together with (77) this gives expressions for G (a) that are, apart from the L to which we
turn next, convenient for computation when a is small.

Lemma 3. For the first line of (57)

. o, 2%k+2 1 241 J+1\ /2 £
Zz’fﬂﬂ/o e 3lsw (z(m) = bjx])d:c+ 3 > obr (T) (g) C(—=k+3/2) (80)
=1 Jj=0 Jj=0

there is the asymptotic expression

J+1
2

SRS it (532) (2) 7 ctorrim, oo (51)

§=0,j#£2k+2

In case that b;T (%) = O(BY) for some B > 0, the asymptotic series in (81) is convergent
when s > 2B2%, with sum equal to (80).

16



Proof. Using

. | G+1)/2 | Ui
/ e~ 315 i g :l — / e tuU=D/2qy 21 2 r 1 , (82)
0 2 ls 0 2 \Us 2

we find that
0 ) L 2k+2 . ,
Zlk+1/2/ e zls ( Z b; xj)dx ~ Z b; Zlk+1/2/ e 2% iy
=1 0 j=2k+3  I=1
1 0 2 (]+1)/ ] + 1 .
j=2k+3 =1
This yields (81) since ((j/2 — k) = >0, 173/2+F, 0

Remark 4. The series expansion (56) for Gi(a) comprises, as a | 0, leading order terms
involving a/=2=2, j = 0,1,...,2k + 1, and Ina when & = —1,0,1,..., and Gi(a) stays
bounded as a | 0 for kK = —2,—3,—4,.... In most cases we are interested in, the value of a
is quite small (say < 0.1). The formula in (56) can be used conveniently for computation of
G (a) for values of a from 0 to as large as \/m. For larger values of a, we present in Appendix
A formula (163) as an attractive alternative to compute Gg(a). This alternative shows, for
instance, quite clearly an exp(—3(s + 1)a®)-behavior of Gy (a) as a gets large.

Remark 5. Chang & Peres [7], Theorem 1.1, proved that

P(Ms =0) = fﬁeXp{\/—Zi'g/f;I))( 52) } (84)

for 0 < 8 < 2y/m. This result follows easily from Theorem 3, for the case z(x) =1, a = §/+/s
and k= —1.

For general k, setting z(x) =1 and a = 3//s in Theorem 3 leads to the following result.

Lemma 4. For 3 < 2y/7 and k € Z we have that

oo ke 1 820,
> P-4V - FZ 0 e )2)( D)+ ruo), (85)

where R_1(B) = —Inv/28 and

1 I(k+3 )

i (B) = Vor 2k+2

oh+3 g-2b-2 | %C(—k‘)’ k£ —1. (86)

4.2 Optimal truncation value

Lemma 3 can be deployed in two ways. We can take only the first few terms to get a good
idea of how things behave (see Subsection 4.3), or for the numerical evaluation of Ly, we take
as many terms as needed using optimal truncation. The optimal truncation value J of (81)

17



is so large (see developments below) that we can replace ((—k + J/2) by 1. The truncation
error made by approximating (80) by

J : (+1)/2
1 j+1 2 .
5 X () (3) cerriny (87)
§=0,j#2k+2
is of the order (7422
1 J+2 2
ibJHF <T> (g) - (88)
We replace, furthermore, byy1 = (J + 2)ajy2 by its asymptotic bound, see Appendix A,
Lemma 13,
Jao\“V2 /o1 \TH2
i< (7)) (7) )
Thus

o (132071 (aen) () ()

The factor (1/2(J + 2))/? is rather unimportant for determination of the optimal truncation
value J, and we focus on

42 1\ (+2)/2
D (L) (1) o
Noting that T'(J/2 + 3/2)/T'(J/2 4 1) = (J/2 + 1)1/2, we see that
1/2 1/2
Dy ~ (J+2> (L) ' (92)
DJ 2 21s

The right-hand side of (92) decreases in J until J/24 1 = 2s; this J is (near to) the optimal
truncation point. At this point we estimate the right-hand side of (90) by Stirling’s formula
as

<L)“ ® L2rs) (L)m - (L>1/Q (2rs) 27120275 3 <L)m - oy

8rs 2rs 8s 2rs SV &

For instance, for s = 10 this equals 1072,

Remark 6. Observe how important it is that we have managed to show the good bound (89)
on |byy1]|. If, for instance, the 1/2,/7 in this bound were to be replaced by 1, the e~27¢ on the
far right of (93) would have to be replaced by e~*/2 and the resulting quantity v/2me=%/2/s
would be 0.0017 for s = 10.

4.3 Accurate approximations for the M/D/s queue

We can apply Theorem 3 to obtain accurate approximations for the emptiness probability
and the mean and variance of the queue length. By way of illustration, we do this in some
detail for P(Qy = 0) and briefly indicate at the end of this section how one can proceed for
the other cases.
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We have from (25) and (27) that

1 & _
—InP(@Qrx=0) ~ EZPM R RPN CYAVE)
k=0

1 _ _
= E(SWGA(OZ/\/E) ~ 138 V2G5 (a/vs) + ﬁs PG (/) + - )
(94)
The G_9, G_3, ... are bounded functions of a = a//y/s while G_1(a) behaves like
1/2
—(2%) / Inav2s as a 0. (95)

Accurate approximations to —InP(Q, = 0) are obtained by including 1,2, 3, ... terms of the
second line of (94) in which the G’s must be approximated. For the number of terms of the
asymptotic series in (94) to be included one could follow a truncation strategy (based on
(139), (152) and the bound G_j(a) < (£)V2((k), k = 2,3,...) pretty much as was done in
Subsection 4.2. We shall not pursue this point here.

We shall compute accurate approximations to G_(a) for £k = 1,2,.... We have from (74)
and (75) for a < 2/

Gr(a/y/s) = —<2§>1/2{1na/\/§+/0a/ﬁy/(2$dx}

00 _1ar ra/Vs
1, (=329) 2
N [ e, (96)
and for k =2,3,...,
9 —k+3/2 a/\/s
Gatalve) = = (2) T Tehra [T @
0
s —Llyr pa/vs
1y (=39) 2
+ Lk_ZOC(k_T_i) . /0 "y (z)dx. (97)
Here,
> 1/2 o0 1l 2 27T 1/2
L= 1Y / e~ 3157 (/ (z) — 1)dx — <?) In v/2s, (98)
=1 0
and for k =2,3,...,
L= Zl_kH/Q/ e_%lsx2y'(x)dx. (99)
=1 0
Below we specify the missing ingredients in (96)-(99).
e We have

a/\/s 1t - a/\/s X 7. J
y'(z)—1 / i—1 b ( @ )
-2 drxr = E bix? dr = E = —1 , 100
/o z 0 = ’ J\Vs (100)

J=1

and the computation of the series is feasible when 0 < «/\/s < 24/, the b; being
computable and O(1/(2y/7)).
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£ =0.01 (0.0141) B =0.1(0.1334)

a true (94)-1  (94)-2  (94)-3 a true (94)-1  (94)-2  (94)-3
0.0100 | 0.0268 0.0256 0.0267 0.0267 | 0.0983 | 0.2351 0.2265 0.2345 0.2343
0.0100 | 0.0225 0.0219 0.0225 0.0225 | 0.0988 | 0.2022 0.1980 0.2021 0.2021

5 | 0.0100 | 0.0190 0.0183 0.0190 0.0190 | 0.0993 | 0.1747 0.1730 0.1747 0.1746

10 | 0.0100 | 0.0174 0.0173 0.0174 0.0174 | 0.0995 | 0.1617 0.1609 0.1617 0.1617

20 | 0.0100 | 0.0164 0.0163 0.0164 0.0164 | 0.0996 | 0.1529 0.1525 0.1529 0.1529

50 | 0.0100 | 0.0155 0.0155 0.0155 0.0155 | 0.0998 | 0.1455 0.1453 0.1455 0.1455
100 | 0.0100 | 0.0151 0.0150 0.0151 0.0151 | 0.0998 | 0.1419 0.1418 0.1419 0.1419
200 | 0.0100 | 0.0148 0.0148 0.0148 0.0148 | 0.0999 | 0.1393 0.1393 0.1393 0.1393
500 | 0.0100 | 0.0145 0.0145 0.0145 0.0145 | 0.0999 | 0.1371 0.1371 0.1371 0.1371
B =02 (0.2518) B =05 (0.5203)

e! true (94)-1  (94)-2  (94)-3 e true (94)-1  (94)-2  (94)-3
0.1932 | 0.4105 0.3979 0.4092 0.4089 | 0.4573 | 0.7182 0.7049 0.7137 0.7134
0.1952 | 0.3613 0.3549 0.3611 0.3610 | 0.4699 | 0.6656 0.6586 0.6642 0.6641

51 0.1970 | 0.3185 0.3159 0.3185 0.3185 | 0.4811 | 0.6156 0.6125 0.6151 0.6151

10 | 0.1979 | 0.2979 0.2966  0.2979 0.2978 | 0.4867 | 0.5899 0.5883  0.5897  0.5897

20 | 0.1985 | 0.2838 0.2831 0.2837 0.2837 | 0.4906 | 0.5719 0.5710 0.5717 0.5717

50 | 0.1991 | 0.2716 0.2714 0.2716 0.2716 | 0.4941 | 0.5560 0.5557 0.5560  0.5560
100 | 0.1993 | 0.2657 0.2655 0.2657 0.2657 | 0.4958 | 0.5481 0.5479 0.5481 0.5481
200 | 0.1995 | 0.2615 0.2615 0.2615 0.2615 | 0.4970 | 0.5426 0.5425 0.5425 0.5425
500 | 0.1997 | 0.2579 0.2579  0.2579 0.2579 | 0.4981 | 0.5377 0.5376 0.5377 0.5377
7 =1 (0.8005) 5 =2 (0.9762)

e! true (94)-1  (94)-2  (94)-3 e true (94)-1  (94)-2  (94)-3
0.8299 | 0.9055 0.8973 0.8948 0.8945 | 1.3670 | 0.9835 0.9793 0.9636 0.9633
0.8790 | 0.8787 0.8746 0.8737 0.8736 | 1.5296 | 0.9799 0.9787 0.9674 0.9672

5109236 | 0.8511 0.8493 0.8489 0.8489 | 1.6948 | 0.9774 0.9770 0.9703 0.9703

10 | 0.9462 | 0.8364 0.8354 0.8352 0.8352 | 1.7835 | 0.9766 0.9764 0.9723 0.9723
20 | 0.9622 | 0.8259 0.8253 0.8252 0.8252 | 1.8473 | 0.9763 0.9762 0.9738 0.9738
50 | 0.9762 | 0.8165 0.8163 0.8162 0.8162 | 1.9040 | 0.9762 0.9761 0.9750 0.9750
100 | 0.9832 | 0.8118 0.8117 0.8117 0.8117 | 1.9324 | 0.9762 0.9761 0.9755 0.9755
200 | 0.9881 | 0.8085 0.8084 0.8084 0.8084 | 1.9524 | 0.9762 0.9762 0.9759 0.9759
500 | 0.9925 | 0.8056 0.8055 0.8055 0.8055 | 1.9700 | 0.9762 0.9762 0.9761 0.9761

N | »

N = ®»

N = ®»

Table 3: Series expansions for P(Qy = 0) based on (94). The values of P(Mg = 0) are given
between brackets.

e We have

o0

a//s a/\/s X b o n+j+1
n, /! n+j _ J
"y (x)dx / g bjz"dr = E _ <—) , (101
/0 ) Sntjr1l\Vs )

and the computation of the series is feasible when 0 < a/y/s < 2y/7. Furthermore
a/V's o0 o\t
(—lS)T/ ¥y (x)dx = )" ( ) . (102)
2 0 ]Zo 2r + ] +1 \/s

Since, see [15], Sec. 6, ((—r + 1)/rl = O(1/(2m)"), the computation of the series over r
at the right-hand side of (96) is feasible when o < 2y/7. A similar result holds for the
series over 7 at the right-hand side of (97).
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e We have by Lemma 3

j+1
o9 ]—2
0

Jj+1

L_j ~ %ijr (%) (%) i Ck+7/2), k=203, ..., (104)
j=0

for the series expressions at the right-hand sides of (98) and (99). The left-hand sides
of (103) and (104) can be accurately approximated by using the optimal truncation
approach of Subsection 4.2. Alternatively, assume that we include all three terms on
the second line of (94) (so that the truncation error is O(s~7/2)). We then include in
the right-hand side of (103) the terms with j = 1,2,3,4, and in the right-hand side of
(104) the terms with j = 1,2.

When we want to compute accurate approximations to EQ, and Var@,, we can use (48)
and (49), and then it becomes necessary to approximate Gj(a) with £k = 0 and k = 1 as
well. This can still be done by using Theorem 3 with its simplifications as pointed out in
Corollary 2 since z(z) = y/(z) has b; = O((2y/7) 7). Of course, there are a variety of ways to
proceed here, just like in case of —InP(Q) = 0) treated above. For the latter case, we have
just worked out one of the more straightforward methods.

Table 3 displays approximations to P(Q)y = 0) based on the series expansion (94). Results
are given for 1, 2, and 3 terms of the second line of (94), and the G’s are approximated as
described in this subsection. Clearly, the expansions provide sharp approximations, and in
most cases, one term suffices to get accurate results, i.e.,

P(Qr=0)~ exp{ — %G_l(a/ﬁ)}. (105)

5 Bounds and approximations for the emptiness probability

The Gaussian form (22) for P(Q, = 0) is rather complicated due to the presence of p(ls) and
z(z) = y'(x), which both can be expressed as infinite series. In this section we obtain bounds
on P(Qy = 0) by using inequalities for p(ls) and y'(z).

Lemma 5.
P(@x=0) > exp{—smi L /ooe_%wy/(x)dx} =: LB, (106)
= v2rlJyy
= 1 1 1
— < _ 1/2 _ —zlsx?, 1 —. ]
P(@Qy=0) < exp{ s ZZ; o (1 12ls) /ﬁe 2 y(:c)d:c} UB. (107)

Proof. Follows directly from rewriting (22) as

> Is) [ _1542
@=0)=exp{ -3 0 | ey i) (108)
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and applying

n*n*1/2i<1 _ L) < i < n*n*1/2i. (109)
/27 12n/ — n! — /27
O

Lemma 6. There is the inequality

B { 1
LB - 128 12

/ e de (110)

ﬁ\

Proof. Follows from (106)-(107) and ¢/(z) < 1 (see Lemma 15). O

We next show that the right-hand side of (110) is a decreasing function of A when 5 > 0 is
kept fixed. Indeed, this is a direct consequence of the following lemma.

Lemma 7. a = (—25(1 — p+1np))/2 increases as a function of X when 3 > 0 is kept fived.
In fact, o increases from 0 to B as X increases from 0 to co.

Proof. Letting v = a2 we have

A +In A )
A+ BV A+ BV
A T

v = —s(1—p+Inp) = —(A+5\/X)(1_

where we have set z = V). Now

dv T T T+ ﬁ J6]
— = —f—(x+ ln<—)—x(ln(—) + >
dx = f) x+ 3 x4+ p (@+8)- (:c+ﬂ)2
— 28— (2z+/) ( ; ﬂ> 22 (—t + (1+ 1) In(1 + 1)), (112)
where we have set t = §/z > 0. Since it hol