Gaussian expansions and bounds for the Poisson distribution applied to the Erlang B formula

A.J.E.M. Janssen ¹
J.S.H. van Leeuwaarden ²
B. Zwart ³

Abstract

This paper presents new Gaussian approximations for the cumulative distribution function \(P(A_\lambda \leq s) \) of a Poisson random variable \(A_\lambda \) with mean \(\lambda \). Using an integral transformation, we first bring the Poisson distribution into quasi-Gaussian form, which permits evaluation in terms of the normal distribution function \(\Phi \). The quasi-Gaussian form contains an implicitly defined function \(y \), which is closely related to the Lambert W function. A detailed analysis of \(y \) leads to a powerful asymptotic expansion and sharp bounds on \(P(A_\lambda \leq s) \).

The results for \(P(A_\lambda \leq s) \) differ from most classical results related to the central limit theorem in that the leading term \(\Phi(\beta) \), with \(\beta = (s - \lambda)/\sqrt{\lambda} \), is replaced by \(\Phi(\alpha) \), where \(\alpha \) is a simple function of \(s \) that converges to \(\beta \) as \(s \to \infty \). Changing \(\beta \) into \(\alpha \) turns out to increase precision for small and moderately large values of \(s \).

The results for \(P(A_\lambda \leq s) \) lead to similar results related to the Erlang B formula. The asymptotic expansion for Erlang’s B is shown to give rise to accurate approximations; the obtained bounds seem to be the sharpest in the literature thus far.

Keywords: Erlang B formula, Erlang loss model, Poisson distribution, Normal distribution, Gaussian integrals, Lambert W function, Ramanujan’s conjecture, asymptotic expansions, bounds.

AMS 2000 Subject Classification: 34E05, 60K25, 62E20.

¹Philips Research. Digital Signal Processing Group, HTC-36, 5656 AA Eindhoven, The Netherlands. Email: a.j.e.m.janssen@philips.com.

²Eindhoven University of Technology and EURANDOM, P.O. Box 513 - 5600 MB Eindhoven, The Netherlands. Email: j.s.h.v.leeuwaarden@tue.nl.

³Georgia Institute of Technology. H. Milton Stewart School of Industrial and Systems Engineering, 765 Ferst Drive, 30332 Atlanta, USA. Email: bertzwart@gatech.edu.