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Abstract

This paper considers a class of quasi-birth-and-death processes for which
explicit solutions can be obtained for the rate matrix R and the associated ma-
trix G. The probabilistic interpretations of these matrices allow us to describe
their elements in terms of paths on the two-dimensional lattice. Then determin-
ing explicit expressions for the matrices becomes equivalent to solving a lattice
path counting problem, the solution of which is derived using path decompo-
sition, Bernoulli excursions, and hypergeometric functions. A few applications
are provided, including classical models for which we obtain some new results.

Keywords: quasi-birth-and-death processes, matrix-analytic methods, rate
matrix, lattice path counting, hypergeometric functions.

1 Introduction

Multidimensional Markov processes arise in many fields of science, engineering and
business. The two-dimensional case is of particular theoretical and practical impor-
tance, often occurring directly or through decomposition of higher dimensional pro-
cesses. In this paper our general interest is in a class of two-dimensional Markov pro-
cesses, called quasi-birth-and-death (QBD) processes, whose transitions are skipfree
to the left and to the right, with no restrictions upward or downward, in the two-
dimensional lattice. A wide variety of stochastic models fall within this class, in-
cluding random walks in the quarter-plane with unit-bounded jumps and many
applications in queueing theory.

The invariant distributions of QBD processes, under appropriate conditions, are
well known to have a matrix-geometric form. More precisely, the stationary proba-
bility vector has a geometric solution in terms of a so-called rate matrix R, which
is closely related to another matrix, typically denoted by G. Together, R and G
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play a fundamental role in the general theory of matrix-analytic methods. These
two matrices are most often obtained by numerically computing the solutions of
nonlinear matrix equations, and many algorithms have been developed for doing so.

On the other hand, the probabilistic significance of the R and G matrices have
been well established. Hence, in theory, these probabilistic interpretations can be
used together with the structural properties of the QBD process to derive explicit
expressions for the elements of R and G.

The research literature is quite limited with respect to explicit solutions for the
R and G matrices. Ramaswami and Latouche [16] explicitly determine R and
G in QBD processes for the special cases when the rows of the birth or death
transition matrix are proportional to a common row vector, allowing the state space
to be infinite in both dimensions. These results for the special birth transition
case were much later extended by Liu and Zhao [12] to Markov processes of the
GI/M/1-type and M/G/1-type. A few studies consider QBD processes with less
restrictive transitions, but further restrict attention to the R matrix and to state
spaces infinite in only one dimension. Squillante and Nelson [13, 18, 19, 20] exploit
the probablistic interpretation of R to determine explicit solutions for its elements
in various stochastic models based on path decomposition and lattice path counting.
van Leeuwaarden and Winands [11] present an explicit description of R for a class
of QBD processes, which includes those in [18, 19, 20], based on the probabilistic
interpretation of R and lattice path counting.

In this paper we investigate a more general class of QBD processes for which we
exploit the probabilistic interpretations of R and G and derive solutions for these
matrices using path decomposition, Bernoulli excursions, and lattice path counting.
Our results are then used to determine explicit expressions for the elements of R

and G in terms of hypergeometric functions. These explicit expressions can be
used in turn to obtain explicit solutions for the stationary distribution and other
probability measures of interest. Our approach, which combines various areas of
applied probability such as matrix-analytic methods and lattice path counting, is
quite general and can be applied to a wide variety of QBD processes.

We make several contributions, the first being the introduction of a class of QBD
processes for which the R and G matrices can be explicitly determined. This class
includes QBD processes that are infinite in one or both dimensions and that allow
less restrictive transitions than in previous studies, thus making the mathematical
problem much more intricate and significantly increasing the applicability of the
results. Stochastic models that turn out to be members of this class include certain
random walks in the quarter-plane and various queueing systems such as the classical
longest queue, priority and feedback models.

A second contribution is that our exact expressions for the fundamental matrix
elements provide an explicit characterization of the probabilistic and dynamic be-
havior of the stochastic process itself. Moreover, the results derived within our
framework for a general class of QBD processes lead to new results for some specific
stochastic models, e.g., the longest queue model.

A final contribution is that our results provide an efficient alternative for com-
puting the invariant distribution and other probability measures over those based
on numerical algorithms. Moreover, these results may facilitate the implementation
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and performance of more effective numerical methods. As an example, numerical
algorithms for QBD processes that are infinite in both dimensions must be intrinsi-
cally based on truncation of one of the dimensions. The explicit results derived in
this study can be used to reveal the potential errors induced by such truncations.

In Section 2 we consider a class of homogeneous QBD processes that serve as the
initial basis for our analysis. In Section 3 we solve for each element of R and G

in terms of counting paths on the two-dimensional lattice, and then in Section 4
we reformulate these solutions in terms of hypergeometric functions. In Section 5
we remove several initial assumptions made to simplify the presentation and dis-
cuss various generalizations of our analysis. Section 6 then presents some classical
stochastic models that fall within the introduced class of QBD processes.

2 QBD processes

Consider a continuous-time Markov process {X(t), t ∈ R+} on the two-dimensional
state space {(n, j) : n ∈ Z+, j ∈ {1, . . . ,M}} that is partitioned as

⋃∞
n=0 l(n), where

l(n) = {(n, 1), (n, 2), . . . , (n,M)} (2.1)

and Z+, R+ denote the nonnegative integer and real numbers. The first coordinate
n is called the level and the second coordinate j is called the phase of state (n, j),
with the set l(n) referred to as level n. Each level may have a finite or infinite
number of states, M .

This Markov process is called a QBD process when its one-step transitions from
each state are restricted to states in the same level or in the two adjacent levels,
and a homogeneous QBD process when these transition rates are additionally level-
independent. The infinitesimal generator Q of the Markov process then takes the
block tridiagonal form

Q =











B A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .











, (2.2)

where A0,A2 are nonnegative and A1,B have nonnegative off-diagonal elements
and strictly negative diagonals. Each of these matrices has dimension M × M .

Let π denote the stationary probability vector of this homogeneous QBD process.
We shall assume throughout the paper that the QBD process is irreducible and er-
godic. Hence, the stationary probability vector exists and is uniquely determined as
the solution of πQ = 0 and πe = 1, where e denotes a column vector of appropriate
dimension containing all ones. We partition the vector π by levels into subvectors
πn, n ∈ Z+, where πn has M components corresponding to the states of l(n). The
matrix-geometric solution of this partitioned stationary probability vector is given
by the following theorem.

Theorem 1. Consider a continuous-time QBD process with infinitesimal generator
Q in the form of (2.2). Suppose that the QBD process is irreducible and ergodic.
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Then its stationary distribution π is given by

πn = π0R
n, n ∈ N, (2.3)

where R is the minimal nonnegative solution of the nonlinear matrix equation

A0 + RA1 + R2A2 = 0 (2.4)

with sp(R) < 1. Furthermore, the stationary probability vector π0 exists and is
uniquely determined by solving the boundary condition

π0B + π1A2 = π0(B + RA2) = 0 (2.5)

and the normalization condition

∞
∑

i=0

πie = π0(I − R)−1e = 1, (2.6)

where I denotes the identity matrix of appropriate dimension.

This theorem is due to Neuts for the case M < ∞ (see [14]); the theorem for the
case M = ∞ follows from the results of Tweedie [22] (see also [10, 16]) with the
spectrum and inverse related to R appropriately defined (see [6, 7]). From Theo-
rem 1 we know that the stationary distribution is determined once R is obtained.
Several iterative algorithms exist for numerically solving (2.4); an overview of such
algorithms is provided in [10].

A related matrix, typically denoted by G, also plays an important role together
with R in the general theory of matrix-analytic methods. This related G matrix is
the minimal nonnegative solution of the nonlinear matrix equation

A0G
2 + A1G + A2 = 0 (2.7)

(see [10, 14, 15]). Some recent algorithms for numerically solving (2.4) involve first
computing the matrix G and then computing the matrix R based on the relationship

R = A0(−[A1 + A0G])−1 (2.8)

(see [10]).

2.1. Probabilistic interpretations

Our analysis of QBD processes is based on the probabilistic significance of R and
G. The matrix R records the expected rate of visits to the states of l(n + 1) per
unit of local time in l(n). More precisely, the element Rij is the expected sojourn
time in (n+1, j) before the first return to l(n) given that the process starts in (n, i),
expressed in units of the mean sojourn time in (n, i) (see [10, 14]). Equivalently,

Rij = Vij ·
∆ii

∆jj

, (2.9)
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where Vij is the expected number of visits to (n+1, j) before the first return to l(n)
given that the process starts in (n, i), and ∆ = − diag(A1) so that the fraction in
(2.9) is the ratio of the ith and jth diagonal elements of A1.

The matrix G records the probability, starting from l(n + 1), of visiting level l(n)
in finite time. Suppose that the process is in l(n + 1) at time 0 and define τ as the
first passage time from l(n + 1) to l(n). The element Gij then has the probabilistic
description

Gij = P[τ < ∞, X(τ) = (n, j) |X(0) = (n + 1, i)] (2.10)

(see [10, 14, 15]). Under our assumption that {X(t), t ∈ R+} is irreducible and
ergodic, it follows that τ < ∞ with probability 1 and, thus,

Gij = P[X(τ) = (n, j) |X(0) = (n + 1, i), τ < ∞]. (2.11)

Due to the homogeneity of Q, the elements of R and G do not depend on n ∈ Z+.
We shall exploit the probabilistic interpretations (2.9) and (2.11) in our analysis of
the next two sections to obtain explicit solutions for R and G.

3 Lattice path counting

Let us denote by 〈e1, e2〉 a one-step transition of the QBD process from state (n, j)
to state (n+e1, j +e2), n ∈ N, where the probability that this step occurs is denoted
by ϕ〈e1, e2〉 and obtained straightforwardly from uniformization using A0,A1,A2

and ∆. We shall restrict our attention to the class of QBD processes for which the
only transitions from state (n, j), n ∈ N, j ∈ {1, . . . ,M − 1}, are horizontal steps
〈−1, 0〉 and 〈1, 0〉, diagonal steps 〈−1, 1〉 and 〈1, 1〉, and vertical step 〈0, 1〉; and the
only transitions from state (n,M), n ∈ N, are horizontal steps 〈−1, 0〉 and 〈1, 0〉.

The above restrictions imply that, from the states in l(n), n ∈ N, the QBD
process cannot move in the downward direction, and thus the matrices R and G

are of uppertriangular form. To elucidate the exposition, we further restrict our
attention to the case where M is infinite and the diagonal elements of A1 are all
equal. The former restriction is not prohibitive and its relaxation is discussed in
Section 5, whereas the latter simply implies Rij = Vij such that we would instead
use (2.9) whenever the restriction does not hold. Then, with Rh ≡ Ri,i+h and
Gh ≡ Gi,i+h, we obtain

R =











R0 R1 R2 . . .
R0 R1 . . .

R0 . . .
. . .











, G =











G0 G1 G2 . . .
G0 G1 . . .

G0 . . .
. . .











. (3.1)

3.1. G matrix

We now derive expressions for each element of G in (3.1) using its probabilistic
interpretation. Assume that at time τ the QBD process undergoes its νth transition.
In order to calculate the probability in (2.11), we then need to count all of the paths
on the two-dimensional lattice that start in (n + 1, i) and end in (n, i + h) after ν
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steps, without visiting any of the states in l(n) prior to the νth transition. Each
step of the path will be one of the steps 〈−1, 0〉, 〈1, 0〉, 〈−1, 1〉, 〈1, 1〉, and 〈0, 1〉.

The main idea in deriving a tractable lattice path counting problem is the decou-
pling of the paths into horizontal and vertical directions.

(i) Consider a path from state (n+1, i) to state (n, i+h), h ∈ Z+, that consists of
ν steps and that goes from l(n+1) to l(n) only at the last (νth) step. Assume
this path includes s 〈−1, 1〉 steps, u 〈1, 1〉 steps and, hence, t = h− s−u 〈0, 1〉
steps.

(ii) We first would like to consider the path in the horizontal direction only. The
diagonal steps 〈−1, 1〉 and 〈1, 1〉 influence both the horizontal and vertical
directions. Therefore, we decompose these diagonal steps into

〈−1, 1〉 = 〈0, 1〉 + 〈−1, 0〉, (3.2)

〈1, 1〉 = 〈0, 1〉 + 〈1, 0〉. (3.3)

(iii) The decomposition of the diagonal steps ensures that the path includes at least
s 〈−1, 0〉 steps and u 〈1, 0〉 steps. Now denote the total number of 〈1, 0〉 steps
by m. We then know that the total number of 〈−1, 0〉 steps is m+1 (including
the νth step). Furthermore, it should hold that m ≥ max(u, s − 1).

(iv) The path then consists of a total number of ν = 2m + t + 1 steps, 2m + 1
of which are in the horizontal direction. When we omit the νth step, the 2m
horizontal steps form a Bernoulli excursion (see [21]). The excursion starts in
(n + 1, i) and consists of m 〈1, 0〉 steps and m 〈−1, 0〉 steps. Any sequence of
steps may occur provided that there are, at each point during the excursion,
at least as many 〈1, 0〉 steps as 〈−1, 0〉 steps; for otherwise, l(n) is visited, and
the condition in (i) is violated. The number of possible Bernoulli excursions
is given by the mth Catalan number:

1

m + 1

(

2m

m

)

. (3.4)

To further elucidate the main idea, let us illustrate the above procedure with an
example. In Figure 1(a) we depict a path from state (n + 1, i) to state (n, i + 5)
that consists of ν = 21 steps and that goes from l(n + 1) to l(n) only at the νth
step. We have indicated in Figure 1(a) the number of times each state is visited.
The path includes s = 2 〈−1, 1〉 steps, u = 1 〈1, 1〉 step, and t = 2 〈0, 1〉 steps.
The diagonal steps are decomposed, leading to the path in Figure 1(b). We then
remove the vertical steps to obtain the Bernoulli excursion shown in Figure 1(c).
This path is just one out of 1

10

(18
9

)

= 4862 possible Bernoulli excursions that consist
of 2m = 18 steps. In the above procedure we consider just one path from state (n, i)
to state (n, i + h), and reduce it to a Bernoulli excursion.

Let us now change perspective to reflect our original lattice counting problem.
Namely, starting from a Bernoulli excursion of length 2m, we consider how many
paths from state (n, i) to state (n, i + h) can be constructed with s 〈−1, 1〉 steps, u
〈1, 1〉 steps and, thus, t = h − s − u 〈0, 1〉 steps. First, some definitions are needed.
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1 2

1

1 1

1

11

11

3

22

21

(n, i)

(n, i + 5)

1 2

1

1 1

1

11

11

3

22

22

1

1

(n, i)

(n, i + 5)

(a) Path from state (n + 1, i) to (n, i + 5). (b) Same path without diagonal steps.

2 7 54 1(n, i)

(c) Bernoulli excursion.

Figure 1: Example of path decomposition and corresponding Bernoulli excursion.

Definition 1. Define Lh(s, u,m) to be the number of paths from (n+1, i) to (n, i+h),
h ∈ Z+, that consist of ν = 2m+1+ t steps and that go from l(n+1) to l(n) only at
the νth step. Assume each path includes s 〈−1, 1〉 steps, u 〈1, 1〉 steps and, hence,
t = h− s− u 〈0, 1〉 steps. Define Ph(s, u,m) to be the probability of each such path.

Obviously, we have

Ph(s, u,m) = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉m−uϕ〈−1, 0〉m+1−s. (3.5)

For Lh(s, u,m) we establish the following result.

Lemma 1. Given values of s and u such that s + u + t = h, we have

Lh(s, u,m) =
1

m + 1

(

2m

m

)(

m + 1

s

)(

m

u

)(

2m + t

t

)

. (3.6)

Proof.

(v) Consider a Bernoulli excursion of length 2m. We will extend the Bernoulli
excursion, which describes the path in the horizontal direction, by the vertical
steps to reconstruct a path from state (n+1, i) to state (n, i+h). The vertical
steps consist of s+ t+u 〈0, 1〉 steps. However, because of the decomposition in
(ii), s steps should be matched to 〈−1, 0〉 steps and u steps should be matched
to 〈1, 0〉 steps. The number of ways to do this is

(

m + 1

s

)(

m

u

)

. (3.7)
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(vi) This leaves the placement of the t original 〈0, 1〉 steps, which can be placed
in every state visited by the Bernoulli excursion. This means that we have
2m + 1 possible states in which the t 〈0, 1〉 steps can be placed. Note that
it is possible for multiple steps to be placed in one state. Therefore, placing
the t 〈0, 1〉 steps is equivalent to distributing t balls over 2m + 1 bins, and the
number of ways to do so is

(

2m + t

t

)

. (3.8)

Combining (3.4), (3.7) and (3.8) completes the proof. �

Using (2.11) and Gh = Gi,i+h, we arrive at our main result for the elements of G.

Theorem 2. For all h = 0, 1, . . ., we have

Gh =
h

∑

s=0

h−s
∑

u=0

∞
∑

m=max(u,s−1)

Lh(s, u,m) · Ph(s, u,m), (3.9)

with Ph(s, u,m) as in (3.5) and Lh(s, u,m) as in (3.6).

To illustrate this result, we return to the example path in Figure 1(a)-(c). Starting
from the Bernoulli excursion in Figure 1(c), the path in Figure 1(a) is just one of the
(10

2

)(9
1

)(20
2

)

= 76950 paths that can be constructed with s = 2 〈−1, 1〉 steps, u = 1
〈1, 1〉 step, and t = 2 〈0, 1〉 steps.

3.2. R matrix

We shall now derive expressions for each element of R in (3.1) using the probabilistic
interpretation in (2.9). This requires us to determine Vi,i+h, the expected number
of visits to state (n + 1, i + h) in the two-dimensional lattice before a return to l(n)
given that the process starts in (n, i). The main idea is to decompose the lattice
path counting problem into first passage and return visits.

Definition 2. Define κh to be the probability that the QBD process reaches state
(n + 1, i + h), h ∈ Z+, before the first visit to l(n), given that the process started in
state (n + 1, i).

Definition 3. Define γ to be the expected number of visits to state (n + 1, i + h)
before the first visit to l(n) given that state (n + 1, i + h) is reached at least once.

It is then clear that

Rh = Vi,i+h = (ϕ〈1, 0〉κh + ϕ〈1, 1〉κh−1) · γ. (3.10)

We first consider γ and suppose that the QBD process enters state (n + 1, i + h) for
the first time. Then, the path will go through state (n + 1, i + h) for a second time
(before visiting l(n)) when the process moves to (n + 2, i + h), starts a Bernoulli
excursion of 2m steps (m = 0, 1, . . .), and returns from state (n + 2, i + h) to state
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(n + 1, i + h). With ω = ϕ〈1, 0〉ϕ〈−1, 0〉 ≤ 1/4, the probability that this event
happens is given by

η = ω

∞
∑

m=0

1

m + 1

(

2m

m

)

ωm =
1 −

√
1 − 4ω

2
(3.11)

(see, e.g., [21], p. 561). Thus, since γ = 1 + ηγ, we eventually obtain

γ =
2

1 +
√

1 − 4ϕ〈1, 0〉ϕ〈−1, 0〉
. (3.12)

Now turning to the probabilities κh, it obviously holds that κ0 = 1 and some
reasoning yields

κh = ϕ〈0, 1〉κh−1 +ϕ〈1, 0〉
h

∑

j=0

Gh−jκj +ϕ〈1, 1〉
h−1
∑

j=0

Gh−j−1κj , h = 1, 2, . . . . (3.13)

Rewriting this expression renders, for h = 1, 2, . . .,

κh =
ϕ〈0, 1〉κh−1 + ϕ〈1, 0〉∑h−1

j=0 Gh−jκj + ϕ〈1, 1〉∑h−1
j=0 Gh−j−1κj

1 − ϕ〈1, 0〉G0
. (3.14)

A combination of (3.10), (3.12) and (3.14) leads to our main result for a description
of the elements of R.

Theorem 3. For all h = 0, 1, . . ., we have

Rh =
2(ϕ〈1, 0〉κh + ϕ〈1, 1〉κh−1)

1 +
√

1 − 4ϕ〈1, 0〉ϕ〈−1, 0〉
, (3.15)

with κh as in (3.14), κ0 = 1, and κ−1 taken to be zero.

4 Hypergeometric functions

We next express our results for the elements of G and R in terms of hypergeometric
functions, which are defined as

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

zn

n!
, (4.1)

with Γ(·) the Gamma function. We shall need the following result.

Lemma 2. For n = 1, 2, . . . and t = 1, 2, . . .,

Γ(n + t/2) =

√
π

22(n−1)+t

Γ(2n + t − 1)

Γ(n + t/2 − 1/2)
. (4.2)
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Proof. The case t = 1 can be found in [1], pp. 255-6, and is given by

Γ(p + 1/2) =

√
π

22p−1

Γ(2p)

Γ(p)
, p = 1, 2, . . . . (4.3)

For t = 2m, m = 1, 2, . . ., identity (4.2) reduces to

Γ(n + m) =

√
π

22(n+m−1)

Γ(2(n + m) − 1)

Γ(n + m − 1/2)
. (4.4)

This yields

Γ(n + m − 1/2) =

√
π

22(n+m−1)

Γ(2(n + m) − 1)

Γ(n + m)

=

√
π

22(n+m−1)−1

Γ(2(n + m − 1))

Γ(n + m − 1)
, (4.5)

which is equivalent to (4.3) for p = m + n− 1. In the case t = 2m + 1, m = 0, 1, . . .,
identity (4.2) can be written as

Γ(m + n + 1/2) =

√
π

22(n+m)−1

Γ(2(n + m))

Γ(n + m)
, (4.6)

which is equivalent to (4.3) for p = m + n. This completes the proof. �

We now consider the infinite series in (3.9):

∞
∑

m=max(u,s−1)

Lh(s, u,m) · Ph(s, u,m), (4.7)

with Ph(s, u,m), Lh(s, u,m) as in (3.5), (3.6). For the case s−1 ≥ u, we can express
(4.7) in terms of the Gamma function (see [1], pp. 255ff) as

ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉s−1−u

s! t! u!

∞
∑

m=0

Γ(2m + 2s + t − 1)

Γ(m + s − u)

ωm

m!
, (4.8)

where ω = ϕ〈1, 0〉ϕ〈−1, 0〉 as previously defined. From Lemma 2 we obtain

Γ(2m + 2s + t − 1) =
22(m+s−1)+t

√
π

Γ(m + s + t
2)Γ(m + s + t−1

2 ) (4.9)

and
22s−2+t

√
π

=
Γ(2s + t − 1)

Γ(s + t
2)Γ(s + t−1

2 )
. (4.10)

Substituting (4.9) and (4.10) into the series in (4.8), and using (4.1), yields

∞
∑

m=0

Γ(2m + 2s + t − 1)

Γ(m + s − u)

ωm

m!
=

22s−2+t

√
π

∞
∑

m=0

Γ(m + s + t
2)Γ(m + s + t−1

2 )

Γ(m + s − u)

(4ω)m

m!

=
(2s + t − 2)!

(s − u − 1)!
F (s + t

2 , s + t−1
2 ; s − u; 4ω), (4.11)
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and hence (suppressing the indices of Lh and Ph)

∞
∑

m=s−1

Lh · Ph = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈1, 0〉s−1−u

× (2s + t − 2)!

s!t!u!(s − u − 1)!
F (s + t

2 , s + t−1
2 ; s − u; 4ω).

(4.12)

In a similar manner, we obtain for the case u > s − 1 (again suppressing indices)

∞
∑

m=u

Lh · Ph = ϕ〈−1, 1〉sϕ〈0, 1〉tϕ〈1, 1〉uϕ〈−1, 0〉u+1−s

× (2u + t)!

s!t!u!(u − s + 1)!
F (u + 1 + t

2 , u + 1 + t−1
2 ;u − s + 2; 4ω).

(4.13)

The hypergeometric function F (a + 1
2 , a; c; z) that emerges in both cases of the

infinite series can be rewritten as

F (a + 1
2 , a; c; z) = F (a, a + 1

2 ; c; z)

= 2c−1Γ(c)z
1
2−

1
2 c(1 − z)

1
2 c−a−

1
2 P 1−c

2a−c((1 − z)−
1
2 ), (4.14)

with Pµ
ν (·) the Legendre function of the first kind (see [1], p. 562). Using the relation

Pµ−1
ν (z) =

Pµ
ν+1(z) − Pµ

ν−1(z)

(2ν + 1)
√

z2 − 1
(4.15)

(see [1], p. 334), we can recursively express the Legendre function Pµ
ν in terms of

Legendre polynomials P 0
ν . In turn, these Legendre polynomials have the following

explicit form

P 0
ν (x) =

1

2ν

⌊
ν
2 ⌋

∑

m=0

(−1)m
(

ν

m

)(

2(ν − m)

m

)

xν−2m (4.16)

(see [1], p. 775), which implies that all of the above hypergeometric functions can
be computed in a finite number of steps.

5 Generalizations

Many assumptions in the foregoing analysis were made to simplify the presentation.
Indeed, our results hold for the class of nonhomogeneous QBD processes in which the
levels are divided into a nonhomogeneous boundary, comprised of l(0), . . . , l(N), and
a homogeneous portion, comprised of l(N +1), l(N +2), . . ., N < ∞. The generator
Q in this case takes the form (2.2) but with the four matrices in the upper leftmost
corner replaced by B00, B01, B10, B11 having dimensions NM × NM , NM × M ,
M ×NM , M ×M . Equations (2.3) and (2.5), (2.6) in Theorem 1 are then replaced
by

πN+n = πNRn, n ∈ N (5.1)

11



and

(π0, π1, . . . , πN )

(

B00 B01

B10 B11 + RA2

)

= 0, (5.2)

(π0, π1, . . . , πN−1) e + πN (I − R)−1e = 1. (5.3)

The number of phases for l(n), n ∈ {0, . . . , N}, can be further generalized to an
arbitrary Mn. Due to the homogeneous portion of Q, the elements of R and G do
not depend on l(N + n), n ∈ N, and are given by the results in Sections 3 and 4.

Furthermore, our analysis directly applies to discrete-time Markov processes since
the probabilistic significance of R and G in this case are Rij = Vij and the discrete-
time version of (2.11) (see [10, 14, 15]). The restriction of M = ∞ does not cause
any major technical difficulties and our analysis can be extended to handle the
M < ∞ case; the technical details are somewhat tedious due to the additional
boundary and the different transitions for phase M in each level of the homogeneous
portion (since no vertical or diagonal transitions are allowed), and therefore are
omitted in the present paper. As previously noted, when ∆ii 6= ∆jj for one or more
i, j ∈ {1, . . . ,M}, then our results are straightforwardly adjusted according to (2.9).

More fundamental extensions of the introduced class of QBD processes are also
possible. A critical factor in our analysis is that these QBD processes cannot move
downward due to directional restrictions on vertical and diagonal transitions. Similar
results may be obtained for classes of QBD processes that cannot move upward
(due to the opposite directional restrictions), leftward or rightward (both due to
directional restrictions on horizontal and diagonal transitions); see [11] for analogous
rotations of a strict subset of these transitions. Although the basic approach may
not be fundamentally different from our analysis here, many subtleties need to be
addressed and specific probabilistic arguments are required in the analysis of this
extended class of QBD processes; these technical details remain for future research.
Stochastic models falling in the extended class include a make-to-order/make-to-
stock system [2], a two-machine re-entrant line [3], and many more.

6 Applications

We end this paper by briefly discussing three classical stochastic models that are
members of the introduced class of QBD processes. To simplify the presentation,
we primarily focus on symmetric systems in which two queues are served by a single
server. Namely, at each queue customers arrive according to a Poisson process with
rate λ and both customer types require exponentially distributed service times with
mean µ−1. The models differ, however, in the way the server capacity is shared
among the two queues as explained below. Once again, we stress that many more
stochastic models fall within the introduced class as touched upon in Section 5.

6.1. Longest queue model

In the first model, the server always serves the longest queue, where ties are resolved
randomly and the service policy is applied preemptively. This model has been in-
vestigated in several studies; see, e.g., [5, 8, 23]. If (n, j) denotes the state where, in
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equilibrium, the difference D = |L1 − L2| between the two queue lengths is n and
the shortest queue length L∗ = min(L1, L2) is j, then the QBD queue length process
under the single-server longest queue policy is described by the matrices

A0 =







λ
λ

. . .






, B01 =











2λ
µ 2λ

µ 2λ
. . .

. . .











, B00 =







−2λ
δ

. . .






, (6.1)

and

A1 = B11 =







δ
δ

. . .






, A2 = B10 =







µ λ
µ λ

. . .
. . .






, (6.2)

where N = 1 and δ = −(µ + 2λ). The multi-server version of this model also falls
within the introduced class of QBD processes, where N reflects the number of servers
and the nonhomogeneous boundary is appropriately adjusted.

For the single-server and multi-server longest queue policy, where both t = 0 and
u = 0, (4.12) significantly simplifies as shown below.

Proposition 1. If s = 0 we have

∞
∑

m=0

Lh(0, 0,m) · Ph(0, 0,m) =
1 −

√
1 − 4ω

2ϕ〈1, 0〉 , (6.3)

and if s ≥ 1 we have

∞
∑

m=s−1

Lh(s, 0,m) · Ph(s, 0,m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!

s!(s − 1)!
(1 − 4ω)

1

2
−s. (6.4)

Proof. Equation (6.3) follows directly from (3.11). From (4.12) it follows that

∞
∑

m=s−1

Lh(s, 0,m) · Ph(s, 0,m) = ϕ〈−1, 1〉sϕ〈1, 0〉s−1 (2s − 2)!

s!(s − 1)!
F (s, s − 1

2 ; s; 4ω).

(6.5)
The fact that F (s, s − 1

2 ; s; 4ω) = F (s − 1
2 , s; s; 4ω) together with the identity

F (a, b; b; z) = (1 − z)−a (see [1], p. 556) then completes the proof. �

6.2. Priority model

In the second application, we investigate the single-server case where queue 1 has
(fixed) priority over queue 2. More specifically, we consider the preemptive priority
rule which implies that type-1 customers are allowed to interrupt type-2 customers.
This model has a long history; see, e.g., [4, 9]. Let (n, j) denote the state where,
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in equilibrium, the lengths of queues 1 and 2 are n and j, respectively. The QBD
queue length process is described by the matrices

A0 = B01 =







λ
λ

. . .






, A2 = B10 =







µ
µ

. . .






, (6.6)

and

A1 = B11 =







δ λ
δ λ

. . .
. . .






, B00 =







−2λ λ
µ δ λ

. . .
. . .

. . .






, (6.7)

where N = 1 and δ = −(µ + 2λ).
Since both s = 0 and u = 0 in the priority model, (4.13) can be simplified as

follows.

Proposition 2. If s = 0 and u = 0 we have

∞
∑

m=0

Lh(0, 0,m) · Ph(0, 0,m) = ϕ〈−1, 0〉ϕ〈0, 1〉tF (1 + t
2 , 1 + t−1

2 ; 2; 4ω). (6.8)

Proof Follows immediately from (4.13). �

6.3. Feedback model

In our final example we consider a single-server, two-queue system with feedback,
where queue 1 has preemptive priority over queue 2; see, e.g., [17]. Upon arrival,
customers enter queue 1 and after receiving service, they either depart the system or
join queue 2 (with equal probability); in the latter case, customers depart the system
after being served at queue 2. Let (n, j) denote the state where, in equilibrium, the
length of queue 1 is n and the number of customers that eventually will ask for service
in queue 2 (including those still in queue 1) is j. The associated QBD process is
described by the matrices

A0 = B01 =







λ λ
λ λ

. . .
. . .






, A2 = B10 =







µ
µ

. . .






, (6.9)

and

A1 = B11 =







δ
δ

. . .






, B00 =







δ
µ δ

. . .
. . .






, (6.10)

where N = 1 and δ = −(µ + 2λ). We again obtain a simplified version of (4.13).
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Proposition 3. If s = 0 and t = 0 we have

∞
∑

m=u

Lh(s, u,m) · Ph(s, u,m) = ϕ(1, 1)uϕ(−1, 0)u+1 (2u)!

u!u!
(4ω)−u−1B4ω(1 + u, 1

2 − u),

(6.11)
where Bx(·, ·) is the incomplete Beta function defined by (see [1], p. 263)

Bx(a, b) =

∫ x

0
ta−1(1 − t)b−1dt. (6.12)

Proof In the case s = 0 and t = 0, (4.13) reduces to

∞
∑

m=u

Lh(s, u,m)·Ph(s, u,m) = ϕ(1, 1)uϕ(−1, 0)u+1 (2u)!

(u + 1)!u!
F (u+1, u+ 1

2 ;u+2; 4ω).

(6.13)
The identity

Bx(a, b) =
xa

a
F (a, 1 − b; a + 1;x) (6.14)

(see [1], p. 263) then completes the proof. �
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