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Abstract. We consider a model for a polymer chain interacting with a sequence of equi-
spaced flat interfaces through a pinning potential. The intensity δ ∈ R of the pinning
interaction is constant, while the interface spacing T = TN is allowed to vary with
the size N of the polymer. Our main result is the explicit determination of the scaling
behavior of the model in the large N limit, as a function of (TN)N and for fixed δ > 0. In
particular, we show that a transition occurs at TN = O(log N). Our approach is based
on renewal theory.

1. Introduction and main results

1.1. The model. In this paper we study a (1+1)–dimensional model for a polymer chain
dipped in a medium constituted by infinitely many horizontal interfaces. The possible
configurations of the polymer are modeled by the trajectories {(i, Si)}i≥0 of the simple
symmetric random walk on Z, with law denoted by P, i.e., S0 = 0 and (Si − Si−1)i≥1 is
an i.i.d. sequence of Bernoulli trials satisfying P(S1 = ±1) = 1/2. We assume that the
interfaces are equispaced, i.e., at the same distance T ∈ 2N from each other (note that
T is even by assumption, for notational convenience, due to the periodicity of the simple
random walk).

The interaction between the polymer and the medium is described by the following
Hamiltonian:

HT
N,δ(S) := δ

N∑

i=1

1{Si ∈TZ} = δ
∑

k∈Z

N∑

i=1

1{Si = k T}, (1.1)

where N ∈ N is the size of the polymer and δ ∈ R is the intensity of the energetic reward
(if δ > 0) or penalty (if δ < 0) that the polymer receives when touching the interfaces.

More precisely, the model is defined by the following probability law PT
N,δ on R

N∪{0}:

dPT
N,δ

dP
(S) :=

exp
(
HT

N,δ(S)
)

ZT
N,δ

, (1.2)

where ZT
N,δ = E

(
exp(HT

N,δ(S))
)

is the normalizing constant, called the partition function.

It should be clear that the effect of the Hamiltonian HT
N,δ is to favor or penalize, ac-

cording to the sign of δ, the trajectories {(n, Sn)}n that have a lot of intersections with
the interfaces, located at heights TZ (we refer to Figure 1 for a graphical description).
Although in this work we give a number of results that do not depend on the sign of δ,
we stress from now that our main concern is with the case δ > 0.
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Figure 1. A typical path of the polymer measure PT
N,δ with N = 158 and

T = 16. The circles represent the points where the polymer touches the
interfaces, which are favored (resp. disfavored) when δ > 0 (resp. δ < 0).

If we let T → ∞ in (1.2) for fixed N (in fact it suffices to take T > N), we obtain a
well defined limiting model P∞

N,δ:

dP∞
N,δ

dP
(S) :=

exp
(
H∞

N,δ(S)
)

Z∞
N,δ

where H∞
N,δ(S) := δ

N∑

i=1

1{Si=0} . (1.3)

P∞
N,δ is known in the literature as a homogeneous pinning model and it describes a polymer

chain interacting with a single flat interface, namely the x-axis. This model, together with
several variants (like the wetting model, where {Sn}n is also constrained to stay non-
negative), has been studied in depth, first in the physical literature, cf. [10] and references
therein, and more recently in the mathematical one [12, 8, 4, 11]. In particular, it is well-
known that a phase transition between a delocalized regime and a localized one occurs as
δ varies and this transition can be characterized in terms of the path properties of P∞

N,δ.

The aim of this paper is to answer the same kind of questions for the model P
TN

N,δ, as a

function of δ and of the interface spacing T = TN , which is allowed to vary with N . We
denote the full sequence by T := (TN )N∈N (taking values in 2N) and, with no essential loss
of generality (one could focus on subsequences), we assume that T has a limit as N → ∞:

∃ lim
N→∞

TN =: T∞ ∈ 2N ∪ {+∞} . (1.4)

(Of course, if T∞ < ∞ the sequence (TN )N must take eventually the constant value T∞.)
For notational convenience, we also assume that TN ≤ N : again, this is no real loss of

generality, since for TN > N the law P
TN

N,δ reduces to the just mentioned P∞
N,δ.

Before stating precisely the results we obtain in this paper, let us describe briefly the
motivations behind our model and its context. Several models for a polymer interacting
with a single linear interface have been investigated in the past 20 years, both in the
physical and in the mathematical literature (see [10] and [11] for two excellent surveys).
The two most popular classes among them are probably the so-called copolymer at a
selective interface separating two selective solvents and the pinning of a polymer at an
interface, of which the homogeneous pinning model P∞

N,δ is the simplest and most basic
example. Although some questions still remain open, notably when disorder is present,
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important progress has been made and there is now a fairly good comprehension of the
mechanism leading to phase transitions for these models.

More recently, some generalizations have been introduced, to account for interactions
taking place on more general structures than a single linear interface. In the copolymer
class, we mention [5, 6] and [16], where the medium is constituted by an emulsion, and es-
pecially [7], where the single linear interface is replaced by infinitely many equi-spaced flat
interfaces, separating alternate layers of each selective solvent. Our model PT

N,δ provides
a closely analogous generalization in the pinning class, with the important difference that
the model considered in [7] is disordered. In a sense, what we consider is the simplest case
of a pinning model interacting with infinitely many interfaces. In analogy with the single
interface case [11], we believe that understanding in detail this basic example is the first
step toward a comprehension of the more sophisticated disordered case.

Let us describe briefly the results obtained in [7]. The authors focus on the case when the
interface spacing TN diverges as N → ∞ and they show that the free energy of the model
is the same as in the case of one single linear interface. Then, under stronger assumption
on (TN )N , namely TN/ log log N → ∞ and TN/ log N → 0, they show that the polymer
visits infinitely many different interfaces and the asymptotic behavior of the time needed
to hop from an interface to a neighboring one is shown to behave like ecTN .

In this paper we consider analogous questions for our model PT
N,δ. In our non-disordered

setting, we obtain stronger results: in particular, we are able to describe precisely the path
behavior of the polymer in the large N limit, for an arbitrary sequence T = (TN )N and
for δ > 0 (i.e., we consider only the case of attractive interfaces). In fact there is a subtle
interplay between the pinning reward δ and the speed TN at which the interfaces depart,
which is responsible for the scaling behavior of the polymer. It turns out that there are

three different regimes, determined by comparing TN with log N
cδ

, where cδ > 0 is computed

explicitly. We refer to Theorem 2 and to the following discussion for a detailed explanation
of our results. Let us just mention that, as TN increases from O(1) to the critical speed
log N

cδ
, the scaling constants of SN decrease smoothly from the diffusive behavior

√
N to

log N , while if TN ≫ log N
cδ

then SN = O(1). This means, on the one hand, that by

accelerating the growth of the interface spacing the scaling of SN decreases, and, on the
other hand, that scaling behaviors for SN intermediate between O(1) and log N (such as,
e.g., log log N) are not possible in our model. We also stress that our model is sub-diffusive
as soon as TN → ∞. Sub-diffusive behaviors appear in a variety of models dealing with
random walks subject to some form of penalization: from the (very rich) literature we
mention for instance [14] and [1] on the mathematical side and [15] on the physical side.

Our approach is mainly based on renewal theory. The use of this kind of techniques in
the field of polymer models has proved to be extremely successful, starting from [8] and
[4], and has been generalized more recently to cover Markovian settings, cf. [3] and [2].
The key point is to get sharp estimates on suitable renewal functions. Although the same
approach can be applied also to the case δ < 0, i.e., when touching an interface entails
a penalty, reconstructing the full path behavior in this case requires different arguments,
because for δ < 0 the limiting model P∞

N,δ is delocalized. For this reason, an analysis of
the path behavior in the δ < 0 case is deferred to a future work.

1.2. The free energy. The standard way of studying the effect of the interaction (1.1)
for large N is to look at the free energy of the model, defined as the limit

φ(δ,T ) := lim
N→∞

φN (δ,T ) , where φN (δ,T ) :=
1

N
log ZTN

N,δ . (1.5)
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The existence of such a limit, for any choice of δ ∈ R and T satisfying (1.4), is proven in
Section 2. To understand why one should look at φ, we introduce the random variable

LN,T :=

N∑

i=1

1{Si ∈TZ} =
∑

k∈Z

N∑

i=1

1{Si = kT} , (1.6)

and we observe that an easy computation yields

∂

∂δ
φN (δ,T ) = E

TN

N,δ

(
LN,TN

N

)
,

∂2

∂δ2
φN (δ,T ) = N var

P
TN
N,δ

(
LN,TN

N

)
≥ 0 .

In particular, φN (δ,T ) is a convex function of δ, for every N ∈ N. Hence φ(δ,T ) is convex
too and by elementary convex analysis it follows that as soon as φ(δ,T ) is differentiable

∂

∂δ
φ(δ,T ) = lim

N→∞
E

TN

N,δ

(
LN,TN

N

)
. (1.7)

Thus, the first derivative of φ(δ,T ) gives the asymptotic proportion of time spent by the
polymer on the interfaces, which explains the interest of looking at φ(δ,T ). In fact a basic
problem is the determination of the set of values of δ (if any) where φ(δ,T ) is not analytic,
which correspond physically to the occurrence of a phase transition in the system.

This issue is addressed by our first result, which provides an explicit formula for φ(δ,T ).
Let us introduce for T ∈ 2N ∪ {+∞} the random variable τT

1 defined by

τT
1 := inf

{
n > 0 : Sn ∈ {−T, 0,+T}

}
, (1.8)

and denote by QT (λ) its Laplace transform under the simple random walk law P:

QT (λ) := E
(
e−λτT

1
)

=

∞∑

n=1

e−λn P
(
τT
1 = n

)
. (1.9)

When T = +∞, the variable τ∞
1 is nothing but the first return time of the simple random

walk to zero, and it is well-known that Q∞(λ) = +∞ for λ < 0 while Q∞(λ) = 1 −√
1 − e−2λ for λ ≥ 0, cf. [9]. We point out that QT (λ) can be given a closed explicit

expression also for finite T , see Appendix A and in particular equation (A.4). Here it is
important to stress that for T < ∞ the function QT (λ) is analytic and decreasing on
(λT

0 ,+∞), where λT
0 < 0 (see eq. (A.6)), and QT (λ) → +∞ as λ ↓ λT

0 while QT (λ) → 0

as λ → ∞. In particular, when T < ∞ the inverse function
(
QT

)−1
(·) is (analytic and)

defined on the whole (0,∞), while
(
Q∞

)−1
(·) is (analytic and) defined only on (0, 1].

Theorem 1. Denoting by T∞ = limN→∞ TN , the free energy φ(δ,T ) = φ(δ, T∞) depends
only on δ and T∞ and is given by

φ(δ, T∞) =

{(
QT∞

)−1
(e−δ) if T∞ < +∞(

Q∞
)−1

(e−δ ∧ 1) if T∞ = +∞ .
(1.10)

It follows that for T∞ < +∞ the function δ 7→ φ(δ,T ) is analytic on the whole real line,
while for T∞ = +∞ it is not analytic only at δ = 0.

So there are no phase transitions in our model, except in the T∞ = +∞ case, where
φ(δ,∞) is not analytic at δ = 0. This fact is well-known, because φ(δ,∞) is nothing but the
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free energy of the classical homogeneous pinning model P∞
N,δ, cf. [11]. In fact the explicit

formula for Q∞(·) mentioned above yields

φ(δ,∞) =

(
δ

2
− log

√
2 − e−δ

)
1{δ≥0} . (1.11)

Also in the case when T∞ < ∞, some general properties of φ(δ, T∞) can be easily derived
from Theorem 1, for instance that ∂

∂δφ(δ,T ) → 0 as δ → −∞ while ∂
∂δφ(δ,T ) → 1

2 as
δ → +∞, which have a clear physical interpretation thanks to (1.7).

The proof of Theorem 1 is given in Section 2, using renewal theory ideas. Besides
identifying the free energy, we introduce a slightly modified version of the polymer measure
PT

N,δ which can be given an explicit renewal theory interpretation. This provides a key

tool to study the path behavior (see below).
One consequence of Theorem 1 is that any T such that T∞ = ∞ yields the same free

energy φ(δ,T ) = φ(δ,∞) as the classical homogeneous pinning model. However we are

going to see that the actual path behavior of P
TN

N,δ as N → ∞ depends strongly on the

speed at which TN → ∞, a phenomenon which is not caught by the free energy.

1.3. The scaling behavior. Henceforth we focus on the case δ > 0. We assume that
T = (TN )N∈N has been chosen such that TN → ∞ as N → ∞. Then the free energy
φ(δ,T ) = φ(δ,∞) is that of the homogeneous pinning model: in particular φ(δ,T ) > 0 for
every δ > 0. Since φ(δ,T ) = 0 for δ ≤ 0, by convexity and by formula (1.7) it follows that

for δ > 0 the typical paths of P
TN

N,δ touch the interfaces for large N a positive fraction of

time, and it is customary to say that we are in a localized regime.

We now investigate more closely the path properties of P
TN

N,δ. A natural question is: does
the polymer visit infinitely many different interfaces, or does it stick to a finite number of

them? And more precisely: what is the scaling behavior of SN under P
TN

N,δ as N → ∞?

The answer turns out to depend on the speed at which TN → ∞. Let cδ be the positive
constant defined as

cδ := φ(δ,∞) + log
(
1 +

√
1 − e−2φ(δ,∞)

)
=

δ

2
+ log

√
2 − e−δ , (1.12)

where the r.h.s. of (1.12) is obtained with the help of (1.11). Then, the behavior of the
sequence TN − 1

cδ
log N determines the scaling properties of the polymer measure. More

precisely, we have the following result, where =⇒ denotes convergence in law and N (0, 1)
the standard Normal distribution.

Theorem 2. Let δ > 0 and T = (TN )N∈N such that TN → ∞ as N → ∞.

(i) If TN − log N
cδ

→ −∞ as N → ∞, then under P
TN

N,δ as N → ∞
SN

Cδ

(
e−

cδ
2

TN TN

)√
N

=⇒ N (0, 1) , (1.13)

where Cδ :=

√
2 eδ φ′(δ,∞)

√
1 − e−2φ(δ,∞) = (1− e−δ)

√
2eδ

2−e−δ is an explicit posi-

tive constant.

(ii) If there exists ζ ∈ R such that TN ′ − log N ′

cδ
→ ζ along a sub-sequence N ′, then

under P
TN′

N ′,δ as N ′ → ∞
SN ′

TN ′
=⇒ SΓ , (1.14)
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where Γ is a random variable independent of the {Si}i≥0 and with a Poisson law

of parameter tδ,ζ := 2eδ
√

1 − e−2φ(δ,∞)φ′(δ,∞) · e−cδζ = 2eδ (1−e−δ)2

2−e−δ · e−cδζ .

(iii) If TN − log N
cδ

→ +∞ as N → ∞, then the family of laws of {SN}N∈N under P
TN

N,δ

is tight, i.e.,

lim
L→∞

sup
N∈N

P
TN

N,δ

(
|SN | > L

)
= 0 . (1.15)

Remark 1. It may appear strange that in point (ii) we have required that TN ′− log N ′

cδ
→ ζ

only along a sub-sequence N ′: however this is just because TN takes integer values and

therefore the full sequence TN − log N
cδ

cannot have a finite limit. In general, equation (1.14)

implies that SN/TN is tight when the full sequence |TN − log N
cδ

| is bounded. �

The proof of Theorem 2 is distributed in Sections 3, 4 and 5. The crucial idea, described
in §3.1, is to exploit the renewal theory description given in Section 2. Let us stress the

intuitive content of this result. We set ∆N := TN − log(N)
cδ

and we anticipate that e−cδ∆N

is the typical number of different interfaces visited by the polymer of length N . With this
in mind, we can give some more insight on Theorem 2.

• If ∆N → −∞, then the interfaces are departing slow enough so that it is worth
for the polymer to visit infinitely many of them. Of course, this is also true when
TN ≡ T < ∞ for all N ∈ N. This situation is not included in Theorem 2 for
notational convenience, but a straightforward adaptation of our proof shows that

in this case SN/(CT

√
N) =⇒ N (0, 1) for a suitable CT satisfying CT ∼ Cδ e−

cδ
2

T T
as T → ∞, thus matching perfectly with (1.13).

We note that, independently of (TN )N (such that ∆N → −∞), the limit law
of SN , properly rescaled, is always the standard Normal distribution. However

the scaling constants
(
e−

cδ
2

TN TN

)√
N do depend on the sequence (TN )N and in

particular they are sub-diffusive as soon as TN → ∞. Also notice that, by varying

TN from O(1) to the critical case log(N)
cδ

+ O(1), the scaling constants decrease

smoothly from
√

N to log N .

• If ∆N = O(1), then we are in the critical case when the polymer visits a finite
number of different interfaces and therefore the scaling behavior of SN is the same
as TN , i.e., SN ≈ log N . The explicit form SΓ of the scaling distribution has the
following interpretation: the number Γ of different interfaces visited by the polymer
is distributed according to a Poisson law and, conditionally on Γ, the polymer just
performs Γ steps of a simple symmetric random walk on the interfaces.

• If ∆N → +∞, then the only interface visited by the polymer is the x-axes. The
other interfaces are indeed too distant from the origin to be convenient for the

polymer to visit them. Therefore, the model P
TN

N,δ becomes essentially the same as

the classical homogeneous pinning model P∞
N,δ, where only the interface located

at S = 0 is present. Since δ > 0, we are in the localized regime for P∞
N,δ and it

is well-known that SN = O(1). One could also determine the limit distribution of
SN , but we omit this for conciseness.

As already mentioned, the study of the path behavior in the delocalized regime δ < 0
turns out to be rather different, both from a technical and a physical viewpoint, and will
therefore be carried out in a future work.
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2. A renewal theory path to the free energy

This section is devoted to proving Theorem 1. We also provide a renewal theory de-
scription for a slight modification of the polymer measure P∞

N,δ, which is the key tool in
the next sections.

2.1. A slight modification. We consider δ ∈ R and T ∈ 2N ∪ {∞}. It is convenient to

introduce the constrained partition function ZT,c
N,δ, where only the trajectories (Si)i that

are pinned at an interface at their right extremity are taken into account, i.e.,

ZT,c
N,δ := E

(
exp

(
HT

N,δ(S)
)
1{SN ∈TZ}

)
. (2.1)

In order for the restriction on {SN ∈ TZ} to be non-trivial, we work with ZT,c
N,δ only for

N even. This is the usual parity issue connected with the periodicity of the simple random
walk: in fact P(SN ∈ TZ) = 0 if N is odd (we recall that T is assumed to be even).

The reason for introducing ZT,c
N,δ is that it is easier to handle than the original partition

function, and at the same time it is not too different, as the following lemma shows.

Lemma 3. The following relation holds for all N ∈ N, δ ∈ R, T ∈ 2N:

e−|δ| ZT,c
2⌊N/2⌋,δ ≤ ZT

N,δ ≤
√

(N + 1)ZT,c
2N,δ . (2.2)

Proof. If N is even, then 2⌊N/2⌋ = N and the lower bound in (2.2) follows trivially from

the definition (2.1) of ZT,c
N,δ. If N is odd, then 2⌊N/2⌋ = N − 1 and since

HT
N,δ(S) ≥ HT

N−1,δ(S) − |δ| ,
the lower bound in (2.2) is proven in full generality.

To prove the upper bound, we observe that by the definition (2.1)

ZT,c
2N,δ ≥ E

(
exp

(
HT

2N,δ(S)
)
1{S2N=0}

)
=

N∑

k=−N

E
(

exp
(
HT

2N,δ(S)
)
1{SN=k} 1{S2N=0}

)
,

and from the Markov property and the time-symmetry i 7→ N − i we have

ZT,c
2N,δ ≥

N∑

k=−N

[
E
(

exp
(
HT

N,δ(S)
)
1{SN=k}

)]2
.

Since P(SN = k) > 0 if and only if N and k have the same parity, there are only N + 1
non-zero terms in the sum, and applying Jensen’s inequality we get

ZT,c
2N,δ ≥ 1

N + 1

[
N∑

k=−N

E
(

exp
(
HT

N,δ(S)
)
1{SN=k}

)]2

=
1

N + 1

[
ZT

N,δ

]2
,

therefore the upper bound in (2.2) is proven and the proof is completed. �

As a direct consequence of Lemma 3, we observe that to prove the existence of the free

energy, i.e., of the limit in (1.5), we can safely replace the original partition function ZTN

N,δ

by the constrained one ZTN ,c
N,δ , restricting N to the even numbers. The next paragraphs

are devoted to obtaining a more explicit expression of ZT,c
N,δ.
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2.2. The link with renewal theory. We start with some definitions. For T ∈ 2N∪{∞},
we set τT

0 = 0 and for j ∈ N

τT
j := inf

{
i ≥ τT

j−1 + 1 : Si ∈ TZ
}

and εT
j :=

S
τT
j
−S

τT
j−1

T , (2.3)

where for T = ∞ we agree that TZ = {0}. Notice that τT
j gives the jth epoch at which S

touches an interface, while εT
j tells whether the jth interface touched is the same as the

(j − 1)th (εT
j = 0), or is the interface above (εT

j = 1) or below (εT
j = −1). Under the law

P of the simple random walk, we define for j = {0,±1}, n ∈ N and λ ∈ R the quantities

qj
T (n) := P

(
τT
1 = n , εT

1 = j
)

and Qj
T (λ) :=

∞∑

n=1

e−λn qj
T (n) . (2.4)

Of course Qj
T (λ) may be (in fact, is) infinite for λ negative and large, and clearly q±1

∞ (n) = 0

for n ≥ 1 and Q±1
∞ (λ) = 0 for λ ≥ 0. Notice that q−1

T = q1
T and Q−1

T = Q1
T , so that we can

focus only on qj
T , Qj

T for j ∈ {0, 1}. We also set

qT (n) :=
∑

j=0,±1

qj
T (n) = q0

T (n) + 2 q1
T (n) = P

(
τT
1 = n

)

QT (λ) :=
∑

j=0,±1

Qj
T (λ) = Q0

T (λ) + 2Q1
T (λ) = E

(
e−λ τT

1

)
.

(2.5)

Next we introduce
H :=

{
R × 2N

}
∪
{
R

+ × {+∞}
}

(2.6)

and for (δ, T ) ∈ H we define the quantity λδ,T by the equation

QT

(
λδ,T

)
= e−δ . (2.7)

As we show in Appendix A, for T < ∞ the function QT (·) is analytic and decreasing on
(λT

0 ,+∞), with λT
0 = −1

2 log
(
1 + (tan π

T )2
)

< 0, and such that QT (λ) → +∞ as λ ↓ λT
0

and QT (λ) → 0 as λ → +∞. In particular, equation (2.7) has exactly one solution for
every δ ∈ R, so that λδ,T is well-defined. For T = ∞, QT (.) is analytic and decreasing on
[0,∞), QT (0) = 1 and QT (λ) → 0 as λ → +∞, while QT (λ) = ∞ for λ < 0. This implies
that equation (2.7) has exactly one solution λδ,∞ for every δ ≥ 0 and zero solution for
δ < 0. In the next paragraph we are going to show that when λδ,T exists, it is nothing but
the free energy φ(δ, T ) (in agreement with Theorem 1).

We are finally ready to introduce, for (δ, T ) ∈ H, the basic law Pδ,T , under which the
sequence of vectors {(ξi, εi)}i≥1, taking values in N × {±1, 0}, is i.i.d. with marginal law

Pδ,T

(
(ξ1, ε1) = (n, j)

)
:= eδ q

|j|
T (n) e−λδ,T n , n ∈ N, j ∈ {±1, 0} . (2.8)

Note that (2.7) ensures that this indeed is a probability law. Then we set τ0 = 0 and
τn = ξ1 + · · · + ξn, for n ≥ 1. We denote by τ both the sequence of variables {τn}n≥0 and
the corresponding random subset of N∪{0} defined by τ =

⋃
n≥0{τn}, so that expressions

like {N ∈ τ} make sense. Notice that {τn}n≥0 under Pδ,T is a classical renewal process,
because the increments {τn−τn−1}n≥1 = {ξn}n≥1 are i.i.d. positive random variables, with
law

Pδ,T

(
τ1 = n

)
:= eδ q T (n) e−λδ,T n , n ∈ N . (2.9)

Because of the periodicity of the simple random walk, qT (n) = 0 for all odd n ∈ N and
qT (n) > 0 for all even n ∈ N (we recall that we only consider the case of even T ). Therefore,
the renewal process is periodic with period 2.
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We now have all the ingredients to give an explicit expression of the partition function
in terms of the jumps made by S between interfaces. This can be done for (δ, T ) ∈ H and

for ZT,c
N,δ (recall (2.1)) as follows. For k, n ∈ N, k ≤ n, we define the set

Sk,n :=
{
t ∈ (N ∪ {0})k+1 : 0 = t0 < t1 < . . . < tk = n

}
.

Then for λ ∈ R and N even we can write

ZT,c
N,δ =

N∑

k=1

∑

σ∈{−1,0,1}k

∑

t∈Sk,N

k∏

l=1

eδ q
|σl|
T (tl − tl−1)

= eλN
N∑

k=1

∑

σ∈{−1,0,1}k

∑

t∈Sk,N

k∏

l=1

eδ q
|σl|
T (tl − tl−1) e−λ(tl−tl−1). (2.10)

Then setting λ = λδ,T and recalling (2.8), we can rewrite (2.10) as

ZT,c
N,δ = eλδ,T ·N Pδ,T

(
N ∈ τ

)
. (2.11)

We stress that this equation retains a crucial importance in our approach. In fact the

behavior of ZT,c
N,δ is reduced to the asymptotic properties of the renewal process τ .

The next step is to lift relation (2.11) from the constrained partition function to the

constrained polymer measure P
T,c
N,δ, defined for N even as

P
T,c
N,δ

(
·
)

:= PT
N,δ

(
·
∣∣SN ∈ TZ

)
.

Recalling the definition (1.6) of LN,T , for (δ, T ) ∈ H, for k ≤ N , t ∈ Sk,N and σ ∈ {±1, 0}k,
in analogy to (2.10) we can write

P
T,c
N,δ

(
LN,T = k, (τT

i , εT
i ) = (ti, σi), 1 ≤ i ≤ k

)

=
eλδ,T N

ZT,c
N,δ

k∏

l=1

eδ q
|σl|
T (tl − tl−1) e−λδ,T (tl−tl−1).

(2.12)

Therefore from (2.8) and (2.11) we obtain

P
T,c
N,δ

(
LN,T = k, (τT

i , εT
i ) = (ti, σi), 1 ≤ i ≤ k

)

= Pδ,T

(
LN = k, (τi, εi) = (ti, σi), 1 ≤ i ≤ k

∣∣∣N ∈ τ
)

,
(2.13)

where LN := sup{j ≥ 1 : τj ≤ N} in analogy with (1.6). Thus the process {(τT
i , εT

i )}i

under P
T,c
N,δ is distributed like {(τi, εi)}i under the explicit law Pδ,T , conditioned on the

event {N ∈ τ}. The crucial point is that {τi}i under Pδ,T is a genuine renewal process.
This fact is the key to the path results that we prove in the next section, because we will

show that the constrained law P
T,c
N,δ is not too different from the original law PT

N,δ.

2.3. Proof of Theorem 1. Thanks to Lemma 3, to prove Theorem 1 it suffices to show
that for every sequence (TN )N such that TN → T∞ as N → ∞ we have

lim
N→∞,N even

1

N
log ZTN ,c

δ,N =

{(
QT∞

)−1
(e−δ) if T∞ < ∞(

QT∞

)−1
(e−δ ∧ 1) if T∞ = ∞

, (2.14)

where we recall that QT (·) was introduced in (1.9). Recall also that for (δ, T ) ∈ H we have(
QT

)−1
(e−δ) = λδ,T (see (2.7)).
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Consider first the case when T∞ < ∞, i.e., T∞ ∈ N. Then the sequence (TN )N takes
eventually the constant value TN = T∞ and thanks to (2.11) and (2.7) we can write

1

N
log ZT∞,c

δ,N = (QT∞)−1(e−δ) +
1

N
logPδ,T∞

(
N ∈ τ

)
. (2.15)

Therefore it remains to show that the last term in the r.h.s. vanishes as N → ∞, N even,
and we are done (as a by-product, we also show that λδ,T∞ coincides with the free energy
φ(δ, T∞)). We recall that the process τ = {τn}n under Pδ,T∞ is a classical renewal process
with step-mean

m(δ, T∞) := Eδ,T∞

(
τ1

)
< +∞ . (2.16)

The fact that m(δ, T∞) < +∞ is easily checked by (2.9), because by construction λδ,T∞ >

λT∞
0 , cf. (2.5), (2.7) and the following lines. Since the renewal process

(
{τn}n,Pδ,T∞

)
has

period 2, the Renewal Theorem yields

lim
N→∞, N even

Pδ,T∞

(
N ∈ τ

)
=

2

m(δ, T∞)
> 0 , (2.17)

and looking back to (2.15) we see that (2.14) is proven.

Next we consider the case when T∞ = +∞, that is TN → +∞ as N → ∞. We can
rewrite equation (2.15) as

1

N
log ZTN ,c

δ,N = (QTN
)−1(e−δ) +

1

N
logPδ,TN

(
N ∈ τ

)
. (2.18)

We start considering the first term in the r.h.s. of (2.18), by proving the following lemma.

Lemma 4. For every δ ∈ R

lim
T→∞, T∈2N

(
QT

)−1
(e−δ) =

(
Q∞

)−1
(e−δ ∧ 1) . (2.19)

Proof. To this purpose, we observe that as T → ∞ the variable τT
1 , defined in (2.3)

converges a.s. toward τ∞
1 := inf{i > 0 : Si = 0}, i.e., the first return to zero of the simple

random walk. Accordingly, by dominated convergence (or by direct verification), QT (λ)

converges as T → ∞, for every λ ∈ [0,+∞), toward Q∞(λ) = 1−
√

1 − e−2λ. Since Q∞(·)
is strictly decreasing, it is easily checked that also the inverse functions converge, i.e., for
every y ∈ (0, 1] we have (QT )−1(y) → (Q∞)−1(y) as T → ∞, so that (2.19) is checked
for δ ≥ 0. On the other hand, when δ < 0 we have λT

0 < (QT )−1(e−δ) < 0, because as
we already mentioned QT (·) is decreasing and QT (λ) → ∞ as λ ↓ λT

0 and QT (0) = 1.
Moreover, λT

0 vanishes as T → ∞ (see (A.6)) and consequently (QT )−1(e−δ) → 0 as
T → ∞. Hence (2.19) holds also for δ < 0. �

Using Lemma 4 and the fact that Pδ,TN

(
N ∈ τ

)
≤ 1, by (2.18) we obtain

lim sup
N→∞,N even

1

N
log ZTN ,c

δ,N ≤
(
Q∞

)−1
(e−δ ∧ 1) ,

hence to complete the proof of (2.14) it remains to show that for every δ ∈ R

lim inf
N→∞,N even

1

N
log ZTN ,c

δ,N ≥
(
Q∞

)−1
(e−δ ∧ 1) . (2.20)

We start considering the case when δ ≤ 0, hence
(
Q∞

)−1
(e−δ ∧ 1) = 0. We give a very

rough lower bound on ZTN ,c
δ,N , namely for N even we can write

ZTN ,c
δ,N ≥ E

(
exp

(
HTN

N,δ(S)
)
1{Si 6∈TN Z,∀1≤i≤N−1}1{SN=0}

)
= eδ · q0

TN
(N) , (2.21)
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where we recall that q0
TN

(N) = P
(
τTN
1 = N ;SN = 0

)
was defined in (2.4). (If N is odd,

the same formula holds just replacing N by N − 1, and the following considerations are
easily adapted.) So we are left with showing that q0

TN
(N) does not decay exponentially

fast as N → ∞: by the explicit formula (A.7) we have

q0
TN

(N) ≥ 2

TN
cosN−2

(
π

TN

)
sin2

(
π

TN

)
.

At this stage, by using the fact that sin2(x) ∼ x2 as x → 0 we can assert that for N large
enough sin(π/TN ) ≥ π/(2TN ) and since by assumption TN ≤ N we obtain

P1

(
τTN

1 = N − 1;SN−1 = 0
)
≥ π2

2N3
e
(N−2) log cos

(
π

TN

)
,

which by (2.21) shows that (2.20) holds (note that the r.h.s. of (2.20) is zero for δ ≤ 0).
Finally, we have to prove that equation (2.20) holds true for δ > 0. By (2.18) and

Lemma 4 it suffices to show that

lim inf
N→∞

1

N
logPδ,TN

(
N ∈ τ

)
= 0 . (2.22)

This is not straightforward, because the law Pδ,TN
changes with N and therefore some

uniformity is needed. Let us be more precise: by the Renewal Theorem, see (2.17), for
fixed T we have that, as n → ∞ along the even numbers,

Pδ,T

(
n ∈ τ

)
−→ 2

m(δ, T )
,

where m(δ, T ) was introduced in (2.16). At the same time, as T → ∞ we have

m(δ, T ) −→ m(δ,∞) ,

as we prove in Lemma 6 below. Since TN → ∞ as N → ∞, the last two equations
suggest that for N large Pδ,TN

(
N ∈ τ

)
should be close to 2/m(δ,∞). To show that this

is indeed the case, we are going to apply Theorem 2 in [13], which is a uniform version
of the Renewal Theorem. First recall that, by Lemma 4, λδ,T → λδ,∞ > 0 as T → ∞,
T ∈ 2N, and moreover λδ,T > 0 for every T ∈ 2N, hence there exist C1, C2 > 0 such that
C1 ≤ λδ,T ≤ C2 for every T ∈ 2N. We are ready to verify the following two conditions:

(1) when δ > 0 is fixed and T varies in 2N, the family of renewal process
(
{τn}n,Pδ,T

)

restricted to the even numbers is uniformly aperiodic, in the sense of Definition 1
in [13], because Pδ,T (τ1 = 2) = eδqT (2) e−2λδ,T ≥ (eδ/2) · e−2C2 > 0 for all T ∈ 2N;

(2) when δ > 0 is fixed and T varies in 2N, the family of renewal process
(
{τn}n,Pδ,T

)

have uniformly summable tails, in the sense of Definition 2 in [13], because

Pδ,T

(
τ1 ≥ t

)
≤

∞∑

r=t

e−C1r =
e−C1 t

1 − e−C1
.

We can therefore apply Theorem 2 in [13], which yields the following Lemma. This implies
(2.22) and therefore the proof of Theorem 1 is completed. �

Lemma 5. Fix δ > 0. Then for every ε > 0 there exist N0 ∈ N such that for every T ∈ 2N

and for all N ≥ N0, N even, we have∣∣∣∣Pδ,T

(
N ∈ τ

)
− 2

m(δ,∞)

∣∣∣∣ ≤ ε .
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Lemma 6. For all δ > 0 and k ∈ N

lim
T→∞

Eδ,T

(
(τ1)

k
)

= Eδ,∞
(
(τ1)

k
)
. (2.23)

Proof. By Lemma 4 we know that for δ > 0 we have λδ,T → λδ,∞ > 0 as T → ∞, T ∈ 2N.
Thus, by writing

Eδ,T

(
(τ1)

k
)

= eδ
∞∑

n=1

nk qT (n) e−λδ,T n ,

it suffices to apply the Dominated Convergence Theorem (since qT (n) ≤ 1). �

Remark 2. Now that we have proven that the free energy φ(δ, T ) indeed equals the r.h.s.
of (2.14), we can restate Lemma 4 in the following way:

lim
T→∞

φ(δ, T ) = φ(δ,∞) ∀δ ∈ R . (2.24)

Remark 3. For (δ, T ) ∈ H we know that λδ,T = φ(δ, T ). Consequently, we will use φ(δ, T )
instead of λδ,T in what follows. �

3. Proof of Theorem 2 (i)

This section is devoted to the proof of part (i) of Theorem 2. We recall that δ > 0 is
fixed and that TN − 1

cδ
log N → −∞ as N → ∞, where cδ is defined in (1.12).

We recall that (τT
i , εT

i )i≥1 defined in (2.3) under P
TN

N,δ represents the jump process of

the polymer between the interfaces, whereas (τi, εi)i≥1 introduced in (2.8) under the law
Pδ,TN

represents an auxiliary renewal process. For N ≥ 1 we set

Y T
N =

N∑

i=1

εT
i and recall from (1.6) LN,T = sup{j ≥ 1 : τT

j ≤ N} , (3.1)

and

YN =

N∑

i=1

εi and LN = sup{j ≥ 1 : τj ≤ N} . (3.2)

3.1. General strategy. Let us describe the strategy of our proof. The aim is to determine

the asymptotic behavior of SN under P
TN

N,δ as N → ∞. The starting point is given by the

following considerations:

• by definition we have SN = T · Y T
LN,T

+ O(T ), hence the behavior of SN can be

recovered from that of LN,T and {Y T
n }n;

• it turns out that the free polymer measure P
TN

N,δ is not too different from the

constrained one P
TN ,c
N,δ = P

TN

N,δ( · |SN ∈ TNZ), which in turn is closely linked to the

law Pδ,TN
introduced in §2.2, cf. in particular (2.13).
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For these reasons, the first part of the proof of Theorem 2 consists in determining the
asymptotic behavior of {Yn}n and LN under Pδ,TN

. This is carried out in §3.3 (Step 1)
and §3.4 (Step 2) below, exploiting ideas and techniques from random walks and renewal
theory. The second part of the proof is devoted to showing that the law Pδ,TN

can indeed

be replaced by P
TN ,c
N,δ , see §3.5 (Step 3), and finally by P

TN

N,δ, see §3.6 (Step 4).

Let us give a closer (heuristic) look at the core of the proof. For fixed T , the process
{Yn}n under Pδ,T is just a symmetric random walk on Z with step law

Pδ,T (Y1 = j) = Pδ,T (ε1 = j) = eδ Q
|j|
T (φ(δ, T )) j ∈ {±1, 0} ,

see equations (2.8) and (2.4), (2.5). In particular the Central Limit Theorem yields

YN ≈ CT

√
N under Pδ,T as N → ∞ , (3.3)

where CT =
√

2eδQ1
T (φ(δ, T )) is the standard deviation of Y1.

Of course we are interested in the case when T = TN is not fixed anymore but varies
with N , more precisely TN → ∞ as N → ∞. Then it is easy to see that CTN

→ 0. However,

if it happens that CTN

√
N → ∞ as N → ∞, one may hope that equation (3.3) still holds

with T replaced by TN . This is indeed true, as we are going to show. To determine the
asymptotic behavior of CT , the following lemma is useful.

Lemma 7. Fix δ > 0. Then as T → ∞
Q1

T (φ(δ, T )) =
√

1 − e−2φ(δ,∞) e−cδT (1 + o(1)) , (3.4)

where cδ = φ(δ,∞) + log(1 +
√

1 − e−2φ(δ,∞)) (recall (1.12)).

This shows that the condition CTN

√
N → ∞ as N → ∞ is equivalent to TN − log N

cδ
→ −∞,

which is exactly the hypothesis of part (i) of Theorem 2. As we mentioned, in this case we
show that (3.3) still holds, so that

YN ≈ CTN

√
N ≈ C∗e−

cδ
2

TN
√

N under Pδ,TN
as N → ∞ , (3.5)

with C∗ =

√
2eδ
√

1 − e−2φ(δ,∞).

Now let us come back to SN . By definition we have SN = TN Y TN

LN,TN
+ O(TN ) and

from equation (1.7) we get LN,TN
≈ cN , with c = φ′(δ,∞) > 0. Moreover, as we already

mentioned, the law Pδ,TN
can be replaced by the original polymer measure P

TN

N,δ without

changing the asymptotic behavior. Together with (3.5), these considerations yield

SN ≈ TN · Y TN

cN ≈ Cδ (e−
cδ
2

TN TN )
√

N under P
TN

N,δ as N → ∞ ,

where Cδ := C∗√c =

√
2eδφ′(δ,∞)

√
1 − e−2φ(δ,∞). Notice that this matches exactly with

the result of Theorem 2.

Proof of Lemma 7. We can rewrite the second relation in (A.3) as

Q1
T (λ) =

√
1 − e−2λ · e−ecλT · 1

1 +

(
1−
√

1−e−2λ

1+
√

1−e−2λ

)T
, (3.6)

where c̃λ := λ + log(1 +
√

1 − e−2λ). We have to replace λ by φ(δ, T ) in this relation and
study the asymptotic behavior as T → ∞.
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Observe that φ(δ, T ) and φ(δ,∞) are both strictly positive, since δ > 0, and moreover
φ(δ, T ) → φ(δ,∞) as T → ∞ (see Remark 2). This easily implies that the last factor in
the r.h.s. of (3.6) is 1 + o(1), hence as T → ∞

Q1
T (φ(δ, T )) =

√
1 − e−2φ(δ,∞) e−ecφ(δ,T )T (1 + o(1)) .

To prove (3.4) it remains to show that c̃φ(δ,T )T = cδT +o(1) as T → ∞. Since cδ = c̃φ(δ,∞),

this follows once we show that |φ(δ, T ) − φ(δ,∞)| = o( 1
T ).

To this purpose, we fix ε > 0 such that φ(δ, T ) ≥ ε for every T . By equation (A.4),
there exists κ = κε > 0 such that, uniformly for λ ∈ [ε,∞),

QT (λ) = 1 −
√

1 − e−2λ + O(e−κT ) (T → ∞) .

Recalling that Q∞(λ) = 1 −
√

1 − e−2λ and that e−δ = QT (φ(δ, T )) = Q∞(φ(δ,∞)) by
Theorem 1, we obtain

Q∞(φ(δ, T )) − Q∞(φ(δ,∞)) = O(e−κT ) (T → ∞) .

Since Q∞(λ) is continuously differentiable with non-zero derivative for λ > 0, it follows
that φ(δ, T ) − φ(δ,∞) = O(e−κT ), and the proof is completed. �

3.2. Preparation. We start the proof of Theorem 2 by rephrasing equation (1.13), which
is our goal, in a slightly different form. We recall that TN − 1

cδ
log N → −∞ as N → ∞, or

equivalently e−cδTN N → ∞, and that by construction |SN −Y TN

LN,TN
·TN | ≤ TN . Therefore

equation (1.13) is equivalent to the following: for all x ∈ R

lim
N→∞

P
TN

N,δ

( Y TN

LN,TN

Cδ

√
e−cδTN N

≤ x

)
= P (N (0, 1) ≤ x) , (3.7)

where

Cδ =

√
2 eδ φ′(δ,∞)

√
1 − e−2φ(δ,∞) . (3.8)

Recall the definition (2.9) of the renewal process (τ,Pδ,T ). For δ > 0 and T ∈ 2N∪{+∞},
we set

sT :=
1

Eδ,T (τ1)
∈ (0,∞) . (3.9)

Differentiating the relation QT (φ(δ, T )) = e−δ one obtains φ′(δ, T ) = −e−δ/Q′
T (φ(δ, T )),

and by direct computation

Eδ,T (τ1) = eδ
∑

n∈N

n qT (n) e−φ(δ,T )n = −eδ Q′
T (φ(δ, T )) =

1

φ′(δ, T )
, ∀T ∈ 2N . (3.10)

In particular, φ′(δ,∞) = s∞. Recalling Lemma 7 and setting Q1
TN

:= Q1
TN

(φ(δ, TN )) for

conciseness, we can finally restate (3.7) as

lim
N→∞

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

)
= P (N (0, 1) ≤ x) , (3.11)

which is exactly what we are going to prove. This will be achieved in four steps. We stress
that the assumption TN − 1

cδ
log N → −∞ as N → ∞ is equivalent to Q1

TN
· N → ∞.
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3.3. Step 1. In this step we consider the auxiliary renewal process of law Pδ,TN
and we

prove that for x ∈ R

lim
N→∞

Pδ,TN

(
YN√

2eδQ1
TN

N
≤ x

)
= P (N (0, 1) ≤ x) . (3.12)

Under the law Pδ,TN
, (ε1, . . . , εN ) are symmetric i.i.d. random variables taking values

−1, 0, 1. Therefore, they satisfy

Eδ,TN
(|ε1|3) = Eδ,TN

((ε1)
2) = 2eδQ1

TN
, (3.13)

and we can apply the Berry-Esséen Theorem which gives
∣∣∣∣Pδ,TN

(
YN

αδ(N,TN )
≤ x

)
− P (N (0, 1) ≤ x)

∣∣∣∣ ≤ 3 Eδ,TN
(|ε1|3)

Eδ,TN
(ε2

1)
3
2

√
N

=
3√

2eδQ1
TN

N
. (3.14)

Since Q1
TN

· N → ∞ by assumption, equation (3.12) is proved.

3.4. Step 2. In this step we prove that for x ∈ R

lim
N→∞

Pδ,TN

(
YLN

√
s∞
√

2eδQ1
TN

N
≤ x

)
= P (N (0, 1) ≤ x) . (3.15)

The idea is to show that LN ≈ s∞ · N and then to apply (3.12). We need the following

Lemma 8. For every ε > 0 there exists T0 = T0(ε) ∈ N such that

lim
N→∞

sup
T≥T0

Pδ,T

(∣∣∣∣
LN

N
− s∞

∣∣∣∣ > ε

)
= 0 . (3.16)

Proof. Lemma 6 yields sT → s∞ as T → ∞ (we recall the definition (3.9)). Therefore we
fix T0 = T0(ε) such that |s∞ − sT | ≤ ε

2 for T ≥ T0 and consequently

Pδ,T

(∣∣∣∣
LN

N
− s∞

∣∣∣∣ > ε

)
≤ Pδ,T

(∣∣∣∣
LN

N
− sT

∣∣∣∣ >
ε

2

)
.

Setting ξi = τi − τi−1 and ξ̃i = ξi − 1
sT

, by Chebychev’s inequality we get

Pδ,T

(
LN

N
> sT + ε

)
= Pδ,T

(
τ⌊(sT +ε)N⌋ ≤ N

)
= Pδ,T

(
− ξ̃1 − · · · − ξ̃⌊(sT +ε)N⌋ ≥

εN

sT

)

≤ s2
T (sT + ε) Eδ,T

(
ξ̃2
1

)

ε2N
.

By Lemma 6, both the sequences T 7→ sT and T 7→ Eδ,T

(
ξ̃2
1

)
are bounded and therefore

the r.h.s. above vanishes as N → ∞, uniformly in T . The event {LN

N < sT − ε} is dealt
with analogous arguments and the proof is completed. �

We set

YLN

√
s∞
√

2eδQ1
TN

N
=

Y⌊s∞N⌋
√

s∞
√

2eδQ1
TN

N
+

YLN
− Y⌊s∞N⌋

√
s∞
√

2eδQ1
TN

N
=: VN + GN .
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Step 1, see equation (3.12), entails directly that VN converges in law towards N (0, 1).
Therefore, it remains to prove that GN converges in probability to 0. For η, ε > 0 we write

Pδ,TN

(
|GN | > η

)
≤ Pδ,TN

(
|GN | > η,

∣∣∣∣
LN

N
− s∞

∣∣∣∣ ≤ ε

)
+ Pδ,TN

(∣∣∣∣
LN

N
− s∞

∣∣∣∣ > ε

)

≤ Pδ,TN

(
Uε,N > η

)
+ Pδ,TN

(∣∣∣∣
LN

N
− s∞

∣∣∣∣ > ε

)
,

(3.17)

where we set

Uε,N := sup
j∈{0,⌊εN⌋}

max
{
|Y⌊s∞N⌋+j − Y⌊s∞N⌋|, |Y⌊s∞N⌋−j − Y⌊s∞N⌋|

}

√
s∞
√

2eδQ1
TN

N
. (3.18)

Since {Yn}n under Pδ,T is a symmetric random walk, {(Y⌊s∞N⌋+j − Y⌊s∞N⌋)
2}j≥0 is a

submartingale (and the same with j 7→ −j). The maximal inequality then yields

Pδ,TN

(
Uε,N > η

)
≤ 2

η
·
Eδ,TN

(
(Y⌊s∞N⌋+⌊εN⌋ − Y⌊s∞N⌋)

2
)

2 s∞ eδQ1
TN

N
≤ 2 ε

η s∞
,

see (3.13). Recalling Lemma 8, from (3.17) we obtain

lim sup
N→∞

Pδ,TN

(
|GN | > η

)
≤ 2 ε

η s∞
.

But ε > 0 is arbitrary, hence the l.h.s. is zero and equation (3.15) is proven.

3.5. Step 3. This is the most delicate step, where we show that one can replace the free
measure Pδ,TN

by the constrained one Pδ,TN

(
·
∣∣N ∈ τ

)
. More precisely, we prove that for

x ∈ R

lim
N→∞,N even

Pδ,TN

(
YLN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣N ∈ τ

)
= P (N (0, 1) ≤ x) . (3.19)

We note that one can safely replace LN with LN−⌊
√

TN ⌋ in the l.h.s., because YL
N−⌊

√
TN ⌋

differs from YLN
at most by ±1. The same is true for equation (3.15), that we rewrite for

convenience:

lim
N→∞

Pδ,TN

(
YL

N−⌊
√

TN ⌋

√
s∞
√

2eδQ1
TN

N
≤ x

)
= P (N (0, 1) ≤ x) , (3.20)

By summing over the locations of the last point t in τ before N − ⌊√TN⌋ and of the first
point r in τ after N − ⌊√TN⌋, and using the Markov property, we obtain

Pδ,TN

(
YL

N−⌊
√

TN ⌋

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣N ∈ τ

)

=
1

Pδ,TN

(
N ∈ τ

)
N−⌊

√
TN ⌋∑

t=0

t+⌊
√

TN⌋∑

r=t+1

Pδ,TN

(
YL

N−⌊
√

TN ⌋

√
s∞
√

2eδQ1
TN

N
≤ x , N − ⌊

√
TN⌋ − t ∈ τ

)

· Pδ,TN

(
τ1 = r

)
· Pδ,TN

(
t + ⌊

√
TN⌋ − r ∈ τ

)
.
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Introducing the function

Θδ,N(t) :=

∑t+⌊
√

TN ⌋
r=t+1 Pδ,TN

(
τ1 = r

)
· Pδ,TN

(
t + ⌊√TN⌋ − r ∈ τ

)

Pδ,TN

(
N ∈ τ

)
·∑∞

r=t+1 Pδ,TN

(
τ1 = r

) ,

we can write

Pδ,TN

(
YL

N−⌊
√

TN ⌋

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣N ∈ τ

)

=

N−⌊
√

TN ⌋∑

t=0

Pδ,TN

(
YL

N−⌊
√

TN ⌋

√
s∞
√

2eδQ1
TN

N
≤ x , N − ⌊

√
TN⌋ − t ∈ τ

)
· Pδ,TN

(
τ1 > t

)
· Θδ,N (t) .

(3.21)

Notice that if we set Θδ,N(t) ≡ 1, the r.h.s. of the last relation becomes the l.h.s. of
(3.20). In fact Θδ,N(t) is nothing but the Radon-Nikodym derivative of the conditioned

law Pδ,TN

(
·
∣∣N ∈ τ

)
with respect to the free one Pδ,TN

. We are going to show that

Θδ,N(t) → 1 as N → ∞, uniformly in the values of t that have the same parity as ⌊√TN⌋
(otherwise Θδ,N (t) = 0). If we succeed in this, equation (3.19) will follow from (3.20).

Let us set KN (n) := Pδ,TN
(τ1 = n) and uN (n) := Pδ,TN

(n ∈ τ), so that we can rewrite
Θδ,N(t) as

Θδ,N(t) :=

∑t+⌊
√

TN ⌋
r=t+1 KN (r) · uN (t + ⌊√TN⌋ − r)

uN (N) ·∑∞
r=t+1 KN (r)

. (3.22)

We recall that
KN (n) = eδ e−φ(δ,TN )·n qTN

(n) ,

see (2.9), and qT (·) is defined in (2.4). We are going to show the following: for every ε > 0
there exists N0 = N0(ε) such that for every N ≥ N0 and for all the value of t ≤ N−⌊√TN⌋
that have the same parity as ⌊√TN⌋ we have

1 − ε ≤ Θδ,N(t) ≤ 1 + ε . (3.23)

Then the proof of this step will be completed. We first need a preliminary lemma.

Lemma 9. For every η > 0 there exists N1 = N1(η) such that for every N ≥ N1 and for
all 0 ≤ t ≤ N − ⌊√TN⌋ we have

∞∑

r=t+⌊
√

TN ⌋/2

KN (r) ≤ η ·
( t+⌊

√
TN ⌋/2∑

r=t+1

KN (r)

)
. (3.24)

Proof. We first observe that, by the explicit formulas in (A.7) the following upper bound
holds for every T, n ∈ N with n ≥ 2:

max
{
q0
T (n), 2 q1

T (n)
}

≤ 2

T

⌊(T−1)/2⌋∑

ν=1

cosn−2

(
πν

T

)
sin2

(
πν

T

)
.

We can bound the l.h.s. of (3.24) as
∞∑

r=t+⌊
√

TN⌋/2

KN (r) ≤ eδ e−φ(δ,TN )·(t+ ⌊
√

TN ⌋

2
)

∞∑

r=t+⌊
√

TN ⌋/2

qTN
(r) ,
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and since qT (r) = q0
T (r) + 2q1

T (r) we have

∞∑

r=t+⌊
√

TN⌋/2

qTN
(r) ≤ 2

∞∑

r=t+⌊
√

TN ⌋/2

(
2

TN

⌊(TN−1)/2⌋∑

ν=1

cosr−2

(
πν

TN

)
sin2

(
πν

TN

))

=
4

TN

⌊(TN−1)/2⌋∑

ν=1

(
cos
(

πν
TN

))t−2+⌊
√

TN ⌋/2

1 − cos
(

πν
TN

) sin2

(
πν

TN

)

≤ 4

TN
· TN

2

(
cos

(
π

TN

))t−2+⌊
√

TN ⌋/2

· 2 ,

where we have used that sin2 x/(1 − cos x) = 1 + cos x ≤ 2 for x ∈ (0, π
2 ]. Therefore

∞∑

r=t+⌊
√

TN ⌋/2

KN (r) ≤ 4 eδ e−φ(δ,TN )·(t+ ⌊
√

TN ⌋

2
)

(
cos

(
π

TN

))t−2+⌊
√

TN ⌋/2

. (3.25)

Next we bound from below the r.h.s. of (3.24):

t+⌊
√

TN ⌋/2∑

r=t+1

KN (r) ≥ eδ e−φ(δ,TN )·(t+2)
(
q0
TN

(t + 1) + q0
TN

(t + 2)
)

.

One of the two numbers t + 1, t + 2 is even, call it ℓ: then we can apply equation (A.7) to
get

q0
TN

(ℓ) =
2

TN

⌊(TN−1)/2⌋∑

ν=1

cosℓ−2

(
πν

TN

)
sin2

(
πν

TN

)
≥ 2

TN
cosℓ−2

(
π

TN

)
sin2

(
π

TN

)
,

hence
t+⌊

√
TN ⌋/2∑

r=t+1

KN (r) ≥ eδ e−φ(δ,TN )·(t+2) 2

TN
cost

(
π

TN

)
sin2

(
π

TN

)
. (3.26)

The ratio of the r.h.s. of equations (3.25) and (3.26) equals

2TN e−φ(δ,TN )·(⌊
√

TN ⌋/2−2)

(
cos
(

π
TN

))⌊√TN ⌋/2−2

sin2
(

π
TN

) ≤ 8

π2
(TN )3 e−φ(δ,TN )·(⌊

√
TN ⌋/2−2) .

Since the r.h.s. does not depend on t anymore and vanishes as N → ∞, the proof is
completed. �

Let us come back to the proof of (3.23). We first observe that thanks to Lemma 5, for
every η > 0 there exists N2 = N2(η) and such that for all N ∈ N and for all r ≥ N2, r
even, we have

(1 − η) 2s∞ ≤ uN (r) ≤ (1 + η) 2s∞

(s∞ is defined in (3.9)). Henceforth we assume that t has the same parity as ⌊√TN⌋. Then
if N is large, such that ⌊√TN⌋/2 ≥ N2, we can bound Θδ,N(t) (recall (3.22)) by

Θδ,N(t) ≤
(1 + η) 2s∞

∑t+⌊
√

TN⌋/2
r=t+1 KN (r) +

∑t+⌊
√

TN ⌋
t+⌊

√
TN ⌋/2+1

KN (r)

(1 − η) 2s∞
∑t+⌊

√
TN ⌋/2

r=t+1 KN (r)
,
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and if N ≥ N1 we can apply Lemma 9 to obtain

Θδ,N (t) ≤ 1 + η + η/(2s∞)

1 − η
≤ 1 + ε ,

provided η is chosen sufficiently small. Therefore the upper bound in (3.23) is proven. The
lower bound is analogous: for large N we have

Θδ,N(t) ≥ (1 − η) 2s∞
∑t+⌊

√
TN ⌋/2

r=t+1 KN (r)

(1 + η) 2s∞
∑t+⌊

√
TN⌋/2

r=t+1 KN (r) +
∑t+⌊

√
TN ⌋

t+⌊
√

TN ⌋/2+1
KN (r)

,

and applying again Lemma 9 we finally obtain

Θδ,N (t) ≥ 1 − η

1 + η + η/(2s∞)
≥ 1 − ε ,

provided η is small. Recalling (3.21) and the following lines, the step is completed.

3.6. Step 4. In this step we finally complete the proof of Theorem 2 (i), proving equation
(3.11), that we rewrite for convenience: for every x ∈ R

lim
N→∞

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

)
= P (N (0, 1) ≤ x) . (3.27)

We start summing over the location µN := τTN

LN,TN
of the last point in τTN before N (we

assume henceforth that N is even):

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

)
=

N∑

ℓ=0

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣µN = N − ℓ

)

· PTN

N,δ

(
µN = N − ℓ

)
.

Of course only the terms with ℓ even are non-zero. We start showing that we can truncate
the sum at a finite number of terms. To this purpose we estimate

P
TN

N,δ

(
µN = N − ℓ

)
=

E
(
exp

(
HTN

N−ℓ,δ(S)
)
1{N−ℓ∈τ}

)
·P
(
τ1 > ℓ

)

E
(
exp

(
HTN

N,δ(S)
)) .

We focus on the denominator: inserting the event {N − ℓ ∈ τ} and using the Markov
property yields

E
(
exp

(
HTN

N,δ(S)
))

≥ E
(
exp

(
HTN

N−ℓ,δ(S)
)
1{N−ℓ∈τ}

)
· E
(

exp
(
HTN

ℓ,δ (S)
))

,

hence

P
TN

N,δ

(
µN = N − ℓ

)
≤ P

(
τ1 > ℓ

)

E
(
exp

(
HTN

ℓ,δ (S)
)) ≤ 1

E
(
exp

(
H∞

ℓ,δ(S)
)) =

1

Z∞
ℓ,δ

,

where we have used the elementary fact that E
(
exp

(
HT

ℓ,δ(S)
))

≥ E
(
exp

(
H∞

ℓ,δ(S)
))

for

every T ∈ N, see (1.1) and (1.3). Notice that the r.h.s. above does not depend on N
anymore and that Z∞

ℓ,δ ≍ exp(φ(δ,∞) · ℓ) as ℓ → ∞, where ≍ denotes equivalence in the
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Laplace sense, cf. [11]. Since φ(δ,∞) > 0 for δ > 0, it follows that for every ε > 0 there
exists ℓ0 = ℓ0(ε) such that for every N ∈ N we have

N∑

ℓ=ℓ0+1

P
TN

N,δ

(
µN = N − ℓ

)
≤ ε . (3.28)

As a consequence, we have
∣∣∣∣∣P

TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

)

−
ℓ0∑

ℓ=0

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣µN = N − ℓ

)
·PTN

N,δ

(
µN = N − ℓ

)
∣∣∣∣∣ ≤ ε .

Therefore to complete the proof of (3.27) it remains to show that, for every fixed
ℓ ∈ N ∪ {0},

lim
N→∞

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣µN = N − ℓ

)
= P (N (0, 1) ≤ x) . (3.29)

However this is easy. In fact on the event {µN = N − ℓ} we have Y TN

LN,TN
= Y TN

LN−ℓ,TN

and

by the Markov property we get

P
TN

N,δ

(
Y TN

LN,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣µN = N − ℓ

)
= P

TN

N,δ

(
Y TN

LN−ℓ,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣∣N − ℓ ∈ τ

)

However, arguing as in §2.2 (see in particular (2.13)), we have that

P
TN

N,δ

( Y TN

LN−ℓ,TN

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣N − ℓ ∈ τ

)
= Pδ,TN

(
YLN−ℓ

√
s∞
√

2eδQ1
TN

N
≤ x

∣∣∣∣N − ℓ ∈ τ

)
.

Therefore (3.29) follows easily from (3.19). �

4. Proof of Theorem 2 (ii)

This section is devoted to the proof of part (ii) of Theorem 2, which in a sense is the
critical regime. We stress that δ > 0 is fixed throughout the section. The assumption in

part (ii) is that the sequence (TN )N is such that TN ′ − log N ′

cδ
→ ζ along a sub-sequence N ′,

where ζ ∈ R (the reason for considering only a sub-sequence is explained in Remark 1).
However, for notational convenience, in this section we drop the sub-sequence and we
assume that for some ζ ∈ R as N → ∞

TN − log N

cδ
−→ ζ or equivalently Q1

TN
· N −→

√
1 − e−2φ(δ,∞)e−cδζ , (4.1)

where we have used Lemma 7 and we recall the shorthand Q1
TN

:= Q1
TN

(φ(δ, TN )) intro-
duced in the previous section.
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We recall that the variables (ξi, εi, τi)i≥1 are defined under the law Pδ,TN
(see (2.8)).

We now introduce the successive epochs (θi)i≥0 at which the jump process changes of
interface, by setting θ0 = 0 and for j ≥ 1

θj := inf
{
m > θj−1 : ∃i ∈ N such that τi = m and |εi| = 1

}
. (4.2)

The number of these jumps occurring before time N is given by

L′
N := sup{j ≥ 0 : θj ≤ N} = #{i ≤ LN : |εi| = 1} . (4.3)

Notice that θ ⊆ τ , where as usual we identify θ = {θn}n with a (random) subset of N∪{0}.
We split the proof in three steps.

4.1. Step 1. We start proving that under Pδ,TN
the variable L′

N converges in law towards

a Poisson law of parameter tδ,ζ with tδ,ζ := 2eδ
√

1 − e−2φ(δ,∞)φ′(δ,∞) · e−cδζ , i.e.,

lim
N→∞

Pδ,TN

(
L′

N = j
)

= e−tδ,ζ
(tδ,ζ)

j

j!
∀j ∈ N ∪ {0} . (4.4)

We note that {|εi|}i≥1 under Pδ,TN
is a sequence of i.i.d. Bernoulli trials with success

probability given by

pTN
:= Pδ,TN

(|ε1| = 1) = 2eδQ1
TN

. (4.5)

We also set

∆ := inf{i ≥ 1 : |εi| = 1} .

Notice that (θj − θj−1)j≥1 are i.i.d. random variables. Moreover we can write

θ1 =

∆∑

j=1

ξj .

We now study the asymptotic behavior of θj and by (4.3) we derive that of L′
N . The

building blocks are given in the following Lemma.

Lemma 10. The following convergences in law hold as N → ∞ under Pδ,TN
:

ξ∆

N
=⇒ 0 ,

∆ − 1

N
=⇒ Exp

(
vδ

)
,

1

∆ − 1

∆−1∑

j=1

ξj =⇒ Eδ,∞(ξ1) , (4.6)

where vδ,ζ := 2eδ
√

1 − e−2φ(δ,∞) e−cδζ and Exp(λ) denotes the Exponential law of param-

eter λ, i.e., P (Exp(λ) ∈ dx) = λ e−λx 1{x≥0} dx.

Proof. For the first relation, it suffices to show that Eδ,TN
(ξ∆/N) vanishes as N → ∞.

By definition, the variable ξ∆ gives the length of a jump conditioned to occur between
two different interfaces, namely, ξ∆ has the same law as ξ1 conditionally on the event
{|ε1| = 1}. This leads to the following formula (see (2.8)):

Eδ,TN

(ξ∆

N

)
=

1

Q1
TN

N

∞∑

n=1

n q1
TN

(n) e−φ(δ,TN ) n . (4.7)

By (4.1) Q1
TN

N → c′ > 0 as N → ∞ and for every fixed n ≥ 1 we observe that plainly

q1
TN

(n) → 0 as N → ∞ (in fact q1
T (n) = 0 for T > n). Since φ(δ, TN ) → φ(δ,∞) > 0 as

N → ∞, see Remark 2, by Dominated Convergence the r.h.s. of (4.7) vanishes as N → ∞.
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For the second relation in (4.6), note that the variable ∆ has a Geometric law of pa-
rameter pTN

, i.e., for all j ∈ N

Pδ,TN
(∆ = j) = (1 − pTN

)j−1pTN
.

Since N · pTN
→ vδ,ζ = 2eδ

√
1 − e−2φ(δ,∞) e−cδζ as N → ∞, see (4.5) and (4.1), it is

well-known (and easy to check) that ∆/N converges to an Exponential law of parameter
vδ, and of course the same is true for (∆ − 1)/N .

Next we focus on the third relation in (4.6). Since Pδ,TN

(
∆ ≤

√
N
)
→ 0 as N → ∞ by

the result just proved, it suffices to consider for ε > 0 the quantity

Pδ,TN

(∣∣∣∣
1

∆ − 1

∆−1∑

j=1

ξj − Eδ,∞(ξ1)

∣∣∣∣ > ε, ∆ >
√

N

)

=
∞∑

l=⌈
√

N⌉

Pδ,TN
(∆ = l) Pδ,TN

(∣∣∣∣
1

l − 1

l−1∑

j=1

ξj − Eδ,∞(ξ1)

∣∣∣∣ > ε

∣∣∣∣∣∆ = l

)
.

(4.8)

To evaluate the last term, we notice that under Pδ,TN

(
·
∣∣∆ = l

)
the variables ξ1, . . . , ξl−1

are i.i.d. with marginal law simply given by the law of ξ1 conditionally on the event {ε1 = 0}
(which means that the jump occurs at the same interface). Denoting for simplicity by P0

δ,TN

this law, we have for n ≥ 1,

P0
δ,TN

(ξ1 = n) =
1

1 − 2eδQ1
TN

q0
TN

(n) eδ e−φ(δ,TN ) n. (4.9)

By (4.1) we have Q1
TN

→ 0 as n → ∞. Moreover q0
TN

(n) → q∞(n) by definition and

φ(δ, TN ) → φ(δ,∞) > 0 by Remark 2. These considerations yield by Dominated Conver-
gence E0

δ,TN
(ξ1) → Eδ,∞(ξ1) and Var0δ,TN

(ξ1) → Varδ,∞(ξ1) as N → ∞. In particular, in the

r.h.s. of (4.8) we can replace Eδ,∞(ξ1) by E0
δ,TN

(ξ1) and ε by (say) ε/2 and we get an upper
bound for large N . Applying Chebychev’s inequality we obtain

Pδ,TN

(∣∣∣∣
1

l − 1

l−1∑

j=1

ξj − E0
δ,TN

(ξ1)

∣∣∣∣ >
ε

2

∣∣∣∣∣∆ = l

)
≤

4Var0
δ,TN

(ξ1)

ε2 (l − 1)
. (4.10)

This shows that the r.h.s. of (4.8) vanishes as N → ∞ and this completes the proof. �

By writing

θ1

N
=

∆ − 1

N
· 1

∆ − 1

∆−1∑

j=1

ξj +
ξ∆

N

and applying Lemma 10 we can easily conclude that θ1/N converges in law to an Expo-
nential distribution of parameter tδ,ζ given by

tδ,ζ := vδ,ζ/Eδ,∞(ξ1) = 2eδ
√

1 − e−2φ(δ,∞) e−cδζ · φ′(δ,∞) ,

having used (3.10). By independence, for every fixed j ∈ N the variable θj/N converges
to a Gamma law with parameters (j, tδ,ζ), hence by (4.3) the variable L′

N converges to a
Poisson law of parameter tδ,ζ . This completes the step.
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4.2. Step 2. In this step we want to prove that under the law Pδ,TN
( · |N ∈ τ), with

N ∈ 2N, the quantity L′
N still converges toward a Poisson distribution of parameter tδ,ζ ,

i.e.,

lim
N→∞, N even

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
= e−tδ,ζ

(tδ,ζ)
j

j!
∀j ∈ N ∪ {0} . (4.11)

We start elaborating a bit on (4.4). Fix L ∈ N and write, by the renewal property,

Pδ,TN

(
τ ∩ (N − L,N ] = ∅

)
=

N−L∑

r=0

∞∑

s=N+1

uN (r) · KN (s − r) ,

where we recall the definitions uN (n) := Pδ,TN
(n ∈ τ) and KN (n) := Pδ,TN

(τ1 = n). Since

uN (r) ≤ 1 and KN (n) ≤ eδ e−φ(δ,TN )·n, see (2.9), and since φ(δ, TN ) → φ(δ,∞) > 0 as
N → ∞, see Remark 2, it follows that

Pδ,TN

(
τ ∩ (N − L,N ] = ∅

)
≤ eδ

N−L∑

r=0

∞∑

s=N+1

e−φ(δ,TN )·(s−r) ≤ C · e−C′·L , (4.12)

where C,C ′ are suitable positive constants depending only on δ. This means that the
probability of the event {τ ∩ (N −L,N ] = ∅} can be made arbitrarily small, uniformly in
N , by taking L large. It is then easy to see that equation (4.4) yields the following: for all
ε > 0 and j ∈ N ∪ {0} there exist N0, L0 such that for all N ≥ N0 and L ≥ L0 we have

Pδ,TN

(
L′

N = j
∣∣ τ ∩ (N − L,N ] 6= ∅

)
∈
(

e−tδ,ζ
(tδ,ζ)

j

j!
− ε, e−tδ,ζ

(tδ,ζ)
j

j!
+ ε

)
. (4.13)

Next we show that equation (4.11) follows from (4.13). The idea is that conditioning on
the event {τ ∩ (N − L,N ] 6= ∅}, i.e., that there is a renewal epoch in (N − L,N ], is the
same as conditioning on {N − i ∈ τ} for some i = 0, . . . , L−1, and the latter is essentially
independent of i. More precisely, we have the following lemma.

Lemma 11. For every i ∈ 2N∪{0}, the following relation holds as N → ∞, with N ∈ 2N:

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
= Pδ,TN

(
L′

N−i = j
∣∣N − i ∈ τ

)
+ εi(N), (4.14)

where εi(N) → 0 as N → ∞.

Proof. Notice that {L′
N = j} = {θj ≤ N, θj+1 > N}. First we restrict the expectation on

the event {θj ≤ N −
√

N}, which has almost full probability. In fact for fixed i ∈ 2N∪{0}

Pδ,TN

(
L′

N−i = j, θj > N −
√

N
∣∣N − i ∈ τ

)
≤ Pδ,TN

(
N −

√
N < θj ≤ N

)

Pδ,TN
(N − i ∈ τ)

= o(1) ,

(4.15)
as N → ∞, N ∈ 2N, because θj/N converges as N → ∞ to a atom-free law (in fact a
Gamma) by Step 1 and, by Lemma 5, Pδ,TN

(N − i ∈ τ) → 2/m(δ,∞) > 0 as N → ∞.
Specializing (4.15) to i = 0 we can therefore write as N → ∞, N ∈ 2N,

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
= Pδ,TN

(
L′

N = j, θj ≤ N −
√

N
∣∣N ∈ τ

)
+ o(1)

= Pδ,TN

(
θj ≤ N −

√
N, θj+1 > N

∣∣N ∈ τ
)

+ o(1) .
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The renewal property then yields

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
=

⌊N−
√

N⌋∑

r=1

Pδ,TN
(θj = r) · Pδ,TN

(θ1 > N − r,N − r ∈ τ)

Pδ,TN
(N ∈ τ)

+ o(1) .

(4.16)

We now study the term Pδ,TN
(θ1 > l, l ∈ τ). We have

Pδ,TN
(θ1 > l, l ∈ τ) =

l∑

k=1

∑

0=:t0<t1<...<tk=l

k∏

j=1

eδ q0
TN

(tj − tj−1) e−φ(δ,TN )(tj−tj−1)

= eνN ·l ·
∑

0=:t0<t1<...<tk=l

k∏

j=1

K̃0
N (tj − tj−1) ,

(4.17)

where we have set for n ∈ N

K̃0
N (n) := eδ q0

TN
(n) e−(φ(δ,TN )+νN )·n ,

and we fix νN < 0 such that
∑

n∈N
K̃0

N (n) = 1, i.e., Q0
TN

(φ(δ, TN ) + νN ) = e−δ, which is

always possible because Q0
T (λ) diverges as λ ↓ λ0

T , see Appendix A. Denoting by P̃0
δ,TN

the

global law of τ , when the step distribution is K̃0
N (n), we can rewrite (4.17) with l = N − r

as
Pδ,TN

(θ1 > N − r, N − r ∈ τ) = eνN ·(N−r) · P̃0
δ,TN

(N − r ∈ τ) . (4.18)

Plainly, as N → ∞ we have q0
TN

(n) → q∞(n) for every n ∈ N, where we recall that

q∞(n) is the return time distribution for the simple random walk, cf. §2.2. Hence νN → 0

and K̃0
N (n) → Pδ,∞(n ∈ τ) as N → ∞. Then a slight modification of Lemma 5 shows that,

for any fixed r ∈ 2N, P̃0
δ,TN

(N − r ∈ τ) → 2/m(δ,∞) > 0 as N → ∞. Then in equation

(4.18) we can replace N by N − i, any fixed i ∈ 2N, by paying o(1): more precisely, as
N → ∞, with N ∈ 2N,

Pδ,TN
(θ1 > N − r, N − r ∈ τ) = Pδ,TN

(θ1 > N − i − r, N − i − r ∈ τ) + o(1) .

Coming back to (4.16) and replacing also Pδ,TN
(N ∈ τ) by Pδ,TN

(N − i ∈ τ), we can write

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
= Pδ,TN

(
L′

N−i = j, θj ≤ N −
√

N
∣∣N − i ∈ τ

)
+ o(1)

= Pδ,TN

(
L′

N−i = j
∣∣N − i ∈ τ

)
+ o(1) ,

where the second equality follows by (4.15). The proof is completed. �

Let us come back to (4.13). We write the event {τ ∩ (N −L,N ] 6= ∅} as a disjoint union

{τ∩(N−L,N ] 6= ∅} =

L−1⋃

i=0

Ai , Ai := {N−i ∈ τ, N−k 6∈ τ for 0 ≤ k < i} , (4.19)

i.e., N − i is the last renewal epoch before N . Then we can write the l.h.s. of (4.13) as

Pδ,TN

(
L′

N = j, τ ∩ (N − L,N ] 6= ∅
)

=
L−1∑

i=0

Pδ,TN

(
L′

N = j
∣∣Ai

)
· Pδ,TN

(
Ai

)
. (4.20)

Notice that Pδ,TN

(
L′

N = j
∣∣Ai

)
= Pδ,TN

(
L′

N−i = j
∣∣Ai

)
, because L′

N = L′
N−i on the event

Ai. The next basic fact is that, by the renewal property, we have

Pδ,TN

(
L′

N−i = j
∣∣Ai

)
= Pδ,TN

(
L′

N−i = j
∣∣N − i ∈ τ

)
,
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because the event {L′
N−i = j} depends only on τ ∩ [0, N − i]. Therefore we can apply

Lemma 11 and rewrite (4.20) as

Pδ,TN

(
L′

N = j, τ ∩ (N − L,N ] 6= ∅
)

= Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
(

L−1∑

i=0

Pδ,TN

(
Ai

)
)

+ o(1)

= Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
· Pδ,TN

(
τ ∩ (N − L,N ] 6= ∅

)
+ o(1) . (4.21)

However, by (4.12) the term Pδ,TN

(
τ ∩ (N − L,N ] 6= ∅

)
is as close to one as we wish, by

taking L large. Combining (4.13) with (4.21), this means that for every j ∈ N ∪ {0} and
for N sufficiently large we have

Pδ,TN

(
L′

N = j
∣∣N ∈ τ

)
∈
(

e−tδ,ζ
(tδ,ζ)

j

j!
− 2ε, e−tδ,ζ

(tδ,ζ)
j

j!
+ 2ε

)
.

Since ε is arbitrary, (4.11) is proven and the step is completed.

4.3. Step 3. In this last step it remains to prove that for all ε > 0 and all j ∈ N ∪ {0},

lim
N→∞

P
TN

N,δ

(
SN

TN
∈ [j − ε, j + ε]

)
= P(SΓ = j), (4.22)

where Γ is a random variable independent of the {Si}i≥0 and with a Poisson law of
parameter tδ,ζ .

Let ε > 0 and set

Vε(N) :=

∣∣∣∣P
TN

N,δ

(
SN

TN
∈ [j − ε, j + ε]

)
− P(SΓ = j)

∣∣∣∣ . (4.23)

Our goal is to prove that for all η > 0 we have Vε(N) ≤ η when N is large enough. We let
V(N, l) be the set τTN ∩ [N − l,N ] and it is useful to recall the result obtained in (3.28),

i.e., there exists ℓ0 = ℓ0(η) such that for every N ≥ ℓ0 we have P
TN

N,δ

(
V(N, ℓ0) = ∅) ≤ η/4.

Therefore, with N large enough we obtain

Vε(δ) ≤ η

2
+

∣∣∣∣P
TN

N,δ

(
SN

TN
∈ [j − ε, j + ε], V(N, ℓ0) 6= ∅

)
− P(SΓ = j)PTN

N,δ

(
V(N, ℓ0) 6= ∅

)∣∣∣∣.

With some abuse of notation, we still denote by θj and L′
N the variables on the S space

defined by (4.2) and (4.3) with τi replaced by τTN

i and εi by εTN

i (in particular L′
N := #{i ≤

LN,TN
: |εTN

i | = 1}). Then notice that on the event V(N, ℓ0) we have |SN − SθL′
N

| ≤ ℓ0.

Moreover, for all N ≥ 1 we have SθL′
N

/TN ∈ Z, therefore, assuming that ε has been chosen

small enough, we obtain for N large enough

P
TN

N,δ

(
SN

TN
∈ [j − ε, j + ε], V(N, ℓ0) 6= ∅

)
= P

TN

N,δ

(
SθL′

N

TN
= j, V(N, ℓ0) 6= ∅

)
. (4.24)

We can rewrite the r.h.s. of (4.24) by using, for i ∈ {0, . . . , ℓ0}, the sets Ai introduced in
(4.19). This gives

P
TN

N,δ

(Sθ
L
′
N

TN
= j, V(N, ℓ0) 6= ∅

)
=

l0∑

i=0

P
TN

N,δ

(Sθ
L
′
N−i

TN
= j

∣∣∣∣∣Ai

)
P

TN

N,δ(Ai). (4.25)

At this stage, the Markov property and equation (2.13) give

P
TN

N,δ(· | Ai) = P
TN

N,δ(· |N − i ∈ τ) = Pδ,TN
(· |N − i ∈ τ) ,
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hence we can rewrite (4.25) as

P
TN

N,δ

(Sθ
L
′
N

TN
= j, V(N, ℓ0) 6= ∅

)
=

l0∑

i=0

Pδ,TN

(Sθ
L
′
N−i

TN
= j

∣∣∣∣∣N − i ∈ τ

)
P

TN

N,δ(Ai) .

(4.26)
Thus, the proof of this step will be completed if we can show that for all i ∈ {0, . . . , ℓ0}

lim
N→∞

Pδ,TN

(Sθ
L
′
N−i

TN
= j

∣∣∣∣∣N − i ∈ τ

)
= P(SΓ = j) .

This is proved once we show that, for all (v, j) ∈ N ∪ {0} × Z,

lim
N→∞

Pδ,TN

(
L

′

N−i = v,
Sθv

TN
= j

∣∣∣N − i ∈ τ

)
= P(Γ = v)P(Sv = j) . (4.27)

We can rewrite the l.h.s. of (4.27) as

Pδ,TN

(
Sθv

TN
= j

∣∣∣L′

N−i = v, N − i ∈ τ

)
· Pδ,TN

(
L

′

N−i = v |N − i ∈ τ
)

(4.28)

and it is easy to figure out that the process (Sθn
/TN )n∈N is just the symmetric simple

random walk on Z and is independent of (L
′

N−i, τ). Therefore, the first factor in (4.28)
equals P(Sj = v) and then Lemma 11 and equation (4.11) are sufficient to complete the
proof. �

5. Proof of Theorem 2 (iii)

In this section we prove part (iii) of Theorem 2. The parameter δ > 0 is fixed throughout

the section and the assumption is that the sequence (TN )N is such that TN − log N
cδ

→ +∞,

or equivalently
Q1

TN
· N −→ 0 (N → ∞) , (5.1)

where we have used Lemma 7 and we recall the shorthand Q1
TN

:= Q1
TN

(φ(δ, TN )) intro-

duced in Section 3. The goal is to prove equation (1.15), i.e., that the law of SN under

P
TN

N,δ is tight.

In analogy with the previous sections, we start working under the law Pδ,TN
. We show

that the polymer of length N does not visit any interface other than the one located at
S = 0, i.e., (recalling (4.2) and (4.3)) L′

N = 0. Notice in fact that

{L′
N ≥ 1} = {θ1 ≤ N} =

LN⋃

i=1

{|εi = 1|} ⊆
N/2⋃

i=1

{|εi = 1|} ,

because plainly LN ≤ N/2 (recall (3.2)), hence the inclusion bound yields

Pδ,TN

(
L′

N ≥ 1
)

≤ N

2
· Pδ,TN

(
|ε1| = 1

)
= eδ N Q1

TN
−→ 0 (N → ∞) , (5.2)

where we have used (4.5) and (5.1). With the same abuse of notation as in the previous
section, we denote by L′

N also the variable on the S spaced defined by L′
N := #{i ≤

LN,TN
: |εTN

i | = 1}, so that applying (2.13) we get as N → ∞ with N ∈ 2N

P
TN

N,δ

(
L′

N ≥ 1
∣∣SN ∈ TNZ

)
= Pδ,TN

(
L′

N ≥ 1
∣∣N ∈ τ

)
≤ Pδ,TN

(
L′

N ≥ 1
)

Pδ,TN

(
N ∈ τ

) −→ 0 , (5.3)
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having applied (5.2) and Lemma 5.
Now set |Sn|∗ := max0≤k≤n |Sk| and observe that equation (5.3) can be rephrased as

P
TN

N,δ

(
|SN |∗ ≥ TN

∣∣N ∈ τTN
)

−→ 0 (N → ∞, N ∈ 2N) .

We want to remove the conditioning on N ∈ τTN . To this purpose, we let µN := τTN

LN,TN

denote the location of the last point of τTN ∩ [0, N ]. Let us recall equation (3.28), which
holds whenever δ > 0 and hence can be applied here: for every ε > 0 there exists ℓ0 such

that P
TN

N,δ

(
µN < N − ℓ0

)
< ε, for every N ∈ N. Therefore

∣∣∣∣∣P
TN

N,δ

(
|SN |∗ ≥ TN

)
−

ℓ0∑

ℓ=0

P
TN

N,δ

(
|SN |∗ ≥ TN

∣∣µN = N − ℓ
)
P

TN

N,δ

(
µN = N − ℓ

)
∣∣∣∣∣ ≤ ε .

(5.4)
However on the event {µN = N − ℓ} we have |SN |∗ ≥ TN if and only if |SN−ℓ|∗ ≥ TN .
Moreover {|SN−ℓ|∗ ≥ TN} = {L′

N−ℓ ≥ 1}, hence, using the Markov property and (2.13),
for ℓ even we get

P
TN

N,δ

(
|SN |∗ ≥ TN

∣∣µN = N − ℓ
)

= P
TN

N,δ

(
L′

N−ℓ ≥ 1
∣∣N − ℓ ∈ τTN

)

= Pδ,TN

(
L′

N−ℓ ≥ 1
∣∣N − ℓ ∈ τ

)
−→ 0 (N → ∞, N ∈ 2N) .

Then equation (5.4) yields, for N sufficiently large,

P
TN

N,δ

(
|SN |∗ ≥ TN

)
≤ 2ε .

We can finally prove that SN is tight. Denoting by ξN a quantity such that |ξN | ≤ 2ε
for N large, we have

P
TN

N,δ

(
|SN | ≥ L

)
= P

TN

N,δ

(
|SN | ≥ L, |SN |∗ < TN

)
+ ξN ≤ P

TN

N,δ

(
µN ≤ N − L

)
+ ξN ,

where the inequality follows by the inclusion bound, since {|SN | ≥ L, |SN |∗ < TN} ⊆
{µN ≤ N − L}. Then, again by (3.28), if L ≥ ℓ0 we have for large N

P
TN

N,δ

(
|SN | ≥ L

)
≤ 3ε .

Since ε > 0 was arbitrary, it follows that

lim
L→∞

sup
N∈N

P
TN

N,δ

(
|SN | ≥ L

)
= 0 ,

hence (1.15) is proven and the proof is completed. �

Appendix A. Computing Qi
T (λ)

The computation of Q1
T (λ) and Q2

T (λ), defined in (2.4), is a classical problem, cf. [9,
Ch. XIV]. For completeness, here we are going to derive an explicit formula for Q1

T (λ) and
Q2

T (λ), using a simple martingale argument. We assume that T ∈ N (i.e., T < ∞).
For µ ∈ C and n ∈ N we set

Mn :=
eµSn

(cosh µ)n

and we observe that the {Mn}n≥0 under P is a C-valued martingale (i.e., its real and
imaginary parts are R-valued martingales) with respect to the natural filtration of the
simple random walk {Si}i. We will be only interested in the special cases when µ ∈ R or
µ ∈ (−π

2 i, π
2 i), so that in any case cosh µ ∈ R

+ and therefore the expression log cosh µ is
well-defined with no need of further specifications.
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We denote by P1 the law P( · |S1 = 1 ) and note that {Mn}n≥1 is a martingale under
P1. Moreover both τT

1 and |εT
1 | have the same law under P and P1. The Optimal Stopping

Theorem yields E1(SτT
1

) = E1(S1), i.e.,

eµT E1

(
1

(cosh µ)τ
T
1

1{|εT
1 |=1}

)
+ E1

(
1

(cosh µ)τ
T
1

1{|εT
1 |=0}

)
=

eµ

cosh µ

Setting for short Qi
T := Qi

T (log cosh µ), we can rewrite this relation as

2 eµT Q1
T + Q0

T =
eµ

cosh µ
.

The analogous relation with µ replaced by −µ leads to the following couple of equations:

2 cosh(µT )Q1
T + Q0

T = 1

2 sinh(µT )Q1
T = tanh µ ,

which yields the solutions

Q0
T (log cosh µ) = 1 − tanh(µ)

tanh(µT )
, Q1

T (log cosh µ) =
tanh(µ)

2 sinh(µT )
, (A.1)

and for QT (·) := Q0
T (·) + 2Q1

T (·) we have

QT (log cosh µ) = 1 − tanh(µ) · cosh(µT ) − 1

sinh(µT )
. (A.2)

Setting λ = log cosh µ, i.e., µ = λ + log
(
1 +

√
1 − e−2λ

)
, we finally obtain

Q0
T (λ) = 1 −

√
1 − e−2λ ·

(
1 +

√
1 − e−2λ

)T
+
(
1 −

√
1 − e−2λ

)T
(
1 +

√
1 − e−2λ

)T −
(
1 −

√
1 − e−2λ

)T

Q1
T (λ) =

√
1 − e−2λ · e−λT

(
1 +

√
1 − e−2λ

)T −
(
1 −

√
1 − e−2λ

)T ,

(A.3)

and therefore

QT (λ) = 1 −
√

1 − e−2λ ·
(
1 +

√
1 − e−2λ

)T
+
(
1 −

√
1 − e−2λ

)T − 2e−λT

(
1 +

√
1 − e−2λ

)T −
(
1 −

√
1 − e−2λ

)T . (A.4)

Notice that when λ < 0 we have µ = λ + log
(
1 +

√
1 − e−2λ

)
= i arctan

√
e−2λ − 1, hence

we can write more explicitly

Q0
T (λ) = 1 −

√
e−2λ − 1

tan
(
T arctan

√
e−2λ − 1

) , Q1
T (λ) =

√
e−2λ − 1

2 sin
(
T arctan

√
e−2λ − 1

)

QT (λ) = 1 +
√

e−2λ − 1 · 1 − cos
(
T arctan

√
e−2λ − 1

)

sin
(
T arctan

√
e−2λ − 1

) .

(A.5)

Of course these formulas break down if |λ| is too large. This happens at the first negative

zero of the denominator λ = λT
0 , where

(
T arctan

√
e−2λT

0 − 1
)

= π, i.e.,

λT
0 := −1

2
log

(
1 +

(
tan

π

T

)2
)

, (A.6)
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and note that as λ ↓ λT
o both Q0

T (λ) and Q1
T (λ) diverge (they have a pole). Also note that

taking the limit λ → 0 in (A.3) or (A.5) we get

Q0
T (0) = 1 − 1

T
, Q1

T (0) =
1

2T
.

We conclude by noting that also the probabilities qj(n) introduced in (2.4) can be given
an explicit formula. More precisely, by equation (5.8) in Chapter XIV of [9] we have ∀n ≥ 2

q0
T (n) =

(
2

T

⌊(T−1)/2⌋∑

ν=1

cosn−2

(
πν

T

)
sin2

(
πν

T

))
· 1{n is even}

q1
T (n) =

(
1

T

⌊(T−1)/2⌋∑

ν=1

(−1)ν+1 cosn−2

(
πν

T

)
sin2

(
πν

T

))
· 1{n−T is even}

. (A.7)
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