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ABSTRACT
We investigate an overloaded processor sharing queue with
renewal arrivals and generally distributed service times. Im-
patient customers may abandon the queue, or renege, be-
fore completing service. The random time representing a
customer’s patience has a general distribution and may be
dependent on his initial service time requirement. We pro-
pose a scaling procedure that gives rise to a fluid model,
with nontrivial yet tractable steady state behavior. This
fluid model captures many essential features of the under-
lying stochastic model, and we use it to analyze the impact
of impatience in processor sharing queues. We show that
this impact can be substantial compared with FCFS, and
we propose a simple admission control policy to overcome
these negative impacts.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of
Systems

General Terms
Algorithms,Performance
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1. INTRODUCTION
Over the past few years, flow level models have become

an important tool in the analysis of bandwidth sharing net-
works carrying elastic traffic; see for example Kelly [15],
Massoulié and Roberts [19] and Mo & Walrand [20]. In such
models, elastic flows share the system resources fairly, which
coincides naturally with the Processor Sharing (PS) disci-
pline when studying a single link carrying identical flows.
The single server PS queue with Poisson arrivals and gener-
ally distributed service times has very tractable steady state
behavior: the distribution of the number of flows in the sys-
tem is insensitive to the service time distribution (apart from
its mean). This has led to considerable renewed interest in
the analysis of PS queues.

Recently, Bonald and Proutière [3] have shown that this
insensitivity property also holds in several bandwidth shar-
ing networks, and that, in other cases, it is possible to obtain
insensitive upper and lower bounds to the steady state dis-
tribution; see [4]. Kelly and Williams [16] take a different
approach to evaluating the performance of bandwidth shar-
ing networks. They propose to approximate a bandwidth
sharing network with a more tractable fluid model. The
same approach is taken in recent papers by Kang et al. [14],
and Key et al. [17].

In the present paper, we take a similar approach and use
a fluid model to analyze the performance of a GI/GI/1 PS
queue with impatient customers, abbreviated PSI queue. In
a PSI queue, a customer departs the queue either when it has
completed service, or when its sojourn time has exceeded a
certain reneging time. In the latter case, the customer is lost
due to impatience. Such behavior may correspond to actual
impatient customers, or by a time out caused by TCP or
higher layer protocols.
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Reneging under PS has, a priori, a larger impact than
under FCFS, since in the latter case, customers typically
abandon the queue before beginning service. This is not the
case under PS, where jobs that renege have already received
some amount of service. Thus, impatience may create sig-
nificant overhead for a PS system. This is especially true
if the system is overloaded, a condition that can occur (at
least temporarily) in practice. The main goal of this paper
is to develop tools to investigate the impact of this type of
user behavior.

There is a large literature on queueing models with impa-
tient customers under the FCFS discipline. An early paper
is Barrer [1], where a queue with impatient customers arises
in a military application. For a survey, see Stanford [23].
(See also Stanford [22] and Boots and Tijms [6].) This lit-
erature focuses on exact performance analysis of the system
involved. A diffusion limit for single channel queues has
been obtained recently by Ward and Glynn [25]. There are
also various studies of multiserver queues with reneging, mo-
tivated by call center applications; see the survey by Gans
et al. [9] and references therein.

The literature on PS queues with impatience shows a dif-
ferent picture: there are few results available. An excep-
tion is the case with exponentially distributed service times,
and independent exponential reneging times; see Coffman
et al. [7]. Guillemin et al. [12] consider PS queues with
impatient customers and heavy tailed service times, and ob-
tain some results on the reneging behavior of large jobs by
analyzing the tail behavior of the steady state sojourn time
distribution. In a series of papers, Doytchinov and coau-
thors [8, 18] have investigated heavy traffic limits of queues
with impatience, under a variation of the Earliest Deadline
First policy. In this case, impatient customers do not aban-
don the queue and the quantity of interest is their lateness
when completing service.

Using some approximations, Bonald and Roberts [5] ana-
lyze the steady state of a system with general service times
and some dependence between service times and reneging
times. It is shown by simulation in [5] that, if customers
are relatively patient (compared to the speed of the server),
the service rate becomes approximately constant in steady
state, which facilitates their approximations. We comple-
ment these simulation results by proving that their approx-
imations are exact on fluid scale. In addition, we also con-
sider the time dependent behavior of the system and we do
not make any a priori assumptions about the distribution of
the service times or the reneging times.

In a related paper, Yang and De Veciana [26] show by
simulations that user impatience can have a substantial im-
pact on the performance of the system, especially when the
system is overloaded. They consider a more complex model
of customer impatience than we do here. Section 6 indi-
cates how our model could be extended towards their level
of generality.

We now discuss the approach taken in the present paper.
In Sections 2 and 3 we introduce the PSI queue, and intro-
duce a fluid scaling by speeding up the arrival and service
rates by a factor r. We show that our rescaled PSI queue
converges in distribution to a fluid limit. The fluid limit is
described by the solution of a functional fixed point equa-
tion, which can be seen as a time changed delay-differential
equation.

This fluid limit exhibits non-trivial but tractable steady

state behavior if the system is overloaded. The steady state
behavior is completely characterized by a simple fixed point
equation. This equation provides considerable information
about the performance of the system, as is illustrated by sev-
eral examples. For example, we prove that more variability
in the service times and/or reneging times produces better
system performance, which is in accordance with results in
[5]. In addition, we also investigate the time dependent be-
havior of the system, by numerically solving the fluid model
equation. It seems that steady state is reached fairly quickly
when either the service time or reneging time distribution
is light tailed. If both are heavy tailed, then convergence
is slow, but impatience is still shown to have a significant
effect on system performance.

To reduce the impact of reneging, one may proceed in
various ways. One way, proposed by Yang and De Veciana
[26], is to use size based scheduling disciplines instead of PS.
In the present work, we follow the approach suggested in [5]
and focus on a simple admission control policy: we assume
that arrivals are blocked when the total number of jobs in
the system exceeds a certain threshold. Using a heuristic
interpretation obtained in Section 4, we show how one can
evaluate the performance of this system. It is shown that
admission control always leads to increased “goodput” and
often (but not always) to an increased number of successfully
transmitted jobs.

On a technical level, the model considered here poses some
challenges. In contrast to Doytchinov et al. [8], Gromoll et
al. [11] and Puha et al. [21], the service discipline is not work
conserving and, for this reason, analysis of the fluid model
is more intricate. This is an important difference from ear-
lier work on standard PS queues, where the fact that the
workload process coincides with that of FCFS queues plays
an important role. A different approach to prove existence,
uniqueness, and convergence to steady state of fluid model
solutions is used. By iteratively defining minimal and maxi-
mal solutions, and by using monotonicity arguments, we are
able to investigate the properties of the fluid limits under
quite general assumptions. To show that the fluid model is
indeed a fluid limit of the original PSI queue, we use, among
other techniques, results from empirical process theory.

The paper is organized as follows. In Section 2 we in-
troduce the PSI queue. In Section 3, we describe the fluid
scaling and present our main convergence results, which re-
duce the PSI queue to a more tractable fluid model equation.
We show that under weak assumptions, this equation has a
unique solution and has a nontrivial limiting behavior. The
full technical details concerning the convergence to the fluid
limit can be found in Gromoll et al. [10]. Readers may skip
the technical details in Sections 2 and 3 and move directly
to Section 4, where we apply the convergence results of Sec-
tion 3 to analyze the performance of the PSI queue. Section
5 is concerned with admission control. Extensions such as
reattempts and more complex user behavior are discussed
in Section 6. Section 7 concludes.

2. MODEL DESCRIPTION
We consider a processor sharing server working at unit

rate with an infinite capacity buffer. Let (E(·), (Bi, Di))
be a collection of random elements describing respectively
the arrival process, the service times, and the correspond-
ing reneging times. The expectation with respect to these
variables is denoted E.
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For t ≥ 0, E(t) is the number of arrivals up to time t. It
is assumed that E(·) is a (possibly delayed) renewal process
with intensity λ ∈ (0,∞). Ui is the arrival time of the ith
job, i ≥ 1. Jobs already in the buffer at time 0 will be called
initial jobs.

The sequence (Bi, Di) is assumed to be independent, iden-
tically distributed (i.i.d.) with common joint distribution ϑ
on [0,∞]× [0,∞]. For i ≥ 1, Bi is the amount of processing
time that job i requires from the server. The random vari-
able Di determines the deadline of job i: since it arrives at
time Ui, it must complete service before its deadline at time
Ui + Di. The variable Di is called the reneging time of job
i. Note that, for i ≥ 1, the variables Bi and Di are allowed
to be dependent. Note also that for each i, we allow either
Bi or Di to equal infinity. This allows us to incorporate
the standard PS queue and the GI/GI/∞ queue as special
cases, as well as other useful examples; see Section 4.3.

2.1 A measure valued process
At time t ≥ 0, a job in the queue has two characteris-

tics: its residual service time b, representing the remaining
amount of processing time it requires to complete service,
and its current lead time d, representing the remaining time
until its deadline expires. This will be represented as the
point (b, d) of [0,∞] × [0,∞]. Due to the processor sharing
discipline, the first coordinate b decreases at rate 1/Z(t) if
Z(t) is the number of buffered jobs at time t. The second
coordinate d decreases at rate 1; see Figure 1. The system
can be described as a distribution of points on [0,∞]×[0,∞]
moving toward the axes. When a point of this distribution
hits one of the axes, it disappears: if it hits the vertical axis,
its residual service time equals zero and the job departs the
queue due to service completion; if the point hits the hori-
zontal axis, the current lead time of the job equals zero and
the job is lost due to reneging. Since the reneging time Di

of job i is equal to its current lead time at time t = 0, the
reneging time is also referred to as the initial lead time.

To keep track of the evolution of the system, on must
know the location of all points. Since there is no upper
bound on the total number of jobs, the state space is infinite
dimensional. A convenient way to deal with this is by using a
measure valued process. Informally, we have a process Z(t),
t ≥ 0, such that Z(t)(F ) counts the number of currently
buffered jobs with residual service time and current lead
time in the set F . If F = [0,∞] × [0,∞], then we get the
total number of jobs in the system. In the rest of this section,
a more precise description of the measure valued process and
notation is introduced.

The initial condition specifies Z(0), the number of initial
jobs present in the buffer at time zero, as well as the service
time requirements and initial lead times of these initial jobs.
Assume that Z(0) is a nonnegative, integer valued random
variable. The service times and initial lead times for initial
jobs are the first Z(0) elements of an i.i.d. sequence (B̃j , D̃j).

It is assumed that Z(0) and (B̃j , D̃j) are independent of E(·)
and the sequence (Bi, Di). A convenient way to express the
initial condition is to define an initial random measure Z(0)
on [0,∞] × [0,∞],

Z(0) =

Z(0)X
j=1

δ(B̃j ,D̃j),

where δX is the Dirac mass at X. Henceforth, Z(0) will be

b0
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Figure 1: Dynamics of the points of the measure
valued process Z(·)

used as the description of the initial condition. It is assumed
that

E[〈1,Z(0)〉] = E[Z(0)] < ∞, (2.1)

where 〈f, μ〉 denotes the integration of f with respect to the
measure μ.

Cumulative service per job
For each t ≥ 0, let S(t) denote the cumulative service per job
provided by the server up to time t. Thus, if job i (arrived
at time Ui) is still in the queue at time t, the cumulative
amount of processing it receives by time t equals S(t) −
S(Ui). With this definition, job i leaves the queue at time

inf{s ≥ Ui : S(s) − S(Ui) ≥ Bi or s − Ui ≥ Di}.
If the queue is not empty during [0, t] and if the process Z(·)
tracks the number of customers in the queue, the quantity
S(t) can be expressed as

S(t) =

Z t

0

1

Z(s)
ds.

Similarly, the cumulative amount of processing time received
by an initial job j ≤ Z(0), still buffered at time t, is S(t).

The residual service time Bi(t) of job i ≤ E(t) at time t,
resp. of initial job j ≤ Z(0) is defined as, respectively,

Bi(t) = (Bi − (S(t) − S(Ui)))
+, B̃j(t) = (B̃j − S(t))+.

The lead time Di(t) of job i ≤ E(t) at time t, resp. of
initial job j ≤ Z(0) is given by, respectively,

Di(t) = Ui + Di − t, D̃j(t) = D̃j − t. (2.2)

The state descriptor
We denote the space of finite, non-negative Borel measures
on the quadrant R̄

2
+ = [0,∞] × [0,∞] by M and for X ∈

R̄
2
+, the measure δX ∈ M is the Dirac mass at X with the

convention that δX ≡ 0 when one of the coordinates of x
is zero (so that jobs that have departed the queue are not
included in the state description).

The PSI queue at time t is represented as a random ele-
ment of M as follows: at time t, Z(t) has a unit of mass

located at (B̃j(t), D̃j(t)) ∈ R̄
2
+ for each initial job j ≤
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Z(0) still in the buffer at time t, and a unit of mass at
(Bi(t),Di(t)) ∈ R̄

2
+ for each job i ≤ E(t) still in the buffer

at time t. Therefore, the random measure Z(t) can be ex-
pressed as

Z(t) =

Z(0)X
j=1

δ(B̃j(t),D̃j(t)) +

E(t)X
i=1

δ(Bi(t),Di(t)). (2.3)

Since Z(t) denotes the number of jobs in the buffer at time
t ≥ 0, Z(t) = 〈1,Z(t)〉. We define ϕ(x) = 1/x for x ∈
(0,∞) and ϕ(0) = 0. Due to the processor sharing discipline,
a customer present in the queue during the time interval
[t, t + dt] receives the amount of service ϕ(〈1,Z(t)〉)dt. The
cumulative service S(t) per job up to time t can therefore
be written as

S(t) =

Z t

0

ϕ(〈1,Z(s)〉) ds. (2.4)

Let f be a non-negative Borel measurable function on R
2

whose support is in (0,∞] × (0,∞]. Since

〈f,Z(t)〉 =

Z
R2

f(u, v)Z(t)(du, dv),

it is easily seen that the dynamics of the points of Z(·) are
given by

〈f,Z(t + dt)〉 =

Z
f(BE(t)+1, DE(t)+1) dE(t)

+

Z
f(u − (S(t + dt) − S(t)), v − dt)Z(t)(du, dv). (2.5)

For a family of conveniently chosen functions f , this evolu-
tion equation plays a crucial role in determining fluid limits
for the model.

3. CONVERGENCE TO A FLUID MODEL
We now scale our PSI queue with a scaling factor r ∈

R, with R some sequence tending to infinity. To obtain
nontrivial scaling limits in which the effects of reneging and
successful service completions are both visible, we replace
the lead times (Di) by (rDi). Informally, we let customers
become relatively patient with respect to the service rate. In
addition, we also speed up time by a factor r. An alternative
way of looking at this scaling is to leave the time scale and
reneging times unchanged and to speed up the arrival and
service rates by a factor r. This procedure would lead to
exactly the same fluid limit as described below.

For r > 0, the fluid scaled state descriptor is defined, for
t ≥ 0, as the random measure Z̄r(t) ∈ M such that

Z̄r(t)(F × G) =
1

r
Z(rt)(F × rG),

for all Borel sets F, G ⊂ R̄+. Note that this definition scales
the lead times by a factor r−1 as well.

The analysis of the renormalized processes Z̄r(·), r > 0
involves fluid scaled versions of many of the processes intro-
duced so far. For all r ∈ R, t ≥ 0, and i = 1, . . . , Er(rt),

define

Ēr(t) =
1

r
E(rt), S̄r(t) = Sr(rt),

Z̄r(t) =
1

r
Z(rt), B̄r

i (t) = Bi(rt),

D̄r
i (t) =

1

r
Di(rt).

The fluid scaled process S̄r(·) plays an important role, and
it will be convenient to have notation for its increments.
Define

S̄r(s, t) = S̄r(t) − S̄r(s).

Assumptions
We assume that ϑ is a probability measure on R̄

2
+ such that

ϑ
`{0} × R̄

+´
= ϑ

`
R̄

+ × {0}´
= ϑ({∞}, {∞}) = 0. (3.1)

We further assume that there exists a deterministic measure
ζ0 on the quadrant R̄

2
+ with 〈1, ζ0〉 = z0 < ∞, such that

ζ0

`{0} × R̄
+

´
= ζ0

`
R̄

+ × {0}´
= ζ0({∞}, {∞}) = 0,

and such that, as r → ∞,

Z̄r(0) → ζ0. (3.2)

in the topology of weak convergence of measures.

3.1 Main results
In order to state our main results, we introduce some ad-

ditional notation. Let (B,D) be a generic random element
of R̄

2
+ with distribution ϑ, and let (B0, D0) be a random

element of R̄
2
+ with distribution ζ0/z0. Let z(t), t ≥ 0, be a

solution of the equation

z(t) = z0P (B0 > S(0, t), D0 > t)

+ λ

Z t

0

P (B > S(s, t), D > t − s) ds, t < t∗, (3.3)

where S(u, v) =
R v

u
(1/z(w))dw and t∗ = inf{t > 0 : z(t) =

0}. We define z(t) = 0 for t > t∗.
For given x, y ≥ 0 and a given process z(t), we define

ζ(t)(x, y) = ζ(t)([x,∞] × [y,∞])

as follows:

ζ(t)(x, y) = z0P (B0 > x + S(0, t), D0 > y + t)

+ λ

Z t

0

P (B > x + S(t − s, t),D > y + s) ds. (3.4)

Note that z(t) = ζ(t)(0, 0). This characterizes a measure
valued function ζ(·).

The function z(·) can be viewed as an approximation of
the number of customers in the PSI queue on fluid scale
(that is, of Z̄r(·)). Analogously, ζ(·) can be seen as an ap-
proximation of the measure valued process Z̄r(·).

We are now ready to state our main results, it corresponds
to Theorem 3.10 of Gromoll et al. [10]. The proof of the con-
vergence of the renormalized process to a solution of Equa-
tion (3.4) is quite involved, mainly because of the compli-
cated state space. We give a sketch of the proofs in the
simple case of Poisson arrivals. The crucial starting point
is the equation of evolution (2.5) which is rewritten by us-
ing some martingales associated to Poisson process. It turns
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out that, with the renormalization, these martingales con-
verge to 0 as r goes to infinity. In the paper, since general
arrivals are considered, the proof of this result is more so-
phisticated. The second (intricate) step is to show that the
sequence of renormalized measure valued processes is tight
for the convergence in distribution (section 5 of [10]). The
last step is a continuity result so that one can take the limit
in Equation (2.5) written for the renormalized process (sec-
tion 6 of [10]) to get Equation (3.4) , uniqueness results for
the limiting equation are also required at this stage.

The first theorem deals with the behavior at infinity of
solutions to the Equation (3.3).

Theorem 3.1. Suppose that

λE
ˆ
B1{D=∞}

˜
< 1 and E [min{B, D}] < ∞.

Any solution z(·) of (3.3) converges to 0 if λE [B] < 1, and
to the unique positive solution z of the fixed point equation
z = λE [min{D, zB}], if λE [B] > 1. In the latter case, any
solution to (3.4) converges to the measure ζ∞ given by

ζ∞(x, y) = λ

Z ∞

0

P (B > x + t/z, D > t + y) dt

= E
ˆ
min{z(B − x)+, (D − y)+}˜

.

The simple fixed point equation z = λE [min{D, zB}] is
quite tractable, and various properties of its solution are
analyzed in the next section. The second main result of the
present section deals with uniqueness of solutions to (3.4)
(and consequently, uniqueness of solutions to (3.3)).

Theorem 3.2. Let y′ > y ≥ 0 and suppose there exists a
constant L such that

ζ0([y, y′] × F ) ≤ L|y′ − y| (3.5)

for any Borel set F . Then (3.3) and (3.4) have a unique
solution.

The justification of the function ζ(·) as a fluid approxi-
mation of the original fluid scaled PSI queue described by
Z̄r(·) is provided by the following result.

Theorem 3.3. Suppose Relations (3.1) and (3.2) hold.

(i) The sequence of fluid scaled processes {Z̄r(·)} is tight
as r → ∞.

(ii) Every limit point satisfies equation (3.4).

(iii) If in addition (3.5) holds, then Z̄r(·) converges in dis-
tribution to ζ(·) as r → ∞.

The above theorems reduce an intricate measure valued
process to a tractable fluid model. In the next section, we
investigate this fluid model to analyze the impact of reneging
on system performance.

4. PERFORMANCE ANALYSIS
In this section, we investigate the performance of the PSI

queue by using the fluid model introduced in the previous
section. A main feature of the fluid model is that, if the
system is in overload, the fluid model exhibits a nontrivial
steady state behavior. In particular the number of users z(t)

converges to the unique positive solution of the following
simple fixed point equation.

z = λE [min{zB, D}] . (4.1)

The main goal of this section is to investigate this equation,
and investigate its validity by doing transient analysis. We
treat a number of examples which allow for explicit com-
putations, and also obtain a number of stochastic ordering
results. We investigate the time dependent behavior of z(t)
using both analytic and numerical methods. An equivalent
version of (4.1) has been proposed as a direct approxima-
tion in [5]. In that paper, the assumptions made on B and
D imply the existence of a maximum job size b∗ such that
customers renege if and only if B ≥ b∗. In the present paper
we do not make such an assumption.

Before we analyze Equation (4.1), we first give a heuristic
interpretation. Let Zr denote the steady state number of
customers in the rth system. Furthermore, let V r(B) be
the sojourn time of a customer if the customer never reneges.
Then the actual sojourn time is given by min{V r(B), Dr},
and from Little’s law we get

E [Zr] = λE [min{V r(B), Dr}] . (4.2)

Divide both sides of (4.2) by r. Since we observe the system
in steady state at time 0, the number of customers hardly
changes and by the so called “snapshot principle” we con-
clude that V r = ZrB + o(r). Noting that Zr/r → z then
gives (4.1) after dividing both sides of (4.2) by r and letting
r → ∞.

Apart from the mean queue length z, we are also inter-
ested in the long term fraction Ps of customers that leave the
system successfully, and the “goodput” and “badput”, i.e.
the fractions of work by the server dedicated to successful
and unsuccessful transfers. It is clear that

Ps = P (D > zB) .

The “goodput” Ts is given by Ts = λE [B; zB < D]. An-
other performance measure we are interested in is the reneg-
ing rate d(t) at time t and the stationary reneging rate d.
These are given by

d(t) = z0fD0(t)P (B0 > S(0, t) | D0 = t)

+ λ

Z t

0

P (B > S(t − s, t) | D = s) dP (D ≤ s) ,

d = λ

Z ∞

0

P (zB > s | D = s) dP (D ≤ s)

= λ(1 − Ps)

with fD0(t) the marginal density of D0.
The following remarkable property, which simply follows

from the fixed-point equation (4.1), shows that the perfor-
mance of the system does not depend on the average of D.

Property 4.1. Consider two systems numbered by 1 and
2 such that (B2, D2) ≡ (B1, aD1) for some a > 0, and such
that λ1 = λ2. Then (with obvious notation) we have

z2 = az1,

Ps,2 = Ps,1.

This property, which may seem surprising at first sight, can
be explained as follows: Suppose that the system is in equi-
librium at time 0 and suppose further that the arrival pro-
cess at time 0 changes in such a way that the customers
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Figure 2: Illustration of Property 4.1: z(t) (left) and
d(t) (right)

arriving after time 0 are twice as patient as the customers
arriving before time 0. This makes the number of customers
in the system grow larger until a new equilibrium has been
reached. This new equilibrium occurs when there are twice
as many customers in the system compared with the old
situation. In the new equilibrium, customers are twice as
patient, but the service rate is halved. Thus, the fraction of
impatient customers stays the same. An illustration of this
is given in Figure 2, where we consider a PSI queue where
B0 and B are exponentially distributed with rate μ = 1,
D0 is exponentially distributed with rate ν0 = 2, and D is
exponentially distributed with rate ν = 1. z0 is set equal to
(λ − μ)/ν0 (the equilibrium if D would be replaced by D0).
We take λ = 2. The figure shows that the system transfers
from the old to the new equilibrium in a period which is 8
times the average service time.

In the remaining part of this section, we examine several
different scenarios. In Section 4.1, we assume a strong form
of dependence between B and D. In Section 4.2, we assume
that B and D are independent of one another. Section 4.3
is an illustration of the fact that the model we consider is
general enough to incorporate TCP friendly traffic. All these
sections focus on the overloaded case ρ > 1. In fact, we take
ρ = 1.5 and z0 = 0 in all remaining numerical examples;
other values of ρ and z0 give similar insights.

In our analysis, we do not restrict to steady-state analysis
by means of the fixed point equation (4.1), but also investi-
gate the whole process z(t) and other performance measures
as mentioned above. In general, it is not possible to obtain
a solution of z(t), and therefore we compute z(t) numeri-
cally using Picard iteration. An exception is the case where
D has an exponential distribution, independent of B and
z0 = 0. For this case, we found an exact expression that is
remarkably simple.

4.1 Completely dependent lead times
Consider first the case where D = ΘB, with Θ > 0 (inde-

pendent of B) reflecting the average service rate expected by
a customer. In this case, the performance measures can be
determined from the equations (recall that ρ = λE [B] > 1)

z = ρE [min{Θ, z}] ,
Ps = P (Θ > z) .

Some specific examples:
Θ single-valued.
If we assume that Θ = θ, then z = ρmin{θ, z}, which implies
that z = ρθ since ρ > 1. From this, it follows that all cus-
tomers leave the system impatiently: Ps = P (θ > ρθ) = 0.
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Figure 3: Reneging rate for D = B, exponential(left)
and Pareto(right).
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Figure 4: Fraction of departures due to reneging for
D = B, exponential(left) and Pareto(right).

Observe that when a customer leaves the system, a fraction
1/ρ of his service time has been processed.

Of course, this behavior is very undesirable. One may
wonder if this only happens in steady-state. The next figure
shows the reneging rate in the two cases where z0 = 0, λ =
3/4, B = D, and B is either exponentially distributed with
rate μ = 1/2 or has a Pareto distribution, i.e. P (B > x) =
(a/(a + x))b with b = 1.5, a = 1 (to make the mean a/(b −
1) = 2 = 1/μ.

The reneging rate d(t) in this case simplifies to

d(t) = λ

Z t

0

fB(s)I(S(t− s, t) ≤ s)ds,

with fB the density of B.
In both cases, the limiting reneging rate is equal to λ, the

arrival rate. Figure 3 shows that the convergence strongly
depends on the growth rate of z(t) as long as z(t) < 1 (in
which case there is no reneging), and the tail of the ser-
vice time distribution. If service times are exponentially
distributed, the growth rate is λ− μ = 1/2. For Pareto ser-
vice times, the growth rate is the solution of the equation

ρE
h
esB∗i

= 1, cf. [13], and turns out to be much smaller.

When z(t) exceeds 1, the reneging rate shows a sudden in-
crease, and then gradually converges to its limiting value,
the speed of convergence depending on the tail of the ser-
vice time distribution.

If we look at the fraction of customers that leave due
to reneging (i.e. the reneging rate divided by the reneging
rate plus the service completion rate), then we see an ex-
tremely sharp transition from 0 to 1 for both exponentially
and Pareto distributed service times, as illustrated by Fig-
ure 4. From this we conclude that reneging behavior has
a significant impact on finite time scale, irrespective of the
tail of the service time distribution.
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Figure 5: Reneging rate for D = B + 1, exponen-
tial(left) and Pareto(right).

Θ two-valued. From the previous example, it is clear that
the system can only get some work done if some customers
are more patient than others. In this example we assume
that Θ equals θ1 with probability p and θ2 with probability
1 − p. Take θ2 > θ1. Equation (4.1) now simplifies to

z = ρpmin{z, θ1} + ρ(1− p)min{z, θ2}.
From this equation and the properties θ2 > θ1, ρ > 1 it
follows that z > θ1. Furthermore, z > θ2 holds if and only if
the equation z = ρpθ1+ρ(1−p)z has a non-negative solution,
which is the case if and only if ρ(1 − p) < 1 (i.e. when the
most patient customers cannot saturate the system alone).
In this case we have

z =
ρpθ1

1 − ρ(1 − p)
< θ2.

If the last inequality is not valid or if ρ(1 − p) ≥ 1 we must
have z ≥ θ2 which implies z = ρpθ1 + ρ(1 − p)θ2. From the
above we can conclude that Ps = 0 iff (1−ρ(1−p))θ2 < ρpθ1.
If the reverse inequality holds then all customers of type 2
are being served successfully, i.e. Ps = (1 − p).
Θ exponentially distributed. Assume w.l.o.g. that the mean
of Θ equals 1. In this case z can be determined from the
equation z = ρ(1 − e−z) and Ps = e−z = 1 − z/ρ.

Stochastic comparison
Since Ps does not depend on the mean of Θ, and since the
worst-case property of the case of constant Θ, it seems nat-
ural to conjecture that the system performance is positively
related to the variability of Θ. Thus it seems worthwhile to
look for ordering relations for Ps if Θ1 and Θ2 are ordered in
the convex ordering Θ1 ≥cvx Θ2, i.e. E [f(Θ1)] ≥ E [f(Θ2)].
This is well-known to be equivalent to E [min{x, Θ1}] ≤
E [min{x, Θ2}] for all x ≥ 0.

Combining this with our fixed point equation for z, we
have shown the following:

Proposition 4.2. if Θ1 ≥cvx Θ2, then z2 ≥ z1 i.e. less
variability in reneging behavior implies a lower service rate.

To prove that the loss rates are also ordered, i.e. that also
P (Θ1 > z1) ≥ P (Θ2 > z2) seems hard without imposing
further assumptions.

Grace period
In Yang and De Veciana [26] it is argued that customers
have a certain initial “grace period”, in which they will not
leave the system due to impatience. This gives rise to the
form D = ΘB + Θ1, with Θ1, Θ and B all independent. In
Figure 5 we show the reneging rates for the case D = B +1,
with B exponentially distributed and Pareto distributed in

the same way as before and λ = 3/4. Again the differ-
ence in convergence behavior is clear. The limiting values of
z(t) are 2.10303 in the exponential case and 1.92585 in the
Pareto case, which gives rise to limiting reneging rates of
λP (B > 1/(z − 1)) which equals 0.4766 in the exponential
case and 0.13874 in the Pareto case; a striking difference.
This difference is in accordance with results reported in [5].

4.2 Independent lead times
As a second example, we now assume that D and B are

independent. In this case we can write (4.1) as

λ

Z ∞

0

P (B > u)P (D > zu) du = 1.

which, in case E [B] < ∞, which we assume throughout
this subsection, this is equivalent to P (D > zB∗) = 1/ρ,
with B∗ a random variable with density P (B > x) /E [B].

Recall that Ps = P (D > zB). Consequently, if B is ex-
ponentially distributed, we have the insensitivity (w.r.t. the
distribution of D) result Ps = 1/ρ.
Stochastic ordering
The inequality Ps ≤ 1/ρ holds if B∗ is stochastically dom-
inated by B, and Ps ≥ 1/ρ vice versa. Since B∗ being
stochastically dominated by B is related to a low variabil-
ity of B, we see again that more variability (this time in
the service times) leads to a better system performance (i.e.
higher Ps).
Exponential reneging
If we assume that D has an exponential distribution (and B
a general distribution), we see that z is the solution of

ρβ∗(zν) = 1, with β∗(s) = E
h
e−sB∗i

. (4.3)

In addition, we have the following remarkable expression for
the complete fluid limit z(t), t ≥ 0, if z0 = 0:

Proposition 4.3. Suppose P (D > t) = e−νt, that B is
independent of D and that z0 = 0. Then the unique solution
of (3.3) is given by z(t) = z(1 − e−νt), with z the solution
of Equation (4.3).

Proof. Recall that Equation (3.3) has a unique solution.
We show that z(t) defined above is indeed the solution of
(3.3) by verification. We thus compute the right hand side
of (3.3) writing z(u) = z(1 − e−νu).

Observe that

z

Z t

s

(1/z(u))du = log(eνt − 1) − log(eνs − 1).
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Figure 6: Fluid limit for B exponential and D expo-
nential or Pareto

Consequently,

λ

Z t

0

P (D > t − s)P

„
B >

Z t

s

(1/z(u))du

«
ds

=
λ

ν
e−νt

Z t

0

P
`
zB > log(eνt − 1) − log(eνs − 1)

´
deνs

=
λ

ν
e−νt

Z eνt−1

0

P
`
zνB > log(eνt − 1) − log y

´
dy

=
λ

ν
e−νt

Z ∞

− log(eνt−1)

e−vP
`
zνB > log(eνt − 1) + z

´
dv

=
λ

ν
e−νt(eνt − 1)

Z ∞

0

P (zνB > v) e−vdv

= z(1 − e−νt)ρ

Z ∞

0

P (B > v/zν)

E [B]
e−zν v

zν d(v/zν)

= z(1 − e−νt)ρβ∗(zν) = z(1 − e−νt).

Which shows that z(1 − e−νt) satisfies (3.3).

In general, it is impossible to compute z(t) exactly, but
again, Picard iteration turns out to be a quite tractable
procedure. In Figures 6 and 7 below, we compute the fluid
limit z(t) for several different cases using Picard iteration. In
all cases, λ = 3/4, B has either an exponential distribution
or a Pareto distribution (as given before) with mean 2, and
D is also exponential or Pareto with mean 2, independent
of B. The cases where D are exponentially distributed are
included for comparison purposes.

From the pictures, it appears that the speed of conver-
gence towards steady state is exponentially fast, if either B
or D has an exponentially bounded tail. We were not able
to make this rigorous. Another striking fact is the differ-
ence of the limiting values which are respectively given by
0.5, 0.2067, 0.1174 and 0.0505. We see that more variability
in the service and/or reneging time distribution has quite a
positive impact on the performance of the system. Another
feature we observe is that the limiting value of z(t) is much
lower than in the case where B and D are positively depen-
dent with the same means. This is obvious since removing
such dependence between B and D increases the fraction of
early departures.

4.3 TCP-friendly traffic
To illustrate the versatility of our fluid model, assume that

there exist independent random variables B1 and D1 with
finite means such that

(B, D) = (B1,∞) with probability p,

= (∞, D1) with probability 1 − p.

This models the integration of elastic (TCP) traffic and
TCP friendly UDP traffic. Key et al. [17] consider a related
model in a network setting, but assume that all underlying
random variables have exponential distributions. The fixed
point equation (4.1) for z specializes to

z = λpE [zB1] + λ(1 − p)E [D1] ,

Consequently, if the stability condition λpE [B1] < 1 is sat-
isfied, we see that

z =
λ(1 − p)E [D1]

1 − λpE [B1]
.

5. ADMISSION CONTROL
The numerous examples in the previous section showed

that reneging has quite a negative impact in PS queues un-
der overload. This raises the question of how to deal with
this issue. Yang and De Veciana [26] propose to use a size
based scheduling discipline like Shortest Remaining Process-
ing time rather than Processor Sharing. Although these au-
thors show by simulation that this leads to a better perfor-
mance of the system in general, large jobs can significantly
suffer from this change in policy. In addition, it has recently
been shown by Verloop et al. [24] that the performance of
size-based scheduling disciplines may be significantly worse
(the stability region is even reduced) than fair sharing when
one considers a network instead of a single link. In this sec-
tion we do not aim to take a point of view about whether size
based scheduling is better than fair sharing or not. Instead,
we investigate another way of dealing with impatience and
that is by introducing admission control, as suggested in [5].

Within the context of our fluid model, the simplest way
to introduce admission control is to assume that the total
mass in the system is bounded K, i.e. in the rth PSI queue,
at most rK customers are allowed to be in the system si-
multaneously. To evaluate the steady state behavior of this
model extension, we confine ourselves to a heuristic analysis
as in Section 4. Assume that ρ > 1. Let qK be the proba-
bility that a customer gets accepted upon arrival and let zK

be the number of customers in the system in steady state,
both on fluid scale. As before, by Little’s law, we see that
zK should satisfy the fixed-point equation

zK = λqKE [min{zKB, I}]
To solve this equation, one must know qK . qK can be seen as
the limit of P (Zr

K < rK) as r → ∞. Assuming that Zr
K/r

converges a.s., two cases can occur: If Zr
K/r → zK < K,

then P (Zr
K = K) → 0. In this case qK = 1. Thus, z as

defined before is a solution of zK provided z is smaller than
K, otherwise zK = K. We conclude that zK = min{z, K}.

This results in an equation for qK . If z < K then qK = 1
and by combining the above formulas we get

qK =
1

λE [min{B, I/K}] ,

if z ≥ K. The fraction of customers entering the system that
leave successfully is given by Ps,K = P (zKB < D). The
total fraction of customers that get through successfully is
then given by VK = Ps,KqK . To summarize, the fraction of
successful customers VK is given by

VK =
P (KB < D)

λE [min{B, D/K}] , if K < z,

= P (zB < D) if K ≥ z.
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Figure 7: Fluid limit for B Pareto and D exponential
or Pareto

It is easy to see that VK → 1/ρ if K → 0. The goodput,
given by λqKE [B; B < D/zK ], converges to 1 as K → 0,
implying that the server will be completely utilized if the
buffer size in the rth system is o(r). From this point of view,
it thus seems reasonable to perform admission control.

When we want to optimize the system by maximizing the
fraction of customers that can be served successfully, things
are not so simple. As in section 3, we both consider the ex-
ample where B and D are linearly dependent and completely
independent.

5.1 Linear dependence
We take the same setting as in Section 3.1: D = ΘB, with

Θ and B independent In this case VK simplifies to

VK =
P (K < Θ)

ρE [min{1, Θ/K}] , if K < z,

= P (z < Θ) if K ≥ z.

For K < z, VK can be written as

VK =
1

ρ

P (Θ > K)
1
K

R K

0
P (Θ > x) dx

.

From this representation, we see that VK is decreasing in K
on [0, z] and we conclude that

Proposition 5.1. If D = ΘB, then the number of suc-
cessful transfers is asymptotically optimal as r → ∞ if the
buffer size Kr in the rth PSI queue satisfies Kr → ∞,
Kr = o(r).

Consequently, in the completely dependent case, optimizing
the goodput also optimizes the fraction of successful cus-
tomers.

5.2 Independent service times and lead times
In this case we get VK = P (KB < D)/(ρP (KB∗ < D))

if K < z, and P (zB < D) otherwise. We immediately see
that, if B has an exponential distribution, it does not matter
for the users whether admission control is performed or not:
VK = 1/ρ for all values of K (in particular for K > z as
shown in Section 4.2).

When we take the Pareto distribution P (B > x) = (a/(a+
x))b and also assume that D is a constant, then it can be
shown that VK is increasing in K for K < z, which implies
that the best thing to do is to perform no admission control
at all. If we take P (B > x) = x−b, it can be shown that VK

is maximized by K = D if D is a constant.
These results seem somewhat surprising. The intuition

is that our admission control policy does not discriminate

between job sizes. Since the Pareto distribution generates
relatively many small jobs, and some excessively large jobs,
the impact of reneging is limited. We conclude by noting
that the independence between B and D is probably not
very realistic. In addition there exist more sophisticated
admission control schemes which should lead to a better
system performance in this case as well; see e.g. [2] for such
an admission control scheme.

6. EXTENSIONS
This section briefly discusses how our model can be ex-

tended to deal with a number of other phenomena. We first
discuss a more detailed description of user impatience in
Section 6.1. After that, we discuss reattempts in Section
6.2.

6.1 More complex user behavior
Yang and De Veciana [26] consider a way to model user im-

patience involving both a global criterion (an upper bound
on the total sojourn time) as a local criterion (a lower bound
on the service rate). If it is clear that one of these criteria
will not be met, the user reneges. The model we consider in
the present paper only involves the global criterion, but can
be extended to include local reneging behavior by defining U
as the minimal instantaneous service rate a customer wishes
to obtain. If we apply a similar scaling procedure, and ob-
serve the system in steady state, we see that the service rate
remains the same, namely 1/z, throughout the sojourn of a
customer. Therefore, on fluid scale, a job that does not gets
its instantaneous service rate leaves the system immediately.
This effectively means that the service rate is reduced from
λ to λP (U < 1/z) and by applying Little’s law, we see that
the fixed point equation for z becomes

z = λE [min{zB, D}(Uz < 1)] .

It can be shown that this equation has a unique strictly
positive solution if ρ > 1 and some weak regularity assump-
tions; we omit the details. The equation for z(t) becomes
(we assume z(0) = 0 for simplicity)

z(t) = λ

Z t

0

P (D > t − s; U < M(s, t);B > S(s, t)) ds

with M(s, t) = minu∈[s,t] 1/z(u). It would be interesting to
investigate this functional equation in more detail.

6.2 Reattempts
Bonald & Roberts [5] propose to model user reattempts

by assuming that a user leaving the system impatiently im-
mediately reattempts with probability p ∈ (0, 1) with its
initial value for B and D. If we follow their suggestion in
our setting we obtain the following fixed-point equation for
z. Let d be the stationary reneging rate. Then, applying
Little’s law, the equation for z becomes

z = λE [min{zB, D}] + dpE [min{zB, D} | zB > D]

= λE [min{zB, D}] + dpE [D | zB > D] ,

it is clear that due to our assumptions, a customer reneging
once, will renege again later on. The stationary reneging
rate d is therefore given by the equation d = λP (zB > D)+
pd, i.e. d = λP (zB > D) /(1−p). Combining the equations
for z and d we see that

z = λE [min{zB, D}] + λpE [D(zB > D)] /(1 − p).
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What we find interesting about this equation is that it may
even have a strictly positive solution if ρ < 1. We con-
jecture therefore that reattempts may cause metastability:
The system is not very congested for a long time, but due
to some rare event, the queue length blows up, after which
the reneging rate becomes so large that the effective load,
due to reattempts, becomes structurally larger than 1. We
intend to investigate this phenomenon in a future study.

7. CONCLUSION
We have considered a processor sharing queue with impa-

tient customers. As this model is far too difficult to analyze
exactly we have proposed a scaling procedure which leads
to a tractable fluid approximation. We have used this fluid
approximation to analyze the performance of the PSI queue
in overload. As expected from earlier work, we have found
that user impatience has quite a significant negative im-
pact on system performance, also on finite time scales. By
various stochastic ordering results we have shown that more
variability has a positive impact on system performance. Fi-
nally, we have investigated the potential of admission control
to control the negative effects of user impatience. We have
shown that the suggested admission control reduces the im-
pact of reneging on system performance in some cases. The
fluid model considered here may be extended to include fea-
tures as more complex reneging behavior and reattempts;
we think that both extensions are an interesting topic for
future research.
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