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Abstract

We consider a stochastic model of Internet congestion control, in-
troduced by Massoulié and Roberts [18], that represents the randomly
varying number of flows in a network where bandwidth is shared amongst
document transfers. In contrast to an earlier work by Kelly and Williams
[12], the present paper allows interarrival times and document sizes to
be generally distributed, rather than exponentially distributed. Fur-
thermore, we allow a fairly general class of bandwidth sharing policies
that includes the weighted α-fair policies of Mo and Walrand [20], as
well as certain other utility based scheduling policies. To describe the
evolution of the system, measure valued processes are used to keep
track of the residual document sizes of all flows through the network.
We propose a fluid model (or formal functional law of large numbers
approximation) associated with the stochastic flow level model. Under
mild conditions, we show that the appropriately rescaled measure val-
ued processes corresponding to a sequence of such models (with fixed
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network structure) are tight, and that any weak limit point of the se-
quence is almost surely a fluid model solution. For the special case of
weighted α-fair policies, we also characterize the invariant states of the
fluid model.
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1 Introduction

Massoulié and Roberts [18] have introduced and studied a model of Internet
congestion control that represents the randomly varying number of flows in
a network where bandwidth is shared dynamically among flows. The flows
correspond to continuous transfers of individual elastic documents. This
connection level model assumes a “separation of time scales” such that the
time scale of the flow dynamics (of document arrivals and departures) is
much longer than the time scale of the packet level dynamics on which rate
control schemes such as TCP converge to equilibrium.

Subsequent to the work of Massoulié and Roberts , assuming exponen-
tially distributed document sizes, de Veciana, Lee and Konstantopoulos [5]
and Bonald and Massoulié [1] studied the stability of the flow level model
operating under various bandwidth sharing policies. A bandwidth sharing
policy generalizes the notion of a processor sharing discipline from a single
resource to a network with several shared resources. Lyapunov functions
constructed in [5] for weighted max-min fair and proportionally fair poli-
cies, and in [1] for weighted α-fair policies (α ∈ (0,∞)) [20], imply positive
recurrence of the Markov chain associated with the model when the aver-
age load on each resource is less than its capacity. Lin, Shroff, and Srikant
[15, 16, 23] have recently given sufficient conditions for stability of a Markov
model where the assumption of time scale separation is relaxed.

Here we consider the model of Massoulié and Roberts, with generally
distributed document sizes and interarrival times, operating under a fairly
general bandwidth sharing policy. Important examples of this policy include
the weighted α-fair policies introduced by Mo and Walrand [20], and more
generally certain utility based policies (cf. Key and Massoulié [13] and Chi-
ang, Shah and Tang [3]). We are interested in the stability and heavy traffic
behavior of this flow level model. (Despite the claim in [1], the proof of suffi-
cient conditions for stability under weighted α-fair policies given there does
not apply when document sizes are other than exponentially distributed.
The reason for this is that the method of Dai [4] quoted there implicitly as-
sumes (through the form of the model equations) that the service discipline
is a head-of-the-line discipline. Consequently, the method does not apply in
general to processor sharing type disciplines, such as the bandwidth sharing
policies considered here. In the case of exponentially distributed document
sizes, one can equate the distribution of the queue length process for a band-
width sharing model with the queue length process of a stochastic processing
network (cf. [10]) operating under a head-of-the-line policy. Even then, to
conclude the stability result using an analogue of Dai’s result, one has to
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generalize the results of [4] to stochastic processing networks from multiclass
queueing networks. However, in the case of exponential interarrival times
and document sizes, the Lyapunov function given in [1] can be used directly
on the original Markov chain stochastic model to establish stability under
the nominal condition that the average load placed on each resource is less
than its capacity.)

There are a few results on sufficient conditions for stability of the flow
level model with general document size distributions. With Poisson arrivals
and document sizes having a phase-type distribution, for a weighted α-fair
policy with α = 1, Lakshmikantha et al. [14] have established stability of
some two resource linear networks and a 2 × 2 grid network when the aver-
age load on each resource is less than its capacity. For generally distributed
interarrival and document sizes, Bramson [2] has shown sufficiency of such
a condition for stability under a max-min fair policy (corresponding to an
α-fair policy as α→ ∞). Under proportional fair sharing, Massoulié [17] has
recently established stability of a fluid model for the flow level model with
exponential interarrival and document sizes, and additional routing. From
this he infers stability when documents have phase-type distributions. In
general however, it remains an open question whether, with renewal arrivals
and arbitrarily (rather than exponentially) distributed document sizes, the
flow level model is stable under a weighted α-fair (or more general) band-
width sharing policy when the nominal load placed on each resource is less
than its capacity. In contemporaneous work described in a recent preprint,
Chiang, Shah and Tang [3] have developed a fluid approximation for the flow
level model when the arrival rate and capacity are allowed to grow propor-
tionally but the bandwidth per flow stays uniformly bounded. Using their
fluid model, they derive some conclusions concerning stability for general
document size distributions when α ∈ (0,∞) is sufficiently small.

This paper is a first step in our study of the flow level model with gen-
eral interarrival and document size distributions, and a general bandwidth
sharing policy. Here, we define measure valued processes that keep track
of the residual sizes of all documents in the system at any given time. We
propose a fluid model (or formal functional law of large numbers approxima-
tion) associated with the stochastic flow level model. Under mild conditions,
we show that the measure valued processes corresponding to a fluid scaled
sequence of such models (with fixed network structure) are tight and that
any weak limit point of the sequence is almost surely a fluid model solu-
tion. For weighted α-fair policies, we also characterize the invariant states
for the fluid model. In a subsequent work, we plan to study the asymptotic
behavior of fluid model solutions and to use that to study the stability and
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heavy traffic behavior of the associated flow level models. A summary of
the results of this paper as they pertain to weighted α-fair policies appears
in [9], along with two examples showing stability of the fluid model under a
natural condition for linear networks and tree networks.

The paper is organized as follows. In Section 2, we define the network
structure, the bandwidth sharing policy, the stochastic flow level model, and
we introduce the measure valued processes used to describe the evolution of
the system. The notion of a fluid model solution is defined in Section 3. In
Section 4, we introduce a sequence of flow level models and state our main
result concerning the tightness of this sequence and that weak limit points
are fluid model solutions (see Theorem 4.1). The proof of the main result is
given in Section 5. In Section 6, we characterize the invariant states of the
fluid model for weighted α-fair policies.

1.1 Notation

Let N = {1, 2, . . . }, let R = (−∞,∞), and let R
d denote d-dimensional

Euclidean space. For x, y ∈ R, x ∨ y is the maximum of x and y, x ∧ y is
the minimum of x and y, x+ is the positive part and bxc is the integer part
of x. For x, y ∈ R

d, let ‖x‖ = maxd
i=1 |xi|, and interpret vector inequalities

componentwise: x ≤ y means xi ≤ yi for all i = 1, . . . , d. The positive
d-dimensional orthant is denoted R

d
+ = {x ∈ R

d : x ≥ 0}. To ease notation
throughout the paper, all vectors are considered to be column vectors when
used in mathematical expressions, but will be written out as row vectors
within paragraphs. Also, define c/0 to be zero for any real constant c, and
define a sum over an empty set of indices or of the form

∑l
k=j with j > l to

be zero.
For two functions f and g with the same domain, f ≡ g means f(x) =

g(x) for all x in the domain. For a bounded function f : R+ → R, let ‖f‖∞ =
supx∈R+

|f(x)|. Let Cb(R+) be the set of continuous bounded functions f :

R+ → R, let C1(R+) be the set of once continuously differentiable functions
f : R+ → R, and let C1

b(R+) be the set of functions f in C1(R+) that,
together with the first derivative f ′, are bounded on R+. If w ∈ C1

b(R+) is a
function of time, its derivative will be denoted by ẇ. For a Polish (complete
separable metric) space S, let D([0,∞),S) be the space of right continuous
functions from [0,∞) into S that have left limits in S. Endow this space
with the Skorohod J1-topology. For a finite non-negative Borel measure ξ
on R+ and a ξ-integrable function f : R+ → R, define

〈f, ξ〉 =

∫

R+

fdξ.
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If ξ = (ξ1, . . . , ξd) is a vector of such measures, then 〈f, ξ〉 is the vector
(〈f, ξ1〉, . . . , 〈f, ξd〉). All functions f : R+ → R are extended to be identically
zero on (−∞, 0) so that f(· − x) is well defined on R+ for all x > 0. Let
χ : R+ → R+ denote the identity function χ(x) = x for x ∈ R+.

Let M be the set of finite non-negative Borel measures on R+, endowed
with the weak topology: ξk w

−→ ξ in M if and only if 〈f, ξk〉 → 〈f, ξ〉 for all
f ∈ Cb(R+). This topology is induced by the following generalization of the
Prohorov metric: for ξ, ζ ∈ M define

d [ξ, ζ] = inf
{

ε > 0 : ξ(B) ≤ ζ(Bε) + ε and

ζ(B) ≤ ξ(Bε) + ε for all non-empty closed B ⊂ R+

}

, (1.1)

where Bε = {x ∈ R+ : infy∈B |x−y| < ε}. It will be convenient to extend the
notion of uniform integrability for random variables (and their associated
distributions) to elements of M. Call a sequence {ξk} ⊂ M uniformly
integrable, if 〈χ, ξk〉 <∞ for all k and

lim
x→∞

sup
k
〈χ1[x,∞), ξ

k〉 = 0.

It is easy to show that if {ξk} ⊂ M is uniformly integrable and ξk w
−→ ξ,

then 〈χ, ξ〉 <∞ and 〈χ, ξk〉 → 〈χ, ξ〉.
For I ∈ N, let

MI = {(ξ1, . . . , ξI) : ξi ∈ M for all i ≤ I},

and for ξ, ζ ∈ MI, define

dI [ξ, ζ] = max
i≤I

d [ξi, ζi] . (1.2)

Equipped with the metric dI [·, ·], the space MI is Polish. Convergence of a
sequence {ξk} to ξ in MI is also denoted ξk w

−→ ξ. The zero measure in M
is denoted by 0.

The notation X ∼ Y means X and Y are equal in distribution, and
Xn ⇒ X means the sequence {Xn} converges in distribution to X. All
continuous time stochastic processes used in this work are assumed to have
sample paths that are right continuous with left limits.

2 Flow level model

This section defines the network structure, the bandwidth sharing policy,
and the stochastic flow level model.
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2.1 Network structure

Consider a network with finitely many resources labelled by j = 1, . . . ,J,
and a finite set of routes labelled by i = 1, . . . , I. A route i is a non-empty
subset of {1, . . . ,J}, interpreted as the set of resources used by the route.
Let A be the J× I incidence matrix satisfying Aji = 1 if resource j is used
by route i, and Aji = 0 otherwise. Since each route is a non-empty subset
of {1, . . . ,J}, no column of A is identically zero.

A flow on route i is the continuous transfer of a document through the
resources used by the route. Assume that, while being transferred, a flow
takes simultaneous possession of all resources on its route. The processing
rate allocated to a flow is the rate at which the associated document is being
transferred. There may be multiple flows on a route, and the bandwidth Λi

allocated to route i is the sum of the processing rates allocated to flows
on route i. The bandwidth allocated through resource j is the sum of the
bandwidths allocated to routes using resource j. Assume that each resource
j ≤ J has finite capacity Cj > 0, interpreted as the maximum bandwidth
that can be allocated through it. Let C = (C1, . . . , CJ) be the vector of
capacities in R

J
+. Then any vector Λ = (Λ1, . . . ,ΛI) of bandwidth allocations

must satisfy
AΛ ≤ C.

2.2 Bandwidth sharing policy

We consider the network operating under a policy that dynamically allocates
bandwidth to routes as a function of the number of flows on all routes. The
resulting allocation to each route is shared equally among individual flows
on that route.

Let Zi(t) denote the number of flows on route i ≤ I at time t, and let
Z(t) = (Z1(t), . . . , ZI(t)) be the corresponding vector in R

I
+. The bandwidth

allocated to route i at time t is a function of the vector Z(t) and is denoted
by Λi(Z(t)). The corresponding vector of bandwidth allocations at time t is
Λ(Z(t)) =

(

Λ1(Z(t)), . . . ,ΛI(Z(t))
)

. Although the coordinates of Z(·) are
non-negative and integer valued, we assume that the function Λ is defined
on the entire orthant R

I
+ to accomodate fluid analogues of Z(·) later.

Definition 2.1 A bandwidth sharing policy for the network (A,C) is a func-
tion Λ : R

I
+ → R

I
+ such that for each z ∈ R

I
+,

(i) Λi(z) > 0 for each i such that zi > 0,

(ii) Λi(z) = 0 for each i such that zi = 0,

7



(iii) AΛ(z) ≤ C,

(iv) Λ(rz) = Λ(z) for each r > 0,

and such that for each i ≤ I,

(v) Λi(·) is continuous on {z ∈ R
I
+ : zi > 0}.

Properties (i) and (ii) imply that routes with active flows may not idle, and
that no bandwidth is allocated to routes with no flows. Property (iii) is
the basic feasibility constraint, and Property (iv) requires that bandwidth
allocations are invariant under scaling. Note that by Property (iii), since
each route uses at least one resource, we have

sup
z∈RI

+

‖Λ(z)‖ ≤ ‖C‖. (2.1)

We assume further that the bandwidth Λi(Z(t)) allocated to route i at
time t is shared equally by all flows on the route. That is, if there are
Zi(t) > 0 flows on route i at time t, then each flow is allocated a processing
rate of Λi(Z(t))/Zi(t) at time t.

The following property of Λ(·) will be used later in this paper.

Lemma 2.2 Let Λ(·) be a bandwidth sharing policy for the network (A,C).
For each ε,M ∈ (0,∞), there exists c > 0 such that for each i ≤ I,

Λi(z) ≥ c on {z ∈ R
I

+ : zi ≥ ε, ‖z‖ ≤M}.

Proof. For each i ≤ I, the function Λi(·) is continuous and strictly positive
on {z ∈ R

I
+ : zi > 0} by Definition 2.1. So Λ(·) is bounded away from zero

on the compact subset {z ∈ R
I
+ : zi ≥ ε, ‖z‖ ≤M}. �

An important class of bandwidth sharing policies satisfying Definition
2.1 is described below.

Example. The following family of policies was introduced by Mo and
Walrand [20]. Fix a parameter α ∈ (0,∞) and a vector of strictly positive
weights κ = (κ1, . . . , κI). For z ∈ R

I
+, let I0(z) = {i ≤ I : zi = 0} and

I+(z) = {i ≤ I : zi > 0}. Let O(z) = {λ ∈ R
I
+ : λi = 0 for all i ∈ I0(z)}.

Define a function Gz : R
I
+ → [−∞,∞) by

Gz(λ) =















∑

i∈I+(z)

κiz
α
i

λ1−α
i

1−α , α ∈ (0,∞) \ {1},

∑

i∈I+(z)

κizi log λi, α = 1,
(2.2)
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where the value of Gz(λ) is taken to be −∞ if α ∈ [1,∞) and λi = 0 for
some i ∈ I+(z), and Gz(λ) = 0 if I+(z) = ∅. For each z ∈ R

I
+, define Λ(z)

as the unique vector λ ∈ R
I
+ that solves the optimization problem:

maximize Gz(λ), (2.3)

subject to Aλ ≤ C, (2.4)

over O(z). (2.5)

The resulting allocation is called a weighted α-fair allocation, and the
function Λ : R

I
+ → R

I
+ is called a weighted α-fair bandwidth sharing policy.

Note that by (2.4) and (2.5), Λ satisfies Properties (ii) and (iii) of Definition
2.1. Moreover, it was shown in Appendix A of [12], that Λ satisfies Properties
(i), (iv), and (v).

When κi = 1 for all i ≤ I, the case α = 1 and the limiting cases
α→ 0 and α→ ∞ correspond respectively to a bandwidth allocation that is
proportionally fair, achieves maximum throughput, or is max-min fair [1, 20].
Weighted α-fair allocations provide a tractable theoretical abstraction of
decentralized packet-based congestion control algorithms such as TCP, the
transmission control protocol of the Internet. In particular, if α = 2 and κi is
the reciprocal of the square of the round trip time on route i, then the α-fair
bandwidth allocation is a version of the inverse square root law allocation
familiar from studies of the throughput of TCP connections [7, 19, 21].

Some authors, see for example Key and Massoulié [13] and Chiang, Shah
and Tang [3], have proposed more general objective functions than Gz(·)
for determining bandwidth allocations. Indeed, the optimization problem
(2.3)–(2.5) can be replaced by an equivalent one for the per flow bandwidth
allocations xi = λi/zi for i ∈ I+(z), where Gz(λ) given by (2.2) is replaced
by

∑

i∈I+(z)

κizi U(xi),

and the utility function U is given by

U(x) =

{

x1−α

1−α , α ∈ (0,∞) \ {1},

log(x), α = 1.

When a more general strictly concave utility function U is used, properties
(ii) and (iii) are immediate from the form of the optimization problem,
properties (i) and (v) will hold under suitable regularity conditions on U ,
and (as pointed out by Chiang et al. [3]), the critical scaling property (iv)
will be satisfied if U has the scaling property that U(rx) = g(r)U(x) for all
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r > 0, x > 0, and some function g : (0,∞) → (0,∞). As Chiang et al. also
indicate, by seeking a scaling limit involving large capacities, one can relax
this last assumption. However, this involves allowing the network capacity
C to grow with the scaling limit and is a different limiting regime than the
one considered here; the present analysis is oriented toward a system with
fixed network parameters A,C.

2.3 Stochastic model

Henceforth, we fix a network structure (A,C) and a bandwidth sharing pol-
icy Λ. Our stochastic model of document flows consists of the following: a
collection of stochastic primitives E1, . . . , EI and {v1k}

∞
k=1, . . . , {vIk}

∞
k=1 de-

scribing the arrivals of document flows (including their sizes) to the network,
a random initial condition Z(0) ∈ MI specifying the state of the system at
time zero, and a collection of performance processes describing the time evo-
lution of the system state. The performance processes are defined in terms of
the primitives and initial condition through a set of descriptive equations.
The random objects involved are defined on a common probability space
(Ω,F ,P), with expectation operator E.

The stochastic primitives consist of an exogenous arrival process Ei and
a sequence of document sizes {vik}

∞
k=1 for each route i ≤ I. The arrival

process Ei is a rate νi > 0 delayed renewal process with kth jump time Uik.
For t ≥ 0, Ei(t) represents the number of flows that have arrived to route i
during the time interval (0, t]. The kth such arrival is called flow k on route
i and arrives at time Uik; flows already on route i at time zero are called
initial flows.

For each i ≤ I and k ≥ 1, the random variable vik represents the ini-
tial size of the document associated with flow k on route i. This is the
cumulative amount of processing that must be allocated to the flow to com-
plete its transfer through the network. Assume that the random variables
{vik}

∞
k=1 are strictly positive and form an independent and identically dis-

tributed sequence with common distribution ϑi on R+. Assume that the
mean 〈χ, ϑi〉 ∈ (0,∞) and let µi = 〈χ, ϑi〉

−1. Define the traffic intensity
on route i by ρi = νi/µi. The fluid limit theorem stated in Section 4.3
below is valid for both subcritical (ρi ≤ 1) and supercritical (ρi > 1) traffic
intensities.

It will be convenient to combine the collection of stochastic primitives
into a single, measure valued load process. For each x ∈ R+, let δx ∈ M
denote the Dirac point measure at x.
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Definition 2.3 For i ≤ I, define the load process for route i by

Li(t) =

Ei(t)
∑

k=1

δvik
, t ≥ 0. (2.6)

For t ≥ s ≥ 0, define the increment Li(s, t) = Li(t) −Li(s).

The process L = (L1, . . . ,LI) is a random element of the Skorohod space
D([0,∞),MI). Note that L(s, t) ∈ MI for all t ≥ s ≥ 0.

The initial condition specifies Z(0) = (Z1(0), . . . , ZI(0)), the number of
initial flows on each route at time zero, as well as the initial sizes of the
documents associated to these flows. Assume that the components of Z(0)
are non-negative, integer valued random variables. The initial document
sizes of the initial flows on route i ≤ I are the first Zi(0) elements of a
sequence {ṽil}

∞
l=1 of strictly positive random variables. A convenient way to

express the initial condition is to define an initial random vector of measures
Z(0) ∈ MI with components

Zi(0) =

Zi(0)
∑

l=1

δṽil
, i ≤ I.

Henceforth, Z(0) will be used as the initial condition for the network. As-
sume that Z(0) satisfies

E[〈1,Zi(0)〉] <∞, i ≤ I, (2.7)

E[〈χ,Zi(0)〉] <∞, i ≤ I. (2.8)

Note that since 〈1,Zi(0)〉 = Zi(0) and 〈χ,Zi(0)〉 =
∑Zi(0)

l=1 ṽil for each i ≤ I,
assumptions (2.7) and (2.8) mean that, for each route i, the expected initial
number of flows and expected initial workload on the route are finite.

The performance processes consist of a measure valued process Z, taking
values in D([0,∞),MI), and a collection of auxiliary processes (Z, T, U,W ).
The process Z = (Z1, . . . , ZI) takes values in D([0,∞),RI

+). For i ≤ I and
t ≥ 0, Zi(t) is the number of (active) flows on route i at time t. Recall
that at time t, the bandwidth allocated to route i is Λi(Z(t)), and this
bandwidth is shared equally by all Zi(t) flows on route i; each such flow
receives a processing rate of Λi(Z(t))/Zi(t), which equals zero by convention
if Zi(t) = 0. Thus, a flow that is active on route i during a time interval
[s, t] ⊂ [0,∞) receives cumulative service during [s, t] equal to

Si(s, t) =

∫ t

s

Λi(Z(u))

Zi(u)
du. (2.9)
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Consider flow k on route i. This flow arrives at time Uik and has initial
document size vik. At time t ≥ Uik, the cumulative service received by this
flow during [Uik, t] equals Si(Uik, t)∧vik. The amount of service still required
therefore equals (vik −Si(Uik, t))

+. (Once this latter quantity becomes zero,
the flow becomes inactive, that is, it departs from the system.) A similar
description applies for the initial flows on route i. For t ≥ 0, k ≤ Ei(t), and
l ≤ Zi(0), define the residual document size at time t of flow k on route i
and initial flow l on route i, by

vik(t) =
(

vik − Si(Uik, t)
)+
, and ṽil(t) =

(

ṽil − Si(0, t)
)+
, (2.10)

respectively.
The measure valued process Z = (Z1, . . . ,ZI) is called the state descrip-

tor; it tracks the residual document sizes of flows on all routes at any given
time. Let δ+x ∈ M denote the Dirac measure at x if x ∈ (0,∞), with δ+

0 = 0.
For t ≥ 0 and i ≤ I, define the finite Borel measure

Zi(t) =

Zi(0)
∑

l=1

δ+ṽil(t)
+

Ei(t)
∑

k=1

δ+vik(t). (2.11)

Note that at t = 0, this definition coincides with the definition of the initial
condition Z(0). Note also that, by definition of the residual document sizes,
the measure Zi(t) has a unit of mass only for flows on route i that have not
yet completed transfer. Thus, for all t ≥ 0 and i ≤ I,

Zi(t) = 〈1,Zi(t)〉. (2.12)

For t ≥ 0 and i ≤ I, define

Ti(t) =

∫ t

0
Λi(Z(s))ds. (2.13)

The process T takes values in D([0,∞),RI
+) and tracks the cumulative band-

width allocated to each route. For t ≥ 0, define

U(t) = Ct−AT (t). (2.14)

The process U takes values in D([0,∞),RJ
+) and tracks the cumulative un-

used bandwidth capacity of each resource. Since AΛ(z) ≤ C for all z ∈ R
I
+,

the process U is non-decreasing.
For t ≥ 0 define

W (t) = 〈χ,Z(t)〉. (2.15)

12



Recall that χ(x) = x and that integration against the vector of measures
Z(t) is interpreted componentwise. The process W takes values in the path
space D([0,∞),RI

+). By (2.11), Wi(t) is the sum of all residual document
sizes on route i at time t. Thus, Wi(t) represents the immediate amount of
work still to be transferred on route i at time t. It can be shown that

Wi(t) = Wi(0) + 〈χ,Li(t)〉 − Ti(t), i ≤ I, t ≥ 0. (2.16)

This equation describes the workload on route i at time t in terms of the
cumulative amount of work that arrives to and is processed on the route
during [0, t].

3 Fluid model

In this section we define a fluid analogue of the stochastic model introduced
in Section 2.3. The main goal of the paper is to establish, under mild
assumptions, that the sequence of fluid scaled stochastic state descriptors is
tight and that weak limit points are fluid model solutions (see Theorem 4.1
below). As in the stochastic model, fix a vector of strictly positive arrival
rates ν = (ν1, . . . , νI) and a vector of probability measures ϑ = (ϑ1, . . . , ϑI)
in MI, satisfying 〈χ, ϑi〉 < ∞ and 〈1{0}, ϑi〉 = 0 for all i ≤ I. Let µi =
〈χ, ϑi〉

−1 and ρi = νi/µi for each i ≤ I. We do not impose criticality
assumptions on the constants ρi; they may take any value in (0,∞). The
fluid model consists of a deterministic measure valued function of time,
called the fluid model solution, and a collection of auxiliary functions of
time defined below.

Definition 3.1 Given a continuous function ζ : [0,∞) → MI, define the
auxiliary functions (z, τ, u, w) of ζ, with respect to the data (A,C,Λ, ν, ϑ),
by

z(t) = 〈1, ζ(t)〉,

τi(t) =

∫ t

0

(

Λi(z(s))1(0,∞)(zi(s)) + ρi1{0}(zi(s))
)

ds, i ≤ I,

u(t) = Ct−Aτ(t),

w(t) = 〈χ, ζ(t)〉,

for all t ≥ 0.

13



Note that z(t) and τ(t) take values in R
I
+ and u(t) takes values in R

J
+. On

the other hand, w(t) takes values in [0,∞]I, as ζ(t) need not have a finite
first moment.

A fluid model solution is now defined via projections against test func-
tions in the class

C = {f ∈ C1
b(R+) : f(0) = f ′(0) = 0}.

Definition 3.2 A fluid model solution for the data (A,C,Λ, ν, ϑ) is a con-
tinuous function ζ : [0,∞) → MI that, together with its auxiliary functions
(z, τ, u), satisfies

(i) ‖〈1{0}, ζ(t)〉‖ = 0 for all t ≥ 0,

(ii) uj is non-decreasing for all j ≤ J,

(iii) for each f ∈ C, i ≤ I, and t ≥ 0,

〈f, ζi(t)〉 = 〈f, ζi(0)〉 −

∫ t

0
〈f ′, ζi(s)〉

Λi(z(s))

zi(s)
ds

+ νi〈f, ϑi〉

∫ t

0
1(0,∞)(zi(s))ds. (3.1)

Recall that in (3.1), the integrand in the first integral term is defined to be
zero when its denominator is zero.

In Definition 3.2, it is possible to extend property (iii) to the class of
functions {f ∈ C1

b(R+) : f(0) = 0}, yielding an equivalent definition. The
more restrictive class C is used here to facilitate parts of the proof of Theorem
4.1 below. In particular, since f(0) = f ′(0) = 0 on C, a function in C can
be extended to a function in C1

b(R) by defining it to be identically zero on
(−∞, 0).

When the initial fluid workload is finite, we have the following result.

Lemma 3.3 Suppose ζ is a fluid model solution with finite initial workload,
i.e., wi(0) = 〈χ, ζi(0)〉 <∞ for all i ≤ I. Then, the fluid workload function
w associated with ζ satisfies the following for each i ≤ I and t ≥ 0:

wi(t) = wi(0) +

∫ t

0

(

ρi − Λi(z(s))
)

1(0,∞)(zi(s)) ds

= wi(0) + ρit− τi(t).

(3.2)

In particular, the fluid workload wi(t) is finite for all t ≥ 0 and i ≤ I.
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Proof. To obtain the first equality in (3.2), approximate χ by a sequence of
functions {fn} ⊂ C such that 0 ≤ fn ↑ χ and 0 ≤ f ′n ↑ 1(0,∞) as n→ ∞, and
then use monotone convergence in (3.1), noting property (i) of Definition
3.2. The second equality follows immediately from the definition of τi. �

Remark. In fact, (3.2) holds also if 〈χ, ζi(0)〉 = ∞, but then 〈χ, ζi(t)〉 = ∞
for all t ≥ 0.

4 Sequence of systems and fluid limit theorem

Let R be a sequence of positive real numbers increasing to infinity. Consider
an R-indexed sequence of stochastic models, each defined as in Section 2.3
for the same underlying network structure (A,C) and bandwidth sharing
policy Λ. For each r ∈ R, there are stochastic primitives Er

1 , . . . , E
r
I

and
{vr

1k}
∞
k=1, . . . , {v

r
Ik}

∞
k=1, with parameters νr, ϑr, µr, and ρr, and arrival times

{U r
ik}

∞
k=1, i ≤ I; there is the corresponding measure valued load process

Lr; there is an inital condition Zr(0); there is a state descriptor Zr with
auxiliary processes (Zr, T r, U r,W r) and cumulative service process Sr(·, ·).
The stochastic elements of each model are defined on a probability space
(Ωr,F r,Pr) with expectation operator Er.

4.1 Scaling

A fluid scaling (or law of large numbers scaling) is applied to each model in
the R-indexed sequence. For each r ∈ R and t ≥ s ≥ 0, let

Ēr(t) =
1

r
Er(rt), S̄r(s, t) = Sr(rs, rt),

L̄r(t) =
1

r
Lr(rt), L̄r(s, t) =

1

r
Lr(rs, rt),

Z̄r(t) =
1

r
Zr(rt), Z̄r(t) =

1

r
Zr(rt),

T̄ r(t) =
1

r
T r(rt), Ū r(t) =

1

r
U r(rt),

W̄ r(t) =
1

r
W r(rt).

(4.1)
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With these definitions, (2.12)–(2.16), and the scaling property of Definition
2.1(iv), we have that, for r ∈ R and t ≥ 0,

Z̄r(t) = 〈1, Z̄r(t)〉, (4.2)

T̄ r
i (t) =

∫ t

0
Λi(Z̄

r(s))ds, i ≤ I, (4.3)

Ū r(t) = Ct−AT̄ r(t), (4.4)

W̄ r(t) = 〈χ, Z̄r(t)〉, (4.5)

W̄ r(t) = W̄ r(0) + 〈χ, L̄r(t)〉 − T̄ r(t). (4.6)

Also, (2.9) and Definition 2.1(iv) imply that, for r ∈ R and [s, t] ⊂ [0,∞),

S̄r
i (s, t) =

∫ t

s

Λi(Z̄
r(u))

Z̄r
i (u)

du, i ≤ I. (4.7)

4.2 Asymptotic assumptions

In this section we impose asymptotic assumptions on the R-indexed se-
quence of models. This is the setting in which our fluid limit result, Theorem
4.1 below, is proved.

Let ν = (ν1, . . . , νI) be a vector of strictly positive rates and let ν(t) = νt
for all t ≥ 0. Let ϑ = (ϑ1, . . . , ϑI) be a vector of probability measures in MI

satisfying

∥

∥

∥
〈1{0}, ϑ〉

∥

∥

∥
= 0, (4.8)

∥

∥〈χ, ϑ〉
∥

∥ <∞. (4.9)

For i ≤ I, let µi = 〈χ, ϑi〉
−1 and ρi = νi/µi. Define ρ(t) = ρt for all t ≥ 0.

For the sequence of arrival processes, assume that as r → ∞,

Ēr(·) ⇒ ν(·). (4.10)

Assumption (4.10) represents a functional weak law of large numbers for
the delayed renewal processes Er

1 , . . . , E
r
I
. Conditions under which such a

result holds are well known. For the sequence of document size distributions,
assume that

ϑr w
−→ ϑ, as r → ∞, (4.11)

{ϑr
i : r ∈ R} is uniformly integrable for each i ≤ I. (4.12)
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Note that (4.11) and (4.12) imply that

µr → µ, as r → ∞. (4.13)

For the sequence of fluid scaled initial conditions {Z̄r(0) : r ∈ R}, as-
sume that as r → ∞,

(

Z̄r(0), 〈χ, Z̄r(0)〉
)

⇒ (Z0, 〈χ,Z0〉), (4.14)

where Z0 is a random vector of measures (taking values in MI) and satisfying

max
i≤I

E[〈1,Z0
i 〉] <∞, (4.15)

max
i≤I

E[〈χ,Z0
i 〉] <∞, (4.16)

lim
δ→0

P

(

sup
x∈R+

∥

∥

∥〈1[x,x+δ],Z
0〉
∥

∥

∥ < ε

)

= 1, for all ε > 0. (4.17)

Assumptions (4.15) and (4.16) mean that the initial queue length and work-
load on each route has finite expectation; (4.17) is equivalent to the as-
sumption that almost surely, Z0

i has no atoms for all i ≤ I (see [8], Lemma
A.1).

4.3 Fluid limit theorem

The assumptions made so far are now summarized for ease of reference.

(A)

There is a fixed network structure (A,C) and a band-
width sharing policy Λ. There is a sequence of stochas-
tic models, each defined as in Section 2.3; there exist a
vector of strictly positive rates ν, a vector of probability
measures ϑ ∈ MI, and a random vector of measures Z0

taking values in MI such that (4.8)–(4.17) hold.

The following is the main result of the paper.

Theorem 4.1 Assume (A). The sequence {(Z̄r, Z̄r, T̄ r, Ū r, W̄ r)} is C-tight,
and each weak limit point (Z, Z, T, U,W ) is such that almost surely, Z is
a fluid model solution with auxiliary functions (Z, T, U,W ) for the data
(A,C,Λ, ν, ϑ), where W (t) is finite for all t ≥ 0.
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5 Proof of Theorem 4.1

The proof has several stages. Section 5.1 contains a functional law of large
numbers result for the measure valued load processes {Lr}. This result fol-
lows from the assumptions imposed on the stochastic primitives. Section 5.2
derives two dynamic equations satisfied by the fluid scaled state descriptors
{Z̄r}, as well as several related bounds. Section 5.3 establishes a compact
containment property, and Sections 5.4 and 5.5 establish control of oscilla-
tions for the state descriptors. These properties are combined in Section 5.6
to prove the tightness claim of Theorem 4.1, and properties of weak limit
points are derived in Section 5.7.

The general strategy outlined above is similar to that in [8]. However, the
model studied here presents the additional complication of multiple routes
that interact with each other via the bandwidth sharing policy Λ. In par-
ticular, the numerator in the first integral term of (3.1) is a function of the
current state of the whole system, as opposed to a constant as is the case
in the analogous equation in [8]. This requires additional care to carry out
the analysis. A key difference in the present proof is in verifying (at vari-
ous stages along the way), that the assumptions imposed by Definition 2.1
on the more general function Λ are sufficient to allow the above strategy
to go through. Furthermore, [8] focussed only on a heavily loaded single
server queue and its critical fluid limit. Here we have a network of resources
and there is no a priori assumption on the system load, that is, the traffic
intensity parameters ρi are unrestricted in (0,∞). This results in a more
subtle fluid model and limit proof (see Section 5.7) related to the treatment
of times when fluid queue lengths become zero. We assume (A) throughout
this entire section.

5.1 Limit of the primitive load processes

Recall that ν(t) = νt, and ρ(t) = ρt for all t ≥ 0.

Theorem 5.1 As r → ∞,

(

L̄r(·), 〈χ, L̄r(·)〉
)

⇒
(

ν(·)ϑ, ρ(·)
)

. (5.1)

The proof of this theorem is a straightforward application of a functional
law of large numbers. For completeness, a proof is given in the Appendix.
We note that this theorem still holds if the renewal processes E r(·) are
replaced by more general arrival processes satisfying (4.10). We have chosen
to restrict to renewal processes here for concreteness.
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5.2 Dynamic equations

Fix r ∈ R. For each route i ≤ I, a dynamic equation satisfied by the compo-
nent Z̄r

i (·) of the fluid scaled state descriptor is the starting point for much
of our subsequent analysis. The equation results, after some simplification,
from substituting the definition of the residual document sizes (2.10) into
(2.11). Almost surely, for all Borel measurable f : R+ → R, all i ≤ I, and
all t ≥ s ≥ 0,

〈f,Zr
i (t)〉 = 〈f(· − Sr

i (s, t)),Z
r
i (s)〉 +

Er
i (t)
∑

k=Er
i (s)+1

f
(

vr
ik − Sr

i (U
r
ik, t)

)

.

Recall that f is always extended to be zero on (−∞, 0) so that f(· − x) is
well defined on R+ for all x ≥ 0. Applying the fluid scaling (4.1) produces

〈f, Z̄r
i (t)〉 = 〈f(· − S̄r

i (s, t)), Z̄
r
i (s)〉

+
1

r

rĒr
i (t)
∑

k=rĒr
i (s)+1

f
(

vr
ik − S̄r

i (U
r
ikr

−1, t)
)

. (5.2)

This equation yields several estimates that will be used frequently. If f is
non-negative and non-decreasing, then using the bound supx∈R+

f(· − x) ≤
f(·) in (5.2) yields

〈f, Z̄r
i (t)〉 ≤ 〈f(· − S̄r

i (s, t)), Z̄
r
i (s)〉 + 〈f, L̄r

i (s, t)〉

≤ 〈f, Z̄r
i (s)〉 + 〈f, L̄r

i (s, t)〉.
(5.3)

If f is bounded, then (5.2) implies that

〈f, Z̄r
i (t)〉 ≤ 〈f(· − S̄r

i (s, t)), Z̄
r
i (s)〉 + ‖f‖∞〈1, L̄r

i (s, t)〉

≤ ‖f‖∞〈1, Z̄r
i (s)〉 + ‖f‖∞〈1, L̄r

i (s, t)〉.
(5.4)

By ignoring the sum in (5.2), we obtain for any non-negative f that

〈f(· − S̄r
i (s, t)), Z̄

r
i (s)〉 ≤ 〈f, Z̄r

i (t)〉. (5.5)

An alternative dynamic equation to (5.2), that is satisfied by Z̄r
i (·) on

certain time intervals, will be used when passing to the limit as r → ∞. This
equation is a prelimit analogue of the equation (3.1) satisfied by fluid model
solutions. It is derived from (5.2) and is written in terms of projections
against functions f in the more restrictive class

Cc = {f ∈ C : f has compact support in R+} . (5.6)
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Note that for f ∈ Cc, the derivative f ′ has compact support and ‖f ′‖∞ <∞.
The proof of the following result appears in the Appendix.

Lemma 5.2 Fix r ∈ R. Almost surely, for all i ≤ I, all f ∈ Cc, and all
finite time intervals [s, t] ⊂ [0,∞) satisfying infu∈[s,t] Z̄

r
i (u) > 0, we have

〈f, Z̄r
i (t)〉 = 〈f, Z̄r

i (s)〉 −

∫ t

s
〈f ′, Z̄r

i (u)〉
Λi(Z̄

r(u))

Z̄r
i (u)

du

+ 〈f, L̄r
i (t)〉 − 〈f, L̄r

i (s)〉. (5.7)

5.3 Compact containment

In this section we establish the first of the two main conditions used in
proving tightness.

Lemma 5.3 Let T > 0 and η > 0. There exists a compact set K ⊂ MI

such that
lim inf
r→∞

Pr
(

Z̄r(t) ∈ K for all t ∈ [0, T ]
)

≥ 1 − η.

Proof. By (4.15), (4.16), and Markov’s inequality, there exists an M > 0
such that

P
(

‖〈1,Z0〉‖ ∨ ‖〈χ,Z0〉‖ ≥M
)

≤ η. (5.8)

Since ξ 7→ 〈1, ξ〉 is a continuous R
I
+-valued function on MI, assumption

(4.14) and the continuous mapping theorem imply that

(

〈1, Z̄r(0)〉, 〈χ, Z̄r(0)
)

⇒
(

〈1,Z0〉, 〈χ,Z0〉
)

, as r → ∞. (5.9)

The set {(z, w) ∈ R
I
+×R

I
+ : ‖z‖∨‖w‖ < M} is open, so by (5.8), (5.9), and

the Portmanteau Theorem,

lim inf
r→∞

Pr
(

‖〈1, Z̄r(0)〉‖ ∨ ‖〈χ, Z̄r(0)〉‖ < M
)

≥ P
(

‖〈1,Z0〉‖ ∨ ‖〈χ,Z0〉‖ < M
)

≥ 1 − η. (5.10)

For each r ∈ R, let Ωr
1 be the event in the left side of (5.10) and define

Ωr
2 =

{

‖〈1, L̄r(T )〉‖ ∨ ‖〈χ, L̄r(T )〉‖ < K
}

,

where K =
(

‖νT‖ ∨ ‖ρT‖
)

+ 1. By Theorem 5.1,

(

〈1, L̄r(T )〉, 〈χ, L̄r(T )
)

⇒ (νT, ρT ) , as r → ∞.

20



So lim infr→∞ Pr
(

Ωr
2

)

= 1 by the choice of K. For each r ∈ R, let Ωr
3 be a

full probability event on which the dynamic equation (5.2) holds. Then

lim inf
r→∞

Pr(Ωr
1 ∩ Ωr

2 ∩ Ωr
3) ≥ 1 − η. (5.11)

Let K be the closure in MI of the set {ξ ∈ MI : ‖〈1, ξ〉‖∨‖〈χ, ξ〉‖ ≤M+K}.
The set K is compact by [11], Theorem 15.7.5. Fix r ∈ R and an outcome
ω ∈ Ωr

1∩Ωr
2∩Ωr

3; assume for the rest of the proof that all random objects are
evaluated at this ω. Fix t ∈ [0, T ]; by (5.11), it suffices to show that Z̄r(t) ∈
K. The dynamic equation bound (5.4) and the definition of Ωr

1 ∩ Ωr
2 ∩ Ωr

3

imply that

max
i≤I

〈1, Z̄r
i (t)〉 ≤ max

i≤I

{

〈1, Z̄r
i (0)〉 + 〈1, L̄r

i (t)〉
}

≤ max
i≤I

{

〈1, Z̄r
i (0)〉 + 〈1, L̄r

i (T )〉
}

≤M +K.

(5.12)

Similarly, the dynamic equation bound (5.3) implies that

max
i≤I

〈χ, Z̄r
i (t)〉 ≤ max

i≤I

{

〈χ, Z̄r
i (0)〉 + 〈χ, L̄r

i (t)〉
}

≤ max
i≤I

{

〈χ, Z̄r
i (0)〉 + 〈χ, L̄r

i (T )〉
}

≤M +K.

(5.13)

Combining (5.12) and (5.13) with (5.11) completes the proof. �

5.4 Asymptotic regularity near zero

Over any finite time interval, with arbitrarily high probability as r → ∞,
the fluid scaled state descriptor Z̄r

i (·) for route i puts arbitrarily small mass
on a sufficiently small neighborhood of zero. This is proved in the following
lemma, and is a key ingredient for establishing an oscillation property in the
next section.

Lemma 5.4 Let T > 0. For each ε, η ∈ (0, 1), there exists an a > 0 such
that

lim inf
r→∞

Pr

(

sup
t∈[0,T ]

∥

∥

∥
〈1[0,a], Z̄

r(t)〉
∥

∥

∥
≤ ε

)

≥ 1 − η. (5.14)
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Proof. Fix ε, η ∈ (0, 1). The proof consists of several steps. The first three
steps are concerned with defining four high probability events Ωr

1,Ω
r
2,Ω

r
3,Ω

r
4.

Steps four and five supply the desired bound (in two parts) on the intersec-
tion of these events.

Step 1. By (4.17), there exists b > 0 such that

P

(

sup
n∈N

∥

∥

∥〈1[(n−1)b,nb],Z
0〉
∥

∥

∥ <
ε

4

)

≥ 1 −
η

2
. (5.15)

Let B =
{

ξ ∈ MI : supn∈N ‖〈1[(n−1)b,nb], ξ〉‖ < ε/4
}

and suppose that ξ ∈ B

and {ξk} ⊂ MI satisfy ξk w
−→ ξ. Choose L ∈ N large enough so that

‖〈1[Lb,∞), ξ〉‖ < ε/4. Since ξk
i

w
−→ ξi for each i ≤ I, the Portmanteau

Theorem implies that

lim sup
k→∞

sup
n∈N

∥

∥

∥〈1[(n−1)b,nb], ξ
k〉
∥

∥

∥

≤ lim sup
k→∞

(

max
n≤L

∥

∥

∥〈1[(n−1)b,nb], ξ
k〉
∥

∥

∥ ∨
∥

∥

∥〈1[Lb,∞), ξ
k〉
∥

∥

∥

)

≤ max
n≤L

∥

∥

∥〈1[(n−1)b,nb], ξ〉
∥

∥

∥ ∨
∥

∥

∥〈1[Lb,∞), ξ〉
∥

∥

∥ <
ε

4
.

So ξk ∈ B for sufficiently large k, which implies that B ⊂ MI is open. We
deduce from (4.14) and the Portmanteau Theorem that

lim inf
r→∞

Pr

(

sup
x∈R+

∥

∥

∥
〈1[x,x+b], Z̄

r(0)〉
∥

∥

∥
<
ε

2

)

≥ lim inf
r→∞

Pr

(

sup
n∈N

∥

∥

∥
〈1[(n−1)b,nb], Z̄

r(0)〉
∥

∥

∥
<
ε

4

)

≥ P

(

sup
n∈N

∥

∥

∥
〈1[(n−1)b,nb],Z

0〉
∥

∥

∥
<
ε

4

)

. (5.16)

Combining (5.16) with (5.15) yields

lim inf
r→∞

Pr

(

sup
x∈R+

∥

∥

∥
〈1[x,x+b], Z̄

r(0)〉
∥

∥

∥
<
ε

2

)

≥ 1 −
η

2
. (5.17)

Let Ωr
1 be the event in the left side of (5.17).
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Step 2. By Lemma 5.3, there exists a compact set K ⊂ MI such that

lim inf
r→∞

Pr
(

Z̄r(t) ∈ K for all t ∈ [0, T ]
)

≥ 1 −
η

2
. (5.18)

Since K is compact, there exists M <∞ such that

sup
ξ∈K

∥

∥〈1, ξ〉
∥

∥ ≤M. (5.19)

Let Ωr
2 be the event in the left side of (5.18).

Step 3. By Lemma 2.2, there exists c > 0 such that for each i ≤ I,

Λi(z) ≥ c on {z ∈ R
I

+ : zi ≥ ε/8, ‖z‖ ≤M}. (5.20)

Let δ = ε(12‖ν‖)−1 ∧ T and let a = δc(2M)−1 ∧ b. Choose N ∈ N large
enough so that

Na > a+ T‖C‖
8

ε
. (5.21)

Let I0 = ∅ and, for each n ∈ N, define In = [(n − 1)a, na) and choose
gn ∈ Cb(R+) satisfying 1In ≤ gn ≤ 1In−1∪In∪In+1

. Then, since ϑ is a vector
of probability measures,

max
i≤I

∞
∑

n=1

〈gn, ϑi〉 ≤ max
i≤I

∞
∑

n=1

〈1In−1∪In∪In+1
, ϑi〉 ≤ 3. (5.22)

For notational convenience, let g0 ≡ 1. For each n ∈ N∪{0}, the R
I
+-valued

map ξ 7→ 〈gn, ξ〉 is continuous on MI. So for each such n, Theorem 5.1 and
the continuous mapping theorem yield

〈gn, L̄
r(·)〉 ⇒ ν(·)〈gn, ϑ〉, as r → ∞. (5.23)

The limit in (5.23) is a deterministic and continuous function taking values in
R

I
+. So the convergence is uniform on compact time intervals in probability,

and occurs jointly for all n = 0, . . . , N . Therefore,

lim inf
r→∞

Pr

(

max
n=0,...,N

sup
t∈[0,T ]

∥

∥〈gn, L̄
r(t)〉 − νt〈gn, ϑ〉

∥

∥ ≤
ε

8N

)

= 1. (5.24)

Let Ωr
3 be the event in (5.24) and let Ωr

4 be a full probability event on which
(5.2) holds. Define Ωr

0 = Ωr
1 ∩ Ωr

2 ∩ Ωr
3 ∩ Ωr

4. By (5.17), (5.18), and (5.24),

lim inf
r→∞

Pr(Ωr
0) ≥ 1 − η.
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Thus, setting Ωr
∗ equal to the event in (5.14), it suffices to show that Ωr

0 ⊂ Ωr
∗

for each r ∈ R. To this end, fix r ∈ R, ω ∈ Ωr
0, t ∈ [0, T ], and i ≤ I; assume

for the rest of the proof that all random objects are evaluated at this ω. It
suffices to show that

〈1[0,a], Z̄
r
i (t)〉 ≤ ε. (5.25)

Step 4. Define the random time

τ = sup

{

s ≤ t : Z̄r
i (s) ≤

ε

8

}

, (5.26)

where sup∅ = 0. We first show that

sup
x∈R+

〈1[0,a](· − x), Z̄r
i (τ)〉 ≤

ε

2
. (5.27)

If τ = 0, this follows from the definition of Ωr
1, since a ≤ b. If τ > 0,

then the definition of τ implies the existence of τ̃ ∈ [(τ − δ)+, τ ] such that
〈1, Z̄r

i (τ̃)〉 = Z̄r
i (τ̃ ) ≤ ε/8. By the dynamic equation bound (5.4) and the

definition of τ̃ ,

sup
x∈R+

〈1[0,a](· − x), Z̄r
i (τ)〉 ≤ 〈1, Z̄r

i (τ̃)〉 + 〈1, L̄r
i (τ̃ , τ)〉

≤
ε

8
+ 〈1, L̄r

i (τ)〉 − 〈1, L̄r
i (τ̃)〉.

Applying the definition of Ωr
3 and noting that g0 ≡ 1, we obtain

sup
x∈R+

〈1[0,a](· − x), Z̄r
i (τ)〉 ≤

ε

8
+ νi(τ − τ̃)〈1, ϑi〉 +

ε

4N
≤
ε

8
+ δ‖ν‖ +

ε

4
,

which implies (5.27) by the choice of δ.
Step 5. Note that if τ = t, then (5.25) follows directly from (5.27); so

assume that t > τ . For all s ∈ (τ, t], Z̄r
i (s) > ε/8 and ‖Z̄r(s)‖ ≤ M by

(5.19) and the definition of Ωr
2. So (5.20) implies that

inf
s∈(τ,t]

Λi(Z̄
r(s)) ≥ c. (5.28)

Using (5.2) and (5.27),

〈1[0,a], Z̄
r
i (t)〉 = 〈1[0,a](· − S̄r

i (τ, t)), Z̄
r
i (τ)〉

+
1

r

rĒr
i (t)
∑

k=rĒr
i (τ)+1

1[0,a](v
r
ik − S̄r

i (U
r
ikr

−1, t))

≤
ε

2
+

∞
∑

n=1

1

r

rĒr
i (t)
∑

k=rĒr
i (τ)+1

1In(vr
ik)1[0,a](v

r
ik − S̄r

i (U
r
ikr

−1, t)). (5.29)
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Consider a flow k such that U r
ikr

−1 ∈ (τ, t] and vr
ik ∈ In for n > N . Then

vr
ik > Na > a+ T‖C‖8ε−1. Since Z̄r

i (s) > ε/8 for s ∈ (τ, t],

S̄r
i (U

r
ikr

−1, t) =

∫ t

Ur
ik

r−1

Λi(Z̄
r(s))

Z̄r
i (s)

ds ≤ T‖C‖
8

ε
.

Thus, (vr
ik − S̄r

i (U
r
ikr

−1, t)) > a and so 1[0,a](v
r
ik − S̄r

i (U
r
ikr

−1, t)) = 0. We
deduce from (5.29) that

〈1[0,a], Z̄
r
i (t)〉 ≤

ε

2
+

N
∑

n=1

1

r

rĒr
i (t)
∑

k=rĒr
i (τ)+1

1In(vr
ik)1[0,a](v

r
ik − S̄r

i (U
r
ikr

−1, t)).

(5.30)
Consider two flows k < l satisfying U r

ikr
−1, U r

ilr
−1 ∈ (τ, t] and vr

ik, v
r
il ∈ In

for some n = 1, . . . , N . If U r
ilr

−1 −U r
ikr

−1 ≥ δ, then by the definition of Ωr
2,

(5.19), (5.28), and the definition of a,

S̄r
i (U

r
ikr

−1, t) − S̄r
i (U

r
ilr

−1, t) =

∫ Ur
il

r−1

Ur
ik

r−1

Λi(Z̄
r(s))

Z̄r
i (s)

ds

≥ (U r
ilr

−1 − U r
ikr

−1)
c

M

≥
δc

M
≥ 2a.

Consequently,

(vr
il − S̄r

i (U
r
ilr

−1, t)) − (vr
ik − S̄r

i (U
r
ikr

−1, t)) ≥ 2a+ vr
il − vr

ik > 2a− a = a,

and so at most one of

1[0,a](v
r
ik − S̄r

i (U
r
ikr

−1, t)) and 1[0,a](v
r
il − S̄r

i (U
r
ilr

−1, t))

is nonzero. This implies that flows arriving to route i during (τ, t] with
document sizes in In and residual document sizes at time t in [0, a] must
all arrive during some time interval of length less than δ. That is, for each
n = 1, . . . , N , there exists an interval (sn, sn + δn] ⊂ (τ, t], with δn < δ,
such that U r

ikr
−1 ∈ (τ, t], vr

ik ∈ In, and vr
ik − S̄r

i (U
r
ikr

−1, t) ∈ [0, a], implies
U r

ikr
−1 ∈ (sn, sn + δn]. Combining this fact with (5.30) yields

〈1[0,a], Z̄
r
i (t)〉 ≤

ε

2
+

N
∑

n=1

sup
s∈[0,T−δ]

1

r

rĒr
i (s+δ)
∑

k=rĒr
i (s)+1

1In(vr
ik).
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Bound 1In by gn and rewrite the above to obtain

〈1[0,a], Z̄
r
i (t)〉 ≤

ε

2
+

N
∑

n=1

sup
s∈[0,T−δ]

(

〈gn, L̄
r
i (s+ δ)〉 − 〈gn, L̄

r
i (s)〉

)

.

Applying the definition of Ωr
3 and (5.22), we obtain

〈1[0,a], Z̄
r
i (t)〉 ≤

ε

2
+

N
∑

n=1

(

νiδ〈gn, ϑi〉 +
ε

4N

)

≤
3ε

4
+ δ3‖ν‖.

By the choice of δ, the right side is bounded above by ε. �

5.5 Oscillations

This section contains an oscillation bound used in proving tightness.

Definition 5.5 Let T > 0 and δ ∈ [0, T ]. For each ζ(·) ∈ D([0,∞),MI),
define a modulus of continuity on [0, T ] by

wT

(

ζ(·), δ
)

= sup
s,t∈[0,T ]
|t−s|<δ

dI

[

ζ(s), ζ(t)
]

. (5.31)

Lemma 5.6 Let T > 0. For all ε, η ∈ (0, 1) there exists δ > 0 such that

lim inf
r→∞

Pr
(

wT

(

Z̄r(·), δ
)

≤ ε
)

≥ 1 − η. (5.32)

Proof. Fix ε, η ∈ (0, 1). By Lemma 5.4, with ε/2 in place of ε, there exists
a > 0 such that

lim inf
r→∞

Pr

(

sup
t∈[0,T ]

∥

∥

∥
〈1[0,a], Z̄

r(t)〉
∥

∥

∥
≤
ε

2

)

≥ 1 − η. (5.33)

Let Ωr
1 be the event in (5.33) and let δ = min{ε(ε∧a)(4‖C‖)−1 , ε(4‖ν‖)−1}.

Since ξ 7→ 〈1, ξ〉 is continuous on MI, Theorem 5.1 implies that 〈1, L̄r(·)〉 ⇒
ν(·) as r → ∞. Thus,

lim inf
r→∞

Pr

(

sup
t∈[0,T ]

∥

∥〈1, L̄r(t)〉 − νt
∥

∥ ≤
ε

8

)

= 1. (5.34)

Let Ωr
2 be the event in (5.34) and let Ωr

3 be a full probability event on which
(5.2) holds. By (5.33) and (5.34),

lim inf
r→∞

Pr (Ωr
1 ∩ Ωr

2 ∩ Ωr
3) ≥ 1 − η. (5.35)
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Fix r ∈ R and an outcome ω ∈ Ωr
1∩Ωr

2∩Ωr
3; assume for the rest of the proof

that all random objects are evaluated at this ω. Fix i ≤ I and s, t ∈ [0, T ]
with s ≤ t and t − s < δ. By (5.35), Definition 5.5, and (1.2) it suffices to
show that

d
[

Z̄r
i (s), Z̄r

i (t)
]

≤ ε.

Let B ⊂ R+ be closed. By (1.1), it suffices to show the two inequalities,

〈1B , Z̄
r
i (s)〉 ≤ 〈1Bε , Z̄r

i (t)〉 + ε, (5.36)

〈1B , Z̄
r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉 + ε. (5.37)

To show (5.36), use the definition of Ωr
1 to write

〈1B , Z̄
r
i (s)〉 ≤ 〈1[0,a], Z̄

r
i (s)〉 + 〈1B∩(a,∞), Z̄

r
i (s)〉

≤
ε

2
+ 〈1B∩(a,∞), Z̄

r
i (s)〉.

(5.38)

Let I = {u ∈ [s, t] : Z̄r
i (u) < ε/2}. Suppose that I = ∅. Then Z̄r

i (u) ≥ ε/2
for all u ∈ [s, t]. So by (2.1) and the definition of δ,

S̄r
i (s, t) =

∫ t

s

Λi(Z̄
r(u))

Z̄r
i (u)

du ≤ δ
2‖C‖

ε
≤
ε ∧ a

2
< ε ∧ a. (5.39)

Consequently, x ∈ B ∩ (a,∞) implies x− S̄r
i (s, t) ∈ Bε, and so

B ∩ (a,∞) ⊂ Bε + S̄r
i (s, t).

We deduce from (5.38) that

〈1B , Z̄
r
i (s)〉 ≤

ε

2
+ 〈1Bε+S̄r

i (s,t), Z̄
r
i (s)〉 =

ε

2
+ 〈1Bε(· − S̄r

i (s, t)), Z̄
r
i (s)〉.

Apply the dynamic equation bound (5.5) to obtain

〈1B , Z̄
r
i (s)〉 ≤

ε

2
+ 〈1Bε , Z̄r

i (t)〉. (5.40)

Now, suppose I 6= ∅ and let τ = inf I. Then by right continuity of Z̄r
i (·),

Z̄r
i (τ) ≤

ε

2
. (5.41)

Since Z̄r
i (u) ≥ ε/2 for all u ∈ [s, τ),

S̄r
i (s, τ) =

∫ τ

s

Λi(Z̄
r(u))

Z̄r
i (u)

du ≤ δ
2‖C‖

ε
≤ a. (5.42)
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By (5.38) and (5.42),

〈1B , Z̄
r
i (s)〉 ≤

ε

2
+ 〈1(a,∞), Z̄

r
i (s)〉

≤
ε

2
+ 〈1[S̄r

i (s,τ),∞), Z̄
r
i (s)〉

=
ε

2
+ 〈1[0,∞)(· − S̄r

i (s, τ)), Z̄
r
i (s)〉.

Apply the dynamic equation bound (5.5) to obtain

〈1B , Z̄
r
i (s)〉 ≤

ε

2
+ 〈1, Z̄r

i (τ)〉 ≤ ε. (5.43)

So (5.36) follows because either (5.40) or (5.43) holds.
To show (5.37), note that by definition of Ωr

2 and δ,

〈1, L̄r
i (s, t)〉 = 〈1, L̄r

i (t)〉−〈1, L̄r
i (s)〉 ≤ νi(t−s)+

ε

4
≤ ‖ν‖δ+

ε

4
≤
ε

2
. (5.44)

By the first inequality in (5.4) and (5.44),

〈1B , Z̄
r
i (t)〉 ≤ 〈1B(· − S̄r

i (s, t)), Z̄
r
i (s)〉 + 〈1, L̄r

i (s, t)〉

≤ 〈1B+S̄r
i (s,t), Z̄

r
i (s)〉 +

ε

2
.

(5.45)

If I = ∅, then (5.39) implies that B + S̄r
i (s, t) ⊂ Bε. So (5.45) yields

〈1B , Z̄
r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉 +
ε

2
.

If I 6= ∅, then by (5.4), (5.41), and (5.44),

〈1B , Z̄
r
i (t)〉 ≤ 〈1, Z̄r

i (τ)〉 + 〈1, L̄r
i (τ, t)〉 ≤ 〈1, Z̄r

i (τ)〉 + 〈1, L̄r
i (s, t)〉 ≤ ε.

In both cases, (5.37) holds. �

5.6 Tightness

This section combines the work of Sections 5.1–5.5 to prove the tightness
claim of Theorem 4.1.

Theorem 5.7 The sequence {(Z̄r, Z̄r, T̄ r, Ū r, W̄ r)} is C-tight.
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Proof. For each T > 0 and δ ∈ [0, T ], let w′
T (·, δ) be the modulus of

continuity on D([0,∞),MI) used in Corollary 3.7.4 of [6]. By Definition
5.5,

w′
T

(

ζ(·), δ
)

≤ wT+δ(ζ(·), 2δ),

for all ζ(·) ∈ D([0,∞),MI). So by Lemmas 5.3 and 5.6, the measure valued
state descriptors {Z̄r} satisfy the compact containment and oscillation con-
ditions of Corollary 3.7.4 in [6]. Thus {Z̄r} is tight. Moreover, Definition 5.5
and Lemma 5.6 also imply that any weak limit point Z (obtained as a limit
in distribution along a subsequence of {Z̄r}) is continuous almost surely.
Since Z̄r(·) = 〈1, Z̄r(·)〉 and ξ 7→ 〈1, ξ〉 is continuous on MI, it follows that
{(Z̄r, Z̄r)} is C-tight.

By (4.3) and (2.1), T̄ r(·) is almost surely Lipschitz continuous with Lip-
schitz constant ‖C‖. Since this holds uniformly in r, the sequence {T̄ r} is
tight and any weak limit point T is almost surely Lipschitz continuous with
Lipschitz constant ‖C‖. By (4.4), C-tightness of {T̄ r} implies C-tightness
of {Ū r}.

As r → ∞, W̄ r(0) ⇒ 〈χ,Z0〉 by (4.14), and 〈χ, L̄r(·)〉 ⇒ ρ(·) by Theorem
5.1. So (4.6) and C-tightness of {T̄ r} imply C-tightness of {W̄ r}. It follows
that {(Z̄r, Z̄r, T̄ r, Ū r, W̄ r)} is C-tight. �

5.7 Weak limits as fluid model solutions

Let (Z, Z, T, U,W ) be a weak limit of the sequence {(Z̄r, Z̄r, T̄ r, Ū r, W̄ r)},
and let {q} ⊂ R be a subsequence such that

(Z̄q, Z̄q, T̄ q, Ū q, W̄ q) ⇒ (Z, Z, T, U,W ), as q → ∞.

Note that since W̄ q(0) = 〈χ, Z̄q(0)〉 for all q, assumption (4.14) implies that
(Z(0),W (0)) ∼ (Z0, 〈χ,Z0〉) and so W (0) ∼ 〈χ,Z(0)〉. By Theorem 5.1,
(L̄q(·), 〈χ, L̄q(·)〉 ⇒ (ν(·)ϑ, ρ(·)) as q → ∞. Using the Skorohod representa-
tion theorem, we may assume without loss of generality for the rest of this
subsection that (Z, Z, T, U,W ) and {(Z̄q, Z̄q, T̄ q, Ū q, W̄ q, L̄q, 〈χ, L̄q〉)} are
defined on a common probability space (Ω,F ,P) such that, almost surely,
W (0) = 〈χ,Z(0)〉, and as q → ∞,

(

Z̄q, Z̄q, T̄ q, Ū q, W̄ q, L̄q, 〈χ, L̄q(·)〉
)

→
(

Z, Z, T, U,W, ν(·)ϑ, ρ(·)
)

, (5.46)

uniformly on compact time intervals. Let Ω1 be the event of probability one
on which W (0) = 〈χ,Z(0)〉 and (5.46) holds. For each q, let Ωq

2 be an event
of probability one (cf. (5.2) and Lemma 5.2) on which (5.2) holds, and on
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which for all i ≤ I, all f ∈ Cc, and all finite time intervals [s, t] ⊂ [0,∞)
satisfying infu∈[s,t] Z̄

q
i (u) > 0,

〈f, Z̄q
i (t)〉 = 〈f, Z̄q

i (s)〉 −

∫ t

s
〈f ′, Z̄q

i (u)〉
Λi(Z̄

q(u))

Z̄q
i (u)

du

+ 〈f, L̄q
i (t)〉 − 〈f, L̄q

i (s)〉. (5.47)

Then, Ω2 =
⋂

q Ωq
2 also has probability one. Define Ω0 = Ω1 ∩ Ω2.

Lemma 5.8 and Theorem 5.9 below establish that, almost surely, Z is
a fluid model solution with auxiliary functions (Z, T, U,W ) for the data
(A,C,Λ, ν, ϑ), where W (t) is finite for all t ≥ 0.

First, recall that for a function x : [0,∞) → R, a regular point for x is a
value of t ∈ (0,∞) at which x is differentiable. If x is absolutely continuous,
almost every t ∈ (0,∞) is a regular point and there is an integrable function
ẋ that is equal almost everywhere to the derivative of x and such that

x(t) = x(0) +

∫ t

0
ẋ(s)ds, t ≥ 0.

A uniformly Lipschitz continuous function x : [0,∞) → R is absolutely
continuous.

Lemma 5.8 Almost surely, for all t ≥ 0, the limit (Z, Z, T, U,W ) satisfies

(i) ‖〈1{0},Z(t)〉‖ = 0,

(ii) Z(t) = 〈1,Z(t)〉,

(iii) U(t) = Ct−AT (t),

(iv) W (t) = W (0) + ρt− T (t),

(v) W (t) = 〈χ,Z(t)〉,

(vi) W is uniformly Lipschitz continuous with Lipschitz constant ‖ρ‖+‖C‖,

(vii) for all i ≤ I,

Ti(t) =

∫ t

0

(

Λi(Z(s))1(0,∞)(Zi(s)) + ρi1{0}(Zi(s))
)

ds,

(viii) Uj is non-decreasing for all j ≤ J.
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Proof. Let T > 0. It suffices to show (i) for all t ∈ [0, T ). By Lemma 5.4,
there exists a sequence {an : n ∈ N} of positive real numbers such that, for
each fixed n,

lim inf
q→∞

P

(

sup
t∈[0,T )

∥

∥

∥〈1[0,an), Z̄
q(t)〉

∥

∥

∥ ≤
1

n

)

≥ 1 −
1

n2
. (5.48)

For each n ∈ N, let An = {ξ ∈ MI : ‖〈1[0,an), ξ〉‖ ≤ 1/n}, and suppose that

{ξk} ⊂ An satisfies ξk w
−→ ξ as k → ∞. By the Portmanteau Theorem,

∥

∥

∥〈1[0,an), ξ〉
∥

∥

∥ ≤ lim sup
k→∞

∥

∥

∥〈1[0,an), ξ
k〉
∥

∥

∥ ≤
1

n
.

So ξ ∈ An, which implies that An ⊂ MI is closed for each n. By definition
of the Skorohod topology, the set

Bn =
{

ζ(·) ∈ D([0,∞),MI) : ζ(t) ∈ An for all t ∈ [0, T )
}

is closed in D([0,∞),MI) for each n. Thus, since Z̄q ⇒ Z, (5.48) and the
Portmanteau Theorem imply that

P (Z ∈ Bn) ≥ lim inf
q→∞

P
(

Z̄q ∈ Bn

)

≥ 1 −
1

n2
. (5.49)

We deduce from (5.49) and the Borel-Cantelli lemma that

P

(

sup
t∈[0,T )

∥

∥

∥〈1{0},Z(t)〉
∥

∥

∥ = 0

)

≥ P





∞
⋃

k=1

∞
⋂

n=k

{Z ∈ Bn}



 = 1,

which proves (i).
Fix an outcome ω ∈ Ω0 and assume for the rest of the proof that all

random objects are evaluated at this ω. Property (ii) follows from (4.2) and
(5.46). Property (iii) follows from (4.4) and (5.46), and property (iv) follows
from (4.6) and (5.46).

To prove (v), fix t ≥ 0 and i ≤ I. Since W̄ q
i (t) = 〈χ, Z̄q

i (t)〉 for all
q, and since W̄ q

i (t) → Wi(t) as q → ∞ by (5.46), it suffices to show that

〈χ, Z̄q
i (t)〉 → 〈χ,Zi(t)〉 as q → ∞. Since Z̄q

i (t)
w
−→ Zi(t) as q → ∞, it

suffices to show that the q-indexed sequence of measures {Z̄q
i (t)} is uniformly

integrable. To this end, note that if a sequence {ξq} ⊂ M satisfies ξq w
−→ ξ

and 〈χ, ξq〉 → 〈χ, ξ〉 <∞, then {ξq} is uniformly integrable. Thus, {Z̄q
i (0)}

is uniformly integrable by the definition of Ω1 and (5.46), and {L̄q
i (t)} is
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uniformly integrable by (5.46). We conclude from the dynamic equation
bound (5.3) that, for each x > 0,

sup
q
〈χ1[x,∞), Z̄

q
i (t)〉 ≤ sup

q

(

〈χ1[x,∞), Z̄
q
i (0)〉 + 〈χ1[x,∞), L̄

q
i (t)〉

)

.

So uniform integrability of {Z̄q
i (t)} follows from uniform integrability of

{Z̄q
i (0)} and {L̄q

i (t)}.
To prove (vi), recall from the proof of Theorem 5.7 that T is uniformly

Lipschitz continuous with Lipschitz constant ‖C‖. So (vi) follows from (iv).
To prove (vii), fix i ≤ I. Since Wi and Ti are uniformly Lipschitz con-

tinuous, they are both absolutely continuous. Let t > 0 be a regular point
for both Wi and Ti. Then Ẇi(t) = ρi − Ṫi(t) by (iv). If Zi(t) = 0, then
Wi(t) = 0 by (v). Since Wi is a non-negative function, this implies that
Ẇi(t) = 0 and so Ṫi(t) = ρi. Alternatively, suppose that Zi(t) > 0. By (ii),
continuity of Zi implies continuity of Zi. So Zi(s) > 0 for all s ∈ [t, t + h]
and all sufficiently small h > 0. In this case, (5.46), (4.3), continuity of Λi

on {z ∈ R
I
+ : zi > 0}, (2.1), and the bounded convergence theorem, imply

that

Ti(t+ h) − Ti(t) = lim
q→∞

(T̄ q
i (t+ h) − T̄ q

i (t))

= lim
q→∞

∫ t+h

t
Λi(Z̄

q(s))ds

=

∫ t+h

t
Λi(Z(s))ds.

(5.50)

Since Λi(Z(·)) is continuous at t for Zi(t) > 0, it follows that

Ṫi(t) =

{

Λi(Z(t)), if Zi(t) > 0,

ρi, if Zi(t) = 0.
(5.51)

Since almost every t > 0 is a regular point for Wi and Ti, (5.51) implies
(vii).

Property (viii) follows because Ū q
j is non-decreasing for each q and j ≤ J,

and because Ū q → U uniformly on compact time intervals by (5.46). �

The next result establishes the family of dynamic equations satisfied by
the limit in (5.46).
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Theorem 5.9 Almost surely, for all i ≤ I, f ∈ C, and t ≥ 0,

〈f,Zi(t)〉 = 〈f,Zi(0)〉 −

∫ t

0
〈f ′,Zi(s)〉

Λi(Z(s))

Zi(s)
ds

+ νi〈f, ϑi〉

∫ t

0
1(0,∞)(Zi(s))ds. (5.52)

Recall that the first integrand above is defined to be zero when Zi(s) = 0.
Proof. All random objects in this proof are evaluated at a fixed outcome
ω ∈ Ω0 such that (5.2), (5.46), (5.47) and the properties listed in Lemma
5.8 hold. The theorem will be proved first for f ∈ Cc, and an extension to
C is made at the end. Recall that for f ∈ Cc, the derivative f ′ has compact
support and ‖f ′‖∞ <∞. Note also that since f(0) = f ′(0) = 0, there exists
a constant Cf <∞ such that |f(x)| ≤ Cfx for all x ∈ R+. Therefore,

∣

∣〈f,Zi(t)〉
∣

∣ ≤ Cf 〈χ,Zi(t)〉 = CfWi(t), for all t ≥ 0. (5.53)

The following preliminary result is used several times in this proof.
For each fixed f ∈ Cc, each i ≤ I and each interval [s, t] ⊂ R+ satisfying

infu∈[s,t]Zi(u) > 0, we have

〈f,Zi(t)〉 = 〈f,Zi(s)〉 −

∫ t

s
〈f ′,Zi(u)〉

Λi(Z(u))

Zi(u)
du+ νi(t− s)〈f, ϑi〉. (5.54)

To see this, fix an f , i and interval [s, t] satisfying the assumption. By (5.46)
and Lemma 5.8 (ii), Z̄q

i (·) → Zi(·) as q → ∞, uniformly on compact time
intervals. Thus,

lim inf
q→∞

inf
u∈[s,t]

Z̄q
i (u) > 0. (5.55)

By definition of Ω2, this implies that (5.47) holds for all sufficiently large
q. Let q → ∞ in (5.47). Note that f and f ′ are elements of Cb(R+),
and that Λi is continuous on {z ∈ R

I
+ : zi > 0} (see Definition 2.1). Thus,

(5.46) and (5.55) imply that, for all q sufficiently large, the integrands in the
second right hand term of (5.47) are uniformly bounded on [s, t] and converge

pointwise on [s, t] to 〈f ′,Zi(·)〉
Λi(Z(·))

Zi(·)
. Apply bounded convergence to this

term and apply (5.46) to the remaining terms in (5.47) to obtain (5.54).
We now proceed with the proof of the theorem. Fix f ∈ Cc, i ≤ I, and

an interval [s, t] ⊂ R+ with t > s. Define

τ0 = inf{u ∈ [s, t] : Zi(u) = 0}, (5.56)
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where the infimum of the empty set is defined to be t. If τ0 > s, then
infu∈[s,τ ]Zi(u) > 0 for all intervals [s, τ ] ⊂ [s, τ0). So for each such τ , (5.54)
with τ in place of s implies that

∣

∣〈f,Zi(τ)〉 − 〈f,Zi(s)〉
∣

∣ ≤ (τ − s)‖f ′‖∞‖C‖ + (τ − s)νi‖f‖∞. (5.57)

Since both sides of (5.57) are continuous in τ , letting τ ↑ τ0 yields

∣

∣〈f,Zi(τ0)〉 − 〈f,Zi(s)〉
∣

∣ ≤ (τ0 − s)‖f ′‖∞‖C‖ + (τ0 − s)νi‖f‖∞. (5.58)

Note that if τ0 = s, then (5.58) holds trivially. If τ0 < t, then Zi(τ0) = 0
by continuity of Zi, and so 〈f,Zi(τ0)〉 = Wi(τ0) = 0. Then by (5.53) and
property (vi) of Lemma 5.8,

∣

∣〈f,Zi(t)〉 − 〈f,Zi(τ0)〉
∣

∣ =
∣

∣〈f,Zi(t)〉
∣

∣ ≤ CfWi(t)

= Cf |Wi(t) −Wi(τ0)| ≤ Cf

(

‖ρ‖ + ‖C‖
)

(t− τ0). (5.59)

If τ0 = t, then (5.59) holds trivially. Combining (5.58) and (5.59) yields

∣

∣〈f,Zi(t)〉 − 〈f,Zi(s)〉
∣

∣ ≤
∣

∣〈f,Zi(t)〉 − 〈f,Zi(τ0)〉
∣

∣

+
∣

∣〈f,Zi(τ0)〉 − 〈f,Zi(s)〉
∣

∣

≤ Cf

(

‖ρ‖ + ‖C‖
)

(t− τ0)

+
(

‖f ′‖∞‖C‖ + νi‖f‖∞
)

(τ0 − s)

≤ Kf (t− s),

where
Kf = Cf

(

‖ρ‖ + ‖C‖
)

+ ‖f ′‖∞‖C‖ + νi‖f‖∞.

Since s ≤ t were arbitrary, it follows that 〈f,Zi(·)〉 is uniformly Lipschitz
continuous and is therefore absolutely continuous on R+. Suppose t > 0 is
a regular point for both 〈f,Zi(·)〉 and Wi(·). If Zi(t) > 0, then by (5.54)
(with [t, t + h] in place of [s, t]), and continuity of Λi on {z ∈ R

I
+ : zi > 0}

(see Definition 2.1),

lim
h→0

〈f,Zi(t+ h)〉 − 〈f,Zi(t)〉

h
= −〈f ′,Zi(t)〉

Λi(Z(t))

Zi(t)
+ νi〈f, ϑi〉. (5.60)

If Zi(t) = 0, then 〈f,Zi(t)〉 = Wi(t) = 0, and so Ẇi(0) = 0 because Wi is a
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non-negative function. Combining this with (5.53), we obtain

lim sup
h→0

∣

∣

∣

∣

〈f,Zi(t+ h)〉 − 〈f,Zi(t)〉

h

∣

∣

∣

∣

= lim sup
h→0

∣

∣

∣

∣

〈f,Zi(t+ h)〉

h

∣

∣

∣

∣

≤ lim sup
h→0

Cf

∣

∣

∣

∣

Wi(t+ h)

h

∣

∣

∣

∣

= lim sup
h→0

Cf

∣

∣

∣

∣

Wi(t+ h) −Wi(t)

h

∣

∣

∣

∣

= Cf |Ẇi(t)| = 0.

(5.61)

Combining (5.60) and (5.61), we obtain

d

dt
〈f,Zi(t)〉 =







−〈f ′,Zi(t)〉
Λi(Z(t))

Zi(t)
+ νi〈f, ϑi〉, Zi(t) > 0,

0, Zi(t) = 0.
(5.62)

The set of all t ∈ (0,∞) that are regular points for both 〈f,Zi(·)〉 and Wi(·)
has full Lebesgue measure, so (5.52) follows from (5.62).

This proves the theorem for f ∈ Cc. To extend to C, choose functions
{gn : n ∈ N} ⊂ C1

b(R+) such that 1[0,n] ≤ gn ≤ 1[0,n+1] and ‖g′n‖∞ ≤ 2 for
all n. For f ∈ C, define fn = fgn so that fn ∈ Cc for all n. Then for all
n ∈ N and t ≥ 0,

〈fn,Zi(t)〉 = 〈fn,Zi(0)〉 −

∫ t

0
〈f ′n,Zi(s)〉

Λi(Z(s))

Zi(s)
ds

+ νi〈fn, ϑi〉

∫ t

0
1(0,∞)(Zi(s))ds. (5.63)

Since fn → f pointwise and boundedly as n→ ∞, the bounded convergence
theorem implies that the left side, as well as the first and third terms on
the right side of (5.63), converge to the corresponding terms of (5.52) as
n → ∞. Similarly, f ′

n → f ′ pointwise and boundedly as n → ∞. So the
integrand in the second right hand term of (5.63) converges pointwise on

[0, t] to 〈f ′,Zi(·)〉
Λi(Z(·)
Zi(·)

as n→ ∞. For each n ∈ N,

sup
s∈[0,t]

∣

∣

∣

∣

〈f ′n,Zi(s)〉
Λi(Z(s))

Zi(s)

∣

∣

∣

∣

≤ ‖f ′n‖∞‖C‖ ≤
(

‖f ′‖∞ + 2‖f‖∞
)

‖C‖.

So the bounded convergence theorem implies that the second right hand
term in (5.63) converges to the corresponding term in (5.52) as n→ ∞. �
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Proof of Theorem 4.1. The sequence {(Z̄r, Z̄r, T̄ r, Ū r, W̄ r)} is C-tight
by Theorem 5.7. Let (Z, Z, T, U,W ) be a weak limit point of this sequence.
Then by Theorem 5.9 and properties (i), (ii), (iii), (iv), (v), (vii), and (viii)
of Lemma 5.8, Z is almost surely a fluid model solution with auxiliary
functions (Z, T, U,W ) for the data (A,C,Λ, ν, ϑ) (see Definitions 3.1 and
3.2), and W (t) is finite for all t ≥ 0. �

6 Invariant states for fluid model under weighted

α-fair policies

In this section, we consider the special case of weighted α-fair policies. Fix
fluid model data (A,C,Λ, ν, ϑ), where Λ is a weighted α-fair bandwidth
sharing policy with parameters (α, κ) as described in the Example of Section
2.2. Assume further that A has rank J, so that it has full row rank. Under
a natural condition on the network parameters A, C, ν, and ϑ, there exist
fluid model solutions that are time invariant. This section identifies the
condition and characterizes the set of these invariant states.

The following representation of the weighted α-fair policy Λ is proved in
Appendix A of [12].

Proposition 6.1 For each z ∈ R
I
+, there exists at least one p ∈ R

J
+, de-

pending on z, such that

Λi(z) = zi

(

κi
∑

j≤J
pjAji

)1/α

, for all i ∈ I+(z), (6.1)

where

pj



Cj −
∑

i≤I

AjiΛi(z)



 = 0 for all j ≤ J. (6.2)

The (pj : j ≤ J) are Lagrange multipliers for the optimization problem
(2.3)–(2.5), one for each of the capacity constraints in (2.4). Note that for
each i ∈ I+(z), the bandwidth Λi(z) > 0 by Definition 2.1(i), and zi > 0
by definition. Thus, (6.1) implies that the denominator on the right side of
(6.1) does not vanish.

Definition 6.2 A vector of measures ξ ∈ MI is an invariant state for the
fluid model if there is a fluid model solution ζ(·) satisfying ζ(t) = ξ for all
t ≥ 0.
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The following notation helps describe invariant states. Recall that µi =
〈χ, ϑi〉

−1 and ρi = νi/µi for i ≤ I. Also recall that I+(z) = {i ≤ I : zi > 0}
and I0(z) = {i ≤ I : zi = 0} for z ∈ R

I
+. Let

P = {z ∈ R
I

+ : Λi(z) = ρi for all i ∈ I+(z)}.

For each i ≤ I, let ϑe
i denote the excess lifetime distribution associated with

ϑi. The probability measure ϑe
i is absolutely continuous with density

pe
i (x) = µi〈1(x,∞), ϑi〉, x ∈ R+.

Theorem 6.3 There exist invariant states for the fluid model if and only if

Aρ ≤ C. (6.3)

When (6.3) holds, the set of invariant states is given by

M = {ξ ∈ MI : ξi = ziϑ
e
i for all i ≤ I and some z ∈ P}. (6.4)

Proof. Suppose that ξ is an invariant state and let ζ(·) ≡ ξ be the
corresponding fluid model solution with auxiliary functions (z, τ, u) given
by Definiton 3.1 (we omit w here). Then z is a constant vector, denoted
z = 〈1, ξ〉. For each f ∈ C, i ∈ I+(z) and t ≥ 0, property (iii) of Definition
3.2 yields

〈f, ξi〉 = 〈f, ξi〉 − t〈f ′, ξi〉
Λi(z)

zi
+ tνi〈f, ϑi〉. (6.5)

Since (cf. Proposition 3.1 in [22]),

〈f, ϑi〉 =
1

µi
〈f ′, ϑe

i 〉, for all f ∈ C, (6.6)

cancelling like terms in (6.5) yields

〈f ′, ξi〉
Λi(z)

zi
= ρi〈f

′, ϑe
i 〉. (6.7)

Replacing f by a suitable sequence of functions {fn} ⊂ C satisfying f ′n ≥ 0
and f ′n ↑ 1(0,∞), the monotone convergence theorem implies that (6.7) holds
with f ′ ≡ 1(0,∞). So by property (i) of Definition 3.2, and since ϑe

i does not
charge {0},

Λi(z) = ρi, for all i ∈ I+(z). (6.8)
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Since zi = 0 for i ∈ I0(z), this implies by Definition 3.1 that, for all t ≥ 0,

τi(t) =

∫ t

0

(

Λi(z)1(0,∞)(zi) + ρi1{0}(zi)
)

ds = ρit, for all i ≤ I. (6.9)

Thus, u(t) = Ct−Aρt = (C − Aρ)t for all t ≥ 0. Since u is non-decreasing
by property (ii) of Definition 3.2, (6.3) holds. Moreover, substituting (6.8)
into (6.7) and cancelling ρi yields

〈f ′, ξi〉

zi
= 〈f ′, ϑe

i 〉, for all f ∈ C and i ∈ I+(z).

This implies (in the same manner as in the proof of Theorem 1.1 in [22])
that

ξi = ziϑ
e
i , for all i ∈ I+(z). (6.10)

Since ξi = 0 for all i ∈ I0(z), combining (6.10) with (6.8) implies that
ξ ∈ M.

To prove the converse, suppose that (6.3) holds and let ξ ∈ M. Define
ζ(t) = ξ for all t ≥ 0, and let (z, τ, u) be the auxiliary functions of ζ given
by Definition 3.1. Since ϑe

i does not charge {0} ⊂ R+ for each i ≤ I, ζ(·)
satisfies property (i) of Definition 3.2. Note that z = 〈1, ξ〉 is a constant
vector, and that z ∈ P because ξ ∈ M. Thus, τ satisfies (6.9) and so
u(t) = Ct − Aρt = (C − Aρ)t for all t ≥ 0. By (6.3), uj is non-decreasing
for all j ≤ J, and so property (ii) of Definition 3.2 holds. Let f ∈ C and
i ∈ I+(z). Since ξ ∈ M and z ∈ P, (6.6) implies that for all t ≥ 0,

t〈f ′, ξi〉
Λi(z)

zi
= tρi〈f

′, ϑe
i 〉 = tνi〈f, ϑi〉.

Thus, (6.5) holds and so ζ satisfies Property (iii) of Definition 3.2 for i ∈
I+(z). This property holds for i 6∈ I+(z) since then all terms are zero. Thus
ζ is a fluid model solution. Note that M is non-empty because ξ = 0 is in
M. �

Under condition (6.3), the set P can be characterized using results in
Kelly and Williams [12]. Let

J∗ =







j ≤ J :
∑

i≤I

Ajiρi = Cj







,

and let J∗ = |J∗|. For z ∈ R
I
+, define

F (z) =
1

α+ 1

∑

i≤I

νiκiµ
α−1
i

(

zi
νi

)α+1

.
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When J∗ 6= ∅, define ∆ : R
J∗
+ → R

I
+ by

∆(w) = argmin







F (z) : z ∈ R
I

+ and
∑

i≤I

Aji
zi
µi

≥ wj for all j ∈ J∗







.

Lemma 6.4 Assume that (6.3) holds. If J∗ = ∅, then P = {0} and the
only invariant state is ξ = 0. If J∗ 6= ∅, then the following three conditions
are equivalent,

(i) z ∈ P,

(ii) for some q ∈ R
J∗
+ , zi = ρi

(

1
κi

∑

j∈J∗

qjAji

)
1

α

for all i ≤ I,

(iii) z = ∆(w(z)), where wj(z) =
∑

i≤I

Aji
zi

µi
for all j ∈ J∗.

Proof. If J∗ = ∅, then Aρ < C. In this case, there is no z 6= 0 such that
Λi(z) = ρi for all i ∈ I+(z). This follows because for z 6= 0, the optimal
solution Λ(z) of the concave optimization problem (2.3)–(2.5), must have
one of the constraints binding, that is, (AΛ(z))j = Cj for some j ≤ J. It
follows that P = {0} when J∗ = ∅.

If J∗ 6= ∅, then the three equivalent characterizations of P follow from
Lemma 5.1 and Theorems 5.1 and 5.3 in [12]. �

A Appendix

Proof of Theorem 5.1 For each r ∈ R, define a simplified fluid scaled
load process

V̄r
i (t) =

1

r

brtc
∑

k=1

δvr
ik
, t ≥ 0, i ≤ I, (A.1)

and let ϑ(t) = tϑ for all t ≥ 0. We first show that

(

V̄r(·), 〈χ, V̄r(·)〉
)

⇒
(

ϑ(·), 〈χ, ϑ(·)〉
)

, as r → ∞. (A.2)

Since for each r ∈ R, t ≥ 0, and i ≤ I, 〈χ, ϑi〉 = 1/µi and

〈χ, V̄r
i (t)〉 =

brtc

r

1

brtc

brtc
∑

k=1

(

vr
ik −

1

µr
i

)

+
brtc

rµr
i

,
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the second component of (A.2) follows from assumptions (4.12), (4.13), and
a functional weak law of large numbers. Note that for each K > 0, the set
{ξ ∈ MI :

∥

∥〈1 ∨ χ, ξ〉
∥

∥ ≤ K} is relatively compact in MI (see [11], Theorem
15.7.5). For each T > 0, supt∈[0,T ]

∥

∥〈1 ∨ χ, V̄r(t)〉
∥

∥ ≤ T ∨
∥

∥〈χ, V̄r(T )〉
∥

∥,
and so the second component of (A.2) implies the compact containment
condition

lim
K→∞

lim inf
r→∞

Pr

(

sup
t∈[0,T ]

∥

∥〈1 ∨ χ, V̄r(t)〉
∥

∥ ≤ K

)

= 1. (A.3)

Moreover, for all r ∈ R, i ≤ I, t ≥ s ≥ 0, and all non-empty closed B ⊂ R+,
(A.1) implies the two inequalities

〈1B , V̄
r
i (s)〉 ≤ 〈1B , V̄

r
i (t)〉 ≤ 〈1Bt−s , V̄r

i (t)〉 + t− s,

〈1B , V̄
r
i (t)〉 = 〈1B , V̄

r
i (s)〉 +

1

r

brtc
∑

k=brsc+1

1B(vr
ik) ≤ 〈1Bt−s , V̄r

i (s)〉 + t− s.

So by (1.1) and (1.2),

dI

[

V̄r(s), V̄r(t)
]

≤ t− s, for all r ∈ R and t ≥ s ≥ 0.

On combining this with (A.3), we see that {V̄r(·)} is C-tight. Let {V̄q(·)} ⊂
{V̄r(·)} be a weakly convergent subsequence with almost surely continuous
limit V(·). Then, by the continuous mapping theorem, for all f ∈ Cb(R+),

〈f, V̄q(·)〉 ⇒ 〈f,V(·)〉, as q → ∞. (A.4)

On the other hand, for each q, f ∈ Cb(R+), t ≥ 0, and i ≤ I,

〈f, V̄q
i (t)〉 =

bqtc

q

1

bqtc

bqtc
∑

k=1

(

f(vq
ik) − 〈f, ϑq

i 〉
)

+
bqtc

q
〈f, ϑq

i 〉.

Assumptions (4.11)–(4.13), and a functional weak law of large numbers im-
ply that 〈f, V̄q(·)〉 ⇒ 〈f, ϑ(·)〉 as q → ∞ for each f ∈ Cb(R+). Combining
with (A.4), we see that V(·) ≡ ϑ(·) almost surely, and so V̄r(·) ⇒ ϑ(·) as
r → ∞. Since the limits are deterministic, the convergence in (A.2) is indeed
joint.

By assumption (4.10), Ēr(·) ⇒ ν(·) as r → ∞. Since L̄r(·) = V̄r(Ēr(·))
and 〈χ, ϑ(ν(·))〉 = ρ(·), (A.2) and the random time change theorem imply
(5.1). �
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Proof of Lemma 5.2. Let Ωr
1 be an event of probability one on which

(5.2) holds and fix ω ∈ Ωr
1. For the rest of the proof, all random objects are

evaluated at this particular ω. Fix i ≤ I, f ∈ Cc, and let [s, t] be an interval
satisfying infu∈[s,t] Z̄

r
i (u) > 0. It suffices to show (5.7). Since Z̄r

i (·) is right
continuous with finite left limits, there exist ε,M ∈ (0,∞) such that

ε ≤ inf
u∈[s,t]

Z̄r
i (u) ≤ sup

u∈[s,t]
Z̄r

i (u) ≤M. (A.5)

Let l = t− s and, for n, j ∈ N, let tj = s+ jl/n and tj = tj+1. For each n,

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =

n−1
∑

j=0

(

〈f, Z̄r
i (tj)〉 − 〈f, Z̄r

i (tj)〉
)

.

Add and subtract a term in each summand to get

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =
n−1
∑

j=0

(

〈f, Z̄r
i (tj)〉 −

〈

f(· − S̄r
i (tj , t

j)), Z̄r
i (tj)

〉

)

+

n−1
∑

j=0

(

〈

f(· − S̄r
i (tj , t

j)), Z̄r
i (tj)

〉

− 〈f, Z̄r
i (tj)〉

)

.

Use the dynamic equation (5.2) in the first term and rewrite the second term
on the right to obtain

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =

n−1
∑

j=0

1

r

rĒr
i (tj)
∑

k=rĒr
i (tj )+1

f
(

vr
ik − S̄r

i (U
r
ikr

−1, tj)
)

+

n−1
∑

j=0

〈

f
(

· − S̄r
i (tj , t

j)
)

− f(·), Z̄r
i (tj)

〉

. (A.6)

Denote the first and second right hand terms in (A.6) by ar
n and brn respec-

tively, and consider first ar
n. Since f ∈ Cc, a first order Taylor expansion of

each summand yields

f
(

vr
ik − S̄r

i (U
r
ikr

−1, tj)
)

= f(vr
ik) + f ′(wk

j )hk
j , (A.7)

where for each j and k, hk
j = −S̄r

i (U
r
ikr

−1, tj) and wk
j ∈ R is in the interval

[vr
ik + hk

j , v
r
ik]. Since U r

ikr
−1 ∈ (tj , t

j ] for each pair j, k in (A.7), (2.1) and
(A.5) imply that

max
j,k

|hk
j | ≤ max

j

∫ tj

tj

Λi(Z̄
r(u))

Z̄r
i (u)

du ≤
l‖C‖

nε
. (A.8)
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Using (A.7) and (A.8), deduce that for each n,

∣

∣

∣ar
n −

(

〈f, L̄r
i (t)〉 − 〈f, L̄r

i (s)〉
)

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

ar
n −

1

r

rĒr
i (t)
∑

k=rĒr
i (s)+1

f(vr
ik)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

1

r

rĒr
i (tj)
∑

k=rĒr
i (tj )+1

f ′(wk
j )hk

j

∣

∣

∣

∣

∣

∣

∣

≤ (Ēr
i (t) − Ēr

i (s))‖f
′‖∞

l‖C‖

nε
.

So as n→ ∞,
ar

n →
(

〈f, L̄r
i (t)〉 − 〈f, L̄r

i (s)〉
)

. (A.9)

Next, consider brn. Another first order Taylor expansion for each x ∈ R+

and j ∈ {0, . . . , n− 1} yields

f(x− S̄r
i (tj , t

j)) − f(x) = f ′(wx
j )hj , (A.10)

where hj = −S̄r
i (tj , t

j) and wx
j ∈ R is in the interval [x+ hj , x]. Define

zj = sup
u∈[tj ,tj)

Λi(Z̄
r(u))

Z̄r
i (u)

, (A.11)

and let h̃j = −zjl/n. Combine terms and bound the integrand to obtain

∣

∣

∣

∣

∣

∣

brn −
n−1
∑

j=0

〈f ′h̃j , Z̄
r
i (tj)〉

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n−1
∑

j=0

〈

f
(

· − S̄r
i (tj, t

j)
)

− f(·) − f ′(·)h̃j , Z̄
r
i (tj)

〉

∣

∣

∣

∣

∣

∣

≤

n−1
∑

j=0

sup
x∈R

∣

∣

∣

∣

f
(

x− S̄r
i (tj , t

j)
)

− f(x) − f ′(x)h̃j

∣

∣

∣

∣

〈1, Z̄r
i (tj)〉.

Apply (A.5) and (A.10) to get

∣

∣

∣

∣

∣

∣

brn −

n−1
∑

j=0

〈f ′h̃j , Z̄
r
i (tj)〉

∣

∣

∣

∣

∣

∣

≤

n−1
∑

j=0

sup
x∈R

∣

∣

∣f ′(wx
j )hj − f ′(x)h̃j

∣

∣

∣ 〈1, Z̄r
i (tj)〉

≤M
n−1
∑

j=0

sup
x∈R

(

|f ′(wx
j ) − f ′(x)||hj | + |f ′(x)||hj − h̃j |

)

. (A.12)
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Since wx
j ∈ [x + hj , x] for each j ∈ {0, . . . , n − 1} and x ∈ R, deduce from

the definition of hj , S̄
r
i (tj , t

j), and from (2.1) and (A.5), that

|wx
j − x| ≤ |hj | =

∫ tj

tj

Λi(Z̄
r(u))

Z̄r
i (u)

du ≤
l‖C‖

nε
. (A.13)

Since f ′ has compact support, it is uniformly continuous. Hence, there exists
a continuous non-decreasing function ψf : R+ → R+ such that ψf (0) = 0
and for all h ∈ R+,

sup
x∈R

|f ′(x+ h) − f ′(x)| ≤ ψf (|h|). (A.14)

We deduce from (A.12)–(A.14) that

∣

∣

∣

∣

∣

∣

brn −

n−1
∑

j=0

〈f ′h̃j , Z̄
r
i (tj)〉

∣

∣

∣

∣

∣

∣

≤M



nψf

(

l‖C‖

nε

)

l‖C‖

nε
+ ‖f ′‖∞

n−1
∑

j=0

(

zj
l

n
− S̄r

i (tj , t
j)

)



 . (A.15)

Let φn(u) =
∑n−1

j=0 zj1[tj ,tj)(u) for each n ∈ N and u ∈ [tj , t
j]. Then

n−1
∑

j=0

(

zj
l

n
− S̄r

i (tj, t
j)

)

=

∫ t

s
φn(u)du −

∫ t

s

Λi(Z̄
r(u))

Z̄r
i (u)

du. (A.16)

Observe that φn(u) → Λi(Z̄
r(u))Z̄r

i (u)−1 as n → ∞, for all u ∈ [s, t) at
which the latter function is continuous, which is at almost every u. So by
the bounded convergence theorem, (A.16) converges to zero as n→ ∞. This
implies, by definition of ψf , that (A.15) converges to zero as n→ ∞. Note
that

n−1
∑

j=0

〈f ′h̃j, Z̄
r
i (tj)〉 = −

n−1
∑

j=0

〈f ′, Z̄r
i (tj)〉zj

l

n
,

and that, as n→ ∞,

−
n−1
∑

j=0

〈f ′, Z̄r
i (tj)〉zj

l

n
→ −

∫ t

s
〈f ′, Z̄r

i (u)〉
Λi(Z̄

r(u))

Z̄r
i (u)

du,
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by (A.11) and bounded convergence, since the integrand on the right is also
continuous at almost every u. Conclude that, as n→ ∞,

brn → −

∫ t

s
〈f ′, Z̄r

i (u)〉
Λi(Z̄

r(u))

Z̄r
i (u)

du. (A.17)

Combining (A.6), (A.9), and (A.17) yields (5.7). �
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