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Summary: We consider estimating a probability densityp based on a random sample from this
density by a Bayesian approach. The prior is constructed in two steps, by first constructing priors
on a collection of models each expressing a qualitative prior guess on the true density, and next
combining these priors in an overall prior by attaching prior weights to the models. The purpose
is to show that the posterior distribution contracts to the true distribution at a rate that is (nearly)
equal to the rate that would have been obtained had only the model that is most suitable for the
true density been used. We study special model weights that yield this adaptation property in some
generality. Examples include minimal discrete priors and finite-dimensional models, with special
attention to scales of Banach spaces, such as Hölder spaces, spline models, and classes of densities
that are not uniformly bounded away from zero or infinity.

1 Introduction
Consider the problem of estimating a probability densityp based on a random sample
X1, . . . , Xn from this density. Ifp is a density ond-dimensional Euclidean space and
is a-priori known to possessα derivatives, then it is well known thatp can be estimated
at the rateεn,α = n−α/(2α+d), relative to, for instance, the Hellinger distance on the
set of probability densities (under some restrictions). A variety of methods achieve the
rateεn,α, and this is known to be optimal in a minimax sense if nothing more is known
concerningp. Furthermore, it is well known that the rateεn,α can be achieved even if
the value ofα is not known a-priori. So-called rate-adaptive estimators achieve the rate
εn,α if p is α-smooth for all values ofα simultaneously. In this paper we investigate
such rate-adaptation within a fully Bayesian set-up, where a suitable orderα is selected
through Bayesian model averaging.

More generally, we study the posterior distribution relative to a prior that is con-
structed by combining prior probability measuresΠn,α on the membersPn,α of a list
of models indexed by a parameterα with a prior probability measureλn on the set of
indicesα. The indexα may be a regularity parameter, but in our general set-up it may
belong to an arbitrary setA. The modelsPn,α and the priorsΠn,α andλn can be con-
structed in a variety of ways. The “conditional priors”Πn,α and “model weights”λn
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combine into the overall prior

Πn =
∫

A

Πn,α λn(dα). (1.1)

Given the prior distribution (1.1), the corresponding posterior distribution is the random
measure given by

Πn(B|X1, . . . , Xn) =

∫
B

∏n
i=1p(Xi) dΠn(p)∫ ∏n

i=1p(Xi) dΠn(p)
(1.2)

=

∫
A

∫
p∈Pn,α:p∈B

∏n
i=1p(Xi) dΠn,α(p)λn(dα)∫

A

∫
p∈Pn,α

∏n
i=1p(Xi) dΠn,α(p)λn(dα)

.

Of course, we make appropriate (measurability) conditions to ensure that this expression
is well defined.

We say that the posterior distributions haverate of convergence at leastεn if, for
every sufficiently large constantM , asn →∞, in probability,

Πn

(
d(p, p0) > Mεn|X1, . . . , Xn

) → 0.

Here the distribution of the random measure (1.2) is evaluated under the assumption that
X1, . . . , Xn are an i.i.d. sample fromP0, andd is the Hellinger,L1- or L2-metric on the
set of densities.

This set-up falls within the set-up considered in earlier work on posterior distribu-
tions, for instanceGhosal et al.(2000). Application of their result would yield the state-
ment that if the true densityp0 is well approximated by the overall modelPn = ∪αPn,α,
then the posterior will concentrate in balls aroundp0 of a radiusεn that converges to zero
at a speed depending on the complexity of the modelPn and its approximation proper-
ties. Because this rateεn refers to the union modelPn = ∪αPn,α, it will in most cases
be determined by the worst case in the list, e.g. the indexα for which the densities in
Pn,α are least regular. For instance, in the case thatα is a smoothness parameter and
A possesses a smallest elementα, we would (at best) find the raten−α/(2α+d) for the
posterior. This is an interesting result, but it is pessimistic and not the result we would
like to prove. In the present paper, we want to refine the result to the statement that if the
true densityp0 is contained inPn,β for someβ ∈ A, or is well approximated byPn,β ,
then the posterior will concentrate in a ball of radiusεn,β aroundp0, whereεn,β is the
“correct rate” if only the modelPn,β were used. We prove that this is true (possibly up
to logarithmic factors) for general priorsΠn,α on the models if combined with certain
special model weightsλn, defined in terms of the ratesεn,α attached to the models (see
e.g. (2.3)). Under these “universal” weights “small” models (the ones with fast rate of
convergenceεn,α attached) receive more prior mass than large models.

There is a large literature on adaptation using non-Bayesian methods. Key references
areEfromovich and Pinsker(1984), Stone(1984), Nussbaum(1985), Golubev(1987),
Lepskĭı (1990, 1991, 1992), Donoho et al.(1995, 1996), Barron and Cover(1991) and
Barron et al.(1999). The papers byGhosal et al.(2003) andHuang(2004) are clos-
est to the present paper. The paperHuang(2004) considers adaptation using scales of
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finite-dimensional models and treats several examples also covered in the present paper,
with different priors. Huang’s methods of proof are based on the methods developed by
Barron and Cover(1991), who studied adaptation using penalized maximum likelihood
estimators. In this paper we use the testing method originating inSchwartz(1964) and
LeCam(1973), and further developed inGhosal et al.(2000). The paperGhosal et al.
(2003) considers adaptation to finitely many log spline density models and uses similar
ideas as the present paper.

The paper is organized as follows. In Section2 we derive two main results and
several corollaries. In Sections3 and4 we apply these results to two substantial methods
of constructing priors: finite discrete priors onε-nets over given Banach spaces and
smooth finite-dimensional priors. In both cases these are made concrete for the scale of
Hölder spaces, where the finite-dimensional priors are based on log spline models. The
last section contains auxiliary and technical results.

1.1 Notation
Throughout the paper the data are a random sampleX1, . . . , Xn from a probability mea-
sureP0 on a measurable space(X ,A) with densityp0 relative to a given reference mea-
sureµ. In general we writep andP for a density and the corresponding probability
measure. In our main results we use the Hellinger distance, total variation distance, or
L2-distance on the set of densities, denoted byd. For two probability densitiesp andq
relative toµ these are defined as, respectively,

h(p, q) =

√∫
|√p−√q|2 dµ,

‖p− q‖1 =
∫
|p− q| dµ,

‖p− q‖2 =

√∫
|p− q|2 dµ.

If the L2-distance is used, then it is implicitly assumed that all densities involved are
bounded by a common upper bound. Theε-covering numbers of a metric space(P, d),
denoted byN(ε,P, d), are defined as the minimal numbers of balls of radiusε needed to
coverP.

The index set is an arbitrary measurable space(A,A0), and for everyn ∈ N and
everyα ∈ A the setPn,α is a set ofµ-probability densities on(X ,A) equipped with a
σ-field such that the maps(x, p) 7→ p(x) are measurable. Furthermore,Πn,α denotes a
probability measure onPn,α such that(α,B) 7→ Πn,α(B) is a Markov kernel, andλn

is a probability measure onA. This allows to form the priorΠn =
∫

A
Πn,α λn(dα) on

Pn = ∪α∈APn,α and corresponding posterior distirbution (1.2). We define

Bn,α(ε) =
{

p ∈ Pn,α:−P0 log
p

p0
≤ ε2, P0

(
log

p

p0

)2

≤ ε2
}

,

Cn,α(ε) =
{

p ∈ Pn,α: d(p, p0) ≤ ε
}

. (1.3)
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Throughout the paperεn,α are given positive numbers withεn,α → 0 asn →∞. These
should be thought of as the rate attached to the modelPn,α if this is (approximately)
correct.

The notationa . b means thata ≤ Cb for a constantC that is universal or fixed in
the proof. For sequencesan andbn we write an ¿ bn if an/bn → 0 andan À 0 if
an > 0 for everyn andlim inf an > 0. For a measureP and a measurable functionf
we writePf for the integral off relative toP .

2 Main results
The main results of the paper are adaptive versions of Theorem 2.1 ofGhosal et al.
(2000). These authors consider the case of a priorΠn,β on a single modelPn,β such
that, for some positive constantsE,E, F , F ,

log N(Eεn,β ,Pn,β , d) ≤ Enε2
n,β , (2.1)

Πn,β

(
Bn,β(Fεn,β)

) ≥ exp[−Fnε2
n,β ]. (2.2)

The first condition measures the complexity of the modelPn,β , whereas the second con-
dition lower bounds the amount of prior mass close to the true densityp0. Theorem 2.1
of Ghosal et al.(2000) shows that under conditions (2.1)-(2.2) the posterior rate is at least
εn,β . In many (but not all) examples this upper bound on the rate appears to be (almost)
sharp. The theorems in this section show that this rate of convergence remains valid if
the modelPn,β makes part of a family of models{Pn,α: α ∈ A} and the prior mass is
distributed appropriately over the elements of the list. The theorems impose the same
two conditions on the modelsPn,α, or very similar ones, and in addition assume that the
weightsλn have the form: for a constantC > 0, subsetsAn ⊂ A, and a fixed measureλ
onA

λn(dα) =
exp[−Cnε2

n,α] 1An(α)λ(dα)∫
An

exp[−Cnε2
n,α] λ(dα)

, (2.3)

The measureλ may be infinite (e.g. counting measure on a countable set), as long as the
denominator of (2.3) is finite. The functionλn gives larger weight to models with fast
rate of convergence (which we think of as the “smaller” models).

Forβ ∈ A and1 ≤ H < ∞ define

An,≈β,H : =
{
α ∈ An: ε2

n,β ≤ ε2
n,α ≤ Hε2

n,β

}
, (2.4)

An,&β,H : =
{
α ∈ An: ε2

n,α ≤ Hε2
n,β

}
. (2.5)

These are the sets of all model indices that give “approximately the same” rate, or “not
really bigger” rate as the indexβ. The notations≈ β and& β are used even though we
do not require that the index setA is partially ordered. The spirit of this notation is that
“big” indicesα refer to “small” models, with fast rates of convergence, and vice versa.

For positive constantsF , F andH, let

Un(β, H, F , F ):=
{

α ∈ An,≈β,H : Πn,α

(
Bn,α(Fεn,α)

) ≥ exp[−Fnε2
n,α]

}
. (2.6)
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ThusUn(β, H, F , F ) is a “neighbourhood” aroundβ of model indices that satisfy the
prior mass condition (2.2) with α = β. BecauseBn,α(εn,α) is a neighbourhood of the
true densityp0 within Pn,a, we interpret inclusion of an indexα in Un(β,H, F , F ) as
meaning that the modelPn,α is appropriate forp0, in the sense that if just this model
were used the rate would beεn,α if alsoPn,α were of the correct complexity (i.e. satisfy
both (2.1) and (2.2).

Rather than a fixed index of a “true model” we shall employ a sequence of indices
βn ∈ An and we establish the rateεn,βn attached to this sequence. This will allow to
approximate a “regularity index” that is not in the support ofλn, and will also provide
sufficient flexibility to handle applications where the indexα does not refer to a fixed
regularity measure, but for instance to the dimension of the modelPn,α.

Theorem 2.1 Assume that there exist positive constantsC,E,E, F , F, H, T and a se-
quence of indicesβn ∈ An such thatHC ≥ 2(2F 2 + CT + FT ) and

log N
(
Eεn,βn

,∪α∈An,&βn,H
Pn,α, d

)
≤ Enε2

n,βn
. (2.7)

If nε2
n,βn

→∞ and

∫
An

exp[−Cnε2
n,α/4]λ(dα)

λ
(
U(βn, T, F , F )

) = O(1), (2.8)

then the posterior distributions (1.2) relative to the weight functionsλn given by (2.3)
satisfyPn

0 Πn

(
p: d(p, p0) ≥ Mεn,βn |X1, · · · , Xn

) → 0.

The proof of the theorem can be found in Section5.
The conditions (2.7)-(2.8) play a similar role to the conditions (2.1)-(2.2). The model

with index βn should be thought of as a “true” model. Condition (2.7) requires that
the complexity of the union of all models that are “smaller” than the true model is “not
larger” than the complexity of the true model. Condition (2.8) is essentially a lower
bound on the prior mass in a neighbourhood of the true densityp0 within the models that
have the “same” rate as modelβn. Before interpreting these conditions further, we derive
a corollary for the situation thatA is a countable set.

Consider priors of the form (2.3) with λ a measure on a countable setAn with atoms
written asλ{α} = λα. Thus for a positive constantC and arbitrary positive numbersλα,

λn{α} =
λα exp[−Cnε2

n,α]∑
α∈An

λα exp[−Cnε2
n,α]

1An(α). (2.9)

Forβn ∈ An assume that

∑

α∈An

( λα

λβn

)
exp[−Cnε2

n,α/4] = O(1), (2.10)

Πn,βn

(
Bn,βn(Fεn,βn)

) ≥ exp[−Fnε2
n,βn

]. (2.11)
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Corollary 2.2 Assume that there exist positive constantsC, E,E, F , F, H and a se-
quence of indicesβn ∈ An such thatHC ≥ 2(2F 2 + C + F ) and such that (2.7),
(2.10) and (2.11) hold. If nε2

n,βn
→ ∞, then the posterior distributions (1.2) relative to

the weight functionsλn given by (2.9) have rate of convergence at leastεn,βn .

Proof: We setT = 1 and note thatβn ∈ Un(βn, 1, F , F ) by (2.11). Consequently,
λ
(
Un(βn, 1, F , F )

) ≥ λβn
and (2.8) is implied by (2.10). 2

Condition (2.11) is a direct generalization of the prior mass condition (2.2). Thus, the
rateεn,βn in this condition corresponds to the rate we would obtain if we would employ
only the modelPn,βn

with its associated priorΠn,βn
.

Condition (2.10) is trivially satisfied ifλ is a finite measure withλβn
À 0. It is

also satisfied ifλα = 1 for everyα and the set of models is not too large, as the terms
exp[−Cnε2

n,α/4] will typically be very small. Thus this condition seems to be mostly of
a technical character.

The entropy condition (2.7) appears not unnatural. In particular, if the index setA
is ordered and the modelsPn,α are nested with the ratesεn,α “decreasing” inα, then
the condition is implied by the bound (2.1) with β taken equal to the smallest index
α ∈ An,&βn,H . (Because necessarilyH > 1 the latter index may be “smaller” thanβn,
but the difference is typically small.)

In the remainder of this section we shall investigate other situations in which condi-
tion (2.7) can be reduced to bounds of type (2.1) on single models. We shall assume that
(2.1) holds for everyα, where the constantE may depend onα, i.e.

log N(εn,α,Pn,α, d) ≤ Eαnε2
n,α, α ∈ A. (2.12)

A first observation is that we always have the crude bounds

N
(√

Hεn,βn ,
⋃

α&βn

Pn,α, d
)
≤

∑

α&βn

N(
√

Hεn,βn ,Pn,α, d) ≤
∑

α&βn

N(εn,α,Pn,α, d).

Both inequalities in this display are pessimistic. The first inequality ignores the fact
that the models may overlap, and is particularly crude in the nested case. The second
inequality ignores that the ratesεn,α for α & βn may be much smaller thanεn,βn , so
that the entropy atεn,α may be much bigger than the entropy atεn,βn . Nevertheless, the
bounds can be useful.

In particular, ifA is a finite set, then we can bound the sum on the right by its car-
dinality #A times its maximum term. Then from (2.1) we obtain that the logarithm of
each of the terms in the sum is of the ordernε2

n,α ≤ Hnε2
n,βn

, and (2.7) holds. This
yields the following corollary.

Corollary 2.3 Suppose thatA is a finite set and suppose that (2.2) and (2.12) hold. If
nε2

n,β → ∞, then the posterior distributions (1.2) relative to the weight functionsλn

given by (2.9) with An = A have rate of convergence at leastεn,β .
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An infinite set of models cannot be treated as easily, but the argument can be extended
to infinite (possibly uncountable)A by employing priorsλn that are truncated to a finite
setAn. Assume that for a suitable constantH,

max
α∈An:ε2

n,α≤Hε2
n,βn

Eα

ε2
n,α

ε2
n,βn

= O(1), (2.13)

log(#An) . nε2
n,βn

. (2.14)

Theorem 2.4 Assume that there exist positive constantsEα, F , C,H and a sequence
βn of indices such thatHC ≥ 2(2F 2 + C + F ) and such that (2.10), (2.11), (2.12),
(2.13) and (2.14) hold. LetAn ⊂ A be such thatβn ∈ An for every sufficiently largen.
If nε2

n,βn
→∞, then the posterior distributions (1.2) relative to the weight functionsλn

given by (2.9) have rate of convergence at leastεn,βn .

Proof: LetPn,An,&βn
be the union of the modelsPn,α with α ∈ An andα & βn, where

the latter inequalityα & βn refers to the indices withε2
n,α ≤ Hε2

n,βn
. Then, by the

argument given previously,

N
(√

Hεn,βn ,Pn,An,&βn
, d

) ≤ #An max
α∈An:α&βn

N(εn,α,Pn,α, d).

Hence by (2.12) the logarithm of the left side is bounded above bylog(#An)+Ennε2
n,βn

,
for the numbersEn defined as the left side of (2.13). By the assumptions (2.13) and
(2.14) this is bounded above byEnε2

n,βn
for some constantE. The theorem is a corol-

lary of Corollary2.2. 2

Remark 2.5 As can be seen from the proofs, the global entropy conditions (2.7) and
(2.12) can be replaced by the weakerlocal entropyconditions

sup
ε≥Eεn,βn

log N
(ε

3
,∪α&βn

Cn,α(2ε), d
)
≤ Enε2

n,βn
,

sup
ε≥εn,α

log N
(ε

5
, Cn,α(2ε), d

)
≤ Eαnε2

n,α. (2.15)

These strengthenings are especially of interest when the models are of finite dimension,
as in Section4.

Suppose now that there is a fixed indexβ ∈ A that gives the “true” model", and the
rateεn,β is to be achieved. Theorem2.4 can be used withβn = β providedβ ∈ An

eventually. IfA is countable, then the latter is guaranteed as soon asAn ↗ A. For
uncountableA, the latter cannot be achieved for everyβ ∈ A with finite setsAn, but we
can still establish the rateεn,β using the preceding theorem, by using a sequenceβn ∈ An

that gives essentially the same rate. This sequenceβn must satisfyεn,βn = O(εn,β) and
verify the prior mass lower bound (2.11). In other wordsβn ∈ Un(β, T, F , F ) for some
T andF , F , whenceUn(β, T, F , F ) 6= ∅ eventually.
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Corollary 2.6 Assume (2.12). Let β ∈ A be such thatnε2
n,β → ∞. Let C, F , F, H, T

be positive constants withHTC ≥ 2(2F 2 + C + F ). LetAn ⊂ A be finite subsets such
that log(#An) . nε2

n,β , Un(β, T, F , F ) 6= ∅ for all sufficiently largen, and

∑

α∈An

max
α′∈An,≈β,T

( λα

λα′

)
exp[−Cnε2

n,α/4] = O(1). (2.16)

If (2.13) with β substituted forβn holds, then the posterior distributions (1.2) relative to
the weight functionsλn given by (2.9) have rate of convergence at leastεn,β .

Proof: By assumption, there existsβn ∈ Un(β, T, F , F ), which implies thatβn ∈ An

and that (2.11) holds, and also thatεn,βn
andεn,β are of the same order. The latter and

the assumptions show thatnε2
n,βn

→ ∞ and log(#An) . nε2
n,βn

for n big enough.
The condition (2.16) implies (2.10). Finally, if (2.13) holds with respect toβ for a given
constantH, then (2.13) holds with respect toβn for the constantHT . Hence all con-
ditions of Theorem2.4 are fulfilled, so that this theorem gives the rate of convergence
εn,βn ≤

√
Tεn,β . 2

Theorem2.4 and the preceding corollary add to the natural assumptions (2.11) and
(2.12) on the single models, the conditions (2.10), (2.13) and (2.14). These conditions
are not strong. Moreover, in the remainder of this section we show that they can often be
arranged by choosing the setsAn small.

Of course, the setsAn must also be chosen rich enough so that every possible indexα
is (asymptotically) represented by an indexβn ∈ An that satisfies (2.11). For a countable
setA of target valuesα we may chooseAn ↑ A at a slow rate. More generally, we might
construct the setsAn by a “discretization” of the setA. This discretization must be
rich enough to contain (eventually) for everyβ ∈ A an indexβn with rateεn,βn that
is of the same order as the “target rate”εn,β (and for which (2.11) holds). Because
εn,α ≤

√
H εn,α′ if and only if log εn,α ≤ log εn,α′ + 1

2 log H, this is the case as soon
as the set of logarithmic rates{log εn,α: α ∈ An} forms a grid of fixed meshwidth over
(parts of)A (eventually). The following three examples give (theoretical) constructions
of such grids that satisfy (2.10), (2.13) and (2.14).

Example 2.7 Let A ⊂ (0,∞) and suppose thatnε2
n,α = ng(α)cn for some strictly

decreasingg: [0,∞) → [0,∞). If the range ofg is contained in a finite interval[g, g],
then the set{log εn,α, α ∈ A} of all possible log rates is the interval1

2 log(cn/n) +
1
2 log n[g, g], which has length12 log n(g − g). Therefore, a gridAn with of the order
log n points can suitably representA. In terms of the indicesα, for a diffeomorphismg
it suffices that the grid includes an index in each interval of length of the order1/ log n.

This applies for instance to rates of the formεn,α = n−α/(2α+d)(log n)k with α
bounded above (withg(α) = 1/(2α + d)), which are the rates attached to regularity
classes with an additional logarithmic factor.

Example 2.8 Suppose thatA is countable and for eachβ ∈ A we can partition the set
{α ∈ A: εn,α ≤

√
Hεn,β} into setsAβ andA>β , where the constantsEα are uniformly
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bounded forα ∈ Aβ , andεn,α/εn,β → 0 asn → ∞, for everyα ∈ A>β . Then we
can always construct setsAn with An ↑ A that satisfy (2.13) for every fixed sequence
βn = β, as follows.

We order the setA in a sequence and defineηn,m as the maximum of the numbers
Eαε2

n,α/ε2
n,β for α and β ranging over the firstm elements ofA and with α > β.

Becauseεn,α/εn,β → 0 for α > β, the sequenceηn,m converges to zero asn → ∞ for
every fixedm, and hence there existsmn → ∞ with ηn,mn

→ 0 also. We may now set
An equal to the firstmn elements ofA.

Example 2.9 Let A ⊂ (0,∞) and suppose thatnε2
n,α = ng(α) for some strictly decreas-

ing, continuous functiong: [0,∞) → [0,∞). Suppose that, for all0 < a < b < ∞,

sup
α∈[a,b]

Eα =:E(a, b) < ∞ (2.17)

Then there exist subsetsAn ⊂ A such that, withλα = 1, (2.10), (2.13) and (2.14) are
satisfied and the setAn,≈β,H is nonempty, providedn is big enough, for any fixedβ > 0.

One construction to prove this claim is as follows. For natural numbersm ≥ 2 define

ηn,m: = sup
α∈[m,m+1]

Eαng(α)−g(m−1).

Sinceg is strictly decreasing and (2.17) holds,ηn,m → 0 asn → ∞, for every fixedm,
and hence alsomax2≤m≤k ηn,m → 0 asn → ∞, for every fixedk. This implies that
there existsmn ↗ ∞ such thatmax2≤m≤mn ηn,m ≤ 1, for every sufficiently largen.
Consequently, if2 ≤ m < mn is a natural number, then

sup
α∈[m,mn]

Eαng(α)−g(m−1) ≤ ηn,m ∨ ηn,m+1 ∨ · · · ∨ ηn,mn−1 ≤ 1. (2.18)

Chooseαn ↗ ∞ slowly enough thatng(αn) À loglog n, and definẽαn: = αn ∧ mn.
Let An ⊂ (0, α̃n] be such that{log εn,α: α ∈ An} is a 1

2 log H-net in the interval
1
2 log(1/n) + 1

2 log n
[
g(α̃n), g(0)

]
. Sinceα̃n ↗ ∞, this interval containslog εn,β =

1
2 log(1/n)+ 1

2g(β) log n, eventually. Therefore, for sufficiently largen, the setAn,≈β,H

is nonempty. Furthermore, (2.10) and (2.14) are satisfied, because#An . log n, while
minα∈An nε2

n,α ≥ ng(αn) À loglog n.
Defineβ

n
by ε2

n,β
n

= Hε2
n,β , or equivalently byg(β

n
) = g(β) + log H/ log n. The

continuity of g implies thatβ
n
↗ β. Let m(β) = min{m ∈ N: m − 1 ≥ β}. Since

β > 0, m(β) ≥ 2. BecauseAn ⊂ (0, mn] andεn,α ≤
√

Hεn,β if and only if α ≥ β
n
,

max
α∈An:εn,α≤

√
Hεn,β

Eα

ε2
n,α

ε2
n,β

≤ sup
α∈[β

n
,mn]

Eα

ε2
n,α

ε2
n,β

= sup
α∈[β

n
,β]

Eα

ε2
n,α

ε2
n,β

∨ sup
α∈[β,m(β)]

Eα

ε2
n,α

ε2
n,β

∨ sup
α∈[m(β),mn]

Eα

ε2
n,α

ε2
n,β

.

Sinceβ
n
↑ β the constantsEα in the first supremum on the right are bounded byE(a, β)

for somea < β and hence this term is bounded byE(a, β)H. The second supremum is
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bounded byE
(
β,m(β)

)
. Finally, because of (2.18), the third supremum can be bounded

by
sup

α∈[m(β),mn]

Eαng(α)−g(β) ≤ sup
α∈[m(β),mn]

Eαng(α)−g(m(β)−1) ≤ 1.

3 Priors based on nets
Given a metricd andε > 0 say that a set of functionsu1, . . . , uN :X → R on a measur-
able space(X ,A) is a set ofε-upper bracketsfor a given setP of densities if for every
p ∈ P there exist a functionui with bothp ≤ ui andd(ui, p) < ε. Theε-upper brack-
eting numberN](ε,P, d) is defined as the minimal number of functions in such a set of
ε-brackets. These upper bracketing numbers are smaller than the more usual bracketing
numbers employed in empirical process theory (e.g.van der Vaart and Wellner(1996),
Definition 2.1.6), but still bigger than the covering numbersN(ε/2,P, d). However, in
many situations the three types of complexity measures are of the same order inε as
ε ↘ 0.

The optimal rate of convergenceεn for a modelP relative to the Hellinger distance
h can typically be related to its entropy, through the equation

log N](εn,P, h) ³ nε2
n.

SeeBirgé (1986). In Ghosal et al.(2000) posterior distributions relative to priors con-
structed on minimal brackets were shown to contract at this rate. Here we extend these
results to adaptation to multiple models.

For eachα ∈ A let Qn,α be a set of nonnegative, integrable functions with finite
upper bracketing numbers relative to the Hellinger distanceh (not necessarily probability
densities). In agreement with the preceding display, let target ratesεn,α satisfy, for every
α ∈ A,

log N](εn,α,Qn,α, h) . nε2
n,α. (3.1)

Next for eachα choose a setUn,α = {u1, . . . , uN} of εn,α-upper brackets overQn,α

and letPn,α be the set of re-normalized functions

{ uj∫
uj dµ

: j = 1, . . . , N
}

=
{ u∫

u dµ
: u ∈ Un,α

}
. (3.2)

Let the priorΠn,α be the uniform probability measure onPn,α.
In particular, we may use a minimal set ofεn,α-upper brackets overQn,α. In this

section we show that the resulting priorΠn,α is then appropriate if the true density is
contained in the union∪M>0(MQn,α) of the setsQn,α. The base collectionQn,α could
for instance be the unit ball in a regularity space, and then it suffices thatp0 is contained
in this space. The set of brackets need not be minimal, but we assume that its cardinality
is bounded byexp(Eαnε2

n,α) for some constantsEα, in agreement with (3.1), and that
every bracket intersects the setQn,α.

Theorem 3.1 Construct the priorsΠn,α as described, using at mostexp(Eαnε2
n,α) up-

per brackets, for some constantsEα. Assume that there existβn andM0 ≥ 1 such that
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p0 ∈ M0Qn,βn for every sufficiently largen. LetAn ⊂ A be such thatβn ∈ An eventu-
ally, and such that (2.10), (2.13) and (2.14) hold, for everyH > 0 and someC > 0. Let
nε2

n,βn
→ ∞. Then the posterior distributions (1.2) relative to the weight functionsλn

given by (2.9) have rate of convergence at leastεn,βn relative to the Hellinger distance.

Proof: By construction#Pn,α ≤ exp(Eαnε2
n,α), implying that (2.12) with d equal to

the Hellinger distance is trivially satisfied. Since (2.13) holds for everyH, it also holds
for someH with HC ≥ 2(2F 2 + C + F ), for any constantsF , F,C. If we can also
show that (2.11) holds, then the theorem follows from Theorem2.4.

By assumption, there exist constantsM0 > 0 such thatp0/M0 ∈ Qn,βn for every
sufficiently largen. So, there existsun ∈ Un,βn such thatp0/M0 ≤ un and

∥∥√
p0/M0−√

un

∥∥
2

= h(p0/M0, un) ≤ εn,βn . It follows that

1 = ‖√p0‖2 ≤ ‖
√

M0un‖2 ≤ ‖
√

M0un −√p0‖2 + ‖√p0‖2 ≤
√

M0εn,βn
+ 1.

By construction the functionpn = un/
∫

undµ belongs toPn,βn . Furthermore, by the
triangle inequality,

h(p0, pn) ≤ h(p0,M0un) + h(M0un, pn)

= h(p0,M0un) +
∣∣‖

√
M0un‖2 − 1

∣∣ ≤ 2
√

M0εn,βn .

The inequality in the second line follows from the fact that‖r− r/‖r‖‖ =
∣∣1− ‖r‖∣∣ for

every norm and functionr, applied withr =
√

M0un. We also have

p0

pn
≤ M0

∫
un dµ = ‖

√
M0un‖22 . 1 + M0ε

2
n,βn

,

which is uniformly bounded by assumption. In view of Lemma5.3, it follows thatpn ∈
Bn,βn(D

√
M0εn,βn) for a sufficiently large constantD, whence

Πn,βn

(
Bn,βn(D

√
M0εn,βn)

)≥ Πn,βn({pn}) ≥ (1/#Pn,βn) ≥ exp[−Eβnnε2
n,βn

].

The assumption (2.13) implies thatEβn is bounded above. It follows that the prior proba-
bility Πn,βn

(
Bn,βn(Fεn,βn)

)
is bounded below byexp[−Fnε2

n,βn
], for constants,F , F .

This completes the verification of (2.11). 2

Because bounds on bracketing numbers have been established for many situations,
and typically give sharp rates of convergence, the preceding theorem can be seen as con-
firmation that in many situations there exist priors that give Bayesian adaptation across
a scale of models of interest. That the base collectionsQn,α need not be collections
of probability densities is helpful, because in this form the theorem applies to any true
densityp0 contained in a multiple of the base model. We exploit this in Section3.1 by
choosingQn,α equal to a unit ball in some regularity space, in which case the true den-
sity need only be “α-regular”, without having to satisfy quantitative regularity bounds.
(Of course, ifQn,α is a collection of probability densities, thenp0 ∈ ∪M>0(MQn,α) if
and only ifp0 ∈ Qn,α.)
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A disadvantage of this otherwise attractive construction is that the resulting models
Pn,α need not be nested, even if the base collectionsQn,α may be. For instance, scales
of regularity spaces are nested, and it is natural to build this into the priors. Technically,
this would permit to use condition (2.7) of Theorem2.1 instead of (2.13) and (2.14),
which result from truncating the weight functionλn. Assume thatA is totally ordered
and letβ

n
be the minimum of the setAn,&βn,H = {α ∈ An: ε2

n,α ≤ Hε2
n,βn

}, which
we assume to exist.

Lemma 3.2 If A is a totally ordered set andQn,α are sets of probability densities with
Qn,α ⊂ Qn,β for α ≥ β, then conditions (2.13) and (2.14) in Theorem3.1 may be
replaced by the condition thatEβ

n
= O(1).

Proof: We employ Corollary2.2 rather than Theorem2.4. It suffices to verify (2.7), the
other part of the proof being the same as before. (Note thatp0 ∈ M0Qn,βn

⊂ M0Qn,β
n
.)

If p ∈ Pn,α for someα ≥ β
n
, thenp is a renormalized upper bracketu ∈ Un,α.

By construction ofUn,α there existsq ∈ Qn,α with h(u, q) ≤ εn,α. Arguing as in the
proof of Theorem3.1, using the assumption thatq is a probability density, we can see
that

∫
u dµ differs from 1 by at mostεn,α, and consequentlyh(p, u) ≤ εn,α. Because

theQn,α are nested, the functionq is also contained inQn,β
n
, so there exists an upper

bracketv ∈ Un,β
n

such thath(q, v) ≤ εn,β
n

andh(q, v′) ≤ εn,β
n
, wherev′ ∈ Pn,β

n
is

a the renormalizedv. Combination shows thath(p, v′) ≤ h(p, u) + h(u, q) + h(q, v) +
h(v, v′) ≤ 4εn,β

n
≤ 4

√
Hεn,βn , implying thath(p,Pn,β

n
) . εn,βn .

We conclude that the union of the setsPn,α for α ≥ β
n

is at a distance of a multiple
of εn,βn from Pn,β

n
. Condition (2.7) therefore follows from (3.1) and the assumption

thatEβ
n

= O(1). 2

Remark 3.3 The setQn,α in the preceding lemma can be the set of all probability den-
sities in a multiple of the unit ball in a regularity space, but not all densities (because
of the restriction to probability densities) and not all probability densities in the whole
regularity space (because (3.1) would fail). It would be of interest to extend the theorem
to modelsQn,α,M indexed by a pair(α,M), whereα can refer to regularity and give a
nested scale of models andM can refer to a “multiple”. For instanceQn,α,M = MQn,α.
This requires a result intermediate between Theorems2.1and2.4. We omit a discussion.

3.1 Banach spaces
Consider for eachα > 0 a Banach spaceBα(X ) of measurable functionsf :X → R
whose unit ballBα

1 (X ) processes finite upper bracketing numbers relative to theL2(µ)-
norm, denoted by‖ · ‖2. Let the constantsEα and functionsHα: (0,∞) → (0,∞)
satisfy

log N]

(
ε,Bα

1 (X ), ‖ · ‖2
) ≤ EαHα(ε). (3.3)

For α ∈ (0,∞) defineQα as the set of all nonnegative functionsp:X → R such that
the root

√
p is contained in the unit ballBα

1 (X ). Because the Hellinger distance onQα
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corresponds to theL2(µ)-distance on the roots of the elements ofQα, the inequality (3.3)
implies (3.1) for the ratesεn,α satisfying

Hα(εn,α) = nε2
n,α. (3.4)

The root
√

p0 of the true density belongs to the Banach spaceBβ(X ), for a β ∈ A,
if and only if p0 ∈ ∪M>0(MQβ). Therefore, the priors chosen as in Theorem3.1
yield the rate of convergenceεn,βn for anyβn such that

√
p0 ∈ Bβn(X ) andβn ∈ An

eventually, under growth conditions onAn (e.g. (2.10), (2.13) and (2.14)). Note that the
prior construction does not use any information about the norm of

√
p0 in Bβn(X ); it

suffices that the square root ofp0 be contained inBβn(X ).
Assuming that the root

√
p0 of the true density is regular, rather thanp0 itself, is

convenient in the preceding construction, because it allows to relate the (complicated)
Hellinger distance to theL2(µ)-norm. However, it appears to be not merely a trick.
For instance, if the scale of Banach spacesBα(X ) corresponds to smoothness, thenα-
regularity ofp0 and its square root

√
p0 are equivalent ifp0 is bounded away from zero,

but not if p0 can approach zero. It is intuitively clear that it is hard to estimatep0 in
regions where it is small, as few observations will land in such a region. This indeed can
be shown rigorously, and removing the root from the regularity assumption, i.e. assuming
that p0 ∈ Bα(X ) instead of

√
p0 ∈ Bα(X ) will decrease the rate of the convergence.

(Cf. Birgé (1986).) In the following we shall consider, more generally, the situation that
p
1/s
0 ∈ Bα(X ) for somes ∈ [1, 2], and consider adaptation to boths andα.

For everyα ands ∈ [1, 2] letQα,s be the set of all nonnegative functionsp:X → R
such thatp1/s ∈ Bα

1 (X ). The optimal rate of convergence in this case changes to the
solutionεn,α,s of the equation

Hα(ε2/s
n,α,s) = nε2

n,α,s. (3.5)

The case that
√

p0 is regular corresponds tos = 2, and in that case this equation reduces
to (3.4), with εn,α,2 = εn,α. The claim follows from the following lemma.

Lemma 3.4 A set{v1, . . . , vN} of upperε2/s-brackets overBα
1 (X ) for the‖ · ‖2-norm

yields a set of upperε-brackets{vs
1, . . . , v

s
N} overQα,s for the Hellinger distance. Con-

sequently
log N](ε,Qα,s, h) ≤ log N]

(
ε2/s,Bα

1 (X ), ‖ · ‖2
)
. (3.6)

Proof: The functionv is an upperε2/s-bracket forp1/s with respect to the‖ · ‖2-norm if
p1/s ≤ v and‖v − p1/s‖2 ≤ ε. Thenp ≤ vs and, by the inequality|at − bt| ≤ |a− b|t
for 0 ≤ t ≤ 1,

h2(vs, p) = ‖vs/2 −√p‖22 ≤
∫
|v − p1/s|s dµ ≤

∫
|v − p1/s|2 dµs/2 ≤ ε2.

The second last inequality follows from Hölder’s inequality. Both claims of the lemma
follow. 2
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It follows that the rateεn,α,s for the model with index(α, s), as determined by in-
equality (3.1), is the solution of the equation (3.5). Furthermore, given a setVn,α,s of

upperε2/s
n,α,s-brackets overBα

1 (X ) with respect to the‖ · ‖2-distance, the functionsvs for
v ∈ Vn,α,s areεn,α,s-upper brackets overQα,s and the corresponding priorsΠn,α,s of
Theorem3.1are the uniform distributions on the sets of functions

Pn,α,s: =
{ vs

∫
vs dµ

: v ∈ Vn,α,s

}
. (3.7)

We may consider adaptation to the two indicesα ands separately, for a fixed value of
the other index, or to the pair of indices jointly.

If α ∈ (0,∞) specifies a regularity level, then the unit balls of the Banach spaces are
typically nested:Bβ

1 (X ) ⊂ Bα
1 (X ) for α ≤ β. We shall assume this in the remainder of

this section. For the power parameters this may not be the case. However, the setsQα,s

for different values ofs are also very related. The following lemma establishes a bound
on the bracketing entropy of a union of such spaces.

Lemma 3.5 Assume that the uniform norm is bounded by the norm ofBα
1 (X ). Then, for

anyα, and1 ≤ s′ < s′′ ≤ 2,

log N]

(
ε + 2

√
s′′ − s′,∪s′≤s<s′′Qα,s, h

) ≤ log N]

(
ε,Qα,s′ , h

)
.

More precisely, a set ofε-brackets overQα,s′ is a set ofε + 2
√

s′′ − s′-brackets over
∪s′≤s<s′′Qα,s.

Proof: If p ∈ Qα,s for s′ ≤ s < s′′, thenp1/s ∈ Bα
1 (X ) andps′/s ∈ Qα,s′ . In view of

the assumption on the norms, the first implies that‖p1/s‖∞ ≤ 1, and hence it is also true
that‖p‖∞ ≤ 1. Furthermore,

p

ps′/s
= (p1/s)s−s′ ≤ ‖p1/s‖s−s′

∞ ≤ 1,

h2(p, ps′/s) ≤ ‖p− ps′/s‖∞ ≤ max
u∈[0,1]

(us′/s − u) ≤ 4(s− s′).

In the second last inequality we use thatp takes its values in the interval[0, 1]; the last
equality follows by an explicit calculation, where we use becauses′ ≤ s ∈ [1, 2].

Suppose thatu1, . . . , uN areε-upper brackets overQα,s′ . If p ∈ Qα,s, then by the
preceding paragraphq = ps′/s satisfiesp ≤ q, h(p, q) ≤ 2

√
s− s′ and q ∈ Qα,s′ ,

whence there exists an upper bracketui with q ≤ ui andh(q, ui) ≤ ε. Together this
implies thatu1, . . . , uN areε + 2

√
s− s′-upper brackets overQα,s. 2

Suppose thatp1/t
0 ∈ Bβ(X ) for some unknownβ ∈ A ⊂ (0,∞) and t ∈ [1, 2].

Given discretizationsAn = {αn
1 , αn

2 , . . . , αn
Kn
} of A andSn = {sn

1 , sn
2 , . . . , sn

Ln
} of

the interval[1, 2], we construct a weight functionλn

λn{α, s} =
exp[−Cnε2

n,α,s]∑
α∈An,s∈Sn

exp[−Cnε2
n,α,s]

1An×Sn(α, s). (3.8)
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This is the weight function (2.9) with (α, s) playing the role ofα andλα,s = 1. For
every(α, s) ∈ An × Sn we employ the uniform priorΠn,α,s onPn,α,s given by (3.7).

Assume without loss of generality thatAn andSn are ordered, letαn
0 andαn

Kn+1

decrease to the infimum and supremum ofA, sn
0 = 1, sn

Ln+1 = 2, and assume for every
j = 0, . . . , Kn andi = 0, . . . , Ln,

sn
i+1 − sn

i ≤ min
α∈An

ε2
n,α,sn

i
, (3.9)

εn,αn
j ,sn

i
. εn,αn

j+1,sn
i+1

, (3.10)

#An ×#Sn . min
α∈An,s∈Sn

exp[Cnε2
n,α,s/36], (3.11)

max
α∈An,s∈Sn:ε2

n,α,s≤Hε2
n,βn,tn

Eα

ε2
n,α,s

ε2
n,βn,tn

= O(1) ∀H > 0. (3.12)

In Example2.9 grids satisfying the last three conditions are shown to exist in the case
that the rates of convergence are of the formnε2

n,α,s = ng(α,s) for a function that is
strictly decreasing in its arguments, as is the case for the classical regularity spaces, and
the constantsEα are bounded forα in bounded intervals. By extending this construction
we can also ensure the first condition. In general, the first two conditions require that the
grid An × Sn is rich enough, whereas the third is a (mild) upper bound on the size of
An × Sn.

Corollary 3.6 Assume that the unit ballsBα
1 (X ) satisfy (3.3), are nested and consist

of functions that are uniformly bounded by 1. Suppose thatp
1/t
0 ∈ Bβ(X ) for some

β ∈ A ⊂ (0,∞) andt ∈ [1, 2]. LetΠn,α,s be as indicated. LetAn ⊂ A andSn ⊂ [1, 2]
satisfy (3.9), (3.10), (3.11) and (3.12). Then the posterior distributions (1.2) relative to
the weight functionsλn given by (3.8) have rate of convergence at leastεn,β,t relative to
the Hellinger distance.

Proof: We apply Theorem3.1with (α, s) ∈ An × Sn in the place ofα ∈ An, and with
Qn,α of that theorem taken equal to

Qn,α,sn
i

= ∪sn
i ≤s<sn

i+1
Qα,s.

By construction the priorΠn,α,sn
i

is uniform on the rescaledεn,α,sn
i
-upper brackets over

Qα,sn
i
, which are3εn,α,sn

i
-upper brackets overQn,α,sn

i
by Lemma3.5and (3.9). There-

fore, the priors are as in Theorem3.1, with εn,α taken equal to three times the present
εn,αn

j ,sn
i
. (To be precise, by multiplication of the rate by a constant has the effect of

divided the constantC in the prior weights (2.9) by a the square of the constant.)
By assumptionp0 ∈ M0Qβ,t for some constantM0, whencep0 ∈ M0Q̄n,βn,tn for

βn andtn the downward projections ofβ andt onto the gridsAn andSn, respectively.
Condition (2.13) is repeated in condition (3.12). Conditions (2.10) and (2.14) are implied
by (3.11). Thus Theorem3.1yields the rate of convergenceεn,βn,tn . By condition (3.10)
this rate is equivalent to the rateεn,β,t. 2



16 Lember — van der Vaart

Remark 3.7 In the preceding corollary we obtain the rateεn,β,t under the condition that

p
1/t
0 ∈ Bβ

1 (X ). Because this rate is faster for biggerβ, we might want to apply the result
for the “true” regularity level of a given densityp0 given by

β = sup
{
α ∈ A: p0

1/t ∈ Bα(X )
}
.

If this supremum is attained, then indeed we can apply the corollary withβ and obtain
the rateεn,β,t. If the supremum is not attained, then we can apply the corollary or
Theorem3.1 with an approximating sequenceβn. For βn < β we are quaranteed that
p0 ∈ MnQβn,t for Mn = ‖p1/t

0 ‖βn the norm ofp1/t
0 in Bβn(X ). If ‖p0

1/t‖α = O(1) as
α ↑ β, thenMn remains bounded asβn ↑ β and hence the rate isεn,βn,t by Theorem3.1,

which will be of the same order asεn,β,t if βn ↑ β fast enough, even ifp1/t
0 6∈ Bβ(X ).

However, it may be thatMn = ‖p1/t
0 ‖βn increases indefinitely. By closer inspection the

the rate can then be seen to be at leastM
t/2
n εn,βn,t, short of the rateεn,β,t.

Remark 3.8 NestednessBβ
1 (X ) ⊂ Bα

1 (X ) for α ≤ β of the unit balls can also be used
within the context of Lemma3.2, by defining the setQα,t as the set of all probability
densitiesp such thatp1/t is contained in a fixed multiple of the unit ballBα(X ), say
MBα

1 (X ). Then ifp1/t
0 ∈ MBβn

1 (X ), for some fixedt, we obtain the rate of convergence
εn,βn,t as soon asAn ⊂ (0,∞) is chosen to satisfy (2.10) and the constantsEα in (3.1)
are bounded in bounded intervals. For instance, we may chooseλα to be a finite measure
onAn = Q+, in which caseεn,βn,t can typically represent any rateεn,β,t for β > 0 with
arbitrary precision.

3.1.1 Hölder spaces

A typical example of a scale of Banach spaces are the Hölder spacesCα[0, 1]d of α-
smooth functionsf : [0, 1]d → R. LetX = [0, 1]d equipped with the Lebesgue measure
µ. Forα > 0 let α be the largest integer strictly smaller thanα. The unit ballCα

1 [0, 1]d

of the spaceCα[0, 1]d consists of the functionsf ∈ Cα[0, 1]d with partial derivatives of
orders0, 1, . . . , α bounded by 1 and the partial derivatives of orderα Lipschitz of order
α− α with Lipschitz constant 1.

FromKolmogorov and Tihomirov(1961) it is known that the entropy of this unit ball
relative to the uniform norm satisfies

log N
(
ε, Cα

1 [0, 1]d, ‖ · ‖∞
) ≤ Eαε−d/α. (3.13)

A ball of radiusε around a functionf for the uniform norm yields a bracket[f−ε, f +ε]
of size2ε for the uniform norm, and a-fortiori for theL2(µ)-norm. Hence

log N]

(
ε, Cα

1 [0, 1]d, ‖ · ‖2
) ≤ N

(
ε/2, Cα

1 [0, 1]d, ‖ · ‖∞
) ≤ Eα(ε/2)−d/α.

Thus (3.1) holds withEα the presentEα2d/α andHα(ε) = ε−d/α. For s ∈ [1, 2] and
α ∈ (0,∞), the solution to the equality (3.5) is given by

εn,α,s = n−αs/(2αs+2d). (3.14)
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If
√

p0 ∈ Cα[0, 1]d (corresponding tos = 2), the rate isn−α/(2α+d), which is well
known to be optimal in the minimax sense. If it is only known thatp0 ∈ Cα[0, 1]d

(corresponding tos = 1), then the rate is the slowern−α/(2α+2d), which again is optimal,
as shown byBirgé (1986). The other cases give intermediate rates.

There are many ways of constructing anε-net for the uniform norm overCα
1 [0, 1]d,

some of which are only of theoretical interest, but others being constructive. Splines of
an appropriate degree and dimension are one example. Given anε

2/s
n,α,s-netVn,α,s, we

let Πn,α,s be the uniform prior on the functions (3.7), for any(α, s). Condition (3.1) is
satisfied forQn,α,s the set of all densitiesp such thatp1/s ∈ Cα[0, 1]d. To adapt toα or
s it suffices to construct suitable weight functionsλn, i.e. setsAn andSn of regularity
indices and powers, and a measureλ.

Example 3.9 Within the context of Corollary3.6 construct the setsAn andSn as uni-
form grids of sizesKn andLn over intervals[αn, αn] and[1, 2]. The fastest rateεn,α,s

for (α, s) ∈ An × Sn is εn,αn,2 = n−αn/(2αn+d). Therefore, condition (3.9) is satisfied
as soon asLn ≥ nαn/(2αn+d). The numbersεn,α,s given by (3.14) satisfy

log
εn,αn

j ,sn
i

εn,αn
j+1,sn

i+1

=
[ dsn

i (αn
j+1 − αn

j )/2
(sn

i αn
j+1 + d)(sn

i αn
j + d)

+
dαn

j+1(s
n
i+1 − sn

i )/2
(sn

i αn
j+1 + 1)(sn

i+1α
n
j+1 + 1)

]
log n.

Therefore, condition (3.10) is satisfied as soon as the meshwidths of the two grids are of
orderO(1/ log n), i.e. as soon asKn ∨ Ln & log n. These two restrictions on the sizes
Kn andLn of the number of grid points are easily compatible with (3.11). The constants
Eα can be shown to be bounded forα ranging over compact intervals, by inspection of
the proofs inKolmogorov and Tihomirov(1961) or van der Vaart and Wellner(1996).
Because the present constants do not depend ons, condition (2.17) is satisfied, and hence
the construction of Example2.9can be used to also satisfy (3.12).

4 Finite-dimensional models
LeCam(1973), Le Cam(1986) calls a modelfinite-dimensionalif its local entropy func-
tion is bounded. In this section we consider a list of modelsPn,J,M indexed by a dimen-
sion parameterJ ∈ N and a second parameterM ∈ M, such that, for every(J,M) and
constantsAM , for everyε > 0,

log N
(ε

5
, Cn,J,M (2ε), d

)
≤ AMJ. (4.1)

Here the setsCn,(J,M)(ε) are the ones given in (1.3), for α = (J,M). Thus the models
Pn,J,M areJ-dimensional in the sense of Le Cam. Such finite-dimensional models may
arise from approximation of a collection of target densities through a set of base functions
(e.g. trigonometric functions, splines or wavelets), where a model of dimensionJ is
generated by a selection ofJ base functions. The indexM may refer to a restriction on
the coefficients used with this selection, but also to multiple selections of dimensionJ .
In this section we obtain a rate theorem for this general situation.
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In this context an abstract definition of “regularity” of orderβ of a true densityp0,
given the list of modelsPn,J,M , could be that, for someM0 ∈M,

d(p0,Pn,J,M0) .
( 1

J

)β

.

If p0 is β-regular in this sense, then one might hope that a suitable estimation scheme
using the modelPn,J,M0 would lead to a bias of orderJ−β , and to a variance term of
orderJ/n. The best dimensionJ would balance the square bias and the variance, leading
to an optimal dimensionJ satisfyingJ−2β ∼ J/n. This is solved byJ ∼ n1/(2β+1) and
would lead to an “optimal” rate of convergencen−β/(2β+1).

For super-regular densities satisfyingd(p0,Pn,J,M0) . exp(−Jβ), or evenp0 ∈
Pn,J0,M0 for someJ0 andM0, a similar argument would lead to rates closer to1/

√
n.

We shall show in this section that an adaptive Bayesian scheme, using fairly simple
priors, can yield these optimal rates up to a logarithmic factor. This logarithmic factor
can be avoided by using other schemes (e.g. based on a discretization of the coefficient
space as in the preceding section, or a smooth prior on restricted coefficient space as in
Huang(2004)), but we believe it cannot be removed from the simple construction used
in this section. The advantage of the present priors is that they give adaptation across a
wide range of regularity scales, and are easier to implement.

Le Cam’s definition of dimension is combinatorial rather than geometric. A “geomet-
rically J-dimensional” model can be described smoothly by aJ-dimensional parameter
θ ∈ RJ . In that case it is natural to construct a prior onPn,J,M by putting a prior on
the parameterθ. If this prior is chosen to be smooth onRJ , and a ball ofd-radiusε in
Pn,J,M corresponds to a ball of radius̄BJ C̄Mε on the coefficientsθ ∈ RJ (for some
constantsB̄J C̄M ), then we may expect that, for some constantDM ,

Πn,J,M

(
Bn,J,M (ε)

) ≥ (
BJCMε

)J
, if ε > DM d(p0,Pn,J,M ). (4.2)

Here the constantsBJ andCM incorporate the constants̄BJ andC̄M , the prior density on
RJ , and the volume of aJ-dimensional ball. A restriction of the typeε & d(p0,Pn,J,M )
is necessary, because by their definition the setsBn,J,M (ε) are centered aroundp0, and
this may be at a positive distance toPn,J,M . If ε > 2d(p0,Pn,J,M ), then a ball of
radiusε/2 around a projection ofp0 intoPn,J,M is contained inCn,J,M (ε). The general
constantDM in (4.2) instead of the universal constant2 is meant to make up for the
difference between the neighbourhoodsBn,J,M (ε) andCn,J,M (ε).

For a large constantA, an arbitrary positive constantC and finite setsJn ⊂ N and
Mn ⊂M, define

εn,J,M =

√
J log n

n
AMA,

λn{J,M} =
exp[−Cnε2

n,J,M ]∑
(J,M)∈Jn×Mn

exp[−Cnε2
n,J,M ]

1Jn×Mn(J,M).

The weightsλn{J,M} are as in (2.9) with α = (J,M), An = Mn×Jn andλJ,M = 1.
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Theorem 4.1 Suppose that (4.1)-(4.2) hold for everyJ and M , whereAMA ≥ 1,
C2

MAMA ≥ e andBJ

√
J ≥ e. LetJn andMn be such thatlog #(Jn ×Mn) . n

and
∑

M∈Mn
e−LAM = O(1) for someL > 0. Then for every sequencesJn ∈ Mn

andMn ∈ Mn with DMnd(p0,Pn,Jn,Mn) ≤ εn,Jn,Mn , there exists aK such that the
posterior distribution relative to the weightsλn,J,M satisfies thatPn

0 Πn(p: d(p, p0) ≥
Kεn,Jn,Mn) → 0.

Proof: We apply Theorem2.4with α equal to the pair(J,M) andβn = (Jn,Mn). Here
we replace the global entropy condition by a local condition, as indicated in Remark2.5.

Condition (2.15) is (easily) satisfied in virtue of the definition of the numbersεn,J,M ,
with Eα = 1. The choicesEα = 1 immediately give that (2.13) is satisfied, for every
constantH > 0.

BecauseDMnd(p0,Pn,Jn,Mn) ≤ εn,Jn,Mn by assumption, condition (4.2) implies
that the prior mass in the left side of (2.11) can be bounded below by

(
BJn

CMn
εn,Jn,Mn

)Jn = eJn log(BJn

√
Jn)+ 1

2 Jn log(C2
Mn

AMnA)e−
1
2 Jn log(n/ log n).

The first factor on the right is bounded below by 1 in view of the assumptions on the
constants. Becausenε2

n,J,M = J(log n)AMA andAMA ≥ 1, it follows that (2.11) is
satisfied withF = 1.

Finally, we verify (2.10). Because presentlyλα = 1, the left side of (2.10) takes the
form ∑

J∈Jn

∑

M∈Mn

e−CJ(log n)AM A/4 ≤
∑

M∈Mn

e−LAM ,

for any constantL andn sufficiently large. The right side is bounded for someL, by
assumption. 2

Example 4.2 (Supersmooth true density.)If p0 ∈ Pn,J0,M0 for some pair of constants
(J0,M0), then we can apply the preceding theorem with(Jn,Mn) = (J0,M0), yielding
a rate of convergence

√
(log n)/n.

Example 4.3 (Regular true density.) If there exists a constantM0 such thatd(p0,Pn,J,M0) .
J−β for everyJ and someM0, then we can apply the preceding theorem withJn a mul-
tiple of (n/ log n)1/(2β+1), yielding a rate of convergence(n/ log n)−β/(2β+1).

Example 4.4 (Rough true density.)If there exists a constantM0 such thatd(p0,Pn,J,M0) .
e−Jβ

for every J , then we can apply the preceding theorem withJn a multiple of
log(n/ log n)1/β , yielding a rate of convergence(log n)1/β+1/2/

√
n.

4.1 Log Spline models
As a concrete example of finite-dimensional models we consider log spline density mod-
els, introduced byStone(1990).

For a givenorder q ∈ N and a given number partition of the half open unit in-
terval [0, 1) into theK subintervals

[
(k − 1)/K, k/K

)
for k = 1, . . . , K, the linear
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space of splines of orderq relative to this partition is the set of all continuous functions
f : [0, 1] → R that areq−2 times differentiable on[0, 1) and whose restriction to every of
the partitioning intervals

[
(k − 1)/K, k/K

)
is a polynomial of degree strictly less than

q. The set of these splines is aJ = q + K − 1-dimensional vector space. A convenient
basis is the set of B-splinesBJ,1, . . . , BJ,J , defined e.g. inde Boor(2001).

Forθ ∈ RJ let θT BJ =
∑

j θjBJ,j and define

pJ,θ(x) = eθT BJ (x)−cJ (θ), ecJ (θ) =
∫ 1

0

eθT BJ (x) dx.

ThuspJ,θ is a probability density that belongs to aJ-dimensional exponential family
with sufficient statistics the B-spline functions. Since the B-splines add up to unity, the
family is actually of dimensionJ − 1 and we can restrictθ to the subset ofθ ∈ RJ such
thatθT 1 = 0.

We now consider modelsPJ,M indexed by pairs(J,M) ∈ N2 consisting of the spline
densitiespJ,θ with θ ∈ ΘJ,M =

{
θ ∈ [−M,M ]J : ‖θ‖∞ ≤ M, θT 1 = 0

}
. Let the priors

Πn,J,M be the distribution ofpJ,Θ for Θ a random vector with an absolutely continuous
distribution with a density of which the quotient of supremum and infimum onΘJ,M is
bounded by a fixed constant, for instance the uniform distribution.

Lemma 4.5 Conditions (4.1) and (4.2) hold with the constantsAM ≥ MeK1M , BJ =√
Jv

1/J
J , CM = (K3M)−1e−K1M2

andDM = K2M , wherevJ is the volume of the
J-dimensional unit ball andK1, K2 andK3 are universal positive constants.

Proof: Write ‖θ‖∞ and‖θ‖2 for the maximum norm and the Euclidean norm ofθ ∈
RJ . Let BJ,M (ε) andCJ,M (ε) be the sets defined in (1.3), with α = (J,M) and the
redundantn suppressed. >From the inequalities (and their derivations) on log spline
densities given inGhosal et al.(2003) (or alternativelyStone(1986) andGhosal et al.
(2000)), it can be obtained that there exist constantsK1 andK2 such that

BJ,M (K2Mε) ⊃ CJ,M (ε),

log N
(
ε/5, CJ,M (ε), h

) ≤ MeK1MJ,

Furthermore, ifeK1Mε ≥ h(p0,PJ,M ) also there existsθJ,M ∈ [−M, M ]J with

CJ,M (eK1Mε) ⊃ {
pJ,θ: ‖θ‖∞ ≤ M, ‖θ − θJ,M‖2 ≤

√
Jε

}
.

Condition (4.1) is immediate from this. By the assumption on the prior the prior probabil-
ity of the set ofθ in the right set of the last display is at least(cM)−J times its Euclidean
volume. Claim (4.2) therefore follows from combination of the preceding inequalities.

2

It can be checked thatBJ as in the lemma tends to a constant asJ → ∞. (See
Lemma5.5.) If we chooseAM to satisfyAM = C−2

M , then the conditions of Theorem4.1
are satisfied.
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If log p0 ∈ Cβ [0, 1] and the orderq of the splines is larger thanβ, then the minimizer
θ̄J of θ 7→ ‖ log pJ,θ − log p0‖∞ overθ ∈ RJ with θT 1 = 0 satisfies

h(pJ,θ̄J
, p0) . ‖ log pJ,θ̄J

− log p0‖∞ . J−β . (4.3)

(See Lemmas 5 and 7 inGhosal et al.(2003).) Because‖ log pJ,θ‖∞ ³ ‖θ‖∞ the vec-
tor θ̄J automatically has max-norm‖θ̄J‖∞ bounded by a multiple of‖ log p0‖∞. This
implies that a positive densityp0 ∈ Cβ [0, 1] can be approximated with an error of order
(1/J)β by a log spline density inPJ,M0 if M0 is sufficiently large. The preceding theo-
rem and example then give a rate of contraction of(n/ log n)−β/(2β+1) for the posterior.
This rate is the optimal one in the minimax sense up to the logarithmic factor. Although
we have proved only an upper bounded, the rate of contraction of the present posterior
appears to contain an additional logarithmic factor indeed. This is due to spreading the
prior mass smoothly over the coefficient space.

This complements the result ofGhosal et al.(2003), who considered adaptation to a
finite set of regularity levels assuming a fixed and known upper boundM on the absolute
values of the log densities.

5 Auxiliary lemmas and proofs
The following lemmas are taken fromGhosal et al.(2000), and are used in the proofs of
the main results. The first lemma gives a sufficient condition for the existence of certain
tests in terms of the local entropy of a statistical model. The lemma is proved inGhosal
et al. (2000), following work by LeCam(1973) andBirgé (1983). The numbersD(ε)
in the condition of the following lemma are related to the measures of dimension used
by these authors. Up to constantsLe Cam(1986) calls the numberssupε>εn

N(ε) the
dimension ofP for the pair(d, εn).

Lemma 5.1 Suppose that for some nonincreasing functionN(ε) and someεn ≥ 0,

sup
ε>εn

N
(ε

3
,
{
p ∈ P: ε ≤ d(p, p0) ≤ 2ε

}
, d

)
≤ N(ε), ε > εn.

Then for everyε > εn there exist testsφn (depending onp0 andε but not oni) such that,
for a universal constantK and everyi ∈ N,

Pn
0 φn ≤ N(ε)e−Knε2 1

1− e−Knε2 ,

sup
p∈P:d(p,p0)>iε

Pn(1− φn) ≤ e−Knε2i2 ,

Lemma 5.2 For everyε > 0 and probability measureΠ on the set
{

p ∈ P: P0 log
p0

p
≤ ε2, P0

(
log

p0

p

)2

≤ ε2
}

,

we have, for anyC > 0,

Pn
0

(∫ n∏

i=1

p

p0
(Xi) dΠ(P ) ≤ e−(1+C)nε2

)
≤ 1

C2nε2
.
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Lemma 5.3 For any pair of probability measuresP andP0,

h2(p, p0) ≤ P0 log
p0

p
≤ 2h2(p, p0)

[
1 + log

∥∥∥p0

p

∥∥∥
∞

]
≤ 2h2(p, p0)

∥∥∥p0

p

∥∥∥
∞

,

P0

(
log

p0

p

)2

. h2(p, p0)
[
1 + log

∥∥∥p0

p

∥∥∥
∞

]2

.

Lemma 5.4 For everyb > 0 there exists a constantεb > 0 such that for every pair of
probability measuresP andP0 with 0 < h2(p, p0) < εbP0(p0/p)b,

P0 log
p0

p
. h2(p, p0)

(
1 +

1
b

log+

1
h(p, p0)

+
1
b

log+ P0

(p0

p

)b)
,

P0

(
log

p0

p

)2

. h2(p, p0)
(
1 +

1
b

log+

1
h(p, p0)

+
1
b

log+ P0

(p0

p

)b)2

.

Lemma 5.5 If vJ is the volume of theJ-dimensional unit ball, thenJ 7→ √
J

J
vJ is

increasing, and, asJ →∞,

√
J

J
vJ =

√
J

J√
π

J

Γ(J/2 + 1)
=
√

2πe
J

√
πJ

(1 + o(1)).

Proof:of Theorem 2.1 AbbreviatePn,&β = ∪α∈An,&βn,H
Pn,α and letPn,<β refer to

the union of thePn,α for α in the complementary partAn. Furthermore, setJn,α =
nε2

n,α. In view of assumption (2.7), we have, for everyε ≥ 3Eεn,βn ,

N
(ε

3
, {p ∈ Pn,&βn

: ε < d(p, p0) < 2ε}, d
)
≤ N

(
E εn,βn ,Pn,&βn

, d
) ≤ eEJn,βn .

Therefore, by Lemma5.1with ε = Mεn,βn andN(ε) = exp(EJn,βn) and sufficiently
largeM , there exists for eachn a testφn such that for a universal constantK and any
i ∈ N,

Pn
0 φn ≤ 3e(E−KM2)Jn,βn ,

sup
p∈Pn,&βn

:d(p,p0)≥iMεn,βn

Pn(1− φn) ≤ e−KM2i2Jn,βn . (5.1)

We chooseM sufficiently large, so that the right side of the first equation tends to zero.
ThenPn

0 φnΠn

(
p: d(p, p0) ≥ Mεn,βn |X1, . . . , Xn

) ≤ Pn
0 φn → 0.

For everyα in Un: = Un(βn, T, F , F ) as given in (2.6), we have the inequality
Πn,α

(
Bn,α(Fεn,α)

) ≥ exp[−FTJn,βn ] and, therefore, in view of (2.3),

∫

Un

Πn,α

(
Bn,α(Fεn,α)

)
λn(dα) ≥

∫

Un

exp[−FTJn,βn ] λn(dα)

≥ exp[−(FT + CT )Jn,βn ]

∫
Un

λ(dα)

Λn
, (5.2)



On universal Bayesian adaptation 23

whereΛn: =
∫

exp[−Cnε2
n,α] λn(dα). By Lemma5.2 with C = 1 andε = Fεn,βn ,

and becausenε2
n,βn

→∞, there exist eventsEn with Pn
0 (En) → 1 and onEn,

∫ n∏

i=1

p

p0
(Xi) dΠn(p) ≥ e−2F 2Jn,βn Πn

(⋃
α

Bn,α(Fεn,βn)
)

≥ e−2F 2Jn,βn Πn

( ⋃

α∈Un

Bn,α(εn,α)
)

≥ exp[−(2F 2 + FT + CT )Jβn,n]
λ(Un)

Λn
,

where the last inequality follows from inequality (5.2). Using this lower bound for the
denominator of the posterior measure (1.2), Fubini’s theorem and next the inequality
Pn

0

∏n
i=1(p/p0)(Xi)(1− φn) ≤ Pn(1− φn) and (5.1), we see that

Pn
0

[
(1− φn)1EnΠn

(
p ∈ Pn,&βn

: d(p, p0) ≥ Mεn,βn |X1, . . . , Xn

)]

≤ Λn

λ(Un)
e(2F 2+CT+FT )Jn,βn

∫

p∈Pn,&βn
:d(p,p0)≥Mεn,βn

Pn
0

n∏

i=1

p

p0
(Xi)(1− φn) dΠn(p)

≤ Λn

λ(Un)
e(2F 2+CT+FT )Jn,βn e−KM2Jn,βn Πn

(Pn,&βn

)

≤ e(2F 2+CT+FT−KM2)Jn,βn

∫
α&βn

e−CJn,αλ(dα)

λ(Un)
.

For sufficiently largeM the leading exponential term converges to zero. Furthermore,
the second term is bounded by assumption (2.8) (even with an additional factor1/4 in
the exponent).

Using thatPn
0

∏n
i=1(p/p0)(Xi) ≤ 1 and again Fubini’s theorem, we also see that

Pn
0 (1− φn)1EnΠn

(
p ∈ Pn,<βn : d(p, p0) ≥ Mεn,βn |X1, . . . , Xn

)

≤ Λn

λ(Un)
e(2F 2+CT+FT )Jn,βn Πn(Pn,<βn)

≤ e(2F 2+CT+FT )Jn,βn

∫
α<βn

e−CJn,αλ(dα)

λ(Un)

≤ e−(2F 2+CT+FT )Jn,βn/2

∫
α<βn

e−CJn,α/4λ(dα)

λ(Un)
,

where the last inequality follows from the boundCJn,α ≥ CHJn,βn ≥ 2(2F 2 + CT +
FT )Jn,βn for everyα < βn and the assumption onH, by definition (2.5). The right side
tends to zero in view of the assumption (2.8).

The assertion of Theorem2.1 follows by combining the last two displays with the
facts thatPn

0 (En) → 1 andPn
0 φnΠn

(
p: d(p, p0) ≥ Mεn,βn |X1, . . . , Xn

) → 0. 2
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