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Summary: We consider estimating a probability densitypased on a random sample from this
density by a Bayesian approach. The prior is constructed in two steps, by first constructing priors
on a collection of models each expressing a qualitative prior guess on the true density, and next
combining these priors in an overall prior by attaching prior weights to the models. The purpose

is to show that the posterior distribution contracts to the true distribution at a rate that is (nearly)
equal to the rate that would have been obtained had only the model that is most suitable for the
true density been used. We study special model weights that yield this adaptation property in some
generality. Examples include minimal discrete priors and finite-dimensional models, with special
attention to scales of Banach spaces, such as Hélder spaces, spline models, and classes of densities
that are not uniformly bounded away from zero or infinity.

1 Introduction

Consider the problem of estimating a probability dengityased on a random sample
X4,..., X, from this density. Ifp is a density oni-dimensional Euclidean space and
is a-priori known to possess derivatives, then it is well known thatcan be estimated
at the rates,, , = n~°/o+d relative to, for instance, the Hellinger distance on the
set of probability densities (under some restrictions). A variety of methods achieve the
ratee, o, and this is known to be optimal in a minimax sense if nothing more is known
concerningp. Furthermore, it is well known that the ratg , can be achieved even if
the value ofw is not known a-priori. So-called rate-adaptive estimators achieve the rate
€n,o It p is a-smooth for all values of simultaneously. In this paper we investigate
such rate-adaptation within a fully Bayesian set-up, where a suitable @rdeselected
through Bayesian model averaging.

More generally, we study the posterior distribution relative to a prior that is con-
structed by combining prior probability measuiés , on the member®,, ,, of a list
of models indexed by a parametemwith a prior probability measura,, on the set of
indicesa. The indexa may be a regularity parameter, but in our general set up it may
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combine into the overall prior

I, = /A I, o Ao (dav). (1.1)

Given the prior distributionX.1), the corresponding posterior distribution is the random
measure given by

_ fB H?:lp(Xi) dll, (p)

- JTLiZip(Xi) dIL, (p)

_ fA fpepnya;pEB [T 1p(X3) dIL o (p) An(da)
a fA prPn,a [[i=1p(X3) dIL, o (p) An(da)

Of course, we make appropriate (measurability) conditions to ensure that this expression
is well defined.

We say that the posterior distributions haate of convergence at least, if, for
every sufficiently large constait, asn — oo, in probability,

IL,(B|X1,...,X,)

1.2)

Hn(d(p,po) > MEn‘Xh...,Xn) — 0.

Here the distribution of the random measut€?) is evaluated under the assumption that
Xy,..., X, are ani.i.d. sample fror®,, andd is the Hellinger,L;- or L,-metric on the
set of densities.

This set-up falls within the set-up considered in earlier work on posterior distribu-
tions, for instanc&hosal et al(2000). Application of their result would yield the state-
ment that if the true density, is well approximated by the overall mode}, = U, P;, o,
then the posterior will concentrate in balls aroygaf a radius,, that converges to zero
at a speed depending on the complexity of the m@jelnd its approximation proper-
ties. Because this ratg, refers to the union modé?,, = U, Py, 4, it will in most cases
be determined by the worst case in the list, e.g. the indésr which the densities in
P..o are least regular. For instance, in the case thi a smoothness parameter and
A possesses a smallest elementve would (at best) find the rate/(22+4) for the
posterior. This is an interesting result, but it is pessimistic and not the result we would
like to prove. In the present paper, we want to refine the result to the statement that if the
true densityp, is contained irP,, 3 for somegs € A, or is well approximated b, 3,
then the posterior will concentrate in a ball of radiysg aroundpy, wheree,, 3 is the
“correct rate” if only the modeP,, s were used. We prove that this is true (possibly up
to logarithmic factors) for general priois$,, , on the models if combined with certain
special model weights,,, defined in terms of the rates , attached to the models (see
e.g. 2.3)). Under these “universal” weights “small’ models (the ones with fast rate of
convergence,, ., attached) receive more prior mass than large models.
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finite-dimensional models and treats several examples also covered in the present paper,
with different priors. Huang’s methods of proof are based on the methods developed by
Barron and Cove(1991), who studied adaptation using penalized maximum likelihood
estimators. In this paper we use the testing method originatiscimwartz(1964 and
LeCam(1973), and further developed @hosal et al(2000). The papeiGhosal et al.
(2003 considers adaptation to finitely many log spline density models and uses similar
ideas as the present paper.

The paper is organized as follows. In Sect@nve derive two main results and
several corollaries. In SectioBsand4 we apply these results to two substantial methods
of constructing priors: finite discrete priors @mets over given Banach spaces and
smooth finite-dimensional priors. In both cases these are made concrete for the scale of
Hélder spaces, where the finite-dimensional priors are based on log spline models. The
last section contains auxiliary and technical results.

1.1 Notation

Throughout the paper the data are a random sadple. . , X,, from a probability mea-
sureP, on a measurable spat#, A) with densityp, relative to a given reference mea-
surep. In general we writep and P for a density and the corresponding probability
measure. In our main results we use the Hellinger distance, total variation distance, or
Lo-distance on the set of densities, denoted/byror two probability densities andq
relative top these are defined as, respectively,

hp, ) = Ww—mdu,
o —all1 =/|p—Q|dN7

Ilp—qll2 = \//Ip—qu/L

If the Lo-distance is used, then it is implicitly assumed that all densities involved are
bounded by a common upper bound. Eheovering numbers of a metric spac®, d),
denoted byV (¢, P, d), are defined as the minimal numbers of balls of radineeded to
coverp.

The index set is an arbitrary measurable spateA,), and for everyn € N and
everya € A the setP, , is a set ofu-probability densities oif.X’, A) equipped with a
o-field such that the mapg:, p) — p(x) are measurable. Furthermof&, , denotes a
probability measure of®,, ., such that(«, B) — II,, o(B) is a Markov kernel, and,,
is a probability measure oA. This allows to form the priofl,, = fA I, o An(da) ON
P,, = Une 4P o and corresponding posterior distirbutidn). We define
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Throughout the papet, ., are given positive numbers with, , — 0 asn — oco. These
should be thought of as the rate attached to the m@ye| if this is (approximately)
correct.

The notatiorn < b means thatt < Cb for a constantC' that is universal or fixed in
the proof. For sequences, andb,, we write a,, < b, if a,/b, — 0 anda,, > 0 if
a, > 0 for everyn andliminf a,, > 0. For a measuré and a measurable functigh
we write P f for the integral off relative toP.

2 Main results

The main results of the paper are adaptive versions of Theorem Zhadal et al.
(2000. These authors consider the case of a piigrs on a single modeP,, g such
that, for some positive constants F, F', F,

log N(Eep 3, Pp,g.d) < Ene, 5, (2.1)
IL,3(Bng(Fenp)) > exp[—Fnel ). (2.2)

The first condition measures the complexity of the mddgl, whereas the second con-
dition lower bounds the amount of prior mass close to the true depgityheorem 2.1
oflGhosal et al(2000) shows that under condition2.0)-(2.2) the posterior rate is at least
en,3- In many (but not all) examples this upper bound on the rate appears to be (almost)
sharp. The theorems in this section show that this rate of convergence remains valid if
the modelP,, 3 makes part of a family of modelsP,, ,: o € A} and the prior mass is
distributed appropriately over the elements of the list. The theorems impose the same
two conditions on the modefB, ,,, or very similar ones, and in addition assume that the
weights),, have the form: for a constant > 0, subsetsi,, C A, and a fixed measure

onA

exp[—Cne?L)a] 14, () A(da)

M) = - Cne? I \(da)

2.3)

The measure may be infinite (e.g. counting measure on a countable set), as long as the
denominator of2.3) is finite. The function\,, gives larger weight to models with fast
rate of convergence (which we think of as the “smaller” models).

Forg € Aandl < H < ~o define

Anmpmi={a € Ane, 5 <o), < Hey 5}, (2.4)
An>pH = {a € Anzsi’a < Hai’ﬁ}. (2.5)

These are the sets of all model indices that give “approximately the same” rate, or “not
really bigger” rate as the index The notations: 3 and> (5 are used even though we
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ThusU, (8, H, F, F) is a “neighbourhood” aroung@ of model indices that satisfy the
prior mass condition2.2) with o = 3. BecauseB,, ,(cy.«) iS a neighbourhood of the
true densityp, within P, ., we interpret inclusion of an index in U, (8, H, F, F') as
meaning that the modé®, , is appropriate fop,, in the sense that if just this model
were used the rate would beg , if also P,, , were of the correct complexity (i.e. satisfy
both 2.1) and R.2).

Rather than a fixed index of a “true model” we shall employ a sequence of indices
Bn € A, and we establish the ratg, g, attached to this sequence. This will allow to
approximate a “regularity index” that is not in the support\gf and will also provide
sufficient flexibility to handle applications where the indexdoes not refer to a fixed
regularity measure, but for instance to the dimension of the niBgel

Theorem 2.1 Assume that there exist positive constatitd’, £, F, F, H, T and a se-
quence of indiceg,, € A,, such thatH C > 2(2E2 + CT + FT) and

log N (Egn,ﬁ" Uaed, 5 Prce d) < Enel, . 2.7)

If ne? ; — oo and

fAn exp[—Cne} /4] Mda)
AU (B, T, E, F))

= 0(1), (2.8)

then the posterior distributionsl(?) relative to the weight functions,, given by 2.3
SatiSfyP(?Hn (p: d(PJ?O) > Mgn,ﬁn Xy, 7Xn) — 0.

The proof of the theorem can be found in Seclton

The conditions2.7)-(2.8) play a similar role to the condition2(1)-(2.2). The model
with index 3,, should be thought of as a “true” model. Conditiéh#) requires that
the complexity of the union of all models that are “smaller” than the true model is “not
larger” than the complexity of the true model. Conditihg] is essentially a lower
bound on the prior mass in a neighbourhood of the true depgityithin the models that
have the “same” rate as modg]. Before interpreting these conditions further, we derive
a corollary for the situation that is a countable set.

Consider priors of the forn2(3) with A a measure on a countable ggt with atoms
written asA{a} = \,. Thus for a positive constant and arbitrary positive numbess,,

Ao exp[—Cne? ]

n,o

ZaeAn Aa exp[_cngi,a]

)\n{a} = 1A,L (Oé) (29)

For 3, € A, assume that
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Corollary 2.2 Assume that there exist positive constafitd, F, F', F, H and a se-
quence of indice®,, € A, such thatHC' > 2(2E2 + C + F) and such that/2.7),
(2.10 and 2.17) hold. Ifneiﬂn — 00, then the posterior distributiond.(2) relative to
the weight functions,, given by 2.9) have rate of convergence at least,, .

Proof: We setT" = 1 and note tha3,, € U,(8,,1, F, F) by (2.11). Consequently,
AUn(Bn,1,E, F)) > A\, and R.8) is implied by 2.10). ]

Condition 2.11) is a direct generalization of the prior mass condit2:2). Thus, the
ratee, g, in this condition corresponds to the rate we would obtain if we would employ
only the modelP,, s, with its associated pridid,, s, .

Condition 2.10) is trivially satisfied if X is a finite measure witthhg, > 0. Itis
also satisfied if\, = 1 for every«a and the set of models is not too large, as the terms
exp[—Cne? /4] will typically be very small. Thus this condition seems to be mostly of
a technical character.

The entropy condition2,7) appears not unnatural. In particular, if the index det
is ordered and the modelB, ., are nested with the rates, , “decreasing” in«, then
the condition is implied by the boun@.Q) with 5 taken equal to the smallest index
a € A, >, u- (Because necessarily > 1 the latter index may be “smaller” thas,,
but the difference is typically small.)

In the remainder of this section we shall investigate other situations in which condi-
tion (2.7) can be reduced to bounds of ty[#1) on single models. We shall assume that
(2.2) holds for everyr, where the constarif may depend on, i.e.

log N(en.0s P.a,d) < Eqnel a € A. (2.12)

;o

A first observation is that we always have the crude bounds

N<\/ﬁen,ﬁna U Pn,aad) S Z N(\/ﬁgn,ﬁnapn,aad) S Z N(gn,avpn,aad)'

azﬁn @zﬁn (¥26n

Both inequalities in this display are pessimistic. The first inequality ignores the fact
that the models may overlap, and is particularly crude in the nested case. The second
inequality ignores that the rateg , for « 2 3, may be much smaller thamn, g, , SO
that the entropy at,, , may be much bigger than the entropyals, . Nevertheless, the
bounds can be useful.

In particular, if A is a finite set, then we can bound the sum on the right by its car-
dinality # A times its maximum term. Then fror2.() we obtain that the logarithm of
each of the terms in the sum is of the ordef, , < Hne? ; , and @.7) holds. This

svnAaldAa ks EAallAainnmesy A~eavealla e s
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An infinite set of models cannot be treated as easily, but the argument can be extended
to infinite (possibly uncountable)d by employing priors\,, that are truncated to a finite
setA,,. Assume that for a suitable constdiit

2

13
max Ea$ = 0(1), (2.13)
O‘eAnZE%,QSHsi‘/;n En”@n
log(#4,) < nel .. (2.14)

Theorem 2.4 Assume that there exist positive constahits ', C, H and a sequence
f,, of indices such thaHC' > 2(2F? + C + F) and such thatZ.10), (2.13), (2.12),
(2.19 and 2.14) hold. LetA,, C A be such that3,, € A,, for every sufficiently large.
If neiﬂn — 00, then the posterior distributiond.(2) relative to the weight functions,,
given by 2.9) have rate of convergence at leasts, .

Proof: LetPn,Amzﬁn be the union of the modeR,, , with o € A,, anda 2 3,,, where
the latter inequalityx > (3, refers to the indices with? , < He? ; . Then, by the
argument given previously,

N(\/ﬁan,ﬁ,,ﬂpn,,qn?ﬁn,d) <#A, max N(ena,Pnasd).
~ a€An:aZ B

Hence by2.12) the logarithm of the left side is bounded abovel&g(#An)JrEnnsiﬁn,
for the numbersF,, defined as the left side 0B(13. By the assumptions2(13) and
(2.14) this is bounded above W"E%,ﬁn for some constank. The theorem is a corol-
lary of Corollary2.2. O

Remark 2.5 As can be seen from the proofs, the global entropy conditi@ang éand
(2.12) can be replaced by the wealtecal entropyconditions

sup logN(g,UazﬂnCn’a(Qa),d) < Enfsiﬁn,

e2Een,p,
[3)

sup logN(5

€2€n,a

Cnal26),d) < Banel . (2.15)

These strengthenings are especially of interest when the models are of finite dimension,
as in Section.

Suppose now that there is a fixed indéx A that gives the “true” model”, and the
ratee, s is to be achieved. Theoref4 can be used witl,, = § provideds € A,
eventually. If A is countable, then the latter is guaranteed as soaA,as” A. For
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Corollary 2.6 Assume2.12). Let3 € A be such thahafw — oo. LetC,F,F,H,T

be positive constants WitHTC' > 2(2F* 4+ C + F). LetA,, C A be finite subsets such
thatlog(#A4,) < ne 3, Un(B8,T, F, F) # 0 for all sufficiently largen, and

Z max (;\o‘ ) exp[—Cnai’a/él] =0(1). (2.16)

a'€EAL ~p. ’
acA, it *

If (2.13) with G substituted fo3,, holds, then the posterior distribution$.g) relative to
the weight functions,, given by 2.9) have rate of convergence at leastz.

Proof: By assumption, there exists, € U, (5, T, F, F'), which implies tha3,, € A,

and that2.1]) holds, and also that, g, ande, g are of the same order. The latter and
the assumptions show thatiﬁn — oo andlog(#A4,) < ”6721,,3” for n big enough.
The condition2.1€) implies 2.10). Finally, if (2.13 holds with respect t@ for a given
constantH, then 2.13) holds with respect t@,, for the constant{7T". Hence all con-
ditions of Theoren®.4 are fulfilled, so that this theorem gives the rate of convergence
En,Bn < \/Tgn,ﬁ- g

Theoremi2.4 and the preceding corollary add to the natural assumpt@id)(and
(2.12) on the single models, the conditiorz10), (2.13 and 2.14). These conditions
are not strong. Moreover, in the remainder of this section we show that they can often be
arranged by choosing the setg small.

Of course, the setd,, must also be chosen rich enough so that every possible index
is (asymptotically) represented by an indgxe A,, that satisfies2.11). For a countable
setA of target values we may choosel,, T A at a slow rate. More generally, we might
construct the setsl,, by a “discretization” of the setl. This discretization must be
rich enough to contain (eventually) for evefye A an indexg, with ratee,, 5, that
is of the same order as the “target ratg,’ g (and for which [2.13) holds). Because
na < VHe, o ifand only ifloge, o < loge, o + 5 log H, this is the case as soon
as the set of logarithmic ratd$og ¢, : @ € A, } forms a grid of fixed meshwidth over
(parts of) A (eventually). The following three examples give (theoretical) constructions
of such grids that satisfi2(10), (2.13 and 2.14).

Example 2.7 Let A C (0,00) and suppose thate? , = n?*c, for some strictly
decreasing;: [0,00) — [0,00). If the range ofg is contained in a finite intervdly, g],
then the sefloge, o, € A} of all possible log rates is the intervllog(c,, /n) +
1 logn[g, g], which has lengthl logn(g — g). Therefore, a grid4,, with of the order
log n points can suitably represedt In terms of the indices, for a diffeomorphismny
it suffices that the grid includes an index in each interval of length of the artleg; n.
This applies for instance to rates of the foem, = n~/2td)(logn)* with o



On universal Bayesian adaptation 9

bounded fora € Ag, ande,, /e, 3 — 0 asn — oo, for everya € A. 3. Then we
can always construct sets, with A,, T A that satisfy 2.19) for every fixed sequence
B, = 3, as follows.

We order the sefl in a sequence and defing ,, as the maximum of the numbers
Eue; o/cn 5 for a and B ranging over the firsin elements ofA and witha > §.
Because,, /¢, — 0 for a > (3, the sequencs, ,,, converges to zero as — oo for
every fixedm, and hence there exists,, — oo with 7, ,,,, — 0 also. We may now set
A,, equal to the firstn,, elements of4.

Example 2.9 Let A C (0, c0) and suppose that;, , = n9(@) for some strictly decreas-
ing, continuous functio: [0, co) — [0, 00). Suppose that, for all < a < b < oo,

sup E, =:E(a,b) < o0 (2.17)
a€la,b]

Then there exist subsets, C A such that, with\, = 1, (2.10), (2.13 and 2.14) are
satisfied and the set,, ~s i is nonempty, provided is big enough, for any fixe@ > 0.
One construction to prove this claim is as follows. For natural numbers2 define

D= sup  Eond(@-g(n-1).
' a€[m,m+1]

Sincey is strictly decreasing an@(17) holds,7,, ., — 0 asn — oo, for every fixedm,
and hence alsmaxo< <k n,m — 0 @asn — oo, for every fixedk. This implies that
there existsn,, /" co such thatnaxe<m<m, Mn,m < 1, for every sufficiently large:.
Consequently, i2 < m < m,, is a natural number, then

sup B nd®-9(m=1) < Dm Y Temt1 VooV gm, -1 < 1 (2.18)

a€[m,my)

Chooserr,, / oo slowly enough thah?(@=) > loglogn, and defing,,: = @, A m,,.
Let 4, C (0,a,] be such thafloge, ;a0 € A,} is a%log H-net in the interval
%bg(l/n) + 3logn[g(dy), g(0)]. Sinced, / oo, this interval containgoge,, 3 =
5 log(1/n)+ %g(ﬂ) log n, eventually. Therefore, for sufficiently largethe setd,, ~3 1
is nonempty. Furthermore2(10) and .14 are satisfied, becauggA,, < logn, while
mingea, ne2 , > n9@) > loglog n.

Define bye? ; = He} 5, orequivalently byy(8 ) = g(8) +log H/logn. The
continuity of g implies that3 3. Letm(8) = min{m € N:m — 1 > g}. Since

B >0,m(B3) > 2. Becaused,, C (0,m,,] ande,, o < VHe, s if and only if a > B,

g2 g2
n,o n,o
max Ey——< sup Ey——
a€Anen,a<VHen g €n.8 a€lf, ;mal €n.8

) ) )



10 Lember — van der Vaart

bounded b)E(ﬁ, m(ﬁ)). Finally, because o(18), the third supremum can be bounded
by
sup  E,nd@-9d) < sup  E,nd@-amB-1) < 1,
ag[m(B),ma] ag[m(B),ma]

3 Priors based on nets

Given a metrial ande > 0 say that a set of functions, ..., uy: X — R on a measur-
able spacéX, A) is a set of=-upper bracketdor a given setP of densities if for every
p € P there exist a functiom; with bothp < u,; andd(u;,p) < €. Thee-upper brack-
eting numberV (e, P, d) is defined as the minimal number of functions in such a set of
e-brackets. These upper bracketing numbers are smaller than the more usual bracketing
numbers employed in empirical process theory (eam der Vaart and Wellngf996),
Definition 2.1.6), but still bigger than the covering numbaf& /2, P, d). However, in
many situations the three types of complexity measures are of the same oedas in
e\, 0.

The optimal rate of convergeneg for a modelP relative to the Hellinger distance
h can typically be related to its entropy, through the equation

log N(en, P, h) < nep.

SeeBirgé (1986. In/Ghosal et al(2000) posterior distributions relative to priors con-
structed on minimal brackets were shown to contract at this rate. Here we extend these
results to adaptation to multiple models.

For eacha € A let 9, , be a set of nonnegative, integrable functions with finite
upper bracketing numbers relative to the Hellinger distanget necessarily probability
densities). In agreement with the preceding display, let targetaatigsatisfy, for every
a € A,

1og Nj(n,a: Qn.arh) S ned . (3.1)

Next for eacho choose a sélf,, , = {ui,...,un} Of &, o-upper brackets ove®,,
and letP,, ., be the set of re-normalized functions
Uj . u

j=1,...,Np=9——uEUpa . 3.2

{fujd,uj } {fuduu } (32)

Let the priorll,, ., be the uniform probability measure 1, .

In particular, we may use a minimal set«of .-upper brackets ove®,, ,. In this
section we show that the resulting pridr, , is then appropriate if the true density is
contained in the uniot ;~o(M Q,, ) Of the setL,, . The base collectio®,, ,, could
for instance be the unit ball in a regularity space, and then it sufficepghaicontained
in this space. The set of brackets need not be minimal, but we assume that its cardinality
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po € MoQ,, s, for every sufficiently large. Let A,, C A be such that,, € A,, eventu-
ally, and such that2.10), (2.19 and 2.14) hold, for everyH > 0 and some&”' > 0. Let
”gi,gn — oo. Then the posterior distributiond.(2) relative to the weight functions,,
given by 2.9) have rate of convergence at leasts, relative to the Hellinger distance.

Proof: By construction#P,, o, < exp(EanE%’a), implying that 2.12) with d equal to
the Hellinger distance is trivially satisfied. Sin@13) holds for everyH, it also holds
for someH with HC > 2(2£2 + C + F), for any constantg’, F, C. If we can also
show that'2.113) holds, then the theorem follows from Theor2m.

By assumption, there exist constadtg > 0 such thatp, /M, € Q,, g, for every
sufficiently largen. So, there exists,, € U,, 5, such thap, /My < u,, and||\/po/Mo—
Vn||y, = h(po/Mo, un) < en g, . It follows that

L= [v/poll2 < IV Moun|l2 < |V Moun = /poll2 + lV/Poll2 < v/ Moen g, + 1.

By construction the functiop,, = u,/ [ u,du belongs taP, s,. Furthermore, by the
triangle inequality,

h(p07pn) S h(P07 MO“n) + h(MOunvpn)

= h(po, Moun) + ||V Mounll2 — 1| < 2¢/Moén,g, -

The inequality in the second line follows from the fact that- /||| = [1 — ||| for
every norm and function, applied withr = v/Myu,,. We also have

Po < Mo/un dp = ||/ Mouy, |3 <1+ Moeiﬂn,
which is uniformly bounded by assumption. In view of Lemm3, it follows thatp,, €
B, s, (D\/Moe,, g, ) for a sufficiently large constat®, whence

IL, 5, (Bn,g, (D Mogng,))> U g, ({pn}) > (1/#Pns,) > exp[—Eg, nes 5 .

The assumptiorX 13 implies thatEg, is bounded above. It follows that the prior proba-
bility 11, 5, (Bn,s, (Fen.s,)) is bounded below byxp[—Fne? ; ], for constantsF’, F.
This completes the verification a2.(11). O

Because bounds on bracketing numbers have been established for many situations,
and typically give sharp rates of convergence, the preceding theorem can be seen as con-
firmation that in many situations there exist priors that give Bayesian adaptation across
a scale of models of interest. That the base collect@ps, need not be collections
of probability densities is helpful, because in this form the theorem applies to any true
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A disadvantage of this otherwise attractive construction is that the resulting models
Pn.o Need not be nested, even if the base collect@ns, may be. For instance, scales
of regularity spaces are nested, and it is natural to build this into the priors. Technically,
this would permit to use conditioi2(7) of Theorem2.1 instead of 2.13 and 2.14),
which result from truncating the weight functio,. Assume tha1;4 is totally ordered
and let3 be the minimum of the set,, >3 » = {a € 4, tep o < He?, 5}, which
we assume to exist.

n,o

Lemma 3.2 If A is a totally ordered set and,, , are sets of probability densities with
On.a C Qpng for a > g, then conditionsZ.13) and 2.14 in Theorem3.1 may be
replaced by the condition thdfs = O(1).

Proof: We employ Corollan2.2 rather than Theore®.4. It suffices to verify[2.7), the
other part of the proof being the same as before. (Notepthat A, Q,, 5, C MoQn g )

If p € Py, for somea > B thenp is a renormalized upper brackete Z/{nfa.
By construction ot4,, , there existg; € On.o With h(u, q) < &,.. Arguing as in the
proof of TheorenB.1, using the assumption thatis a probability density, we can see
that | u dy differs from 1 by at most,, ., and consequently(p, u) < ¢, .. Because
the 9,, , are nested, the functigpis also contained iR, B+ SO there exists an upper
bracketv € U, 8. such thati(q,v) < e, B8 andh(g,v’) < sn B, , wherev' € P, 8.
a the renormalized. Combination shows' that(p,v') < h(p, )+ h(u,q) + h(g,v )
h(v,v') < denp < AVHey g, implying thath(p, Pos ) S en,,-

We conclude that the union of the S@ls , for o > ﬂ is at a distance of a multiple
of €, g, from P, gz . Condition @.7) therefore follows from$ 1) and the assumption
thatE = O(1). O

Remark 3.3 The setQ,, ,, in the preceding lemma can be the set of all probability den-
sities in a multiple of the unit ball in a regularity space, but not all densities (because
of the restriction to probability densities) and not all probability densities in the whole
regularity space (becaus& 1) would fail). It would be of interest to extend the theorem

to modelsQ,, . »s indexed by a paif«, M), wherea can refer to regularity and give a
nested scale of models afnd can refer to a “multiple”. For instana@,, o, pr = M Qo

This requires a result intermediate between Theo/2ihand2.4. We omit a discussion.

3.1 Banach spaces

Consider for eaclr > 0 a Banach spacB*(&X') of measurable functiong: ¥ — R
whose unit balB$(X') processes finite upper bracketing numbers relative td.thig)-
norm, denoted byl - ||,. Let the constant®. and functionsH..: (0.0c0) — (0. 00)
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corresponds to the, (11)-distance on the roots of the elementsdf, the inequality8.3)
implies 3.]) for the rates,, ,, satisfying

Ho(ena) = nen 4 (3.4)
The root,/p, of the true density belongs to the Banach spBéex), forag € A,
if and only if po € Un>o(MQg). Therefore, the priors chosen as in Theor@i
yield the rate of convergenes, g, for any 3, such that,/py € B~ (X) andg,, € 4,
eventually, under growth conditions oh, (e.g. 2.10), (2.13 and 2.14). Note that the
prior construction does not use any information about the norgyef in B (X); it
suffices that the square rootaf be contained i34~ ().

Assuming that the roo{/p, of the true density is regular, rather thag itself, is
convenient in the preceding construction, because it allows to relate the (complicated)
Hellinger distance to thd.s(u)-norm. However, it appears to be not merely a trick.
For instance, if the scale of Banach spaB&4.X') corresponds to smoothness, then
regularity ofpy and its square roql/py are equivalent iy is bounded away from zero,
but not if py can approach zero. It is intuitively clear that it is hard to estimgtin
regions where it is small, as few observations will land in such a region. This indeed can
be shown rigorously, and removing the root from the regularity assumption, i.e. assuming
thatp, € B*(X) instead of,/p, € B*(X) will decrease the rate of the convergence.
(Cf. Birg€ (1986).) In the following we shall consider, more generally, the situation that
p(l)/s € B*(X) for somes € [1, 2], and consider adaptation to botlanda.

For everya ands € [1,2] let 9, ; be the set of all nonnegative functiops¥ — R
such thatp!/* € B$(X). The optimal rate of convergence in this case changes to the
solutione,, s of the equation

H&(Ei{i,s) = ngi,a,s' (35)
The case tha}/p, is regular corresponds to= 2, and in that case this equation reduces
to (3.4), with €, 2 = €5,. The claim follows from the following lemma.

Lemma 3.4 A set{vy,..., vy} Of uppers?/s-brackets oveB (X) for the|| - [|2-norm
yields a set of upper-brackets{vs, ..., v} overQ, , for the Hellinger distance. Con-
sequently

IOg]V](Ev Qmsa h) < log]\f] (52/37B?(X)7 || : ||2) (36)

Proof: The functionw is an uppee?/*-bracket forp!'/* with respect to thé - ||o-norm if
p/s <wand|v — p'/*||y < e. Thenp < v* and, by the inequalitya’ — b*| < |a — b|*
for0 <t <1,
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It follows that the rates,, o s for the model with index«, s), as determined by in-
equality B.1), is the solution of the equatiol8.6). Furthermore, given a sét, , s of
upperai/i s-brackets oveB¢ (X') with respect to thg - ||o-distance, the functions® for
v € Vp.a,s @ree, o s-Upper brackets ove@,, s and the corresponding priof$, o  of
Theorem3.1 are the uniform distributions on the sets of functions

{f:du

We may consider adaptation to the two indieeand s separately, for a fixed value of
the other index, or to the pair of indices jointly.

If « € (0, 00) specifies a regularity level, then the unit balls of the Banach spaces are
typically nested'IBB( X) C B{(X) for a < 5. We shall assume this in the remainder of
this section. For the power parametehis may not be the case. However, the $gts;
for different values ok are also very related. The following lemma establishes a bound
on the bracketing entropy of a union of such spaces.

Pruas: = VE Vna, } 3.7)

Lemma 3.5 Assume that the uniform norm is bounded by the norBf¢ft’). Then, for
anya, andl < s’ < s” <2,

log V(e 4+ 2Vs" — 8, Ugr<s<sr Qass h) < log Ni(e, Qu, s, ).

More precisely, a set of-brackets overQ,, , is a set ofe 4+ 2v/s” — s’-brackets over
Us/§s<s” Qa,s-

Proof: If p € Q, s fors’ <s < s”, thenp'/s € B (X) andp®’/s € Qu.s - In view of
the assumption on the norms, the first implies that*|| ., < 1, and hence it is also true
that||p||e < 1. Furthermore,

p SSS SSS
= W < I <

h2(p,p* /%) < |p—p° /sHoo < urél[%xl](us//s —u) < 4(s—s).

In the second last inequality we use thabkes its values in the intervfl, 1]; the last
equality follows by an explicit calculation, where we use becatise s € [1, 2].
Suppose that, ..., uy arec-upper brackets ove@, . If p € Q, s, then by the
preceding paragraph = p*/* satisfiesp < ¢, h(p,q) < 2v/s—s andq € Qs ,
whence there exists an upper brackewith ¢ < w; andh(q,u;) < . Together this
implies thatuy, ..., uyx aree + 2v/s — s’-upper brackets ovad,, ;. O

Suppose thagbl/t € BP(X) for some unknown3 € A c (0,00) andt € [1,2].
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This is the weight function2.) with («, s) playing the role ofo and A\, , = 1. For
every(a, s) € A, x S, we employ the uniform priofl,, o s NP, o s given by B.7).

Assume without loss of generality that, and S,, are ordered, letj andaj
decrease to the infimum and supremumioky = 1, s7 ,; = 2, and assume for every
j=0,...,K,andi =0,...,L,,

sivq — 8¢ < min 52@78”, (3.9
aEA, o
5n,a§’,s;’f ,S En,a;”+l,s;:_17 (310)
#A, x #S, < aejni?es exp[Cne} , ,/36],  (3.11)
£2
max E,—=*% =0(1) VYH >0. (3.12)
O‘GAnvSESnf%,a,sSHEi_ﬁn,tn enﬁmtn

In Example2.9 grids satisfying the last three conditions are shown to exist in the case
that the rates of convergence are of the foraj , , = n9(@*) for a function that is
strictly decreasing in its arguments, as is the case for the classical regularity spaces, and
the constant&,, are bounded fot in bounded intervals. By extending this construction

we can also ensure the first condition. In general, the first two conditions require that the
grid A,, x S, is rich enough, whereas the third is a (mild) upper bound on the size of
A, x S,.

Corollary 3.6 Assume that the unit balB$(X) satisfy 8.3), are nested and consist
of functions that are uniformly bounded by 1. Suppose p@éft € BA(X) for some
8 € AcC(0,00)andt € [1,2]. Letll, ,  be as indicated. Letl,, C AandS,, C [1,2]
satisfy B.9), (3.10), (3.1]) and (3.12). Then the posterior distributiond.2) relative to
the weight functions,, given by[8.8) have rate of convergence at leastz ; relative to
the Hellinger distance.

Proof: We apply Theorer8.1with (o, s) € A,, x S, inthe place olx € A,,, and with
Q.. Of that theorem taken equal to

Qn,oz,s;‘ = Us?§s<s?+1 Qa,s~

By construction the prioHn?aysln is uniform on the rescaleﬂw,sg—upper brackets over
Qa,s7, Which are3e,, o s»-upper brackets ov@ma,s? by Lemme3.5and B.9). There-
fore, the priors are as in Theore®ul, with ¢, , taken equal to three times the present
Enan, st (To be precise, by multiplication of the rate by a constant has the effect of
divided the constant' in the prior weights2.9) by a the square of the constant.)

I T D N N P T T A~ r_
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Remark 3.7 In the preceding corollary we obtain the ratgs ; under the condition that

pé/t € Bf(é\f). Because this rate is faster for biggemwe might want to apply the result
for the “true” regularity level of a given densipy given by

8= sup{a € Aipyt/t € IB%O‘(X)}.

If this supremum is attained, then indeed we can apply the corollaryvithd obtain

the ratee,, g;. If the supremum is not attained, then we can apply the corollary or
Theorem3.1 with an approximating sequengk. For 3, < (8 we are quaranteed that
po € M, Qg, , for M, = [|py/"|| 5, the norm ofp/* in B« (X). If ||po/t|o = O(1) as

a T 8, thenlM,, remains bounded &%, T 5 and hence the rateds s, : by Theoren8.],
which will be of the same order as, g+ if 8, T § fast enough, even j é/t Z BA(X).

However, it may be that/,, = ||p(1)/t||gn increases indefinitely. By closer inspection the

the rate can then be seen to be at Ie\dépsn,ﬁmt, short of the rate,, g ;.

Remark 3.8 NestednesB" () c B¢(X) for o < 3 of the unit balls can also be used
within the context of Lemm®.2, by defining the seQ,, ; as the set of all probability
densitiesp such thatp'/* is contained in a fixed multiple of the unit bal*(x), say
MBS (X). Thenifp)/" € MBY" (X), for some fixed, we obtain the rate of convergence
€n.3,.¢ @S soon asl,, C (0, 00) is chosen to satisfy2(10) and the constant&,, in (3.1)
are bounded in bounded intervals. For instance, we may chooebe a finite measure
onA, = Q*, inwhich case,, g, ; can typically represent any ratg s ; for 3 > 0 with
arbitrary precision.

3.1.1 Holder spaces

A typical example of a scale of Banach spaces are the Holder spagesi]? of a-
smooth functiong: [0, 1]¢ — R. Let X = [0, 1]¢ equipped with the Lebesgue measure
u. Fora > 0 let o be the largest integer strictly smaller thanThe unit ballC{[0, 1]¢
of the space&’“|0, 1]¢ consists of the functiong € C[0, 1]¢ with partial derivatives of
orders0, 1,...,a bounded by 1 and the partial derivatives of orddripschitz of order
« — a with Lipschitz constant 1.

FromKolmogorov and Tihomiro196J) it is known that the entropy of this unit ball
relative to the uniform norm satisfies

log N (2, C2[0, 1%, || - [loc) < Eac™ (3.13)

A ball of radiusz around a functioryf for the uniform norm yields a brackgt —¢, f +¢]
of size2e for the uniform norm, and a-fortiori for th&s (11)-norm. Hence

log N (e, C10, 114, || - [l2) < N(2/2,C10, 1%, || - |lon) < B, (e/2)" %,
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If /po € C°[0,1]¢ (corresponding ta = 2), the rate isn~=/(22+4) which is well
known to be optimal in the minimax sense. If it is only known tpate C<[0, 1]¢
(corresponding te = 1), then the rate is the slower ¢/ (22+2d) \which again is optimal,
as shown byBirgé€ (198€). The other cases give intermediate rates.

There are many ways of constructing&net for the uniform norm ove€{[0, 1)¢,
some of which are only of theoretical interest, but others being constructive. Splines of

an appropriate degree and dimension are one example. Givei"ffgnnetvn,a’s, we
letIl, . s be the uniform prior on the function8.{), for any(«, s). Condition B.1) is
satisfied forQ,, s the set of all densitieg such thap!/s € C [0,1]%. To adapt tax or
s it suffices to construct suitable weight functioks, i.e. setsA,, andS,, of regularity
indices and powers, and a measpre

Example 3.9 Within the context of Corollari8.6 construct the setd,, and.S,, as uni-

form grids of sizesk,, andL,, over intervalda,,, @,] and[1, 2]. The fastest rate,, , s

for (o, s) € A, X Sy, iSepnm, 0 = n~on/(23n+d) Therefore, conditiord.9) is satisfied

as soon ag,, > n®/(2@+d) The numbers,, ., . given by B.14) satisfy

log En,af sy _ ds?(a?_irl — a?)/2 N da;‘H(s?_H —s™M/2 } log n.
En,af (stafy +d)(sfaf +d)  (sPafy +1)(sf 00, +1)

n
41541

Therefore, condition3.10) is satisfied as soon as the meshwidths of the two grids are of
orderO(1/logn), i.e. as soon a&,, V L,, 2 logn. These two restrictions on the sizes
K,, andL,, of the number of grid points are easily compatible wRtlL({). The constants

E,, can be shown to be bounded feranging over compact intervals, by inspection of
the proofs irKolmogorov and Tihomiroy(1961) orivan der Vaart and Wellngd99€).
Because the present constants do not deperdandition 2.17) is satisfied, and hence
the construction of Exampl2.S can be used to also satisf§.12).

4 Finite-dimensional models

LeCam(1973, Le Cam(1986) calls a modefinite-dimensionaif its local entropy func-
tion is bounded. In this section we consider a list of mo@&ls; », indexed by a dimen-
sion parametey € N and a second parametkf € M, such that, for everyJ, M) and
constantsd,,, for everye > 0,

1S
IOgN(g,Cn,J7A4(2€),d> S A]wJ. (41)

Here the set&’, ;i) (¢) are the ones given irl(3), for o = (J, M). Thus the models
P.,5,m areJ-dimensional in the sense of Le Cam. Such finite-dimensional models may
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In this context an abstract definition of “regularity” of ordeiof a true densitypy,
given the list of model®,, ; »s, could be that, for som&/, € M,

d(po, Pr,gmy) S (l)ﬁ

J
If po is B-regular in this sense, then one might hope that a suitable estimation scheme
using the modeP,, ; s, would lead to a bias of ordef—?, and to a variance term of
orderJ/n. The best dimensiosi would balance the square bias and the variance, leading
to an optimal dimensiod satisfying.J ~2# ~ .J/n. This is solved byJ ~ n!/(26+1) and
would lead to an “optimal” rate of convergenge?/(25+1),

For super-regular densities satisfyidpo, P s11,) < exp(—J”), or evenpy €
P, 1o, M, fOr someJ, andM, a similar argument would lead to rates closet tQ/n.

We shall show in this section that an adaptive Bayesian scheme, using fairly simple
priors, can yield these optimal rates up to a logarithmic factor. This logarithmic factor
can be avoided by using other schemes (e.g. based on a discretization of the coefficient
space as in the preceding section, or a smooth prior on restricted coefficient space as in
Huang(2009), but we believe it cannot be removed from the simple construction used
in this section. The advantage of the present priors is that they give adaptation across a
wide range of regularity scales, and are easier to implement.

Le Cam’s definition of dimension is combinatorial rather than geometric. A “geomet-
rically J-dimensional” model can be described smoothly hirdimensional parameter
6 € R7. In that case it is natural to construct a prior Bp s s by putting a prior on
the parametef. If this prior is chosen to be smooth @Y, and a ball ofd-radiuse in
Py.s.m corresponds to a ball of radius,;Cye on the coefficienty € R’ (for some
constants3;C,,), then we may expect that, for some constani,

7.
Iy, g01 (Bn,sni(€)) = (BsCume)”,  if e > Dard(po, Pasn)- (4.2)

Here the constaniB ; andC; incorporate the constani; andC),, the prior density on
R’, and the volume of d-dimensional ball. A restriction of the type> d(po, Pn.s.ar)
is necessary, because by their definition the 8gts /() are centered aroung, and
this may be at a positive distance ®, ;. If € > 2d(po, Pn,sa), then a ball of
radiuse /2 around a projection gy into P, ; as is contained irC, s a(¢). The general
constantD), in (4.2) instead of the universal constahtis meant to make up for the
difference between the neighbourhodsls ; /() andC,, s (e).

For a large constamd, an arbitrary positive constant and finite sets7,, ¢ N and
M, C M, define

Jlogn
En, g, M = A\ mg ApA,
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Theorem 4.1 Suppose that4(1)-(4.2) hold for everyJ and M, where Ay, A > 1,
C2 Ay A > eand BjyVJ > e. LetJ, and M,, be such thatog #(7,, x M,,) < n
and e e~EAM = O(1) for someL > 0. Then for every sequencds € M,
and M,, € M,, with Dy d(po, Pn.J, . Mm,) < €n,J,.M,. there exists & such that the
posterior distribution relative to the weights, ; s satisfies thatPj'I1,, (p: d(p, po) >
KEn,Jn,Mn) — 0.

Proof: We apply Theorer2.4with o equal to the pai(J, M) andg3,, = (J,,, M,,). Here
we replace the global entropy condition by a local condition, as indicated in Réhtark
Condition 2.15) is (easily) satisfied in virtue of the definition of the numbers; s,
with £, = 1. The choicesr, = 1 immediately give thatd.19) is satisfied, for every

constantd > 0.

BecauseDy, d(po, Pn,s, .M,,) < €n.J,,Mm, Dy assumption, conditiord(2) implies
that the prior mass in the left side #.01) can be bounded below by

(BJ,,L C]V[,,L En,Jm]\ln)Jn — BJ”’ log(B,, \/jn)—&-%Jn log(Ciln A, A)e—%Jn log(n/logn) )
The first factor on the right is bounded below by 1 in view of the assumptions on the
constants. Because:; ;,, = J(logn)AyAandAy A > 1, it follows that 2.17) is
satisfied withF" = 1.

Finally, we verify 2.10). Because presently, = 1, the left side of 2.10) takes the

form

Z Z e—CJ(logn)AMA/4 S Z e_LAIW,

JeJ, MeM,, MeM,
for any constanf. andn sufficiently large. The right side is bounded for soieby
assumption. O

Example 4.2 (Supersmooth true density.)If po € Py, 5,1, fOor some pair of constants
(Jo, My), then we can apply the preceding theorem With, M,,) = (Jo, M), yielding

a rate of convergencg/(logn)/n.

Example 4.3 (Regular true density.) If there exists a constait, such thatl(po, Py, ,0,) S
J =5 for everyJ and some\,, then we can apply the preceding theorem witha mul-
tiple of (n/logn)'/(28+1) yielding a rate of convergence / log n)~?/(26+1),

Example 4.4 (Rough true density.)If there exists a constat, such thatl(po, Pr.s.01,) S

~

e=7" for every J, then we can apply the preceding theorem with a multiple of
log(n/logn)'/?, yielding a rate of convergendig n)'/#+1/2 /\/n.

N1 1 " Snilina MmAadale
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space of splines of orderrelative to this partition is the set of all continuous functions
f:10,1] — R that areg — 2 times differentiable of0, 1) and whose restriction to every of
the partitioning interval#(k -1)/K, k/K) is a polynomial of degree strictly less than
g. The set of these splines isJa= ¢ + K — 1-dimensional vector space. A convenient
basis is the set of B-splings; 1, ..., B s, defined e.g. ide Boor(2007).

Forg € R’ letd” B; = 3. 0, B, ; and define

1
pro(z) = P BI@=es0) e 0) _ / 7 BI) gy
0

Thusp; is a probability density that belongs toJadimensional exponential family
with sufficient statistics the B-spline functions. Since the B-splines add up to unity, the
family is actually of dimension/ — 1 and we can restri¢t to the subset of € R” such
thatd”1 = 0.

We now consider modef; ,, indexed by pairg.J, M) € N? consisting of the spline
densitieg ;o With 6 € © 55y = {0 € [-M, M]”:||0]|« < M,671 = 0}. Let the priors
I1,,, 7,2 be the distribution op ;¢ for © a random vector with an absolutely continuous
distribution with a density of which the quotient of supremum and infimun®gn, is
bounded by a fixed constant, for instance the uniform distribution.

Lemma 4.5 Conditions ¢.1) and 4.2) hold with the constantg,; > Mef*M B; =
ﬁv}/", Cyv = (KsM)~le=K1M* and D), = K, M, whereuv, is the volume of the
J-dimensional unit ball and{;, K> and K3 are universal positive constants.

Proof: Write ||0||. and||é||2 for the maximum norm and the Euclidean normdoE

R7. Let By (e) andCy s (e) be the sets defined i@, with o = (J, M) and the
redundant:, suppressed. >From the inequalities (and their derivations) on log spline
densities given iflGhosal et al(2003) (or alternativelyStoné(198€¢ andGhosal et al.
(2000)), it can be obtained that there exist constdiitsand K, such that

BJ_’M(KQMg) D) C,]’jw(&)7
10gN(€/5,CJ7M(€),h) < MefaiM g

Furthermore, itX1M¢ > h(po, Py r) also there exist8; ys € [—M, M7 with

Crm (e Me) 5 {pro[|0]loc < M, [0 — 01012 < VJe}.

Condition @.1) is immediate from this. By the assumption on the prior the prior probabil-
ity of the set off in the right set of the last display is at leésd/)~’ times its Euclidean
volume. Claim4.2) therefore follows from combination of the preceding inequalities.
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~ Iflogpo € C*[0, 1] and the ordey of the splines is larger thas, then the minimizer
0 0f 0 — |[logpse — logpolloo OVErd € R7 with 71 = 0 satisfies

hpyg,.p0) < |llogpyg, —logpolles S J7°. (4.3)

(See Lemmas 5 and 7 [@hosal et al(2003.) Becausé|log psgl/~ =< ||0||- the vec-
tor f; automatically has max-nori{9;||.. bounded by a multiple of log po| .. This
implies that a positive density, € C”[0, 1] can be approximated with an error of order
(1/J)° by a log spline density ifP; 5y, if My is sufficiently large. The preceding theo-
rem and example then give a rate of contractiotvoflog n)~#/(26+1) for the posterior.
This rate is the optimal one in the minimax sense up to the logarithmic factor. Although
we have proved only an upper bounded, the rate of contraction of the present posterior
appears to contain an additional logarithmic factor indeed. This is due to spreading the
prior mass smoothly over the coefficient space.

This complements the result/&hosal et al(2003), who considered adaptation to a
finite set of regularity levels assuming a fixed and known upper bddruh the absolute
values of the log densities.

5 Auxiliary lemmas and proofs

The following lemmas are taken fra@hosal et al(2000), and are used in the proofs of

the main results. The first lemma gives a sufficient condition for the existence of certain
tests in terms of the local entropy of a statistical model. The lemma is prov@tasal

et all (2000), following work bylLeCam (1973 andBirgé€ (1983. The numberd(e)

in the condition of the following lemma are related to the measures of dimension used
by these authors. Up to constaiis Cam(1986€) calls the numbersup_... N(¢) the
dimension ofP for the pair(d, &,,).

Lemma 5.1 Suppose that for some nonincreasing funct¥fz) and some,, > 0,
sup N(%,{pestgd(p,po) §25},d> < N(e), € > en.

E>En

Then for every > ¢, there exist tests,, (depending omp, ande but not oni) such that,
for a universal constank” and everyi € N,

1

n — 7'7/52
Pi'¢n < N(e)e ™ T o Kne®

2.2
sup Pn(l - (;bn) S efKne ! 9
pEP:d(p,po)>ie

Lemma 5.2 For everye > 0 and probability measurél on the set

{pe P:Polog]% < 52,P0(10g]%)2 < 52},
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Lemma 5.3 For any pair of probability measureB and P,
2 Do 2 Po
h?(p,po) < Polog* < 2h%(p,po) |1+ log < 2h%(p, po)
Po(IOg *) < h2(p,po)[1+10gH@H ] :
p P lloo

Lemma 5.4 For everyb > 0 there exists a constant, > 0 such that for every pair of
probability measure$ and Py with 0 < h%(p, po) < £,Po(po/p)?,

1 1 1 b
Py log%O S hz(p,po)(l + 4 logy W) + 5 logy Po(%o) )
Po? < p2 1 1 1 Po\"\?
Po(log p) Sh (P>P0)(1+ 5 log 7. p0) + b10g+Po(p) ) :

Lemma5.5 If v; is the volume of the/-dimensional unit ball, they — \/7‘]@] is
increasing, and, ag — oo,

\/jJ’UJ = f f \/T

1+o0(1
r(J/24+1)  VaJ (1+ofL).
Proof.of Theorem 2.1 AbbreviatePn’zﬁ = UaeA, >4, 1 Pra and letP,, .3 refer to

the union of theP,, , for a in the complementary par,,. Furthermore, sef,, , =
ne%ya. In view of assumptiond.7), we have, for every > 3E¢,, 3.,

N(% {p € Pn>p,:€ <dp,po) <2}, d) < N(Eeng,, Pnzp, d) < ePmon.

Therefore, by Lemma&.1with ¢ = Me,, 5, andN(e) = exp(EJ, g,) and sufficiently
large M, there exists for each a test¢,, such that for a universal constaitand any
1 €N,

. _ 2
Porb¢n S 36(E KM )Jn,ﬁn7

2.2
sup P(1 — ¢pp) < e BEM T nsn (5.1)
PEP,, >p, :d(p,po)>iMen g,

We chooseV! sufficiently large, so that the right side of the first equation tends to zero.
ThenPy ¢, 1L, (p: d(p, po) = Men g, | X1, .., Xn) < Py — 0.

For everya in U,:= U,(6,,T,F, F) as given in[2.€), we have the inequality
.0 (Bn,a(Fena)) = exp[—FTJ, g,] and, therefore, in view oX3),
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whereA,,: = [ exp[—Cnel ,] An(da). By Lemmab.2with C' = 1 ande = Fe, g,
and becausesfh 5, — 00, there exist eventg,, with PJ'(E,,) — 1 and onE,,,

/Hp%(xi) dIl,(p) > 672E2J"'ﬁ" IL, (U B (Efnﬁn))
=1 «

> e_QEZJn,ﬁ,,LHn( U Bma(gn,a))

acU,

> expl— (282 + FT 4+ CT)Jy, | 207,

where the last inequality follows from inequalitg.g). Using this lower bound for the

denominator of the posterior measufeZ], Fubini’s theorem and next the inequality
PeITi=1(p/po)(Xi)(1 — ¢n) < P™(1 — ¢,) and B.1), we see that

P(;L [(1 - ¢n)1Ean<p € Pn,ZBn:d(pvp0) Z M€H,5W,|X17 v aXn)]

n

e TR T s RS TTL (X0~ 60) dl(p)

B )‘(U") /p€7’n,3anid(p,po)>M€n,5m'_1pO

A, (2F%+CT+FT)J, KM?J
—— elef n,Bn e e I (P,
)\(Un) "( ﬂ,zﬁn)

IN

—CJn,a
< o@E*+CT+FT—KM?)Jp 5, fazﬁn € )\(da).
) AUn)

For sufficiently largeM the leading exponential term converges to zero. Furthermore,
the second term is bounded by assumpt@®&)((even with an additional factdr/4 in
the exponent).

Using thatPy [T, (p/po)(X;) < 1 and again Fubini's theorem, we also see that

P(;rl(l - (rbﬂ)]‘Ean (p S Pn,<ﬂn:d(pap0) Z Mgn,ﬂn ‘Xla oo 7Xn)
A 2
< _n (2F +CT+FT)Jn,ﬁnH
= XU n{Pr.<s.)
—Clna
< (2F*+CT+FT) Iy 5, fa<ﬁn € A(da)
B A(Un)
~CJnali)\(de)
A(Un) ’

< o~ QE*+CT+FT)Jn 5, /2 fa<,8n ¢

w/hara tha lact inaniialitvs fallovwawie from tha hat 1AHT S~ /OITT . ~O9(9102 | 7o
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