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Abstract

Let fnh(x) denote the deconvolution kernel density estimator. In
this paper we establish the asymptotic distribution of the supremum
distance supx∈[0,1] |fnh(x) − E [fnh(x)]|, which provides a global mea-
sure of performance of the deconvolution kernel density estimator. We
consider the supersmooth deconvolution problem, in particular decon-
volution for error distributions with characteristic functions that have
an exponential tail like the characteristic function of a normal density.
It turns out that the asymptotics are essentially different from corre-
sponding results in ordinary smooth deconvolution. We also briefly
discuss the method of construction of the uniform confidence intervals
for the target density f.

Keywords: Deconvolution, kernel density estimator, Rayleigh distribu-
tion, supremum distance.
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1 Introduction and results

Consider the classical deconvolution problem: let X1, . . . , Xn be i.i.d. obser-
vations, where Xi = Yi + Zi and Yi and Zi are independent. Assume that
the unobservable Yi have distribution function F and density f , and that
the random variables Zi have a known density k. Note that the density g of
Xi is equal to the convolution of f and k. The nonparametric deconvolution
problem is the problem of estimating f or F from the observations Xi. Thus
we want to recover the distribution of Yi using the contaminated measure-
ments Xi. Additional information on measurement error models and many
practical examples can be found in Carroll et al. (2006).

A popular density estimator for this problem is the deconvolution kernel
density estimator introduced in Carroll & Hall (1988) and Stefanski &
Carroll (1990). This estimator is defined as

fnh(x) =
1
2π

∫ ∞

−∞
e−itx φw(ht)φemp(t)

φk(t)
dt =

1
nh

n∑

j=1

vh

(x−Xj

h

)
, (1)

with
vh(u) =

1
2π

∫ ∞

−∞

φw(s)
φk(s/h)

e−isuds.

Here w denotes a kernel function, h > 0 is a bandwidth, φemp is the empirical
characteristic function of the sample defined by φemp(t) = (1/n)

∑n
j=1 eitXj ,

and φw and φk denote the characteristic functions of w and k, respectively.
Note that (1) is not a standard kernel density estimator, because the ker-
nel function vh depends on the bandwidth h. For an introduction to the
estimator (1) see e.g. Wand & Jones (1995).

The rate of decay to zero at minus and plus infinity of the modulus of the
characteristic function φk, and consequently the smoothness of k, is crucial
to the asymptotic behaviour of (1). Two cases have been distinguished,
the ordinary smooth case, where |φk| decays algebraically to zero, and the
supersmooth case, where it decreases exponentially. The asymptotics in the
ordinary smooth case are essentially the same as for a kernel estimator of a
higher order derivative of a density, see e.g. Fan (1991), Fan & Liu (1997)
and van Es & Kok (1998). The asymptotics in the supersmooth case have
been studied e.g. in Fan (1991) and van Es & Uh (2004, 2005).

Notice that the above papers study local properties of the estimator (1),
i.e. its pointwise behaviour. We, on the other hand, will focus on the asymp-
totic behaviour of the supremum distance of the estimator to its expectation,
which provides a global measure of its performance. Accordingly, define

Mn = sup
0≤x≤1

|fnh(x)− E [fnh(x)]|. (2)

The fact that the supermum is taken over [0, 1] is not a restriction of gen-
erality and is for convenience only. One could have considered any interval
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[a, b]. An alternative here is to consider the integrated squared error of the
estimator fnh, which is defined by

ISE[fnh] =
∫ ∞

−∞
(fnh(x)− E [fnh(x)])2dx,

since it also provides a global measure of performance of fnh, and study its
asymptotic distribution. This was done in Holzmann & Boysen (2006).

The asymptotic distribution of the supremum distance similar to (2),
namely

sup
x∈[0,1]

1√
g(x)

|gnh(x)− E [gnh(x)]|,

for an ordinary kernel density estimator gnh in the direct density estima-
tion setting (i.e. in the error-free case) was derived in Bickel & Rosenblatt
(1973). Owing in a certain sense to the similarity of the asymptotics in the
ordinary smooth deconvolution problem to that in the direct density esti-
mation problem, qualitatively similar results were obtained in Bissantz et
al. (2007) in the ordinary smooth deconvolution problem for the supremum
distance supx∈[0,1](g(x))−1/2|fnh(x)−E [fnh(x)]|. Normalisation with

√
g(x)

is explainable by the fact that the expression for the asymptotic variance in
the asymptotic normality theorem for the estimator fnh(x) in the ordinary
smooth deconvolution problem involves g(x), see Fan (1991). No direct
extension of the methods used in Bickel & Rosenblatt (1973) to the super-
smooth deconvolution problem is possible and derivation of the asymptotic
distribution of (2) requires a different approach. This is precisely the task
of the present paper. Notice that in (2) we do not have to normalise with√

g(x), because the asymptotic variance in the asymptotic normality theo-
rem for this case does not depend on g, but only on the error density k (in
some global way), see van Es & Uh (2005).

We now state the conditions on the density k and kernel w, which will be
used throughout the paper. The condition on k which defines supersmooth
deconvolution is given in Condition 1.

Condition 1. Assume that

φk(t) = C|t|λ0 exp
[
−|t|λ/µ

]
(1 + o(|t|−1)) (3)

as |t| → ∞, for a constant 0 < λ ≤ 2 and some constants µ > 0, λ0 ∈ R and
C ∈ R. Furthermore, let φk(t) 6= 0 for all t ∈ R.

Condition 1 is stronger than the usual condition on k in supersmooth
deconvolution given e.g. in van Es & Uh (2005), where the term o(|t|−1) is
not present and one just has the asymptotic equivalence.

Condition 2. Let φw be real-valued, symmetric and have support [−1, 1].
Let φw(0) = 1, and assume φw(1 − t) = Atα + o(tα) as t ↓ 0 for some
constants A and α ≥ 0.
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Examples of kernel functions and their characteristic functions satisfying
Condition 2 are the sinc kernel

w(x) = sinx/(πx),
φw(t) = I[−1,1](t),

where α = 0 and A = 1, and the kernel used for simulations in Fan (1992),

w(x) =
48x(x2 − 15) cos x− 144(2x2 − 5) sinx

πx7
,

φw(t) = (1− t2)3I[−1,1](t),

where α = 3 and A = 8.

Our main theorem establishes the asymptotic distribution of Mn. Since
it will appear repeatedly in the paper, we will write ζ(h) for exp(1/(µhλ)).

Theorem 1. Assume Condition 1 for λ = 2 and Condition 2 and let
E [X2

j ] < ∞. Let V denote a positive random variable with a Rayleigh
distribution with density fV (x) = x exp[−x2/2]I[x≥0]. Then, as n → ∞ and
h → 0,

√
n

hλ(1+α)+λ0−1ζ(h)
Mn

D→ 1
2

√
2

A

πC

(µ

λ

)1+α
Γ(α + 1)V, (4)

where Γ denotes the gamma function.

By assuming λ = 2 we restrict ourselves to deconvolution problems for
error distributions with characteristic functions that have an exponential
tail like the characteristic function of a normal density. The most important
case covered by this condition is standard normal deconvolution, where λ =
2, λ0 = 0, µ = 2 and C = 1. The condition λ = 2 seems to be essential in
the proof of Lemma 3, specifically in (15), where we prove a condition for
tightness of the remainder process R

(1)
n . Whether it can be relaxed by other

approaches, avoiding tightness, remains open.
The rate of convergence in Theorem 1 once again reflects the difficulty of

the supersmooth deconvolution problem compared to the ordinary smooth
deconvolution. Furthermore, unlike in ordinary smooth deconvolution, see
Bissantz et al. (2007), in order to obtain the asymptotic distribution of
Mn, we do not have to subtract a drift term. This also has a parallel when
considering the asymptotics of the ISE[fnh] in the supersmooth deconvolu-
tion, see Holzmann & Boysen (2006) for additional details. Notice also that
unlike the direct density estimation or the ordinary smooth deconvolution,
see Bickel & Rosenblatt (1973) and Bissantz et al. (2007), the limit distri-
bution in (4) is not Gumbel, which confirms the conjecture in Bissantz et
al. (2007) for the case λ = 2.
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One application of Theorem 1 is in construction of uniform confidence
intervals for f. Noting that the value of

P
( √

n

hλ(1+α)+λ0−1ζ(h)
Mn ≤ x

)
(5)

is approximately given by the value of the distribution function of the ran-
dom variable on the right-hand side of (4) at the point x, one can invert (5) in
the usual way to obtain the uniform confidence band for E [fnh(x)] on [0, 1].
However, in reality we are interested in the confidence band for f. It is well-
known that E [fnh(x)] = f ∗wh(x), where the function wh(y) = (1/h)w(y/h)
and ∗ denotes the convolution operator, see e.g. Wand & Jones (1995).
Hence E [fnh(x)] is a smoothed version of f(x). Using the identity

E [fnh(x)] = f(x) + (f ∗ wh(x)− f(x)),

it turns out that we have to deal with the bias of the estimator fnh(x),
which is given by f ∗wh(x)− f(x). Note that this expression coincides with
the bias of an ordinary kernel density estimator based on a sample from
f. A possible way to reduce it is to undersmooth the estimator fnh(x), i.e.
to take h relatively small, cf. Bissantz et al. (2007). We do not pursue
the question of uniform confidence bands any further, since it requires a
thorough simulation study, which lies outside the scope of the present paper.

When λ0 = 0, by Lemma 5 of van Es & Uh (2005) in (4) one can
equivalently normalize with

√
n

∫ 1
0 φw(s) exp[sλ/(µhλ)]ds/h. The latter nor-

malisation should be preferred for smaller sample sizes (and consequently
larger h) for reasons explained in van Es & Gugushvili (2008).

2 Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition of fnh(x) in van Es
& Uh (2005), which is the basis of the proof of their asymptotic normality
theorem. We have

fnh(x) =
1

πC
hλ0−1

∫ 1

ε
φw(s)s−λ0 exp(sλ/(µhλ))ds

1
n

n∑

j=1

cos
(Xj − x

h

)

+ R(1)
n (x) + R(2)

n (x) + R(3)
n (x),

(6)
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where R
(l)
n (x) = (1/n)

∑n
j=1 R

(1)
n,j(x), l = 1, 2, 3, and

R
(1)
n,j(x) =

1
C

1
π

hλ0−1

∫ 1

ε

(
cos

(
s
(Xj − x

h

))
− cos

(Xj − x

h

))

× φw(s)s−λ0 exp(sλ/(µhλ))ds

R
(2)
n,j(x) =

1
2πh

∫ ε

−ε
exp

(
is

(Xj − x

h

))
φw(s)

1
φk(s/h)

ds

R
(3)
n,j(x) =

1
2πh

(∫ −ε

−1
+

∫ 1

ε

)
exp

(
is

(Xj − x

h

))
φw(s)

×
( 1

φk(s/h)
− 1

C

( |s|
h

)−λ0

exp(|s|λ/(µhλ))
)
ds.

We will write R
(l)
n , l = 1, 2, 3 for the stochastic processes R

(l)
n = (R(l)

n (x))x∈[0,1].
Notice that these processes belong to the space C[0, 1].

Now the rough idea is to derive the asymptotic distribution of the supre-
mum of the first summand in (6) minus its expectation and to show that
the remainder terms are negligible. Define the process Un as

Un(x) =
1√
n

n∑

j=1

Un,j(x), (7)

where
Un,j(x) = cos

(Xj − x

h

)
− E

[
cos

(Xj − x

h

)]
(8)

Note that this is a process with expectation equal to zero at every x. Write

Sn = sup
0≤x≤1

|Un(x)|. (9)

Lemma 1. Under the conditions of Theorem 1 we have, as n → ∞ and
h → 0,

Sn
D→ sup

0≤x≤2π
|W (x)|,

where W is a zero mean Gaussian process on [0, 2π] with covariance function
Cov(W (x1),W (x2)) = (1/2) cos(x1 − x2).

Proof. Replacing x by yh, by the periodicity of the cosine function we have

6



for h ≤ (2π)−1 that

Sn = sup
0≤x≤1

|Un(x)|

= sup
0≤x≤1

∣∣∣ 1√
n

n∑

j=1

(
cos

(Xj − x

h

)
− E

[
cos

(Xj − x

h

)])∣∣∣

= sup
0≤y≤1/h

∣∣∣ 1√
n

n∑

j=1

(
cos

(Xj − yh

h

)
− E

[
cos

(Xj − yh

h

)])∣∣∣

= sup
0≤y≤1/h

∣∣∣ 1√
n

n∑

j=1

(cos(Yj − y)− E [cos(Yj − y)])
∣∣∣

= sup
0≤y≤2π

∣∣∣ 1√
n

n∑

j=1

(cos(Yj − y)− E [cos(Yj − y)])
∣∣∣,

= sup
0≤y≤2π

|Wn(y)|,

where
Yj =

Xj

h
mod 2π, (10)

and the process Wn on [0, 2π] is given by

Wn(y) =
1√
n

n∑

j=1

(Wn,j(y)− E [Wn,j(y)]) (11)

with Wn,j(y) = cos(Yj − y).

By Lemma 6 of van Es & Uh (2005) we know that Yj
D→ Un(0, 2π)

as h → 0 for each j, where Un(0, 2π) denotes the uniform distribution on
[0, 2π]. Hence by the dominated convergence theorem we get that

Cov
(

cos
(
Yj − y1

)
, cos

(
Yj − y2

))

→ 1
2π

∫ 2π

0
cos(u− y1) cos(u− y2)du =

1
2

cos(y1 − y2).

It follows that we have to study the convergence of the process Wn(x)−
E [Wn(x)] which belongs to C[0, 2π]. According to Prohorov’s theorem and
in particular Theorem 8.1 of Billingsley (1968), it suffices to show weak con-
vergence of the finite dimensional distributions and tightness of the sequence.
By the multivariate central limit theorem in the triangular array scheme or
Cramer-Wold device, see Theorem 7.7 in Billingsley (1968), the finite dimen-
sional distributions of the process Wn converge to multivariate normal distri-
butions with covariances given by Cov(W (y1),W (y2)) = (1/2) cos(y1 − y2).
To prove tightness, we will verify conditions of Theorem 12.3 of Billingsley
(1968). First of all, notice that the sequence Wn(0) is tight, because the
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asymptotic normality of Wn(0) follows by a univariate Lyapunov central
limit theorem in a trinagular array scheme, see Theorem 7.3 in Billingsley
(1968). Furthermore, for an arbitrary positive η,

P
(
|Wn(y2)− E [Wn(y2)]− (Wn(y1)− E [Wn(y1)])| ≥ η

)

≤ 1
η2

Var[Wn,j(y2)−Wn,j(y1)]

≤ 1
η2

E [(Wn,j(y2)−Wn,j(y1))2]

≤ 1
η2

(y2 − y1)2,

which follows from the fact that

| cos(Yj − y2)− cos(Yj − y1)| =
∣∣∣∣2 sin

(
2Yj − y2 − y1

2

)
sin

(
y1 − y2

2

)∣∣∣∣
≤ |y1 − y2|.

Here we used the inequality | sinx| ≤ |x|. Therefore Wn converges weakly
to a zero mean Gaussian process W on [0, 2π] with covariance function
Cov(W (y1),W (y2)) = (1/2) cos(y1 − y2). By the continuous mapping the-
orem, see Theorem 5.1 in Billingsley (1968), the supremum of |Wn| then
converges weakly to the supremum of the absolute value of the limit process,
which proves the lemma.

Lemma 2. With V as in Theorem 1, we have

sup
0≤x≤2π

|W (x)| D= 1
2

√
2V. (12)

Proof. Let N1 and N2 denote two independent standard normal random
variables and let us define the process W̃ by W̃ = (W̃ (x))x∈[0,2π], where

W̃ (x) D=
1
2

√
2(N1 cosx + N2 sinx). (13)

Since the covariance function Cov(W (x1),W (x2)) of the process W , given
by (1/2) cos(x1 − x2), equals Cov(W̃ (x1), W̃ (x2)) by

Cov
(1

2

√
2(N1 cosx1 + N2 sinx1),

1
2

√
2(N1 cosx2 + N2 sinx2)

)

=
1
2

(cosx1 cosx2 + sin x1 sinx2) =
1
2

cos(x1 − x2),

it follows that W
D= W̃ .
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Next write

1
2

√
2(N1 cosx + N2 sinx)

=
1
2

√
2
√

N2
1 + N2

2

( N1√
N2

1 + N2
2

cosx +
N2√

N2
1 + N2

2

sinx
)

=
1
2

√
2
√

N2
1 + N2

2 (cos ξ cosx + sin ξ sinx)

=
1
2

√
2
√

N2
1 + N2

2 cos(x− ξ), (14)

for a ξ such that cos ξ = N1/
√

N2
1 + N2

2 and sin ξ = N2/
√

N2
1 + N2

2 . The
supremum of the absolute value of (14) is equal to (1/2)

√
2
√

N2
1 + N2

2 =
(1/2)

√
2V, where V has a Rayleigh distribution. This entails (12).

Lemma 3. Let an =
√

nh−λ(1+α)−λ0+1(ζ(h))−1 denote the normalising se-
quence in Theorem 1. For l = 1, 2, 3 we have

an(R(l)
n − E [R(l)

n ]) P→ 0

as n →∞ and h → 0. Here 0 denotes the zero process on [0, 1].

Proof. To prove the lemma, we will apply Prohorov’s theorem, and in par-
ticular Theorem 8.1 of Billingsley (1968). Firstly, notice that for a fixed
x the remainder terms an(R(l)

n (x)−E [R(l)
n (x)]) vanish in probability, which

was proved in van Es & Uh (2005). This implies that the finite dimen-
sional vectors of the processes an(R(l)

n −E [R(l)
n ]) also converge in probability

to null vectors. To establish tightness, we will again verify conditions of
Theorem 12.3 of Billingsley (1968). Notice that when x = 0, the sequence
an(R(l)

n (0) − E [R(l)
n (0)]) is tight, since it converges to zero in probability.
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Furthermore, for an arbitrary positive η we have

P
(
an|R(1)

n (x2)− E [R(1)
n (x2)]− (R(1)

n (x1)− E [R(1)
n (x1)])| ≥ η

)

≤ a2
n

η2
Var[R(1)

n (x2)−R(1)
n (x1)]

=
a2

n

η2

1
n

Var[R(1)
n,1(x2)−R

(1)
n,1(x1)]

≤ a2
n

η2

1
n

E [(R(1)
n,1(x2)−R

(1)
n,1(x1))2]

≤ a2
n

η2

1
C2

1
π2

1
n

h2(λ0−1)(x2 − x1)2

×K2
(∫ 1

ε

(1− s

h2

)
φw(s)s−λ0 exp(sλ/(µhλ))ds

)2

= K2 a2
n

η2

1
C2

1
π2

1
n

h2(λ0−2)−2(x2 − x1)2

×
(∫ 1

ε

(
1− s)φw(s)s−λ0 exp(sλ/(µhλ))ds

)2

= O
( 1

n
h2(λ0−2)−2+2(2+α)λ(ζ(h))2a2

n

) 1
η2

(x2 − x1)2

= O
(
h2(λ−2)

) 1
η2

(x2 − x1)2 (15)

= O(1)
1
η2

(x2 − x1)2.

where K is some constant. Here we used Lemma 5 of van Es & Uh (2005),
which states that

∫ 1

ε
s−λ0(1− s)βφw(s) exp(sλ/(µhλ))ds

∼ A
(µ

λ
hλ

)1+α+β
ζ(h)Γ(α + β + 1), (16)

and the fact that for 0 ≤ s ≤ 1 and 0 ≤ x1 < x2 ≤ 1 we have
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∣∣∣ cos
(
s
(Xj − x2

h

))
− cos

(Xj − x2

h

)
− cos

(
s
(Xj − x1

h

))
+ cos

((Xj − x1

h

))∣∣∣

=
∣∣∣
∫ x2

x1

∫ 1

s

∂2

∂u∂v

{
cos

(
v
(Xj − u

h

))
− cos

(Xj − u

h

)}
dudv

∣∣∣

=
∣∣∣
∫ x2

x1

∫ 1

s

{1
h

sin
(
v
(Xj − u

h

))
+ v

(Xj − u

h2

)
cos

(Xj − u

h

)}
dudv

∣∣∣

≤
∫ x2

x1

∫ 1

s

1
h2

(|Xj |+ 1 + h) dudv

≤ 1
h2

(|Xj |+ 1 + h)(1− s)|x1 − x2|.

Hence the process an(R(1)
n − E [R(1)

n ]) is tight.
In order to prove tightness of the process an(R(2)

n − E [R(2)
n ]), note that,

as above, for positive η

P
(
an|R(2)

n (x2)− E [R(2)
n (x2)]− (R(2)

n (x1)− E [R(2)
n (x1)])| ≥ η

)

≤ a2
n

η2

1
n

E [(R(2)
n,1(x2)−R

(2)
n,1(x1))2]

≤ 4
a2

n

η2

1
4π2h2

1
n

(∫ ε

−ε

s

h
φw(s)

1
φk(s/h)

ds
)2

(x2 − x1)2

= 4
a2

n

η2

1
4π2h4

1
n

(∫ ε

−ε
sφw(s)

1
φk(s/h)

ds
)2

(x2 − x1)2

≤ 4a2
n

1
4π2h4

1
n

(2ε)2ε2
(∫ ε

−ε

1
φk(s/h)

ds
)2 1

η2
(x2 − x1)2

≤ 4a2
n

1
π2h4

1
n

ε4
(

sup
−ε≤s≤ε

1
φk(s/h)

ds
)2 1

η2
(x2 − x1)2

≤ 4a2
n

2
C2π2

1
n

(ε/h)4−2λ0 exp(2(ε/h)λ/µ)
1
η2

(x2 − x1)2

= o(1)
1
η2

(x2 − x1)2,

where K is some constant and where we used the fact that for 0 ≤ s ≤ 1,

∣∣∣ exp
(
is

(Xj − x2

h

))
− exp

(
is

(Xj − x1

h

))∣∣∣

≤
∣∣∣ cos

(
s
(Xj − x2

h

))
− cos

(
s
(Xj − x1

h

))∣∣∣

+
∣∣∣ sin

(
s
(Xj − x2

h

))
− sin

(
s
(Xj − x1

h

))∣∣∣ ≤ 2s

h
|x1 − x2|, (17)

which follows by converting the differences of sines and cosines into products
and using the fact that | sinx| ≤ |x|. Consequently, the process an(R(2)

n −
E [R(2)

n ]) is tight.
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To prove tightness of the process an(R(3)
n − E [R(3)

n ]), we first introduce
the function u, given by

u(y) =
C|y|λ0 exp(−|y|λ/µ)

φk(y)
− 1. (18)

By Condition 1 this function is bounded on R\(−δ, δ), where δ is an arbitrary
positive number. Moreover, by (3) the function xu(x) is also bounded and
both functions vanish at plus and minus infinity. It follows that (s/h)u(s/h)
is bounded and tends to zero for all fixed s with |s| ≥ ε as h → 0.

Using the function u, rewrite R
(3)
n,j(x) as follows

R
(3)
n,j(x) =

1
2πh

(∫ −ε

−1
+

∫ 1

ε

)
exp

(
is

(Xj − x

h

))
φw(s)

×
( 1

φk(s/h)
− 1

C

( |s|
h

)−λ0

exp(|s|λ/(µhλ))
)
ds

=
1

2πh

(∫ −ε

−1
+

∫ 1

ε

)
exp

(
is

(Xj − x

h

))
φw(s)

× 1
C

( |s|
h

)−λ0

exp(|s|λ/(µhλ))u(s/h)ds.

Next note that, as above, for positive η we have by (17) that

P
(
an|R(3)

n (x2)− E [R(3)
n (x2)]− (R(3)

n (x1)− E [R(3)
n (x1)])| ≥ η

)

≤ a2
n

η2

1
n

E [(R(3)
n,1(x2)−R

(3)
n,1(x1))2]

≤ a2
n

η2

1
4π2h2

1
n

((∫ −ε

−1
+

∫ 1

ε

)
φw(s)

× 1
C

( |s|
h

)−λ0

exp(|s|λ/(µhλ))
s

h
u
( s

h

)
ds

)2
(x2 − x1)2

= o(1)
1
η2

(x2 − x1)2

and hence an(R(3)
n − E [R(3)

n ]) is tight. By Prohorov’s theorem each of the
three processes now converges weakly to the zero process. Since the conver-
gence in distribution to a constant entails convergence to the same constant
in probability, this concludes the proof of the lemma.

Finally, we combine the obtained results to prove Theorem 1.

Proof of Theorem 1. The proof is immediate from Lemmas 1–3 just proved,
the fact that by (16)

an
1

πC
hλ0−1

∫ 1

ε
φw(s)s−λ0 exp(sλ/(µhλ))ds

1√
n

∼ A

πC

(µ

λ

)1+α
Γ(α + 1),

12



and Theorems 4.1 and 5.1 of Billingsley (1968).
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