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Abstract

The circular choosability or circular list chromatic number of a graph is a list-version of
the circular chromatic number, introduced by Mohar [4] and studied in [17, 2, 5, 7, 8, 15]
and [10]. One of the nice properties that the circular chromatic number enjoys is that it is
a rational number for all finite graphs G (see for instance [16]), and a fundamental question,
posed by Zhu [17] and reiterated in [2] and [5], is whether the same holds for the circular
choosability. In this paper we show that this is indeed the case.
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1 Introduction and statement of result

For r > 0 we shall denote by S(r) the interval [0, r] with the endpoints {0, r} identified. For
x ∈ [0, r] we shall denote xr := min(x, r − x). Alternatively S(r) can be viewed as a circle of
circumference r, and xr as the length of the shortest circular arc between 0 and x. An r-circular
colouring of a graph G is a map c : V (G) → S(r) such that

|c(v)− c(u)|r ≥ 1

for any edge uv ∈ E(G). The circular chromatic number of G is defined as:

χc(G) := inf{r ≥ 1 : there exists an r-circular colouring c : V (G) → S(r)}.

The circular chromatic number has received considerable attention since it was first introduced
by Vince in 1988 [12]. It enjoys several nice properties, including that dχc(G)e = χ(G) – so that
it is a “refinement” of the ordinary chromatic number – and that χc(G) is a rational number for
all finite G. For proofs of these facts and an overview of the most important properties of χc, see
for instance [16].

The circular choosability is a “list version” of the circular chromatic number that was intro-
duced by Mohar in 2002 [4]. One of several equivalent definitions is as follows. If G is a graph
and r > 0 then an r-circular list assignment L assigns to each vertex v ∈ V (G) a set L(v) ⊆ S(r).
We say that G is L-circular choosable if there exists an r-circular colouring c : V (G) → S(r) with
c(v) ∈ L(v) for all v ∈ V . For W a Lebesgue measurable subset of R or S(r), let µ(W ) denote
the Lebesgue measure (“length”) of W . If G is L-circular choosable for each r ≥ t and for each
r-circular list assignment L with L(v) Lebesgue measurable and µ(L(v)) ≥ t for all v, then G is
t-circular choosable. The circular choosability of G is defined as:

cch(G) := inf{t ≥ 1 : G is t-circular choosable}.
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Since its definition by Mohar [4], circular choosability has been studied by several authors including
Zhu [17], Havet et al. [2], Norin [5], Norin et al. [7], Norin and Zhu [8], Raspaud and Zhu [10] and
Yu et al. [15].

A fundamental open question, posed by Zhu [17] and reiterated by Havet et al. [2] and Norine [5]
is whether cch(G) is a rational number for every finite graph G. Here we will answer this question
in the affirmative.

Theorem 1. cch(G) ∈ Q for any finite graph G.

It should perhaps be mentioned that our definition of cch(G) differs somewhat from the original
definition of Mohar [4], who only allowed circular list assignments L for which L(v) consists of
finitely many open intervals (ie. under his definition G is t-circular choosable if it is L-circular
choosable for all circular list assignments with L(v) consisting of finitely many open intervals and
µ(L(v)) ≥ t for all v). We are on the other hand allowing the L(v) to be arbitrary Lebesgue
measurable sets. It is not immediately clear – at least to the authors – that both definitions
necessarily give the same value. That this is the case is however an easy corollary to Proposition 8
below.

2 The proof

We first need to introduce some extra notation and definitions. Throughout this paper all graphs
will be finite. Whenever G = (V,E) is a graph, we shall denote n := |V | and we will always
assume that V = {1, . . . , n}. If L is an r-circular list assignemnt and c : V → S(r) a (valid)
L-circular colouring if it is a valid circular colouring and c(v) ∈ L(v) for all v ∈ V . From now on,
when there is mention of a circular list assignment L we will always assume that L(v) is Lebesgue
measurable for all v. We will usually speak simply of a circular list assignment L and leave the
circumference r of the circle S(r) that the lists are defined on implicit. If we do need to refer to
this circumference, we will denote it by r(L). We will also denote

t(L) := min
v∈V (G)

µ(L(v)).

The following observation is immediate from the definition of cch:

Lemma 2. cch(G) = sup{t(L) : G is not L-circular choosable} provided G has at least one edge.

If G is L-circular choosable for any list assignment L with the property that µ(L(v)) ≥ t and
L(v) consists of at most m disjoint intervals for all v ∈ V , then we will say that G is (t,m)-circular
choosable. Let us define

cchm(G) := inf{t ≥ 1 : G is (t,m)-circular choosable}.

Clearly cch(G) ≥ cchm(G) for allm. According to Proposition 8 below we even have that cch(G) =
cchm(G) for sufficiently large m. The proof of this nontrivial fact accounts for the bulk of this
paper.

Let us observe that when computing cchm(G) we can restrict attention to lists consisting of
only open intervals or only closed intervals if that is more convenient; and we can also allow lists
that consist of at most m intervals and singletons (“degenerate intervals”).

We will call a map c : V (G) → S(r) a strict circular colouring of G if |c(v)− c(u)|r > 1 for all
uv ∈ E(G). If L is a circular list assignment, then we will say that G is L-strict circular choosable
if there exists a strict circular colouring with c(v) ∈ L(v) for all v ∈ V ; and we will say that
G is t-strict circular choosable if it is L-strict circular choosable for every list assignment with
µ(L(v)) ≥ t for all v ∈ V . If G is L-strict circular choosable for every list assignment with the
property that µ(L(v)) ≥ t and L(v) consists of at most m disjoint intervals then we will say that
G is (t,m)-strict circular choosable. For technical reasons we need to work with strict circular
colourings rather than ordinary circular colourings in some of our proofs. The following lemma
says that we can reformulate the definitions of cch(G) and cchm(G) in terms of strict circular
colourings.
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Lemma 3. The following are equivalent formulations of cch, resp. cchm:

(i) cch(G) = inf{t ≥ 1 : G is t-strict circular choosable};

(ii) cchm(G) = inf{t ≥ 1 : G is (t,m)-strict circular choosable}.

Proof: We shall only give the proof of (i), because the proof of (ii) is completely analogous. Let
τ(G) denote the infimum in the right-hand side of (i). Clearly cch(G) ≤ τ(G), since strict circular
colourings are also circular colourings.

Now let L be a list assignment that does not allow a strict circular colouring. Let 0 < ε < 1 be
arbitrary. Let us set r := r(L), r′ := (1− ε)r and define L′ by setting L′(v) = (1− ε)L(v) ⊆ S(r′).
We claim that L′ does not allow a (non-strict) circular colouring. From this it will follow that
cch(G) ≥ t(L′) = (1− ε)t(L) and, since L, ε are arbitrary, it also follows that cch(G) ≥ τ(G).

To prove the claim, suppose that c′ : V → S((1− ε)r) is a (non-strict) circular colouring with
c′(v) ∈ L′(v) and let c : V → S(r) be given by c(v) := c′(v)/(1− ε). If uv ∈ E is an edge then

|c(v)− c(u)|r = min(|c(v)− c(u)|, r − |c(v)− c(u)|)
= min(|c′(v)− c′(u)|, r′ − |c′(v)− c′(u)|)/(1− ε)
= |c′(v)− c′(u)|r′/(1− ε) ≥ 1/(1− ε),

using that |λx − λy| = λ|x − y| for all x, y ∈ R and λ ≥ 0. Thus c is a strict circular colouring
with c(v) ∈ L(v) for all v, contradicting the choice of L. So the claim holds indeed. �

The next lemma shows that when determining cch(G) we can restrict ourselves to circular list
assignments with r(L) not larger than n · t(L).

Lemma 4. Let G be a graph, and let L be a circular list assignment such that G is not L-
strict circular choosable. Then there exists a circular list assignment L′ with t(L′) ≥ t(L) and
r(L′) ≤ n · t(L) such that G is also not L′-strict circular choosable.

Proof: We may assume wlog. that µ(L(v)) = t(L) for all v ∈ V . Let us set A :=
⋃
v∈V L(v) and

r′ := µ(A) (note that r′ ≤ n · t(L)). In the remainder of the proof we will treat A and the lists
L(v) as subsets of [0, r]. Let us consider the map φ : [0, r] → [0, r′] given by φ(x) := µ([0, x] ∩A).
Notice that φ is continuous and non-decreasing. Let us now set

L′(v) := cl(φ[L(v)]).

(Here cl(.) denotes topological closure.) We will show that if we interpret the L′(v) as subsets of
S(r′) then the r′-circular list assignment L′ is as required by the lemma. First note that L′(v) is
Lebesgue measurable for all v ∈ V , since it is closed. We now need to check that µ(L′(v)) ≥ t(L)
for all v ∈ V and that G is not L′-circular choosable.

To this end, we first claim that:

µ(φ−1[I] ∩A) = µ(I) for any interval I ⊆ [0, r′]. (1)

For, if a′ < b′ ∈ [0, r′] are the endpoints of I then it follows from the fact that φ is continuous
and nondecreasing that φ−1[I] is also an interval and its endpoints a < b ∈ [0, r] satisfy φ(a) =
a′, φ(b) = b′. By definition of φ we have µ(I) = b′−a′ = φ(b)−φ(a) = µ([a, b]∩A) = µ(φ−1[I]∩A),
proving the claim.

Next, recall that according to the outer-measure construction (see for instance [1], pages 14–21)
for all Lebesgue measurable B it holds that µ(B) = infI

∑
I∈I µ(I), where the infimum is over all

countable collections of open intervals that cover B. Thus, let I1, I2, . . . be countably many open
intervals that cover L′(v). Let us set Jk := φ−1[Ik ∩ [0, r′]] ∩A for all k ≥ 1. Then the Jk clearly
cover L(v), so that by (1) and countable subadditivity of the Lebesgue measure:∑

k

µ(Ik) ≥
∑
k

µ(Ik ∩ [0, r′]) =
∑
k

µ(Jk) ≥ µ(L(v)).
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Since the Ik were an arbitrary collection of open intervals that cover L′(v), it follows that
µ(L′(v)) ≥ µ(L(v)).

Finally suppose that there exist c′(v) ∈ L′(v) so that |c′(v) − c′(u)|r′ > 1 for all uv ∈ E.
We can assume wlog. that c′(v) ∈ φ(L(v)) for all v (since L′(v) is the closure of φ(L(v)) and
(x1, . . . , xn) 7→ minuv∈E |xv − xu|r′ is continuous). Let us thus assume c′(v) ∈ φ(L(v)), and pick
an arbitrary c(v) ∈ φ−1(c′(v)) ∩ L(v) for all v. Now let uv ∈ E be arbitrary. We can assume
wlog. c(v) > c(u). By definition of φ:

|c(v)− c(u)|r = min(|c(v)− c(u)|, r − |c(v)− c(u)|)
= min(µ([c(u), c(v)]), µ([0, c(u)]) + µ([c(v), r]))
≥ min(µ([c(u), c(v)] ∩A), µ([0, c(u)] ∩A) + µ([c(v), r] ∩A))
= min(|c′(v)− c′(u)|, r′ − |c′(v)− c′(u)|)
= |c′(v)− c′(u)|r′ > 1.

But this shows that c is an r-strict circular colouring with c(v) ∈ L(v), which contradicts the
choice of L. It follows that G is not L′-strict circular choosable as required. �

We will also need the following fact:

Theorem 5 ([17]). cch(G) ≤ ∆(G) + 1 for all finite graphs G.

Here we should remark that although we have not yet proved that the definition used in this paper
is equivalent to the original definition of Mohar [4] (which is used in the proof of Theorem 5 given
in [17]), the proof given in [17] can easily be adapted to work for our definition as well.

Lemma 6. For each finite G there exists an r = r(G) and an r-circular list assignment L with
µ(L(v)) ≥ cch(G) for all v ∈ V such that G is not L-strict circular choosable.

Proof: By Lemma 2 there exists a sequence of (not necessarily distinct) circular list assignments
L1, L2, . . . such that G is not Lm-strict circular choosable for all m and t(Lm) → cch(G). For
convenience, let us set tm := t(Lm) and rm := r(Lm). By Lemma 4 and Theorem 5 we may
assume that rm ≤ n2 for all m, and consequently we can assume (restricting to a subsequence if
necessary) that rm tends to some limit r ≤ n2. In the remainder of the proof we will treat the
lists Lm(v) as subsets of [0, n2].

We shall inductively define a decreasing sequence of infinite subsets Mk of N and vectors
ak ∈ {0, 1}V×{0,...,n22k−1} for k ∈ N such that:

(i) Mk+1 ⊆ Mk;

(ii) Mk is infinite;

(iii) If akv,i = 1 then Lm(v) ∩ [ i
2k ,

i+1
2k ] 6= ∅ for all m ∈ Mk;

(iv) If akv,i = 0 then Lm(v) ∩ [ i
2k ,

i+1
2k ] = ∅ for all m ∈ Mk.

The construction goes as follows. For each k ∈ N and a ∈ {0, 1}V×{0,...,n22k−1}, let Ma
k denote

the set of those m ∈ N for which Lm(v) ∩ [ i
2k ,

i+1
2k ] 6= ∅ precisely when av,i = 1. Then Ma

1 must
be infinite for at least one a, because the Ma

1 partition N. Let a1 ∈ {0, 1}V×{0,...,n2−1} be such
an a and set M1 := Ma1

1 . Similarly, given Mk−1, for at least one a ∈ {0, 1}V×{0,...,n22k−1} the set
Mk−1 ∩ Ma

k must be infinite. Pick such an a and put ak := a,Mk := Mk−1 ∩ Ma
k. Clearly, the

Mk, a
k thus constructed satisfy the demands (i)-(iv).

For v ∈ V, k ∈ N, let us denote Lk(v) :=
⋃
{[ i

2k ,
i+1
2k ] : akv,i = 1}. Note that Lm(v) ⊆ Lk(v) for

all m ∈ Mk, v ∈ V, k ∈ N. Thus:

µ(Lk(v)) ≥ sup
m∈Mk

µ(Lm(v)) ≥ cch(G),
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by choice of the initial sequence (Lm)m. Next, let us define

L(v) :=
∞⋂
k=1

Lk(v).

It remains to be seen that the L(v) yield an r-circular list assignment that satisfies the requirements
of lemma 6.

Clearly L(v) is closed (and hence Lebesgue measurable) for all v. Observe that Lk+1(v) ⊆ Lk(v)
for all v and k by construction. By “continuity of measure” we therefore have:

µ(L(v)) = lim
k→∞

µ(Lk(v)) ≥ cch(G),

for all v ∈ V .
Next note that L(v) ⊆ [0, r] for all v ∈ V , because Lk(v) ⊆ [0, rm + 1

2k ] for all m ∈ Mk by
construction and rm → r.

Finally, suppose that there exists a function c : V → [0, r] with c(v) ∈ L(v) for all v ∈ V
and |c(v) − c(u)|r > 1 for all uv ∈ E. For each k ∈ N, let us arbitrarily pick an mk ∈ Mk. By
construction, for each v ∈ V and k ∈ N, we can pick a ck(v) ∈ Lmk

(v) such that |ck(v)− c(v)| <
2−k. But then it holds that

limk→∞ |ck(v)− ck(u)|rmk
= limk→∞min(|ck(v)− ck(u)|, rmk

− |ck(v)− ck(u)|)
= min(|c(v)− c(u)|, r − |c(v)− c(u)|)
= |c(v)− c(u)|r > 1,

for all uv ∈ E. Hence G is Lmk
-circular choosable for k sufficiently large, contradicting our choice

of the initial sequence (Lm)m. So L is indeed as required. �

It is perhaps interesting to remark that there is no nonstrict analogue of Lemma 6 (for instance:
cch(K2) = 2 and it is 2-circular choosable).

We will say that a set I ⊆ S(r) is a circular interval if it is of the form I = {xmod r : x ∈ J}
for some interval J ⊆ R.

Lemma 7. For each r > 0 and 0 < ε < r there exists a finite set A ⊆ S(r) such that:

(i) I ∩A 6= ∅ whenever I ⊆ S(r) is a circular interval with µ(I) ≥ ε;

(ii) a− 1 mod r ∈ A for all but at most one a ∈ A;

(iii) a+ 1 mod r ∈ A for all but at most one a ∈ A.

Proof: First suppose that r = p
q is rational. Pick an integer N such that 1

Nq < ε. It can be easily
checked that the set A := { k

Nq : k = 0, . . . , Np} is as required (and in fact there are no exceptions
to demands (ii), (iii)).

Now suppose r is irrational. First note that the points imod r, i ∈ Z are all distinct (if
imod r = jmod r for integers i < j then j − i = kr for some positive integer k, which implies
r = (i− j)/k ∈ Q). We claim that for M = M(r) a sufficiently large integer, the set

A := {imod r : i = 0, . . . ,M}

is as required. To see this first note that for m > dr/εe, the set {imod r : i = 0, . . . ,m} must
contain two points at distance < ε. In fact, if |imod r − jmod r|r < ε with i < j then we also
have |(j − i) mod r|r < ε. Hence we can pick m0 ≤ dr/εe + 1 such that |m0 mod r|r < ε. Let us
assume m0 mod r ∈ [0, ε) (the case when m0 mod r ∈ (r − ε, r] is similar). Set l := m0 mod r and
note that 2m0 mod r = 2l, 3m0 mod r = 3l etc. The set {i · m0 mod r : i = 0, 1, . . . , br/lc} thus
already satisfies (i) and it follows that if we set M := m0 · br/lc then the set A is as required (the
two exceptions to demands (ii) and (iii) being 0 and M mod r). �
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Proposition 8. For each finite graph G, there exists an m = m(G) such that cch(G) = cchm(G).

Proof: First note that cch(G) = 1 iff G has no edges at all, and cch(G) ≥ 2 otherwise. Further-
more, if G has at least one edge, 1 ≤ t < 2 and L is defined by L(v) := S(t) for all v ∈ V , then G
is not L-circular choosable. So if cch(G) equals 1 or 2 then cch(G) = cch1(G). For the remainder
of the proof, we can therefore assume that cch(G) > 2.

Let r = r(G) and L be as provided by Lemma 6. Choose an ε < min((r − 2)/2, r
4n+2 ) and let

A = A(ε, r) ⊆ S(r) be as provided by Lemma 7. Set M := |A| and m := (2n+ 1) · n! ·Mn.
Pick an arbitrary vertex v ∈ V . The idea for the rest of the proof is to show there exists

L′(v) ⊇ L(v) that consists of at most m intervals and singletons, such that if we set L′(u) := L(u)
for all u 6= v then G is not L′-strict circular choosable either. From this the proposition follows
by induction on the number of vertices whose lists are not the union of at most m intervals and
singletons.

Let us relabel A as A = {a0, a1, . . . , aM−1} where ai+1 is the point immediately clockwise from
ai. Here and in the rest of the proof addition of indices is always taken modulo M . Let ab1 , ab2
denote the “bad” points for which abi − 1 mod r or abi + 1 mod r is not in A. (If there are no bad
points, or only one then we can arbitrarily pick two or one point from A and treat them as bad
in the rest of the proof.) For convenience let us assume (wlog.) that a0 = 0. Let Ii denote the
interval Ii := [ai, ai+1) if i < M − 1 and IM−1 := [aM−1, r).

For k ∈ {0, . . . , 2n} let us write aki := ai + 2kεmod r and set Ak := {ak0 , . . . , akM−1}, and
Iki := {(x + 2kε) mod r : x ∈ Ii}. (Ie. the superscipt k denotes that the whole construction has
been shifted clockwise by 2kε.) Let us first observe that for any map c : V → S(r) there exists a
k ∈ {0, . . . , 2n} such that c(u) 6∈ Ikb1−1 ∪ Ikb1 ∪ I

k
b2−1 ∪ Ikb2 for all u ∈ V . To see this, notice that the

sets Ikb1−1 ∪ Ikb1 are disjoint for k = 0, . . . , 2n. Hence there are at least n+ 1 values of k for which
Ikb1−1 ∪ Ikb1 does not contain any c(u); and, since the same argument applies to the Ikb2−1 ∪ Ikb2 ,
there must indeed be at least one value of k for which Ikb1−1 ∪ Ikb1 ∪ I

k
b2−1 ∪ Ikb2 does not contain

any c(u).
For k ∈ {0, . . . , 2n}, p : V → {0, . . . ,M − 1} \ {bi − 1, bi : i = 1, 2} and σ a permutation of

V = {1, . . . , n}, let Ck,p,σ denote the set of all maps c : V → S(r) for which

(C-1) c(i) ∈ Ikp(i) for all i ∈ V ;

(C-2) |c(i)− akp(i)|r ≤ |c(j)− akp(j)|r if σ(i) < σ(j);

(C-3) c(i) ∈ L(i) for all i 6= v.

(C-4) c is a strict circular colouring.

Let us denote
Ok,p,σ := {x ∈ S(r) : there exists c ∈ Ck,p,σ with c(v) = x},

and observe that⋃
k,p,σ

Ok,p,σ = {x ∈ S(r) : ∃ a strict circular colouring c with c(v) = x and c(u) ∈ L(u) for all u 6= v}.

We shall show that Ok,p,σ is either the empty set, a singleton or an interval for each triple k, p, σ.
This shows that L′(v) := S(r) \

⋃
k,p,σ Ok,p,σ is a union of at most m = (2n+ 1) ·n! ·Mn intervals

and singletons. Since L′(v) is precisely the set of all x ∈ S(r) for which there is no strict circular
colouring c : V → S(r) with c(v) = x and c(u) ∈ L(u) for all u 6= v, this choice of L′(v) is as
required.

Let us thus pick an arbitrary triple k, p, σ and considerOk,p,σ. To ease the burden of notation we
will assume wlog. that k = 0 and σ is the identity. Observe that for x ∈ Ii we have |x−ai|r = x−ai.

A key property of A is that if ai+1 mod r = aj then also ai+1 +1 mod r = aj+1, unless i or j is
in {b1 − 1, b1, b2 − 1, b2}. By choice of ε,A and p the following thus hold for every pair of vertices
i, j ∈ V :
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• If |ap(j) − ap(i)|r > 1 then |x− y|r > 1 for all x ∈ Ip(i), y ∈ Ip(j);

• If |ap(j) − ap(i)|r < 1 then |x− y|r < 1 for all x ∈ Ip(i), y ∈ Ip(j);

• If ap(j) = ap(i) + 1 mod r and x ∈ Ip(i), y ∈ Ip(j) then |x− y|r > 1 iff x− ap(i) < y − ap(j).

Let us say that an edge ij ∈ E with j < i is:

• bad if |ap(j) − ap(i)|r < 1 or if ap(j) = ap(i) + 1 mod r;

• relevant if ap(j) = ap(i) − 1 mod r;

• good if it is not bad or relevant.

Observe that any map c : V → S(r) that satisfies (C-1) and (C-2) is a strict circular colouring iff
there are no bad edges and the inequality in (C-2) is strict for all relevant edges. From now on
we shall assume there are no bad edges (since otherwise Ck,p,σ and Ok,p,σ are both empty and we
are done).

Let us set cmin(1) = inf Ip(1)∩L(1) (we can assume that Ip(1)∩L(1) 6= ∅ – otherwise Ck,p,σ and
Ok,p,σ are empty). If the infimum is genuine (ie. not a minimum) then we will say that cmin(1) is
dangerous. Next, suppose that for some i ≤ v the values cmin(j) have been defined for all j < i.
Let X(i) denote the set of all x ∈ Ip(i) such that:

(X-1) x− ap(i) ≥ cmin(j)− ap(j) for all j < i;

(X-2) x− ap(i) > cmin(j)− ap(j) if j < i and cmin(j) is dangerous;

(X-3) x− ap(i) > cmin(j)− ap(j) if j < i and ij is a relevant edge.

Let us set cmin(i) := infX(i) ∩ L(i) for i < v and cmin(v) := infX(v). If the infimum in the
definition of cmin(i) is genuine (ie. not a minimum) then we will say that cmin(i) is dangerous.
By a straightforward inductive argument c(i) ≥ cmin(i) for all c ∈ Ck,p,σ and all i ≤ v; and if
X(i) ∩L(i) = ∅ for some i < v or X(v) = ∅ then Ck,p,σ and Ok,p,σ are also empty – in which case
we are done, so we shall assume this is not the case.

Similarly, let us put cmax(n) = sup Ip(n) ∩ L(n) (again we may assume Ip(n) ∩ L(n) 6= ∅ –
otherwise Ck,p,σ and Ok,p,σ are both empty too). If the supremum is genuine (ie. not a maximum)
then we will say that cmax(n) is dangerous. Suppose that for some i ≥ v the values cmax(j) have
been defined for all j > i. Let Y (i) denote the set of all y ∈ Ip(i) such that:

(Y-1) y − ap(i) ≤ cmax(j)− ap(j) for all j > i;

(Y-2) y − ap(i) < cmax(j)− ap(j) if j > i and cmax(j) is dangerous;

(Y-3) y − ap(i) < cmax(j)− ap(j) if j > i and ij is a relevant edge.

Let us set cmax(i) = supY (i) ∩ L(i) for i > v and cmax(v) = supY (v). We will call cmax(i) dan-
gerous if the supremum in the definition is genuine. Again a straightforward inductive argument
shows that c(i) ≤ cmax(i) for all c ∈ Ck,p,σ and i ≥ v; and that we can assume Y (v) 6= ∅ and
Y (i) ∩ L(i) 6= ∅ for all i > v.

We have seen that cmin(v) ≤ c(v) ≤ cmax(v) for all c ∈ Ck,p,σ. So if cmin(v) ≥ cmax(v) then
Ok,p,σ is either empty or a singleton and we are done. Let us therefore assume that cmin(v) <
cmax(v), and pick an arbitrary cmin(v) < x < cmax(v). To finish the proof it suffices to construct
a c ∈ Ck,p,σ with c(v) = x.

Claim 9. It is possible to pick c(1), . . . , c(n) such that c(v) = x, c(i) ∈ L(i) ∩ Ip(i) for i 6= v and:

(c-1) c(i) = cmin(i) if i < v and cmin(i) is not dangerous;

(c-2) min
i<j≤v

c(j)− ap(j) > c(i)− ap(i) > cmin(i)− ap(i) if i < v and cmin(i) is dangerous;
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(c-3) c(i) = cmax(i) if i > v and cmax(i) is not dangerous;

(c-4) maxv≤j<i c(j)− ap(j) < c(i)− ap(i) < cmax(i)− ap(i) if i > v and cmax(i) is dangerous.

Proof of Claim 9: Set c(v) = x. Let us first pick an i < v and suppose that c(j) has already been
defined for all i < j < v in such a way that (c-1) and (c-2) hold for all j with i < j < v (this is
certainly true when i = v− 1). If cmin(i) is not dangerous, then we can simply put c(i) := cmin(i).
Now suppose that cmin(i) is dangerous. In this case (cmin(i), cmin(i) + ε) ∩ L(i) is nonempty for
all ε > 0 (since the infimum in the definition of cmin(i) is genuine). In addition cmin(i) − ap(i) <
mini<j≤v c(j) − ap(j). To see this, suppose that cmin(i) − ap(i) ≥ c(j) − ap(j) for some i < j ≤ v.
Because c(j)−ap(j) ≥ cmin(j)−ap(j) (by (c-1), resp. (c-2)) and cmin(i)−ap(i) ≤ cmin(j)−ap(j) (by
(X-1)), we necessarily have c(j)−ap(j) = cmin(j)−ap(j) = cmin(i)−ap(i). Then cmin(j) must also
be dangerous, because cmin(i) is dangerous (cf. (X-2)). But this contradicts assumption (c-2).
So indeed cmin(i)− ap(i) < mini<j≤v c(j)− ap(j), and hence we can choose

c(i) ∈ (cmin(i), ap(i) + min
i<j≤v

c(j)− ap(j)) ∩ L(i).

Thus we can indeed pick c(i) satisfying (c-1) and (c-2) for all 1 ≤ i < v. The proof that we can
also pick c(i) satisfying (c-3) and (c-4) for all v < i ≤ n is completely analogous to the preceding
argument. �

It remains to be seen that c ∈ Ck,p,σ. Clearly (C-1) and (C-3) hold. To see that (C-2) also
holds, pick 1 ≤ i < j ≤ n. First suppose that i < j ≤ v. If cmin(i) is dangerous then c(i)− ap(i) ≤
c(j)−ap(j) by (c-2). If cmin(i) is not dangerous then c(i)−ap(i) = cmin(i)−ap(i) ≤ cmin(j)−ap(j) ≤
c(j)− ap(j) (by (c-1), (c-2) and (X-1)). If v ≤ i < j then we also have c(i)− ap(i) ≤ c(j)− ap(j),
by an analogous argument. Finally, if i < v < j then c(i)− ap(i) ≤ c(v)− ap(v) ≤ c(j)− ap(j), so
that (C-2) indeed holds.

To finish the proof we now only need to verify that c is a strict colouring. Let ij ∈ E be a
relevant edge. First suppose that i < j ≤ v. If cmin(i) is dangerous then c(i)− ap(i) < c(j)− ap(j)
by (c-2). So suppose that cmin(i) is not dangerous. Then we have c(i) = cmin(i), and by (X-
3) either cmin(j) − ap(j) > cmin(i) − ap(i) or cmin(j) − ap(j) = cmin(i) − ap(i) and cmin(j) is
dangerous. In the first case it follows from c(j)− ap(j) ≥ cmin(j)− ap(j) (by (c-1) and (c-2)) that
c(i)− ap(i) = cmin(i)− ap(i) < c(j)− ap(j). In the second case the same thing is immediate from
(c-2).

A completely analogous argument shows that if v ≤ i < j then we also have c(i) − ap(i) <
c(j)− ap(j).

Let us thus suppose that i < v < j. If cmin(i) is dangerous then c(i) − ap(i) < c(v) − ap(v) ≤
c(j)−ap(j) using (c-2) and (C-2). If cmin(i) is not dangerous, then c(i)−ap(i) = cmin(i)−ap(i) ≤
cmin(v)− ap(v) < c(v)− ap(v) ≤ c(j)− ap(j) by (c-1), (X-1), the choice of x = c(v) and (C-2).

This shows that |c(i)− c(j)|r > 1 for all edges ij ∈ E with i < j ≤ v (there are no bad edges
by assumption and we do not need to worry about good edges), which concludes the proof. �

As an aside let us also remark that, as mentioned in the introduction, Proposition 8 shows
that our definition indeed coincides with the original definition of Mohar [4]. Let us say that G
is t-finite open circular choosable if if it is L-circular choosable for any circular list assignment L
with µ(L(v)) ≥ t and L(v) a union of finitely many open intervals. The definition of Mohar is:

cchMohar(G) := inf{t ≥ 1 : G is t-finite open circular choosable}.

Observe that cchMohar(G) = supm≥1 cchm(G), since we can restrict attention to lists consisting
of at most m open intervals when computing cchm(G). The following is now immediate from
Proposition 8:

Corollary 10. cch(G) = cchMohar(G) for all finite G.

For the proof of Theorem 1 we also need the following observation:
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Lemma 11. Let L be an circular list assignment where every list L(v) consists of finitely many
closed intervals. Let us write

L(v) :=
m(v)⋃
i=1

[ai(v), bi(v)].

If G is L-circular choosable then there also exists a valid circular colouring c with

c(v) ∈ {ai(w) + kmod r(L) : w ∈ V, i = 1, . . . ,m(w), k = −n, . . . , n} ∩ L(v). (2)

for all v ∈ V .

Proof: Suppose that L is as above and G is L-circular choosable, but there is no circular colouring
of the required form. For convenience let us write r := r(L). For c : V (G) → S(r) a circular
colouring, let Hc be the graph with vertex set V (G) and an edge uv ∈ E(Hc) iff uv ∈ E(G) is
an edge of G and |c(u) − c(v)|r = 1. For each vertex v ∈ V , let Cc(v) denote the component of
Hc that contains v. Notice that c(v) satisfies (2) iff c(u) satisfies (2) for all u ∈ Cc(v). Now pick
a circular colouring c : V (G) → S(r) such that c(u) ∈ L(u) for all u ∈ V , and the number of
vertices v ∈ V (G) with c(v) of the form (2) is as large as possible and, subject to this, the number
of components of Hc is as small as possible. Pick a vertex v ∈ V (G) with c(v) not of the form (2).
For each u ∈ Cc(v) there is an index j(u) such that c(u) ∈ (aj(u)(u), bj(u)(u)]. For x, y ∈ S(r), let
cdist(x, y) denote the clockwise distance from x to y, ie. if 0 ≤ x ≤ y ≤ r then cdist(x, y) = y − x
and otherise cdist(x, y) = r − x+ y. Let us define:

α := min

(
min

u∈Cc(v)
c(u)− aj(u), min

u∈Cc(v),w 6∈Cc(v),
uw∈E(G)

cdist(c(w), c(u))− 1

)
.

(Here we use the convention that the minimum of the empty set is +∞.) Clearly α > 0. Let us
define a new colouring c′ : V → S(r) by setting c′(u) = c(u) − α for u ∈ Cc(v) and c′(u) = c(u)
for u 6∈ Cc(v). By definition of α we still have c′(u) ∈ L(u) for all u ∈ V and c′ is a valid
circular colouring. Moreover, either H ′

c has fewer components than Hc, or Cc′(v) = Cc(v) and
c′(v) satisfies (2). But this contradicts the choice of c. The lemma follows. �

We are now in a position to finish the proof of Theorem 1.

Proof of Theorem 1: By Proposition 8 and Lemma 11 there exists an integer m such that
cch(G) is the supremum of t(L) over all list assignments L of the form

L(v) =
m⋃
i=1

[ai(v), bi(v)],

for which none of the maps c : V → {ai(w) + kmod r(L) : w ∈ V, i = 1, . . . ,m, k = −n, . . . , n}
is a valid L-circular colouring. This allows us to write cch(G) as an optimisation problem with
finitely many variables, which we will now proceed to do. We begin with the following set of
linear inequalities, which express that the variables a1(1), b1(1), . . . , am(n), bm(n) correspond an
r-circular list assignment L with t(L) ≥ t:∑r

i=1 bi(v)− ai(v) ≥ t, (∀v ∈ V ),
0 ≤ a1(v) ≤ b1(v) ≤ a2(v) ≤ · · · ≤ am(v) ≤ bm(v) ≤ r, (∀v ∈ V ),
r ≥ t ≥ 1.

(3)

Let us also set:

P := {x = (t, r, a1(1), b1(1), . . . , am(n), bm(n)) ∈ R2+2nm : x satisfies (3)}.

Notice that we can write P = {x ∈ R2+2nm : Ax ≤ b} for some matrix A and vector b with all
entries of A, b integers (in fact only the values −1, 0, 1 appear in A, b).
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We now wish to capture the fact that none of colourings of the special form provided by
Lemma 11 is a valid L-circular colouring. Let Ψ denote the set of all mappings V → V ×
{1, . . . ,m} × {−n, . . . , n}2. For notational convenience only we will introduce some additional
auxiliary variables. For each ψ ∈ Ψ, v ∈ V with ψ(v) = (w, i, k, l) let us set

cψ(v) := ai(w) + k + l · r. (4)

Notice that cψ(v) equals an integer plus an integer linear combination of r and ai(w). Also note
that if c is of the standard form provided by Lemma 11 then there is some ψ ∈ Ψ such that
cψ(v) = c(v) for all v ∈ V – but not every ψ will correspond to such a c. For x ∈ P the
corresponding circular list assignment L has a valid circular colouring iff cψ(v) : v ∈ V is such a
valid circular colouring for some ψ ∈ Ψ. Moreover, if G is L-circular choosable there must also
exist a permutation σ ∈ Sn such that

cψ(σ(1)) ≤ · · · ≤ cψ(σ(n)), (5)

and cψ defines a valid L-circular colouring. For each pair (σ, ψ) let Eσ,ψ be the set of constraints:

cψ(σ(i+ 1)) < cψ(σ(i)), i = 1, . . . , n− 1, (6)
cψ(v) < a1(v), (v ∈ V ), (7)
cψ(v) > bm(v), (v ∈ V ), (8)

bj(v) < cψ(v) < aj+1(v), (v ∈ V, j = 1, . . . ,m− 1), (9)
cψ(v)− cψ(w) < 1, (vw ∈ E(G), σ−1(v) > σ−1(w)), (10)

cψ(v)− cψ(w) > r − 1, (vw ∈ E(G), σ−1(v) > σ−1(w)). (11)

Now note that (5) fails iff (6) holds for some i. Also note that cψ(v) 6∈ L(v) iff one of (7), (8) or (9)
holds for v (and some j). If cψ satisfies (5), then it is not a valid circular colouring iff either (10)
or (11) holds for some vw ∈ E.

So in other words, cψ is a valid circular colouring that satisfies (5) and cψ(v) ∈ L(v) for all
v ∈ V iff all the demands of Eσ,ψ fail. In yet other words, G is not L-circular choosable iff for
each pair σ, ψ one of the M = 3n − 1 + n(m − 1) + 2|E(G)| ≤ n(n +m + 1) constraints of Eσ,ψ

holds. Let us arbitrarily label the constraints in Eσ,ψ as Eσ,ψi , i = 1, . . . ,M . For each triple
σ ∈ Sn, ψ ∈ Ψ, i ∈ {1, . . . ,M}, let Rσ,ψi denote

Rσ,ψi := {x ∈ P : x satisfies Eσ,ψi }.

and for a map f : Sn ×Ψ → {1, . . . ,M} let us set

Rf :=
⋂

σ∈Sn,ψ∈Ψ

Rσ,ψf(σ,ψ).

Here we should stress again that the variables cψ(v) have been introduced for notational conve-
nience only, and that (6)-(11) can be rewritten completely in terms of the variables r, t, ai(j), bi(j)
(in fact as linear inequalities with integer coefficients and constants). Thus we can express Rf
as Rf = {x ∈ R2+2nm : Ax ≤ b, Afx < bf} with all entries of A,Af , b, bf integers. Now observe
that, by the previous, the set of circular list assignments L of the required form for which G is not
L-circular choosable corresponds precisely to:

R :=
⋃
f

Rf

where the union is over all maps f : Sn ×Ψ → {1, . . . ,M}. So cch(G) equals the supremum over
all x ∈ R of the first coordinate of x. Since cch(G) ≤ n by Theorem 5 this supremum is finite,
and hence there must be an f such that cch(G) = max{x1 : x ∈ cl(Rf )}. Pick such an f and put
Pf := cl(Rf ). We claim that:
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Claim 12. Pf = {x ∈ R2+2nm : Ax ≤ b, Afx ≤ bf}.

Proof of Claim 12: First observe that P has nonempty interior (this can be seen by constructing
an x ∈ R2+2nm for which strict inequality holds in all the inequalities of (3)). Now recall that:

cl(int(C)) = cl(C) for all convex C ⊆ R2+2nm with int(C) 6= ∅. (12)

(Here and in the sequel int(.) denotes topological interior.) Suppose that int(P ) ∩ {x : Afx <
bf} = ∅. Because R2+2nm \ {x : Afx < bf} is closed and contains int(P ) it then follows that
Rf = cl(int(P )) ∩ {x : Afx < bf} = ∅. But this contradicts the fact that Rf contains at least one
point (namely a point whose first coordinate equals cch(G)). It follows that int(Rf ) = int(P )∩{x :
Afx < bf} 6= ∅. By two applications of (12) we now find:

Pf = cl(int({x : Ax ≤ b, Afx < bf})) = cl({x : Ax < b,Afx < bf})
= cl(int({x : Ax ≤ b, Afx ≤ bf})) = {x : Ax ≤ b, Afx ≤ bf},

proving the claim. �

The value of cch(G) thus corresponds to maximising a linear function (the first coordinate) over
the polyhedron Pf = {x : Ax ≤ b, Afx ≤ bf}. It can be seen from (3) that Pf is pointed, ie. that
{x : Ax = 0, Afx = 0} = {0}. By considering the simplex method (see for instance [11], pages
129–131), we now see that there is some vertex v of Pf such that cch(G) equals the first coordinate
of v. Recall that a vertex of the polyhedron Pf is the unique solution of some subsystem A′x = b′

of 2 + 2nm linearly independent equalities taken from the system Ax = b, Afx = bf (see for
instance [11], page 104). Since all the entries of A,Af , b, bf are integers, it follows by considering
Gaussian elimination that all coordinates of the vertex v = (A′)−1b′ are rational. In particular
cch(G), the first coordinate of v, is rational. �

3 Discussion

In this paper we have shown that the circular choosability cch(G) is a rational number for every
finite graph G. Our proof does however not give any explicit information about the actual value of
cch(G). We know that cch(G) is some rational 1 ≤ a/b ≤ n and it would be interesting to see what
can be said about the size of the denominator b (after common factors have been divided out).
A crude bound can be obtained from our proof as follows. Recall that A−1 = adj(A)/det(A)
for invertible matrices A, where adj(A) is a matrix whose (i, j)-entry equals (−1)i+j times the
determinant of the matrix obtained from A by deleting the i-th row and j-th column. Thus,
det(A′) is a natural upper bound on the denominator b, where A′ is as in the end of the proof
Theorem 1. By (3), (4) and (6)-(11) we see that at most n of the rows of A′ have 2m + 1
nonzero entries (the rows corresponding to the first line of (3)) and all other rows have at most
four nonzero entries. What is more, all entries of A′ are in {−1, 0, 1} except for those in the
column corresponding to the coefficients of r, which are between −n and n. The determinant
formula det(A) =

∑
σ∈Sn

(−1)σa1σ(1) . . . anσ(n) thus gives that det(A′) ≤ n(2m+1)n42+(2m−1)n =
exp[Θ(nm)]. Although m(G) is not given explicitly in Proposition 8 (in fact, since the proof of
Lemma 6 is not constructive and m(G) depends on r(G), it is not quite clear how to get an upper
bound on m(G)) it can be seen that the m given in the proof is at least super exponential in
n. The crude reasoning we have just outlined thus gives an upper bound for the denominator of
cch(G) which is the exponential of a super exponential function of the number of vertices n. One
might hope that some variation on our proof together with a more careful analysis will yield an
upper bound on the denominator that is polynomial in n.

For the circular chromatic number it is known that we can write χc(G) = a/b with a equal to
the length of some cycle and b equal to the cardinality of some stable set of G – of course provided
G has at least one cycle (see [16] for a neat proof). A more ambitious direction for further work
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would thus be to see if a similar description of cch(G) in terms of other characteristics of G can
be derived.

Another very natural question that presents itself is the following:

Question 13. Is there a graph G with cch(G) = q for every rational number q ≥ 2?

The answer to the corresponding question for the circular chromatic number is yes. For natural
numbers a ≥ 2b, the circular clique Ka/b is defined by setting V (Ka/b) = {0, . . . , a−1} and putting
ij ∈ E(Ka/b) iff |i− j|a ≥ b. It can be shown that χc(Ka/b) = a/b. Zhu asked in [17] whether it
is also true that cch(Ka/b) = a/b for all a ≥ 2b, but this was observed to be false in [2].

In his thesis [13] the second author introduced and studied the choosability ratio, a graph
parameter that is closely related to the circular choosability. The choosability ratio σ(G) is essen-
tially a “non-circular” version of cch(G). It is defined analogously to cch(G) with the important
difference that the lists are now subsets of R instead of a circle S(r). In fact some of the results,
proofs and conjectures in [13] are strikingly similar to results, proofs and conjectures in [2] and [17]
(which were found independently).

Theorem 5.12 in [13] is the choosability ratio analogue of Proposition 8 and the proof in [13]
inspired the proof of Proposition 8. It should however be mentioned that the proof of Proposition 8
given here is by no means a straightforward adaptation of the proof of Theorem 5.12 in [13] – the
“circularity” adds substantial technical difficulty. On the other hand it is straightforward to adapt
the proof of Theorem 1 to show that σ(G) ∈ Q for all finite G. We have chosen to omit this here.

In his thesis [13] and in [14] the second author introduced and studied the consecutive choos-
ability ratio τ(G) which is defined similarly to σ(G) with the difference that all lists are intervals.
He showed that τ(G) can be written as τ(G) = a/b with b ≤ n. A very similar concept is the
circular consecutive choosability, introduced by Lin et al. [3] and studied further by Norin et al. [6]
and Pan and Zhu [9]. The circular consecutive choosability is almost the same as our cch1(G);
the lists live on a circle S(r) and consist of a single interval, but the difference is that in addition
it is required that r ≥ χc(G). Again it is clear that a straightforward adaptation of the proof of
Theorem 1 above will show that the circular consecutive choosability is always a rational number.
(And again we have chosen to omit this here.)
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