Abstract: The renewal age process increases linearly with slope one and is reset to zero at points governed by a Poisson process. We present various results for the random variable H_x that represents the first time the process hits the level x. These results include three characterizations of the distribution function and asymptotic expressions for the tail distribution. The latter involve complex-valued solutions of the Lambert W function. We further establish several connections to other probabilistic models. Using the theory of uniform spacings, we show that H_x has the same distribution as the sojourn time of the first customer in an M/D/1 processor sharing queue.