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Connecting renewal age processes and M/D/1
processor sharing queues through stick breaking

J.S.H. van Leeuwaarden  A.H. LopkeP A.J.E.M. Janssén

Abstract: The renewal age process increases linearly with slope cthésaeset to zero

at points governed by a Poisson process. We present vageuks for the random vari-
able H, that represents the first time the process hits the levelhese results include
three characterizations of the distribution function asgnaptotic expressions for the tail
distribution. The latter involve complex-valued solutionf the Lambert W function. We
further establish several connections to other probaicilieodels. Using the theory of
uniform spacings, we show thaf, has the same distribution as the sojourn time of the
first customer in an M/D/1 processor sharing queue.
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1 Outline

The renewal age process is a piecewise deterministic Mamlamess that increases linearly
with slope one and is reset to zero at points governed by a®&omocess with rate. The
principal subject of this paper is the random variaBlg that represents the first time the
renewal age process hits leveland that satisfies the stochastic equation

d
H, = ]l{ZZr}x + 1{Z<m}(HI + Z)v 1)

where 2 denotes equality in distribution, ard is an exponentially distributed random
variable with mean /\, independent of{,,.

We show in Section 2 thatl,, can be represented as a geometric sum of random vari-
ables, from which its Laplace-Stieltjes transform immesliafollows. We also prove that
H, has the same distribution as the sojourn time of the firsbowst in an M/D/1 proces-
sor sharing queue (with arrival rateand deterministic service time). To establish this
equivalence, we strongly rely on results for the order stigs of uniform spacings, also
known as stick breaking (see [7, 13]). We further show thatstationary waiting time in
the M/D/1 first-come-first-served queue can be fully expgrdsa terms ofH,.. We hence
establish a connection between each of these models thibedirst hitting time of the
renewal age process.

Further properties off, are reported in Section 3. F@f,, and two related random
variables, we provide stochastic recursive equations ealihg limits. Also, in Subsec-
tions 3.3-3.5, we provide three alternative expressiongi® distribution function of,,..
The first expression follows from the connection to stickabirg and uses Whitworth'’s
formula for the maximal uniform spacing (see for instanceld]). The second expres-
sion follows from the observation that the distribution ¢tian is the solution to a certain
differential-difference equation as studied in [2]. Thedlexpression is obtained by using
the Laplace inversion formula and involves the infinitelynypaingularities of the Laplace
transform of H,. These singularities are in fact expressible in terms ofLifwmbert W
function (see [6]). The leading term, corresponding to tbmithant singularity, leads to
a sharp asymptotic expression for the tail of the distrdoutdf .., which is shown to be
different for the casesx < 1, Ax = 1 and Az > 1. The second and higher terms of
the expression involve the non-principal branches of thebert W function, for which
several results are presented in Section 4.

For a random variabl&, we denote the mean X, the Laplace-Stieltjes transform
by ®x(s) = E(e~*¥), and the distribution function b¥'y (t) = P(X < t)andF x(t) =
P(X >t).

2 Connecting two processes

In Subsection 2.1 we give a formal description of the reneagg process, as well as a
characterization of the first hitting timg . in terms of a geometric sum and the Laplace-
Stieltjes transform. In Subsection 2.2 we first present reg\da@own results on uniform
spacings and then show that the sojourn time of the first mestan an M/D/1 processor
sharing queue is in distribution equal &5, .



2.1 Renewal age process

Consider a renewal process with renewal epd¢hs, ... governed by a Poisson process
with rate \, and letr,, = >}, ¢, denote their partial sum. The associated renewal age
process(A;):>o measures the time since the last epochAso= ¢ — 7y, where N, =
sup{n € N|r,, < t}.

For somer € R lettx, be the first epoch with length greater or equatta.e., K, =
inf{n € N|t,, > z}. It immediately follows that<’, has a geometric distribution

P(K, =k)=e M1 —e )1 p=1,2.... )

LetT, = 7x,—1 andR, = 7k, denote the beginning and the end of the eplogh see
Figure 1. Note thaf, can be described as the geometric sum

Ky—1

7,2 Y B, ®3)
=1

where K, is geometrically distributed as in (2), a8l B, Bs, ... are i.i.d. exponential
random variables with rat® truncated at. Note that the distribution o depends on the
parameter—** of the geometric distribution.

Due to the lack-of-memory property of the exponential distion the random variable
Z = tg, —x has again an exponential distribution and is independ€n}.adfet H,. denote
the first time that the age process;):>¢ hits the level. SinceR, = T, + tk, it follows
that

T, <Ty+a=H,<H,+7Z%R,. (4)

Theorem 1.

A+ s
Ae—5% 4 geAT’

Q7. (s) = (5)

Proof. The Laplace-Stieltjes transform &f is

1 * —suy ,—A\U A l— e—()\—i—s)x
(I)B(S)—m/o (& e du-/\+s 1_6_)\:0 .

T H, Ry

Figure 1: The renewal age proces$;):>o, with hitting time H,, and associated random
variablesT,, andR,.



From (2) we getbr, (s) = 370, e (1 — e A)k=1(d(s))*~1, which leads to (5). O
It follows from (4) and (5) that

B A+ s B A
A se(AFs)e? R.(8) = A+ se(AFs)z”

D, (s) (6)
Remark 2. There is another way to derivBy, (s). The Markov proces§A;):>o has an
infinitesimal generator given by

A f(x) = f'(x) = Af(x) + Af(0).

It is known thatf (X;) exp(— fot o f(Xs)/f(Xs) ds) is a martingale (see [11]) and it is
easy to show that the functiofi(z) = 1/®g,(s) fulfills o fs(x) = sfs(z). Conse-
quently, fi(X;)e~*! is a martingale. Optional stopping &t, then leads t@(e=*/=) =
1/fs(x) = @, (s) as required. Note that by using this approach we can derive

A+ S€(>‘+8)a

Ea(e™5) = fo(a)/ fo(z) = N+ se0re

a<czw,
wherelE, denotes the conditional expectation if we start the proggss a.

2.2 M/D/1 processor sharing queue

In this section we establish a connection between the rdrayeaprocess and the M/D/1
processor sharing queue. In order to do so, we first state koaven results for uniform
spacings.

Consider a stick of lengththat is broken into: pieces, where the breaking points are
given by a sample of size—1 from the uniform distribution off, ¢]. Denote the breaking
points byU; < Us < ...U,_1 and define the length of the pieces By = U, S, =
Uy—Ui,..., S, =t—U,_1. Throughout we letZ, 7, Z,, . .. denote independent and
exponentially distributed random variables with mégn and N; a Poisson process with
ratei. LetZ, ..., Z,) denote the order statistics such tha, is thekth smallest value
amongZzi, ..., Z,,and letX,, = > | Z.

The following result, that shows the tight connection betweniform stick breaking
and sampling of exponential random variables, can be foufid]i

Lemma 3. (Sukhatme [22])
(21,22, Zn) £ (Yo, Yo, VA) (7)

whereY), = (’I’L —k+ 1) (Z(k_z) — Z(k—l)) forl1<k<nandY, = nZ(l).

Let S} = max{S1,...,S,} denote the largest piece. The following is then an immedi-
ate consequence of Lemma 3.

Lemma 4.

Y ST (8)
=1



Proof. We need the well known property of uniform spacings that

(Sty. o Sn) L (21 X, 2] Xo). ©)

It then follows from Lemma 3 that

Zn:i d Zn: Zi| X _ Z?:l% d ZL@ d Zn) 4o
i i Xn Xn Xn "
=1 =1

Now consider an M/D/1 processor sharing queue (see [19prevtustomers arrive ac-
cording to a Poisson proce&d ).~ at times(,, ),cn. All customers have a deterministic
service requirement. When there are customers in the system, each customer is served
with rate1/n. Consider the already finished wolk at timet of the first customer (the
customer entering an empty system at time 0). d,etlenote the total sojourn time of the
first customer in the system, which is given by the first hgitime of V; of the levelzx.

Theorem 5.
Ky 2 H,. (10)

Proof. Since the server equally distributes its capacity we have

1
dV, = dt
TN
for m; <t < 7;41. Thus
t 1 N Z; t—1nN

V= ds=>Y» = ’f 11
t /0N5+1$ ;i+Nt+1’ (11)

andry, < Xn,. We know that, givenV; = n,

d

(S1,52,...,Sny1) = (21,22, ..., Zp,t — Zy,) (12)

where theS), are the lengths of the pieces of a stick of lengiitoken randomly. From (8),
(11) and (12) we obtain

J Ni+1 S J
Vi = Z 72 = SNit+1 (13)

i=1

Let M; = maxop<s<; A be the running maximum of the renewal age process. Given that
N; = n it follows that M, is equal tomax{Z,, Zs, ..., Z,,t — Z,}. Using the property
(12) again it follows thatV/; has the same distribution &3. Since both processes are
increasing, we conclude that for all> 0

Pk, < t) = P(V; > 2) = P(M; > z) = P(H, < 1),

proving the result. O

In [8] a derivation of the Laplace-Stieltjes transform for is given using a connec-
tion to the Yule process, leading to the geometric representationrpf A similar result
is obtained in [18] for the more general classMdf/G/1 queues with symmetric service

5



disciplines (of which processor sharing is a special case).

3 Further properties of the random variables

In Section 2 we have introduced the random variatélges T, and R, that are associated
with the hitting time of the renewal age process. In thisieaat/e derive various properties
for these random variables, including stochastic recarsiquations, scaling properties,
and three characterizations of the distribution functions

3.1 Stochastic recursive equations

Lemma 6. e have

Ry £ Z+1{zcnRe, (14)
d
H, i Il{Zzac}w"i_IL{Z<QC}(ITISL‘"’_2)7 (16)

where Z denotes an independent exponential random variable.

Proof. If Z1 < x thenR, = Z;, elseR, = Z; + R* whereR* < R, is independent of
Z1, thus (14) follows. A similar argument leads to (15), andttiied relation follows from
(15) andH, =T + x. O

We rewrite the relations in Lemma 6 into the stochastic rEearequations

R L Z, 41y R, (17)
mn d mn—
n d n—

H} < Ligsne+ Lz, <o (HI7 + Zy). (19)

ThenR,, T, and H, can be seen as limiting variables of the Markov chdiR%),,cn,
(T7)nen and(H2),en ON the state spade, co).

Lemma 7. We have that
(R", 7", H") % (Ry, Ty, Hy).

T X

Proof. From (18) we obtain
Orp(s) = E(Lzemye ") Ppni(s),
whereZ is some independent exponential random variable. Since
o, (s) = E(Liz<ape*?)Pr, (3),

it follows that

| @70 (5) — P, (s)]|

B 1 (s) - @Tw(s)‘
O (s) — 1, (s)|

E(l{z< e *?)
= E(lizcpe )"}




so that|®7» (s) — @1, (s)| — 0. The other assertions can be proved similarly. O

Consider again the renewal process, but now insertingiadditrenewal epochs when-
ever the age processl;):>o passes the level. In doing so we form a new renewal process
with truncated exponential epochs. L(eNIt)tZO be the age process of the new renewal pro-
cess. Therl’ can be interpreted as the time since the last additionalv@ngpoch was
inserted.

3.2 Scaling properties

In this section we writ&?,, », T, » andH, ) instead ofR,, T), and H,, to stress the depen-
dence on botlx and A. Again we letZ denote an independent exponentially distributed
random variable with meaty \.

Let K denote a geometric random variable with’X' = 1) = ¢ and letA; denote
i.i.d. random variables with = EA; < oo. Rényi’'s theorem for geometric sums (see, for
instance, [3, 17]) states that, @s- 0,

K
¢y ALz (20)
k=1

In our situationT}, 5 is a geometric sum where the summands depend on the parameter
g = e~**, so that Rényi’s theorem is not applicable. Kalashnikdi] HHas generalized the
theorem for the case where the depend on the parametgrshowing that if

e e}

lim P(A; > u) du — 0 (21)
1=0Je/q

for all ¢ > 0 then (20) remains true. For our geometric sfim, condition (21) is clearly
satisfied sinced; is a truncated exponential random variable ajigd > x if x is suffi-
ciently large. We give a short and stand-alone proof for. this

Theorem 8(Kalashnikov [171])

R,
A d g (22)

6)\1’
as \x — oo. Thesameistruefor 7, y and H, .

Proof. We have

A 1
Dp, (As/e) = :
Re(As/e™) A+ As - exp (Azse=*) T 14

Sincede™ = \ze ™ /z — 0 we getA/(\ 4+ Ase™*®) — 1. Using\Z/e* — 0, we
conclude from (4) that=>*T,, , % Z ande=*H, , % Z. 0

We now state an interesting scaling property that leadsri tesults for the case that
Az converges to some finite number.

Proposition 9. For all c € R,

Re .. (23)



Proof. The results follows immediately from

A cA

Pr.(s/c) = At 2eOFDT T X ge@ T

O

Theorem 10. If Az — ~ € (0, 00) then

Rm A Tm A H:v A d
: ’ : Ry, T1~,Hyn) -
< z  z = > - ( 1, L1,y l,fy)
- - o Re d
Proof. Follows immediately from (23), smcgv’— = Ry xg- g

3.3 Distribution function |

From the geometric sum representation (3) we immediateiya @haracterization for the
distribution function ofH, in terms of infinite convolutions of the distribution &f. In
this subsection, and the next two subsections, we show thie explicit characterizations
can be obtained. In Subsection 2.2 we proved an equivalerstat for the renewal age
process and the M/D/1 processor sharing queue. We now wssedhnection to obtain a
first characterization of the distribution function &f,.

The distribution of the largest piec& of a stick of lengtht, also known as maximal
uniform spacing, is given by Whitworth’s formula (see [7])13

n

P(S; <a)=t"") <Z> (—D)F (t — ka)? ", (24)

k=0
wherez . = max{0,x}. Itis readily seen from (9) that the conditional distriloutiof the
running maximum\/; given thatlV; = n is the same as the distribution 8f , |, and hence

d o
Mt — SNt"rl'

UsingP(H, > t) = P(M,; < z) and conditioning on the number of eventgint] leads
to a first representation of the distribution ..

Theorem 11. For t > 0,

= At AR A (A"
Fp,(t) =e "ly<ey +€e Z Z |

n+1 -n n
- ( N )(—1)’% (t—ka)?.  (25)
n=1 k=0

Remark 12. Formula (24) has another interpretation. Locat@oints randomly on a
circle with circumference. We can represent the gaps between the points on the circle by
uniformly chosen random variableés, i = 1,...,n — 1 in [0, ¢]. Attach to each random
point an arc of lengthx such that the point lies in the middle of the arc. The proligbil
that the circle is completely covered by the arcs is given by

P( max S; <z)=P(S; <x),

i=1,...,n



(see [15], or [12], Theorem I.2). In this connection Whittins formula (24) is sometimes
called Steven’s formula (see [14]).

3.4 Distribution function Il

We now present explicit characterizations for the distrdsufunctions ofR,., 1), and H,
in terms of finite series. The proof is purely analytical anidlds upon earlier work of
Bellman and Cooke [2] on differential-difference equasion

Theorem 13. We have

B [t/x] (o)
Fr,(t)=> (—de )" t>u, (26)
=0

with |a] the integer part of a. Moreover
Fpu,(t)=Fg,(t) —e MFpg (t—z), t>uz, (27)

and Fr,(t) = Fp,(t+xz),t > 0.

Proof. Denote the right-hand side of (26) hy(¢), which is continuous fot > 0 and
continuously differentiable fot > 0 except at = z; att = = we havew'(z—) = 0,
W'(z+) = —Xe™*. We also note thab(t) = 1 for 0 < ¢ < x and thatu(t) = 0 for ¢t < 0.
One readily obtains that far> x, ¢t not a multiple ofz,

W () = = Mw(t — x), (28)

with initial condition w(t) = 1, 0 < ¢t < z. Equation (28) is also valid whehis a
multiple of x by continuity ofw’(¢) for ¢ > x. The equation (28) is a differential-difference
equation (see [2], Chapter 3). According to the theory in§&dctions 3.7 and 4.4, we have
to consider the roots of the characteristic equation

s+ e~ Ots)z — ¢ (29)

Note that these roots are in fact the singularitiesbef (s). In the appendix we show
that all characteristic roots lie in the half-plaf(s) < 0. By [2], Corollary 4.2 on
p. 115 it follows thatF'r,(t) — 0 ast — oo. Hence, the Laplace transfora(s) =
Jo~ e Fg,(t) dt is well-defined and analytic iRe(s) > 0. By direct calculation from

(26) or (28) we get
B 1
w(s) = 51 e Ovto)z’

A computation then shows that the Laplace transforngf (t) — e **Fg_ (t — ) is
given by

Re(s) > 0. (30)

1— e—()\—i—s)x

s+ )\e—()\-i-s):c ’
Finally, we note that the ordinary Laplace transforniof, (¢) is equal tos ! (1—Ee =),
and by (6) it is seen tha' g, (t) andFg, (t) — e **Fpg, (t — =) have the same Laplace
transform. The proof is completed by [2], Theorem 1.1 on p. 7. O

Re(s) > 0. (31)



Equation (27), which can be written as

expresses an interesting relation between the randomblesid, and R,. This relation
can be derived probabilistically. Lét/; = maxo<s<; A; be the running maximum of the
renewal age process, i.€d, = inf{s > 0|M; = x}. SinceH, < t occurs either if
the process hits before NV, or if it hits = after V; and there are no epochs ending during
[t — x,t], we obtain

P(H, <t)=P(My, > ) +P(My, <z, N, — N;_, = 0). (33)

It follows from the properties of Poisson processes aihfly, < =, Ny — Ny, = 0} =
{MNtiz <x,Ny— Ny, = O} that

P(MNt <x,Ny— Ny, = O) = ]P)(MNtiz < $)]P)(Nt — Ny_, = O)

SinceP(N; — N;_, = 0) = e M and{My, > z} = {R, <t} we get (32).

Remark 14. We can also obtain the inversewfs) by writing
O(s) = Z(—)\e_)‘m)je_smjs_(jJrl), (34)
5=0

providedRe(s) is sufficiently large. Then, using

o] . D e—sj:cj!
/0 (t — ja)l e tdt = RS (35)

and the uniqueness of the Laplace transform, we arrive &t &8 the formal arguments
that go with this approach we refer to [2], Section 4.7.

3.5 Distribution function Il

In this section we represent the distribution functionsRyf, 7., and H, as series that
involve the infinitely many poles by, . These poles are in fact the complex roots of

s€5T = —\e™M (36)

and can be expressed in terms of the branches of the Lambem&tidn (see Section 4).
Equation (36) has two real roots and sy on the negative real axis which we order as
s0 < 84 < 0. In Section 4.1 we prove the following result.

Lemma 15. For Az < 1 wehave s, = —\. For Az > 1 wehave s = —\ and

Sy = —é i n:;:l ()\we_)‘z)n. (37)
n=1

For A\x = 1wehaves, = sg = —\.

For the case\xz < 1 a simple characterization af) is not available (see [5], Section
2.4), butsy can be determined numerically using the method of NewtgohRaen. The

10



root s, of (36) is the only one lying in the closed digK < 1/x. All other roots lie in the
half-planeRe(s) < sg, and, more particular, on the set

{s € C:Re(s) < sg, |57 = Ae M}, (38)

We order the rootsy, k € Z lying on (38) in conjugate pairs, = s_; and according
to the value obrg(se®”) = arg(s) + xIm(s), so that

arg(sg) + = Im(sg) = 2m(k + 1/2).
In this way, the roots arey, s1, s9, . . . are arranged in order of decreasing real parts.

The following lemma will be shown in Section 4.2.

Lemma 16. Theroots sj with |si| > 1/z are obtained in the form

Sk = —Eﬁ_iwk 5 S_k :gk 9 k:0717"'7 (39)
T

where r;, and 1)), simultaneously satisfy (with d = \ze~*?)

ricos Y — In(ry/d) = 0, (40)
rpsiny, — Y — 2km = 0, (41)

and where werestrict to r, > x|sgl, ¥ € [0,7/2).

Lemma 16 gives a complete characterization of all completstovhere each root is
described in terms of the two equations (40) and (41). Forireplthese equations, a
highly efficient procedure using two-dimensional NewtospRson is given in Subsection
4.3. Lemma 16 is used in Subsection 3.6 to obtain asymptdiicrnation on the roots.

Theorem 17. Assume Az # 1. We have

F eSxt 0 eSkt 42
t) =
r.(1) 1+xs*+kzz_:oo1+wsk’ (42)
and
— P T O S . T
Fp, (t) = —— 2t e Tk s 43
. (¢) A1+ z5,) ¢ +k;wA(1+xsk)e ’ (43)

with absolute convergence whent > .
Proof. By the Laplace inversion formula we have for- s, that

o 1 ) b+iB est

Shifting the integration contouRe(s) = b further and further to the left yields a series

representation foF'r_(t) involving all rootss;, of (36). We refer to [2], Sections 4.1 and

4.2, where this process of shifting the integration pathhto left is treated rigourously.
O

11



Lemma 18. For Az = 1 we have that

Fr(t) = et 4+ e (45)
T prs 14 xsg
and subsequently,
Fp, (t)=2e"" + Z ettt > (46)
k0
Proof. In casehxr = 1, we have thak, = s; = —\. Then, the integrand in (44) has a

second order pole at = s, = sp = 1/z with residue2(t/x) exp(—t/x). This yields
(45) and (46). An alternative derivation is by taking theits\ T 1/z and/or\ | 1/x
in equations (42) and (43), which requires an analysis otwweroots s, and s, when
Ax — 1. ]

3.6 Asymptotics for the tail distribution

We obtain from (43) the asymptotic expression

)‘ + Sx Sxt )‘ + S0 sot

Fy (t) ~ ——* -
1. (1) A(l—i—xs*)e A1 +xsg)

t — o0, 47
which can serve as an approximationfgy, (¢) for larger values of. Note that the term
involving s, vanishes whenx < 1 and the term involving, vanishes whenx > 1, and
that (47) is consistent with (46) fow: = 1.

From (40) and (41) it is not hard to get asymptotic informatbmr;, and;, ask — oo.

Lemma 19. We have

1 d) In*(q/d In*(qx/d
e = g Ma/d) | In7(gy/ )+O<D (qéc/ )>7 (48)
k 2qy; q
In(qy/d In3(qr/d
wo=T- <qk/>+0< <q§/>>_ 49)
qk 95
inwhich g, = 27(k + 1/4) and d = Aze %,
Proof. We have from (40) and (41) that fér= 1,2, ...
re > 21k, 1) > arccos [ﬁ ln(271'k:/d)] , (50)

sincer—!In(r/d) decreases in > d - e € (0,1). Some further iterations with (40) and
(41) yield the result. O

Lemma 19 shows that, grows like2x(k + 1/4). Then, from

)\ —Az
ekt = 26 (51)
Sk

we conclude that there is a decay of the terms in the seridé® aight-hand sides of (43)
and (47) likek~*/*. This rapid decrease of the higher-order terms makes (4Tgtdyh

12



accurate approximation, even for moderate valugs 8ome numerical evidence for this

statement is presented in Tables 1 and 2, in which we denoé3)ythe approximation
obtained from (43) by including the termks= —j, —j + 1,...,j.

Fu,(t)

(47)

(43)

(43),

© 00O ~NO O WN P+

[
o

3.0301e-001
4.4709e-002
4.9883e-003
5.3264e-004
5.7444e-005
6.2007e-006
6.6891e-007
7.2164e-008
7.7853e-009
8.3992e-010

4.2424e-001
4.5769e-002
4.9378e-003
5.3271e-004
5.7471e-005
6.2002e-006
6.6890e-007
7.2164e-008
7.7853e-009
8.3992e-010

3.7279e-001
4.4073e-002
4.9936e-003
5.3260e-004
5.7444e-005
6.2007e-006
6.6891e-007
7.2164e-008
7.7853e-009
8.3992e-010

3.1492e-001
4.4678e-002
4.9882e-003
5.3264e-004
5.7444e-005
6.2007e-006
6.6891e-007
7.2164e-008
7.7853e-009
8.3992e-010

Table 1: Results foF 7, (t) when\ = 0.45, z = 0.9.

Fu,(t)

(47)

(43)

(43),

© 00O ~NO O WN P+

[
o

7.6648e-001
4.2690e-001
2.2867e-001
1.2233e-001
6.5454e-002
3.5020e-002
1.8737e-002
1.0025e-002
5.3638e-003
2.8699e-003

7.9871e-001
4.2734e-001
2.2865e-001
1.2233e-001
6.5454e-002
3.5020e-002
1.8737e-002
1.0025e-002
5.3638e-003
2.8699e-003

7.8759e-001
4.2667e-001
2.2867e-001
1.2233e-001
6.5454e-002
3.5020e-002
1.8737e-002
1.0025e-002
5.3638e-003
2.8699e-003

7.7073e-001
4.2688e-001
2.2867e-001
1.2233e-001
6.5454e-002
3.5020e-002
1.8737e-002
1.0025e-002
5.3638e-003
2.8699e-003

Table 2: Results foF', (t) when\ = 1.8, z = 0.9.

Note that (47) is consistent with (22). To see this, first obbsdrom (37) thats, ~
— e~ as\z — co. Hence, (47) yields

A+ s,

1
seye

)\zt —t

FHw(%e)‘xt) ~ m ~e ' Ar— 0. (52)
For R, we obtain from (42) the asymptotic expression (far# 1)
o eSxt
FRw(t)N1+$S*' (53)

In [18], Proposition 1, a related result is presented fomtiuee general class of symmetric
M/G/1 queues. FoAz > 1 (53) sharpens the result in [18].
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3.7 M/D/1 first-come-first-served queue

A.K. Erlang’s 1909 paper [10] introducing the M/D/1 queugénerally considered to be
the starting point of queueing theory. For Poisson arriwétls rate \, deterministic service
requirementse, and first-come-first-served, Erlang’s result on the statip waiting time
W reads (assumingz < 1 for stability)

1t/] oy
Fiv(t) = (1 - Aa)e Y (—Ae—“)j(tT‘f@, t>0. (54)
=0 ‘

Hence, the waiting time distribution can be expressed imseof our functionF',, as
Fiy(t) = (1 — Ax)eMFg, (). Using (42) ands, = —\ (sinceAz < 1) then yields

— =z -1 s
FW(t) = Z me()\—i_ k)t. (55)

k=—o00

It is remarkable that the approximation

— Axr—1 s
F(t) = 5 +3630e<A+ o), (56)

for large values of, was already stated (without proof) in Erlang’s paper [18e( also
[20], p. 54).

Remark 20. The probabilityp,, thatn customers are served during a busy period of the
M/D/1 queue fx < 1) is given by (already found by Borel in 1942 [4])

1 nn—l —Az\n
Pn = (Axe™ )",
This confirms the fact that formula (37) is valid far < 1, sinces, = —> >, Ap, =
-
4 Analysis of the characteristic roots
We consider for positive. andx the rootss of the equation
565 — _)\e—)\x’ (57)

which are required at several places in the main text. Usiagsxz andu = Az simplifies
(57) to
ve! = —pe M, (58)

The multi-valued inverse of the functian— ve’ has a long history in mathematics. It is
treated as one of the key examples in the book of De Bruijn$gLfions 2.3-4), and since
the overview paper of Corless et al. [6] it is known as the Lart¥/ function. The analysis
presented in this section can in part be found in [2], Sect@&i@ on pp. 406-10, where the
emphasis lies on roots of (57) of large modulus. The serjgesentations in Section 3.5,
which we use to approximat€y, (t), let us focus more on the roots of small(er) modulus,
and how to compute them.
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Vo -1 (%

Figure 2: Plot ofv — ve".

4.1 Proof of Lemma 15

Letd = pe ", c=p—Inpu; d = e~¢. We have: > 1, d < e~! with equality if and only if
1= 1. We letv, andvg be the two real roots of (58), witly < —1 < v, < 0, see Figure
2w, =vg=—1lifandonlyifd = 1/e, i.e.,u = 1).

Clearly, the roots of (58) all lie in the set

{veC:|ve’| =d}. (59)

With reference to Subsection 4.2 and in particular Figure@gnote that this set consists
of two parts, viz. a part contained in the unit digk < 1 and a part contained in the set
|v| > 1 (in [2], Section 12.7 attention is limited to the latter sétje consider first the part
contained inv| < 1. The mapping — ve" is invertible around) = 0, with the inverse
given by Lagrange’s theorem as (see [5], Sec. 2.3)

x -1 n—1,n—1
ve! =w ; wv(w) = Z ()—'nw", (60)
n!

n=1
and where by Stirling’s formula the series converges alsiglin |w| < 1/e. Accordingly,
x  n—1

v(—d) = v, = — Z AL (61)

n!

n=1

is the only root of (58) in the disk| < |v,|. The set{v(de'®) : a € [0,27)}, which is
obviously contained ifw| < |v,| by (60) and (61), coincides with the part of the set in (59)
contained in the unit disk.

15



Figure 3: The roots ofe” = —pue™* for 4 = 0.7. The two real roots arey = —1.3755
andv, = —0.7000. Other roots are; = —3.1475 + 7.45451, v9 = —3.7215 + 13.87511,
vy = —4.0834 + 20.2211¢ andvy = —4.3486 + 26.54113.

4.2 Proof of Lemma 16

We now also consider pointsof the set (59) withv| > |v.|, and we first consider the case
that, # 1. We note that for any € R the function

b> 0 |(a+ib)e®™™| = e(a® + b?)'/? (62)

is strictly increasing. Therefore, see Figure 2, the equdtia + ib)e**®| = d has: no
solutionb > 0 whena > v(d), one solutionb > 0 whenv, = v(—d) < a < v(d), no
solutionb > 0 whenvyg < a < v, one solutiorb > 0 whena < vy. Also observe that the
set in (59) is symmetric with respect to the real axis.

We shall now consider in more detail the roots of (58) thatrli®e(v) < vy, i.e., that
are located on the curve depicted in Figure 3 that crossag#hexis atz = vg. In terms
of polar coordinates = re?, we have for this curve

vel = pe’ oS gpeigp—l—ir sin ¢ (63)
in which we choose € (7/2,3m/2). There is thus the parametrization

Inr+rcosp=Ind=—c , r>|vl, pe(n/2,31/2) (64)

16



of the considered curve.
We shall now analyze this parametrization somewhat furthethat end let) = = —
¢ € [0,7/2), and write (64) as

rcosy = In(r/d) , r>|vwl, ¥ €[0,7/2). (65)

Here we have restricted t6 > 0 for reasons of symmetry. It is easy to see that (65) has for
anyy € [0,7/2) exactly one solutiom(¢)) > |v9| > 1 that increases frorvy| aty = 0
to oo asy 1 /2. We also compute (with = —re~™¥)

arg(ve’) = m — 1 + rsin. (66)

Lemma 21. The argument arg(ve”) increasesin ¢ € [0,7/2).
Proof. From (65) we have

r(¢) sine

r'(Y) = st — 1/r(9)’ (67)
Therefore,
%[ﬂ' —¢+rsing] = —1+7(¢)siney +r(y)cos
B (1) sin? 1)
= -1+ m +T(¢)COST/J
_ Yr() +r() —2cosy
T 1w ©%
where we have used that
r(§)cosy = In(r(y)/d) = In(r(0)/d) = r(0) = |vg| > 1, (69)
so thatl/r(v)) 4+ r(v)) — 2cos®y > 0 andcosp — 1/r(yp) > 0. Hencearg(ve’) indeed
increases iy € [0, 7/2) and does so from aty = 0 to co asy T 7/2. O

We conclude from Lemma 21 that for= 0, 1, . . . there is a unique;, € [0,7/2) such
thatm — ¢y, + r(¢g) sin vy, = 2km + 7.

Until now we have assumed that# 1. In the case that = 1, we have thaty = v, =
—1andd = 1/e. The two parts of the set (59) inside and outside the unit sk meet at
the pointv = —1 and together constitute the well-known Szego curve (s8gdi2d [16]),
mirrored about the imaginary axis. However, for the analygsithe roots outside the unit
disk, the developments just given for the casg¢ 1 remain equally valid.

This gives us Lemma 16.

4.3 Computation of the roots

The s;,’s with & = 1,2,... can be computed by writing (40) and (41)dn ib = re'®
notation as

sw)= | o | (70)
where Lln(a® +b%) + Ind
a a—31In(a n

= { b ] P nle) = { b—&zu"ctan(b/a) — 27k |’ (71)
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and solving (70) by using a two-dimensional Newton-Raphsenation. Thus we iterate
according to

Apy1 = Qp — J_I(Qn)i(gn)7 n= 07 17 AR (72)
in which J~! is the inverse of the matri¥ whose entries are the partial derivatives of the
two components of the vector functienand that is in the present case given as
1 —b

Jo=| o T (73)

= a
ezl Ew s

It is seen that/(a) is in all cases of interest close to the identity matrix, whig why the
Newton-Raphson method has excellent convergence preper manifestation of this
is the fact that we can start for aiyin (70) with the same starting valug, = [0, 27]”
(although more sophisticated starting values may be taken)
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