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for generalized processor sharing systems
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Abstract: We develop power series approximations for a discrete-time
queueing system with two parallel queues and one procd§both queues
are non-empty, a customer of queue 1 is served with probaBiind a cus-
tomer of queue 2 is served with probability— 5. If one of the queues is
empty, a customer of the other queue is served with prolpahiliWe first
describe the generating functibi{ 2, z2) of the stationary queue lengths in
terms of a functional equation, and show how to solve thisgidie theory
of boundary value problems. Then, we propose to use the samsédnal
equation to obtain a power series fé(z1, z2) in 3. The first coefficient of
this power series corresponds to the priority ¢ase 0, which allows for an
explicit solution. All higher coefficients are expresseddamms of the prior-
ity case. Accurate approximations for the mean stationaeygq lengths are
obtained from combining truncated power series andeRabroximation.

1 Introduction

Consider a discrete-time queueing model with two paralielgs that share a single processor. If both queues
are non-empty at the beginning of a slot, a customer of queigesérved with probability (w.p.)3 and a
customer of queue 2 is served wlp— 3. If one of the queues is empty, a customer of the other queue is
served w.p. 1. This type of processor sharing occurs ndfurasystems where different types of customers
compete for resources. In telecommunication systems witgrated services, for instance, delay-sensitive
streaming traffic shares resources with elastic traffic.ifSee consider the traffic arriving at queue 2 to be the
delay-sensitive traffic in our model, a smallis necessary to limit the delay of this type of traffic. Theaxa
choice of3 should depend on the requirements (in terms of delay, lossyghput, etc.) of both types of traffic.

The number of customers arriving at queug = 1, 2) during slotk is denoted by:; ;. We assume that
{a;r, k > 0} forms a sequence of independent and identically distrib(ited.) random variables. We denote
the bivariate probability generating function (pgf) @f ; andas ;. by A(z1,22) :=E[z"*25>*]. The mean
number of arrivals in queugis denoted by\;. The customers from queyeneed service for a geometrically
distributed number of slots with meari;.;. Since the service policy is work conserving, the stabdipdition
is naturally given byp = Ay /1 + Ao/p2 < 1.

The above queueing system gives rise to a random walk on thelitwensional lattice in the quarter plane.
Both the transient and stationary distribution can be fousidg the theory of boundary value problems that
is developed in [8, 9] and surveyed in [7]. More specificatlhe bivariate pgf of the stationary queue length
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distribution, denoted b¥/ (21, z2), can be described in terms of a functional equation of the typ
K (21, 20)U (21, 22) = Koo(21, 22)U(0,0) + Kio(21, 22)U (21,0) + Ko (21, 22)U (0, 22), (1)

whereK, Ky, Ko andK7o depend on the input functions and input parameters; c{&B)Using certain zero-
tuples of the kernek((z;, z2), one can determine the functiobi$z;, 0) andU (0, z2) as solutions to a Riemann
boundary value problem. This approach for the model at harsltlined in Appendix A. The obtained
formal solution, however, requires considerable numesffarts, including the numerical determination of a
conformal mapping.

Other approaches for analyzing two-dimensional queueindats include the uniformization technique
[12], the compensation method [3], and the power seriesoappation (PSA), see for instance [5, 6, 11]. For
a comparison of the approaches see [1]. PSA is based on peries sxpansions of steady-state probabilities
as functions of a certain parameter of the system, usualjoddp, and was introduced in [11]. By using the
balance equations of the queueing system, the coefficiénitee derms in the power series can be calculated
iteratively. A disadvantage of this approach is the detation of the accuracy whemincreases. We propose
a novel version of PSA that differs from the conventionalrapgh in two ways. Firstly, we construct a power
series expansion for the bivariate @gfz;, z2) directly from the functional equation (1). Secondly, we stoact
a power series i rather than irp. This makes sense, since we are primarily interested inebats of our
model for small values of (and for all possible values of the load). Note further tlnat ¢ueueing system
is symmetric ing in the sense that = 0 means priority for queue 2, angl = 1 means priority for queue
1. Therefore, our PSA approach leads to the most accuratexapgtions not only neaf = 0 but also near
6 = 1 (by constructing the power seriesln- (3). This symmetry furthermore helps us in the construction of
good approximations for alf.

Our PSA approach can be summarized as follows. IFaf, 22; 3) := U(z1, 22) We construct the power
series

Ul(z1,22;8) = Z Vin(z1, 22) 8™, (2)

m=0

and we outline a procedure to determine the functigpsiteratively. The first ternij of this power series
corresponds to the priority cage= 0, which is well studied and allows for an explicit solutiof, (14). The

second terni; provides a first-order correction to the priority case forains. All higher termsV,,, can be

expressed ivj.

A final remark concerns the chosen modeling of the servicedimlthough deterministic service times of
exactly one slot come natural for discrete-time queueirsgesys, we have opted to extend it to geometrically
distributed service times. This does not complicate théyaissignificantly, while it allows us to derive results
for the well-known continuous-time generalized proces$@ring queueing system (see [9]) directly from the
discrete-time results. This is accomplished by lettingdlo¢ length go to zero and by scaling the arrival and
service processes.

The paper is outlined as follows. In Section 2, we constrbetfunctional equation fot/(z1, z2). An
expression folJ (z1, z2) in terms of the solution of a boundary value problem is presgim Appendix A. In
Section 3 we present, as our main contribution, the PSA agprfor iteratively solving the functional equation.
Approximations obtained from the PSA for the mean queuetlearg discussed in Section 4, along with some
numerical validations in Section 5. In Section 6, we show lbowdiscrete-time framework leads to results for
the continuous-time counterpart. Some conclusions aepted in Section 7.

2 The functional equation

The length of queug at the beginning of slat is denoted byu; i, j = 1,2. We assume that the customer in
service belongs to the queue it arrived in. We have the fatigwystem equations relatig; 51, u2 x11) t0

(w1 g, ug )



If Uk = 0, Uk = 0: Uj k+1 = Qj ks j=12.

If Uk = 0, Uk > 0: UL k+1 = A1k and

Ut — ugk — 1+ agg, W.p.pu2,
b + -
Uk + G2 w.p. 1 — po.

If Uy > O,u2’k =0: U2 41 = A2,k and

Uyt — uy g — 1+ apg, W.P.p,
* Uk + a1k W.p. 1 — py.

If Uy g > 0, Uk > 0:
(1 — 1+ ay g, usp +agy), W.P.OBui,
(Ui g1, U2 pq1) = (Ui ke +aip,ugr — 14+ agg), Wp. (1 — B)us,
(ur ke + ai g, gk + ag k), W.p. (1 — p1) + (1 = B)(1 — p2).

We definely (21, z2) as Bz, " z,>*], for all k, and we translate the system equations into pgfs:
Uk+1(217 22) :A(Zl, 2’2) |:Uk(0, 0) + <1 — 2+ ) (Uk(o ZQ) Uk(0,0)) + <1 — 1+ ,U11>
M1 H2
% (U(21,0) — Ux(0,0)) + (ﬂ (1 et ) +(1-8) (1 et 2))
X (Uk(zl, Z2) — Uk(O, 22) — Uk(zl, 0) + Uk(O, 0)):| .
In steady-statel/;.(z1, z2) andUy1(z1, 22) can be replaced by (z1, z2). By lettingk — oo in the above

equation, we find the functional equation (1) with kernel

Z1%9

K(z1,22) = A0 (1= Bu1 — (1 = Buz)z122 — (1 — B)uazr — Buize (3)
and
Koo(z1,22) = Bpozi(za — 1) + (1 — B)pi(z1 — 1) 22 (4)
Kio(z1,22) = (1 = B)(p221(22 — 1) — pa(21 — 1)22) (5)
Koi(z1,22) = B(pa(z1 — 1)22 — pazi(z2 — 1)). (6)

The functional equation (1) relatég(z;, z2) to U(z1,0), U(0, z2) andU(0,0) and can be solved using the
theory of boundary value problems. This is done in AppendifoAa generalization of (1) that includes the
starting position and transient behavior.

3 The power series approximation

We introduce the notatioli (z1, zo; 3) := U(z1, 22) to express that this bivariate pgf is a function®fFirst,
we rearrange (1) as

G(z1,22)U (21, 225 B) — Gro(21, 22)U (21, 0; B) — Goo(21, 22)U(0, 0; B) (7)
=0 Gio(z1, 22)[U (21, 22; B) — U(0, 22; B) — U(21,0; 8) + U(0,0; )],

where
G(21,22) =22 — A(z1, 22) (2 + (1 — p2)22), (8)
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Gholz1,22) =A(21,22) (na(z2 — 1) — pa (1 — 217 22),
Goo(z1, 22) =A(z1, ) pa (1 — 2720

Note that one of the difficulties in solving the functionaluetjon (7) is that it compriselsoth boundary
functionsU (0, z2; 3) and U (z1,0; 3). Our approach is based on the observation that only one ofitbe
boundary functions appears at the left-hand side of (7).

We assume thal/(z1, z2; #) is an analytic function of3 in a neighborhood of 0. We can then represent
U(z1, z2; B) by the power series expansion (2) for alland z, in the unit disk. Substitution of (2) into (7)
yields

oo oo o0
G(21,22) Z Vin(21,22) 8™ — Gho(21, 22) Z Vin(21,0)8™ — Goo(21, 22) Z Vin (0
m=0 m=0 =0
o
—Glo Zl, 29 Z 21, 22 (O 22) Vi (21, 0) + Vm(O, O)]ﬁm-H.
m=0

Equating coefficients of corresponding powerssadt both sides results in the following functional equation
for V,,,:

G (21, 22)Vin(21, 22) = Gio(21, 22) (Vin(21,0) + Pr—1(21, 22)) + Goo(21, 22)Vin (0, 0), 9
for all m > 0, with
P (21, 22) == Viu(21, 22) — Vin(0, 22) — Vin(21,0) + Vi, (0, 0),

form > 0andP_q(z1, 22) := 0.

We shall now outline how to determine expressionsiigizy, z2). For a certain fixedn, we assume that
P,—1(z1, 22) is known and we want to expre$, in terms of P,,_;. One can prove by a generalization of
Roucte’s theorem [2] that7(z1, 22) (equation (8)) has one zero in the unit diskzgffor an arbitraryz; in
the unit disk. Denote this zero by (z;). It is uniquely defined in the unit disk aS(z1,Y (21)) = 0 and
Y (z1)| < 1. The implicit function theorem then says thétz;) is an analytic function in the unit disk. In
fact, Y (z1) is the pgf of a random variable (see [16] for a similar exampBncelU (21, z2) is analytic for all
z1 andzq in the unit disk, thé/,,(z1, z2) are as well. Therefore, the right-hand side of (9) shoulaégero for
z9 = Y (z1). This gives

Goo(z1,Y (21))
Gio(z1,Y (#1))

Upon substituting (10) into (9) we obtain

1 [GOO(ZL 22)G1o(21, Y (21)) — Gro(21, 22)Goo(21, Y (21))
G(Zl, 29) G10(217 Y (21))

X Vin(0,0) + G1o(21, 22)Qm_1(21, 22)] (11)

Vm(Zl, 0) = — Vm(O, 0) - Pm_l(zl, Y(Zl)). (10)

Vin(21,22) =

with Q_1(z1, 22) := 0 and form > 0,

Qm(zl, 22) ::Pm(zl, 2’2) — Pm(zl, Y(Zl))
:Vm(zl, 2’2) — Vm(zl, Y(Zl)) — Vm(O, 2’2) + Vm(O, Y(Zl)) (12)

The last step in finding an expression gy, in terms ofP,,,_; (or @,,—1) is the calculation o#/,,(0,0). This
constant is found from the normalization condition. Sibtg, 1; 3) = 1 for all 3, it follows thatV,(1,1) = 1
andV,,(1,1) = 0 for all m > 0. Settingz; = 22 = 1 in (11) and using tha®),,,(1,1) = 0 for all m > 0, we
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find that1,(0,0) = 1 — p andV,,,(0,0) = 0 for m > 0. We finally arrive at the following relation betweéf),
and@,,_1 form > 0:

Az, 22)[poz1(22 — 1) — (21 — D 22)Qm—1(21, 22)

Vin(z1,22) = 21[z2 — A(z1, 22) (2 + (1 — p2)22)]

(13)

Here,
pap2(1 — p)A(z1, 22) (21 — 1) (22 — Y(21))

[22 = A(21, 22) (2 + (1 — p2)22)][p1 (21 — )Y (21) — po21 (Y (21) — 1]
Hence, starting front; in (14), every functiorl/,, can be determined iteratively via (13) an).

For 8 = 0, the second queue has strict priority over the first. The pti@queue length in this case equals
U(z1, 22;0) = Vo(z1, z2) as given in (14). This last expression is indeed the pgf irsardie-time preemptive
resume priority queueing system with geometric servicesiand the first queue having low priority (see e.g.
[17]).
Remark 1. Proving the analyticity ot/ (z1, 22, 3) in a neighborhood of = 0 is not straightforward. Possibly,
the approach taken in [11] for a related problem can be fabhwt involves three steps: (i) construction of a
finite Markov chain, e.g. a chain consisting of states {) of the infinite chain withm + [ < p for a givenp,
(i) a proof that the bivariate pgf in case of this finite Mavikehain is analytic in a neighborhood 6f= 0 and
(iii) a proof that this analyticity is carried over to the imiie Markov chain. We emphasize that we have never
come across an example that would suggestlitiat, z2, 3) is not analytic in a neighborhood of= 0 (for a
subset of these examples see Section 5).

Vo(z1,22) = (14)

3.1 Conservation laws

Let us first look at the special cage= 111 = uo. The pgf of the total number of customers in the queue can be
found from (1) by setting = z; = zo:

Az, 2)u(z = 1)(1 = p)
2= Alz,2)(p+ (- w)z)
Expression (15) fot/(z, z) is in fact the pgf of a discrete-tim&/X /Geeo/1 queue with the pgf of the number
of arrivals in a slot equal tel(z, z) and with geometrical service times with mebfu. It is clear that the total
system behaves as such a queueing system whe#a 19, since customers are served with rateavhen the
system is busy, irrespective 6f As a resultVy(z,z) = U(z,z) andV,,(z,z) = 0 for m > 1, which also
follows from the PSA approach.

Whenpu, # ps, the total system content is no longer independent.ofHowever, the total amount of
unfinished work expressed in number of slots does not depepid 8ince each customer of quejipresent in
the system at the beginning of a slot needs a geometricaisilelited number of slots service time with mean
1/, the pgf of the total unfinished work is given by:

U<1_(M12 f12% ) :A<1_(/fl_zm)zvl_(ib2_zu2)z> (z — 1)U(0,0)

1—p1)z’ 1—(1— )z < 1z poz )
z—A ,
1—(1—p1)z’ 1 —(1—p2)z
which is again found from (1). So we have that

Vo ( p1z 2z > _ U( IB¥: % )
1—(1—p)z’ 1—(1—p2)z 1—(1—p)z" 1—(1—pg)z

M1z M2z
V , =0, m>0.
m<1—ﬂ—uﬂzl—ﬂ—uﬂJ

This is also found from expressions (13) and (14). We will make of this property when approximating the
mean number of customers in the queues.

Uz, z) =

(15)

9

and




4 Approximations of performance measures

We have obtained an algorithm to determine thg(z1, z2) for each desiredn, but the actual calculation
is far from straightforward. The reason for this is thatdjpital’s rule has to be used multiple times, which
leads to expressions féf,,(z1, z2) that become more complex with. For instance, determining,,,(z1, z2)
requiresV,,—1(z1,Y (z1)) andV,,_1(0, z2). The application of I'Hbpital’s rule is necessary to obtain these
latter functions from (13). This problem is even more sigaifit when calculating performance measures such
as the moments; the generating functions then have to berafiffiated in 1 which again requires multiple
applications of I'Hopital’s rule.

We restrict the remaining discussion to the mean queuehéngjueuej given by

maV Z1,Z2)
Zﬁ 5

Zj

(16)

Z1:,22:1.
SinceVy, (u1z/(1 — (1 — p1)z), p2z/(1 — (1 — p2)z)) = 0 form > 0, itis easily seen that

OVin(z1, 22) _ ﬂavm(zl,@)
8z1 z1=22=1 12 aZQ

for m > 1. Therefore, forn > 1, we only need to calculate one of the two derivatives in tle¥ipus formula.
OVo(z1, 22)/0%j]21=20=1, § = 1,2 can be calculated easily from (14). We get the results fontean queue
lengths in the low-priority and high-priority queue in thisarete-timelM/ X /Geo/1 preemptive resume priority
gueue, as discussed before.

Let us now assume to have found the exact valugs for 0V, (21, 22)/0%j|2,=»—=1 for j = 1,2 and
m = 0,..., M. Truncation of the power series (16) leads to

)
z1=z2=1

M
Efu;] = > vjmB™ + OB ). (17)
m=0

This truncation yields accurate approximations for smiall

The problem is symmetric il in the sense that the PSA can also be constructgdsnl — 3 (instead of in
B). If thev; ,,, are calculated for generdl(z1, z2), u1 andus, this second approximation can also be calculated
directly by interchanging the roles of both queues. So, & isrinterested in ;] for 5 near 1, we can use that

M
= Bim(l—B)"+0((1 - B)MTY), (18)
m=0

With ©;,, = OVi (21, 22) /023 j| 21 =20=1, Vi given by Vi, (in (13)) with A(21, 22) replaced byA(z2, 1), and
11 andus interchanged.

Truncation yields approximations which are accurate near) In fact they provide the exa@t to M-th
order derivatives i) or 1. Pade approximants replace the power series (16) by a rationatifinal. We can
hence approximate|k;] by

Yo ujif
[L/Ngp,(B) = (19)
W g
with L, N and the coefficients;; andw;, chosen such that
M
[L/N] ;) (8) = Y vmB™ + O(BY*Y),
m=0
M
[L/N] ;) ( Z "+ O((1 =M,



i.e., such that the approximant has the correct derivatige® orderM in both 0 and 1. Thesg(M + 1)
derivatives to be matched by expression (19) lead to a shtdf+ 1) equations withl, + N + 1 unknowns

(coefficientsu;; (I = 0,..., L) andw;, (n =1,...,N); we use the normalization;, = 1). Every choice of
(L,N) with L + N = 2M + 1 thus leads in general to a unique solution forthe (I = 0, ..., L) andw;,,
(n=1,...,N)interms ofv;,, andv; ,,, m = 0, ..., M. If one is interested in approximate formulas which

are accurate for the whole ranffe 1] of 3, the generalized Padapproximants are the best choice. Note that
the [2M + 1/0]E[uﬂ approximant is a polynomial, like the truncated versionh&f PSAs. We have observed
that the[0/2M + 1]gy,,) approximant is usually among the most accurate ones (seeSaistion 5). Note
though that these Padhpproximants should be used carefully, since the denadongean introduce poles in
the approximation.

Remark 2. (First-order correction) The second teiin in the PSA equals the difference between the model
described in this paper and the preemptive resume priangye, fors going to 0. We find the following limits:

lim Ul(z1, 22; 8) — U(z1, 22;0) :A(zl, z9)[paz1(z2 — 1) — pi(z1 — 1)29]
B—0 B z1[z2 — A(z1, 22) (p2 + (1 — p2)22)]
X [U(z1,22;0) — U(z1,Y (21);0) — U(0, 22;0) + U(0,Y (21); 0)]
E[ug] — E[ug|3 = 0]  E[uz|f = 0] — E[ugly,—0|8 = 0]

lim = (20)
B—0 1] 1—po
I Elui] — Elu1|8=0]  p1 Elug|f = 0] — E[uzly,=0|8 = 0]
11m = - — s
B—0 B H2 1 —po

with 1x the indicator function of the event. These limits are important as they give first-order coroect
terms to the priority results for a near-priority queueiggtem.

5 Numerical examples

We now compare the PSA approximations to simulation reanlisnvestigate the influence of some parameters
on the mean queue lengths. Throughout this section, we dendeterministic service times of one slot. We
consider a generalized processor sharing discipline dgsmuhin the paper. Thus, when both queues are non-
empty at the beginning of a slot, a customer of queue 1 (queieserved w.ps (1 — ) during that slot.

If one of the queues is empty, the other queue is served. Beaaithe work conservation property, we can
concentrate on the mean queue length of only one queue, sag Qu

5.1 Validation of the approximations

Example 1. Assume the number of arrivals to both queues and the totabauwf arrivals in a slot to be
binomially distributed. More precisely, assume the follogvbivariate pgf of the number of class-1 and class-2
arrivals during a slot:

2

A(Zl, 22) = (1 + %(21 — 1) + %(22 — 1)) . (21)
Figure 1 depicts the approximations (17) and (18) as a fanadf 3 for increasing)/. The arrival rates\

and\; are 0.7 and 0.1. We have simulated the systergfer0,0.1,...,1 (crosses in the figure). The horizon-

tal lines (M = 0) equal the values for the priority queugs£ 0 and3 = 1 respectively). Figure 1 confirms

that the PSA approximations are indeed accurategfoear 0 and near 1 and that more terms provide larger

regions forg where the accuracy is good. However, as can also be seenlfiistiigure, the approximations

deteriorate (rapidly) fop away from 0 and 1. This can be dealt with using the&apiproximants introduced

in Section 4. Figure 2 depicts the Raapproximants (19) for the same example as in Figure 1 anti/fer 3.

It displays the approximants fé&¥ = 0,2,5 and7 (andL = 2M + 1 — N).
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Figure 1: Truncation approximations ofg] for binomially distributed arrival batch sizes with arrivates
A1 = 0.7and)y = 0.1.

Elu,]

Figure 2: Pad approximations of k2| for binomially distributed arrival batch sizes with arrivates\; = 0.7
and)\y = 0.1.

Example 2. Assume the arrivals of both classes to be a sequence of tepémdlent geometrically distributed
random variables with means and s respectively, i.e.

1—X 1—X
A = .
(ZI’ ZQ) 1-— /\121 1-— )\22:2
We again concentrate on queue 2. Figure 3 depicts the messiZleontent as a function gffor Ay = 0.7
and )\, = 0.1. The same conclusions as for Fi_gure 1 can be drawn, albgiittisanore pronounced that the
PSA for 3 works best for smalb and the one fog = 1 — 3 for 5 near 1. We can again construct similar Pad
approximants.
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Figure 3: Truncation approximations ofk| for geometrically distributed arrival batch sizes with mea
A1 = 0.7and)y = 0.1.

\ @ 0.1 0.3 0.5 0.7 0.9
0.1 | 4.8334e-4| 1.1755e-3| 1.4608e-3| 1.2829e-3| 5.7582e-4
0.2 | 2.0833e-3| 5.2967e-3| 6.9146e-3 6.4153e-3| 3.0622e-3
0.3 | 5.0689e-3| 1.3516e-2| 1.8668e-2| 1.8533e-2| 9.6076e-3
0.4 | 9.7846e-3| 2.7456e-2| 4.0439¢-2| 4.3625e-2| 2.5293e-2
05 | 1.6678e-2| 4.9428e-2| 7.8298e-2| 9.3511e-2| 6.3182e-2
0.6 | 2.6339e-2| 8.2767e-2| 1.4231e-1| 1.9231e-1| 1.6054e-1
0.7 | 3.9567e-2| 1.3237e-1| 2.4944e-1| 3.9111e-1| 4.3844e-1
0.8 | 5.7460e-2| 2.0558e-1| 4.2880e-1| 8.0254e-1| 1.3614e+0
0.9 | 8.1576e-2| 3.1367e-1] 7.3150e-1| 1.6875e+0| 5.1812e+0

Table 1: First-order corrections for near-priority queues

5.2 Influence of input parameters on the mean system contenvif near-priority systems

Again consider the example of the binomially distributedvat batch sizes (Expression (21)) and service
times of one slot. The total arrival rate is given by= A1 + Ao and we define the fraction of class-2 arrivals
a := A/ . Table 1 displays some values of the first-order correcgam{the first derivative of the mean class-
2 queue contentif = 0, see Formula (20)) for particular values)odnda. Some interesting observations can
be made: Firstly, the correction term increases with irsirgpload for a constant value af This is expected
since for high loads the number of customers in the classfirdis usually non-zero, thus sharing the server
with this buffer, even for a small percentage of the time caveha large influence. For small arrival rates,
one of the buffers is almost always empty and the serviceglise does not play an important role. A second
observation is that for a given arrival rate the correctiem first increases with, reaches a maximum and
then decreases. ln= 0 anda = 1, the correction term equals 0.
Similar conclusions can be drawn from Table 2, where we shewelative first-order correction
OVi(z1,22) [ OVo(z1,22)
6z1 821

z1=z2=1



\ 0.1 0.3 0.5 0.7 0.9
0.1 4.8213e-2| 3.8883e-2| 2.8836e-2| 1.798%e-2| 6.2436e-3
0.2 1.0363e-1| 8.6892e-2| 6.7277e-2| 4.4032e-2| 1.6127e-2
0.3 1.6767e-1| 1.4656e-1| 1.1920e-1| 8.2751e-2| 3.2572e-2
0.4 2.4209e-1| 2.2126e-1| 1.9030e-1| 1.4200e-1| 6.1596e-2
0.5 3.2922e-1| 3.1560e-1| 2.8910e-1| 2.3548e-1| 1.1656e-1
0.6 4.3210e-1| 4.3589e-1| 4.2847e-1| 3.8770e-1| 2.2984e-1
0.7 5.5480e-1| 5.9106e-1| 6.2813e-1| 6.4360e-1| 4.8814e-1
0.8 7.0296e-1| 7.9392e-1| 9.1885e-1| 1.0872e+0 1.1509e+0
0.9 8.8453e-1| 1.0634e+0| 1.3495e+0| 1.8789e+0| 3.0964e+0

Table 2: Relative first-order corrections for near-pripgtieues

This is a measure for the relative effect of giving a smallreha the processor’s time to the class-1 queue
in the priority system. Here, the relative first-order coti@n does not go to 0 far — 0 (in fact it tends to
A/(2 — \) for this arrival process). The reason is that the mean @agseue length in the priority case equals
0 for o = 0. For low loads the value of the relative first-order corraatierm is maximal forn = 0 and is a
strictly decreasing function in. For high loads, a maximum is reached for samg 0.

We can conclude that an increase of the total arrival ratenlgtresults in an absolute increase of the first-
order correction term, but also in an increase relative éopttority result. A GPS schedule has more impact
when the arrival rate is high. Our results are therefore@afg useful for these high arrival rates as they give a
significant first-order (and even higher-order) correctenm(s) to the priority result. The examples also show
that these correction terms are sensitive to the paramafténe system, which in turn shows the necessity of
the obtained formulas.

6 Continuous-time results

We now sketch how the discrete-time results lead to resattghfe continuous-time generalized processor
sharing system. This continuous-time model is the most prem subclass of the model in [9], there called
coupled processors; see also [13] for an analysis of the gfrimtoupled processor model and see [14] for an
approximate analysis of “cycle stealing” in coupled preoes.

Assume that arrivals occur to both queues according to enlggnt Poisson processes with arrival rates
and\3 respectively. The service times of customers in queage exponentially distributed with meayiyj.
The processor is shared in the following way: when both gsi@we non-empty, queue 1 is served with rate
(0 < B < 1 without loss of generality) while queue 2 is served with rate 5. When one of both queues is
empty, the other queue is served with rate 1.

We outline in this section that we can find the distributiortted number of customers at a random point
in time from the results of the discrete-time case. We tlueee$how that the pgfs of the numbers of arrivals
and the service times as well as the functional equationqipgdheir continuous-time counterparts. Similar
approaches were taken in [4, 15].

Let us divide the time axis into equal intervals of lendth We first define arrival and service processes in
the discrete-time case that scale to the above continuimesatrival and service processes. Define therefore

(22)
(23)

pj =pi A,
A(Zl, 2’2) :(1 — X{A + )\TAZl)(l — /\zA + )\SAZQ).

The service times of clagsexpressed in number of slots are geometrically distributiéd parametey.;, so
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their pgf is given by
A
1—(1- M*A)

Si(z) = (24)

The Laplace-Stieltjes transform of the service times inticoous time for the slot lengths going to zero equals

*

S(s) = lim 8;(e™*2) = —2.

_ 25
A—0 s + ,u;‘. (25)

The interarrival times between non-empty batches in therelis-time model are geometrically distributed
with parameter4 (0, 0), i.e., their pgf is given by

(1— A(0,0))z

1e) = T=Z0.02

with 4(0,0) = 1 — (A} + A\3)A + O(A?). Similarly as for the service times, we get that the Lapl8tettjes
transform of the interarrival times in continuous time filoe slot length going to zero is exponential with mean
1/(A7 + A%). The pgf of the number of customers arriving in a batch is tiean by

A(z1,22) — A(0,0) _ (Nfz1 + A522) A + O(A?)
— A(0,0) (AT + M)A +0(A?)

Hence, forA going to zero, the interarrival times between batches aperentially distributed with mean
1/(A7 + A%) and a batch consists of a customer arrival in the first quette probability \; /(A + A\5) or a
customer arrival in the second queue with probabiify (A} + \5). We thus conclude that the arrival process
into both queues converges to two independent Poissongzesevith parameters and 3.

With 11; and A(z1, 22) as in (22)-(23), the discrete-time arrival and service psses converge to Poisson
arrivals and exponential service times for— 0. Sinceg is the probability that a class-1 customer is served in
a slot, this is the fraction of time class-1 customers areeskwhen both queues are non-empty, in the limit for
A going to zero. When we substityte and A(z1, z2) by (22)-(23) in the functional equation (7), we arrive at

Fl(Zl,Zg)A+F2(Zl,22)A2+F3(21,ZQ)A3 =0, (26)
with

F1 (21, 22) = K*(Zl, ZQ)U(Zl, Zg) — KSO(Zl, ZQ)U(O, 0) — KTO(Zh ZQ)U(Zl, 0) — Kgl(zl, ZQ)U(O, 22)

and
K*(z1,22) =(1 = B)p(z1 — )zo + Bugzi(z2 — 1) — z122(M1(21 — 1) — Xa(22 — 1))
Kgo(21, 22) =0p1(z1 — Dz2 + (1 — Buzzi(z2 — 1)
Km(zh z2) =B(p2z1(22 — 1) — (21 — 1)22)
Ko (21,22) =(1 = B) (1 (21 — 1)22 — p2z1(22 — 1)).

The precise expressions 6% (z1, z2) and F3(z1, z2) are not important for the further discussion. It suffices
to know that - likeF';(z1, z2) - they are linear functions it/ (z1, z2), U(z1,0), U(0, z2) andU (0, 0), with
coefficients analytic in the whole complex plane. Thereftine three functiong’; are analytic at least in the
region|zi| < 1 and|zz| < 1. For A — 0 the first term in (26) is dominant. The functional equationsth
converges to

Fl(Zl,Zz) =0 (27)
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for A — 0. This is indeed the functional equation of the continuam®etGPS system described in [9]. Since
there is only one normalized solution of this functional @&ien inside the unit disk, the solution described in
this paper for the discrete-time functional equation eeslio the solution of (27) foA — 0 and we can thus
directly find approximations for the continuous-time GP®uging system from the results in sections 3-4.

Note that we can also find results for the continuous-time G$em with batch arrivals, by choosing a
less restrictived(z1, z2). Our discrete-time results can furthermore show the inflteeaf discretizing time on
the performance measures. When a continuous-time modsé@to approximate a discrete-time model, our
results can also quantify the error that is introduced, amatfon of the slot length.

7 Conclusions

We studied a discrete-time two-queue Generalized Proc8&swing system in this paper. When customers are
present in both queues, the queues are served with prdapabdindl — S respectively. We developed a novel
technique based on Power Series Approximations of the pootiability generating function in the parameter
(. The coefficients of the power terms are iteratively cal@dastarting from the constant term. This constant
term is the joint pgf of a priority queugi(= 0).

By truncating the power series, we find good approximatiemgtie means of the numbers of customers
in both queues, for small and, by symmetry, fo near 1. Interpolation technigues led to more accurate
approximations. A major advantage of the technique ovestiedard boundary value problem solution tech-
nique (described in the appendix) is that the formulas fgrtea mean queue lengths are explicit in the input
parameters and require no additional numerical effort.r@foee they can be important in for instance control
problems, where an optimalis to be found given the delay requirements of both typesadfitt

The developed technique is promising to deal in general thitghanalysis of queueing systems with some
sort of coupling. Examples are queues with a Packet-basadr@lized Processor Sharing scheduling and a
tandem queue where the two queues share a single processotheA interesting topic is the Generalized
Processor Sharing queue wittree (or more) classes. The theory of boundary value problemsibbbeen
developed for problems with more than two dimensions.

A Solution to the boundary value problem

In this appendix we present the solution to a more generat fafr the functional equation (1) in terms of
a Riemann-Hilbert boundary value problem. Introduclig, ,(z1, z2) := Uk(21, 22) With initial condition

U0 =T, U20 =Y and
00

Dyy(r, 21,20) 1= ZrkUk;Ly(zl, 29), (28)
k=0

we have forr| < 1,|z1] < 1,|z2| < 1:
(2120 — 19(21, 22)| Py (1, 21, 22) =1 A(21, 22){[Bp2z1(22 — 1) + (1 = B)p1 (21 — 1) 22| Py y (7,0, 0)
+ (1 = B)[u2z1(z2 — 1) — pa(z1 — 1)22] Py y (7, 21, 0)
+ Bl (21 — 1)za — pazr(z0 — 1) ®gy(r,0, 22) } + 2724, (29)
with
V(z1,22) = A(z1, 22)[(1 = B — (1 = B)p2)z122 + (1 — B)u2z1 + Bpaza]. (30)

It should be noticed that(z1, 22) is the generating function of a pair of non-negative, intagdued random
variables. Formula (29) has the following global form:

K(r, 21, 22) Py (1, 21, 22) (31)
:TKOO(Zla 22)<Dx,y(’l“, 0, 0) + T’Klo(zl, ZQ)q)x’y(’l", 21, 0) -+ T‘Kol (Zl, z2)¢m7y(r, O, 22) + Zf—HZ?QH_l,
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with thekernel K (r, z1, z2) being defined as
K(r,z1,22) := 2120 — (21, 22). (32)

Random walks on the two-dimensional lattice in the first gaatof the plane that give rise to functional
equations and kernels of the type as in (31) and (32) are sisduby Cohen [7]. In such random walks, the
steps to the West, South-West and South are at most one. itrig&ketched how this class of random walks,
typically arising in queueing models, can be analysed vieaasformation to a two-dimensional boundary
value problem of mathematical physics, like a Riemann onRien-Hilbert problem. In Part Il of [8] a much
more detailed exposition of this approach is presenteda &lightly more restricted class of two-dimensional
random walks. The kernel of the random walk that is studiedettontains the kernel that features in (32).
In this appendix, we sketch the way in which this boundaryeapproach can be used to determine the
generating functio®,. , (7, 21, 22) of the two-dimensional queueing problem that was present&ection 1.
We distinguish between four steps.

A.1 The zerotuples of the kernel

Obviously, the generating functiah, , (r, 21, z2) should be finite for all zerotuplés, z2) of K (r, z1, 2z2) with
I21] < 1, % < 1.
Let

A(r) :={(z1,22) : K(r,2z1,22) =0, |z1] <1, |22] < 1}.

Then for all(z1, 22) € A, one must require that
K00 (21, 22) @y y (7,0,0) + 7K 10(21, 22) @y y (7, 21, 0) + 7K1 (21, 20) @y y (1,0, 22) + 2571257 = 0. (33)

If one can construct functions, , (r, z,0) and®, ,(r, 0, z) which are regular ifz| < 1, continuous irjz| < 1,
and satisfy (33) for every zerotuplé;, 22) € A, then®,,(r, 21, 22) follows from (29) and the problem is
solved. As outlined in Section 1 of [7], one may restrict @ik consideration of a suitabkibsetS; x Sy
of A. Indeed, if there exist curve$; andSe, with S1 C {21 : |z1| < 1} andSy C {22 : |22 < 1}, and a
one-to-one map; = w(z2) from Sy to S; such thatw(z,), 22) is a zerotuple of< (r, z1, z2) for all 2, € Ss,
then the following holds. If function®, ,(r, z,0) and®, ,(r,0,z) can be constructed that aregular for
|z| < 1, continuoudor |z| < 1, and that satisfy (33) for all zerotuplé$;, z3) with 2; = w(Z22), 22 € Sy, then
by analytic continuatiothese®,. ,(r, z,0) and®, ,(r, 0, z) satisfy (33) forall zerotupleg 2, Z2) of A [7].

A.2 A suitable set of zerotuples

Let us now consider the construction of the cureand.S,. While there are many possible choices here, it is
important to make a choice that leads to tractable numegchhiques for obtaining the analytic continuations
mentioned above.

In [8] the following choice is proposed. Letbe traversing the unit circlg| = 1. Letz; = g(r, s)s and
29 = g(r, s)s~ 1, with g such that it makes the kernel zero:

K(r,g(r,s)s,g(r,s)s™1) = 0.
So in our case, with the kernel given by (32)should satisfy
g° =r¢(gs, gs). (34)

Roucte’s theorem implies that there are exactly two zeros of thigaton satisfyindg| < 1. In fact, in our
case one of these two zeros is zero, dug(f®, 0) = 0. Now take

Si(r) :={z1: 21 =g(r,9)s, |s| =1},
Sa(r) :=={z2: 22 = g(r, 3)3_1, |s| = 1}.
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A.3 Preparing the ground for a Riemann boundary value problem

We next want to construcb, ,(r, z,0) and®, ,(r,0, z) that are regular inz| < 1, continuous inz| < 1,
and that satisfy (33) for allz1, 22) with 2; = w(22), 22 € Se. To accomplish this, one may solveRéemann
boundary value problensee, e.g., Gakhov [10] for an extensive discussion of socimdbary value problems,
that aim to determine functions which are regular insid@eetvely outside a certain contour and satisfy a
particular relation on that contour — the boundary. To be édformulate such a boundary value problem, we
need one more step. One can show (cf. [8], Part Il) that focthreesS; () and Sy (r) there exists a unique
simple closed contouk(r) in thep-plane, and functions, (r, p) andz,(r, p) such that the following holds:

() 21 (r,p): LT (r) — S{ (r) is regular and univalent for € L*(r),
(i) 22(r,p) : L=(r) — Sy (r) is regular and univalent fgr € L=(r),
(i) z1(r,p) = w(za(r,p)) forp € L(r), w(-) being a one-to-one map frofe(r) onto.S; (r).

HereC'™ andC~ denote the interior and exterior of a closed cont@uand univalent means that(r, p;) #
z1(r, p2) for p1 # p2. Hence (i) and (ii) can be reformulated as:

e z(r, p) is a conformal mapping of *(r) into S} (r),
e z(r,p) is a conformal mapping of ~(r) into S5 (r).

The curveL(r) can be determined by solving a particular integral equatibrSection 11.3.6 of [8].

A.4 The Riemann boundary value problem

Sincez (r,p) is regular and univalent fgs € LT (r) andz,(r,p) is regular and univalent fop € L~ (r),
@, (r, z1(r,p),0) also is a regular function fgr € L (r) and continuous fop € L*(r)|J L(r), and simi-
larly @, ,,(r, 0, 22(r, p)) is aregular function fop € L~ (r) and continuous fop € L~ (r) |J L(r). We are now
ready to formulate a standard Riemann-type boundary vahsgm:

Determine two function§; (r, p) := @ ,(r, z1(r,p),0), p € LT (r) J L(r), and

Qa(r,p) := Py y(r,0, 22(r,p)), p € L (r)|J L(r), such that2; (r, p) is regular forp € L*(r) and continuous
forp € Lt (r)J L(r), Qa2(r, p) is regular forp € L~ (r) and continuous fop € L~ (r)|J L(r), Q1(r,0) =
Dy y(r,0,0), limy, oo Q2(r, p) = @4 4(r,0,0), and on thésoundaryL(r), the functions2; (r, p) andQsa(r, p)
satisfy the relation (with appropriate functiofgr, p) andh(r, p), cf. (31)):

Q1 (r,p) = H(r,p)Qa(r,p) + h(r,p), pe€ L(r). (35)

The solution of this boundary value problem may be found 0},[$ee also Section 1.2 of [8].

As observed before, now thét, ,(r, 21,0) and®, ,(r, 0, z2) are found forz; € S (r) andz, € S5 (r),
one obtaingp,. , (r, 21, z2) first for z; € Si (r) andzy € Sy (r), and finally for|z1| < 1, |2| < 1 via analytic
continuation.

We end this appendix with several remarks.

Remark 3. It should be noticed that the initial conditions o = x, u2 o = y occur in the functiorh(r, p) in
(35). Further observe that, if the initial state is a setasfdom variablegu; o, u20) = (X,Y"), with bivariate
paf Uo(21,22) = D920 d oo P(X = x,Y = y)z{z3, then the last term in the right-hand side of (29) is
replaced by z0Up(z1, 22). This affectsh(r, p), but not the solution approach.

Remark 4. The kernelK (r, 21, z2) has exactly the same form as the kernel that is consideredghout Part

Il of [8], but the behaviour of the random walk in the interwfrthe first quadrant, that we consider, slightly
deviates in the interior from the behaviour of the randomkwhét is being considered in that Part Il. That
implies that a slightly different Riemann boundary valuelgem results.
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Remark 5. It is easily seen that(0,0) = 0; indeed, at most one customer is served per time slot, antehen
random walk transitions to the South-West are not possilrieSections 11.3.10-12 of [8], kernels with this
special feature are treated in detail. It turns out that W) and Sz(r) are traversedwiceif s traverses
the unit circle|s| = 1 once. Furthermore, one has to distinguish between the (%ﬁe{s,o)zzo > (<, =

) %w(o, 2).—0, as these cases lead to different positions of the point) w.r.t. the contours; () andSz(r),

and consequently to slightly different analytic treatnserior the sake of exposition, let us restrict ourselves
to the symmetric case that the random variables and a, ;, are exchangeablei.e., P(a;, = i,a2, =

j) = Playy = j,asy = i) foralli,j = 0,1,..., and thatu; = po = 1 andB = 3. Theny(zy, 22) =
A(z1,20) (21 + 22) /2 and L 4p(2,0) .m0 = L4p(0, 2).—0, leading toz; = 0 € S1(r) andzy = 0 € So(r). The
equation determining(r, s) now is (cf. (34)):

g—rA(gs, gs)>

The contourL(r) in this symmetric case turns out to be a circle, with centey ahd radius} (see Section
11.3.12 of [8]). If, moreover, onlyP(a;, = agy = 0) = Ao, Plary = 1,a2 = 0) = A1, Plary =
0,a2, = 1) = Ag1 andP(ay, = 1,a2, = 1) = Ay are possibly non-zero, then the equation determining
g(r, s) reduces to a quadratic equation:

s+ st

g—r[Aop+ A1og(s +571) + A116%] 5 = 0,

from which the contours’; (r) andSz(r) are easily determined.

Remark 6. If the steady-state distribution of the joint queue-lendjigtribution in our model exists, then its
generating functio®(z1, z») can be determined vil(z1, z2) = lim, 1 (1—7)P, 4(r, 21, 22). In Section 1.3.9

of [8], the details of this approach are presented; in Sedti@.16, for the case of symmetridwo-dimensional
random walk, it is outlined how one catirectly handle the steady-state case. Here one considers the kernel
K(1, z1, 22), identifying a contour.(1) and zerogz; (1, p), z2(1, p)) of the kernel, and formulating a Riemann
boundary value problem fab(z; (1, p),0) and®(0, z2(1, p)) with boundaryL(1).

Remark 7. In order to determine performance measures like the meadystgate queue lengths, one has to
evaluate quantities Iikg]g@(z, 1).—1. This requires the numerical determination/fi ), and of (the analytic
continuation of) the conformal mappings frofi(r) and S (r), respectively, taL(r). Finally, a numerical
analysis is required of the singular contour integrals #pegcify ®(z,0) and®(0, z). We refer to Part IV of

[8] for an extensive discussion of such numerical aspectslé/it turns out to be possible to obtain numerical
values of such performance measures, the analysis is guikvéd. We have hence decided to concentrate in
this paper on an alternative approach for skeady-statanalysis of the queueing model under consideration —
a method that has several novel aspects, and that allowsbsaim numerical values in a more straightforward
manner.
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