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Abstract: We develop power series approximations for a discrete-time
queueing system with two parallel queues and one processor.If both queues
are non-empty, a customer of queue 1 is served with probability β and a cus-
tomer of queue 2 is served with probability1 − β. If one of the queues is
empty, a customer of the other queue is served with probability 1. We first
describe the generating functionU(z1, z2) of the stationary queue lengths in
terms of a functional equation, and show how to solve this using the theory
of boundary value problems. Then, we propose to use the same functional
equation to obtain a power series forU(z1, z2) in β. The first coefficient of
this power series corresponds to the priority caseβ = 0, which allows for an
explicit solution. All higher coefficients are expressed interms of the prior-
ity case. Accurate approximations for the mean stationary queue lengths are
obtained from combining truncated power series and Padé approximation.

1 Introduction

Consider a discrete-time queueing model with two parallel queues that share a single processor. If both queues
are non-empty at the beginning of a slot, a customer of queue 1is served with probability (w.p.)β and a
customer of queue 2 is served w.p.1 − β. If one of the queues is empty, a customer of the other queue is
served w.p. 1. This type of processor sharing occurs naturally in systems where different types of customers
compete for resources. In telecommunication systems with integrated services, for instance, delay-sensitive
streaming traffic shares resources with elastic traffic. So,if we consider the traffic arriving at queue 2 to be the
delay-sensitive traffic in our model, a smallβ is necessary to limit the delay of this type of traffic. The exact
choice ofβ should depend on the requirements (in terms of delay, loss, throughput, etc.) of both types of traffic.

The number of customers arriving at queuej (j = 1, 2) during slotk is denoted byaj,k. We assume that
{aj,k, k > 0} forms a sequence of independent and identically distributed (i.i.d.) random variables. We denote
the bivariate probability generating function (pgf) ofa1,k anda2,k by A(z1, z2) :=E[z

a1,k

1 z
a2,k

2 ]. The mean
number of arrivals in queuej is denoted byλj . The customers from queuej need service for a geometrically
distributed number of slots with mean1/µj . Since the service policy is work conserving, the stabilitycondition
is naturally given byρ = λ1/µ1 + λ2/µ2 < 1.

The above queueing system gives rise to a random walk on the two-dimensional lattice in the quarter plane.
Both the transient and stationary distribution can be foundusing the theory of boundary value problems that
is developed in [8, 9] and surveyed in [7]. More specifically,the bivariate pgf of the stationary queue length
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distribution, denoted byU(z1, z2), can be described in terms of a functional equation of the type

K(z1, z2)U(z1, z2) = K00(z1, z2)U(0, 0) +K10(z1, z2)U(z1, 0) +K01(z1, z2)U(0, z2), (1)

whereK,K00,K01 andK10 depend on the input functions and input parameters; cf. (3)-(6). Using certain zero-
tuples of the kernelK(z1, z2), one can determine the functionsU(z1, 0) andU(0, z2) as solutions to a Riemann
boundary value problem. This approach for the model at hand is outlined in Appendix A. The obtained
formal solution, however, requires considerable numerical efforts, including the numerical determination of a
conformal mapping.

Other approaches for analyzing two-dimensional queueing models include the uniformization technique
[12], the compensation method [3], and the power series approximation (PSA), see for instance [5, 6, 11]. For
a comparison of the approaches see [1]. PSA is based on power series expansions of steady-state probabilities
as functions of a certain parameter of the system, usually the loadρ, and was introduced in [11]. By using the
balance equations of the queueing system, the coefficients of the terms in the power series can be calculated
iteratively. A disadvantage of this approach is the deterioration of the accuracy whenρ increases. We propose
a novel version of PSA that differs from the conventional approach in two ways. Firstly, we construct a power
series expansion for the bivariate pgfU(z1, z2) directly from the functional equation (1). Secondly, we construct
a power series inβ rather than inρ. This makes sense, since we are primarily interested in the results of our
model for small values ofβ (and for all possible values of the load). Note further that the queueing system
is symmetric inβ in the sense thatβ = 0 means priority for queue 2, andβ = 1 means priority for queue
1. Therefore, our PSA approach leads to the most accurate approximations not only nearβ = 0 but also near
β = 1 (by constructing the power series in1 − β). This symmetry furthermore helps us in the construction of
good approximations for allβ.

Our PSA approach can be summarized as follows. ForU(z1, z2;β) := U(z1, z2) we construct the power
series

U(z1, z2;β) =
∞

∑

m=0

Vm(z1, z2)β
m, (2)

and we outline a procedure to determine the functionsVm iteratively. The first termV0 of this power series
corresponds to the priority caseβ = 0, which is well studied and allows for an explicit solution, cf. (14). The
second termV1 provides a first-order correction to the priority case for small β. All higher termsVm can be
expressed inV0.

A final remark concerns the chosen modeling of the service times. Although deterministic service times of
exactly one slot come natural for discrete-time queueing systems, we have opted to extend it to geometrically
distributed service times. This does not complicate the analysis significantly, while it allows us to derive results
for the well-known continuous-time generalized processorsharing queueing system (see [9]) directly from the
discrete-time results. This is accomplished by letting theslot length go to zero and by scaling the arrival and
service processes.

The paper is outlined as follows. In Section 2, we construct the functional equation forU(z1, z2). An
expression forU(z1, z2) in terms of the solution of a boundary value problem is presented in Appendix A. In
Section 3 we present, as our main contribution, the PSA approach for iteratively solving the functional equation.
Approximations obtained from the PSA for the mean queue length are discussed in Section 4, along with some
numerical validations in Section 5. In Section 6, we show howour discrete-time framework leads to results for
the continuous-time counterpart. Some conclusions are presented in Section 7.

2 The functional equation

The length of queuej at the beginning of slotk is denoted byuj,k, j = 1, 2. We assume that the customer in
service belongs to the queue it arrived in. We have the following system equations relating(u1,k+1, u2,k+1) to
(u1,k, u2,k):
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• If u1,k = 0, u2,k = 0: uj,k+1 = aj,k, j = 1, 2.

• If u1,k = 0, u2,k > 0: u1,k+1 = a1,k and

u2,k+1 =

{

u2,k − 1 + a2,k, w.p.µ2,
u2,k + a2,k w.p.1 − µ2.

• If u1,k > 0, u2,k = 0: u2,k+1 = a2,k and

u1,k+1 =

{

u1,k − 1 + a1,k, w.p.µ1,
u1,k + a1,k w.p.1 − µ1.

• If u1,k > 0, u2,k > 0:

(u1,k+1, u2,k+1) =







(u1,k − 1 + a1,k, u2,k + a2,k), w.p.βµ1,
(u1,k + a1,k, u2,k − 1 + a2,k), w.p. (1 − β)µ2,
(u1,k + a1,k, u2,k + a2,k), w.p.β(1 − µ1) + (1 − β)(1 − µ2).

We defineUk(z1, z2) as E
[

z
u1,k

1 z
u2,k

2

]

, for all k, and we translate the system equations into pgfs:

Uk+1(z1, z2) =A(z1, z2)

[

Uk(0, 0) +

(

1 − µ2 +
µ2

z2

)

(Uk(0, z2) − Uk(0, 0)) +

(

1 − µ1 +
µ1

z1

)

× (Uk(z1, 0) − Uk(0, 0)) +

(

β

(

1 − µ1 +
µ1

z1

)

+ (1 − β)

(

1 − µ2 +
µ2

z2

))

× (Uk(z1, z2) − Uk(0, z2) − Uk(z1, 0) + Uk(0, 0))

]

.

In steady-state,Uk(z1, z2) andUk+1(z1, z2) can be replaced byU(z1, z2). By letting k → ∞ in the above
equation, we find the functional equation (1) with kernel

K(z1, z2) =
z1z2

A(z1, z2)
− (1 − βµ1 − (1 − β)µ2)z1z2 − (1 − β)µ2z1 − βµ1z2 (3)

and

K00(z1, z2) = βµ2z1(z2 − 1) + (1 − β)µ1(z1 − 1)z2 (4)

K10(z1, z2) = (1 − β)(µ2z1(z2 − 1) − µ1(z1 − 1)z2) (5)

K01(z1, z2) = β(µ1(z1 − 1)z2 − µ2z1(z2 − 1)). (6)

The functional equation (1) relatesU(z1, z2) to U(z1, 0), U(0, z2) andU(0, 0) and can be solved using the
theory of boundary value problems. This is done in Appendix Afor a generalization of (1) that includes the
starting position and transient behavior.

3 The power series approximation

We introduce the notationU(z1, z2;β) := U(z1, z2) to express that this bivariate pgf is a function ofβ. First,
we rearrange (1) as

G(z1, z2)U(z1, z2;β) −G10(z1, z2)U(z1, 0;β) −G00(z1, z2)U(0, 0;β) (7)

=β ·G10(z1, z2)[U(z1, z2;β) − U(0, z2;β) − U(z1, 0;β) + U(0, 0;β)],

where

G(z1, z2) =z2 −A(z1, z2)(µ2 + (1 − µ2)z2), (8)
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G10(z1, z2) =A(z1, z2)(µ2(z2 − 1) − µ1(1 − z−1
1 )z2),

G00(z1, z2) =A(z1, z2)µ1(1 − z−1
1 )z2.

Note that one of the difficulties in solving the functional equation (7) is that it comprisesboth boundary
functionsU(0, z2;β) andU(z1, 0;β). Our approach is based on the observation that only one of thetwo
boundary functions appears at the left-hand side of (7).

We assume thatU(z1, z2;β) is an analytic function ofβ in a neighborhood of 0. We can then represent
U(z1, z2;β) by the power series expansion (2) for allz1 andz2 in the unit disk. Substitution of (2) into (7)
yields

G(z1, z2)
∞
∑

m=0

Vm(z1, z2)β
m −G10(z1, z2)

∞
∑

m=0

Vm(z1, 0)βm −G00(z1, z2)
∞

∑

m=0

Vm(0, 0)βm

=G10(z1, z2)
∞

∑

m=0

[Vm(z1, z2) − Vm(0, z2) − Vm(z1, 0) + Vm(0, 0)]βm+1.

Equating coefficients of corresponding powers ofβ at both sides results in the following functional equation
for Vm:

G(z1, z2)Vm(z1, z2) = G10(z1, z2)(Vm(z1, 0) + Pm−1(z1, z2)) +G00(z1, z2)Vm(0, 0), (9)

for all m ≥ 0, with

Pm(z1, z2) := Vm(z1, z2) − Vm(0, z2) − Vm(z1, 0) + Vm(0, 0),

for m ≥ 0 andP−1(z1, z2) := 0.
We shall now outline how to determine expressions forVm(z1, z2). For a certain fixedm, we assume that

Pm−1(z1, z2) is known and we want to expressVm in terms ofPm−1. One can prove by a generalization of
Rouch́e’s theorem [2] thatG(z1, z2) (equation (8)) has one zero in the unit disk ofz2 for an arbitraryz1 in
the unit disk. Denote this zero byY (z1). It is uniquely defined in the unit disk asG(z1, Y (z1)) = 0 and
|Y (z1)| < 1. The implicit function theorem then says thatY (z1) is an analytic function in the unit disk. In
fact,Y (z1) is the pgf of a random variable (see [16] for a similar example). SinceU(z1, z2) is analytic for all
z1 andz2 in the unit disk, theVm(z1, z2) are as well. Therefore, the right-hand side of (9) should equal zero for
z2 = Y (z1). This gives

Vm(z1, 0) = −
G00(z1, Y (z1))

G10(z1, Y (z1))
Vm(0, 0) − Pm−1(z1, Y (z1)). (10)

Upon substituting (10) into (9) we obtain

Vm(z1, z2) =
1

G(z1, z2)

[G00(z1, z2)G10(z1, Y (z1)) −G10(z1, z2)G00(z1, Y (z1))

G10(z1, Y (z1))

× Vm(0, 0) +G10(z1, z2)Qm−1(z1, z2)
]

(11)

with Q−1(z1, z2) := 0 and form ≥ 0,

Qm(z1, z2) :=Pm(z1, z2) − Pm(z1, Y (z1))

=Vm(z1, z2) − Vm(z1, Y (z1)) − Vm(0, z2) + Vm(0, Y (z1)). (12)

The last step in finding an expression forVm in terms ofPm−1 (orQm−1) is the calculation ofVm(0, 0). This
constant is found from the normalization condition. SinceU(1, 1;β) = 1 for all β, it follows thatV0(1, 1) = 1
andVm(1, 1) = 0 for all m > 0. Settingz1 = z2 = 1 in (11) and using thatQm(1, 1) = 0 for all m ≥ 0, we
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find thatV0(0, 0) = 1− ρ andVm(0, 0) = 0 for m > 0. We finally arrive at the following relation betweenVm

andQm−1 for m > 0:

Vm(z1, z2) =
A(z1, z2)[µ2z1(z2 − 1) − µ1(z1 − 1)z2]Qm−1(z1, z2)

z1[z2 −A(z1, z2)(µ2 + (1 − µ2)z2)]
. (13)

Here,

V0(z1, z2) =
µ1µ2(1 − ρ)A(z1, z2)(z1 − 1)(z2 − Y (z1))

[z2 −A(z1, z2)(µ2 + (1 − µ2)z2)][µ1(z1 − 1)Y (z1) − µ2z1(Y (z1) − 1)]
. (14)

Hence, starting fromV0 in (14), every functionVm can be determined iteratively via (13) and (12).
Forβ = 0, the second queue has strict priority over the first. The pgf of the queue length in this case equals

U(z1, z2; 0) = V0(z1, z2) as given in (14). This last expression is indeed the pgf in a discrete-time preemptive
resume priority queueing system with geometric service times and the first queue having low priority (see e.g.
[17]).

Remark 1. Proving the analyticity ofU(z1, z2, β) in a neighborhood ofβ = 0 is not straightforward. Possibly,
the approach taken in [11] for a related problem can be followed. It involves three steps: (i) construction of a
finite Markov chain, e.g. a chain consisting of states (m, l) of the infinite chain withm + l < p for a givenp,
(ii) a proof that the bivariate pgf in case of this finite Markov chain is analytic in a neighborhood ofβ = 0 and
(iii) a proof that this analyticity is carried over to the infinite Markov chain. We emphasize that we have never
come across an example that would suggest thatU(z1, z2, β) is not analytic in a neighborhood ofβ = 0 (for a
subset of these examples see Section 5).

3.1 Conservation laws

Let us first look at the special caseµ = µ1 = µ2. The pgf of the total number of customers in the queue can be
found from (1) by settingz = z1 = z2:

U(z, z) =
A(z, z)µ(z − 1)(1 − ρ)

z −A(z, z)(µ+ (1 − µ)z)
. (15)

Expression (15) forU(z, z) is in fact the pgf of a discrete-timeMX/Geo/1 queue with the pgf of the number
of arrivals in a slot equal toA(z, z) and with geometrical service times with mean1/µ. It is clear that the total
system behaves as such a queueing system whenµ1 = µ2, since customers are served with rateµ when the
system is busy, irrespective ofβ. As a result,V0(z, z) = U(z, z) andVm(z, z) = 0 for m ≥ 1, which also
follows from the PSA approach.

Whenµ1 6= µ2, the total system content is no longer independent ofβ. However, the total amount of
unfinished work expressed in number of slots does not depend on β. Since each customer of queuej present in
the system at the beginning of a slot needs a geometrically distributed number of slots service time with mean
1/µj, the pgf of the total unfinished work is given by:

U

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

)

=

A

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

)

(z − 1)U(0, 0)

z −A

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

) ,

which is again found from (1). So we have that

V0

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

)

= U

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

)

and

Vm

(

µ1z

1 − (1 − µ1)z
,

µ2z

1 − (1 − µ2)z

)

= 0, m > 0.

This is also found from expressions (13) and (14). We will make use of this property when approximating the
mean number of customers in the queues.
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4 Approximations of performance measures

We have obtained an algorithm to determine theVm(z1, z2) for each desiredm, but the actual calculation
is far from straightforward. The reason for this is that l’Hôpital’s rule has to be used multiple times, which
leads to expressions forVm(z1, z2) that become more complex withm. For instance, determiningQm(z1, z2)
requiresVm−1(z1, Y (z1)) andVm−1(0, z2). The application of l’Ĥopital’s rule is necessary to obtain these
latter functions from (13). This problem is even more significant when calculating performance measures such
as the moments; the generating functions then have to be differentiated in 1 which again requires multiple
applications of l’Ĥopital’s rule.

We restrict the remaining discussion to the mean queue length in queuej given by

E[uj ] =

∞
∑

m=0

βm∂Vm(z1, z2)

∂zj

∣

∣

∣

z1=z2=1
. (16)

SinceVm(µ1z/(1 − (1 − µ1)z), µ2z/(1 − (1 − µ2)z)) = 0 for m > 0, it is easily seen that

∂Vm(z1, z2)

∂z1

∣

∣

∣

z1=z2=1
= −

µ1

µ2

∂Vm(z1, z2)

∂z2

∣

∣

∣

z1=z2=1
,

for m ≥ 1. Therefore, form ≥ 1, we only need to calculate one of the two derivatives in the previous formula.
∂V0(z1, z2)/∂zj|z1=z2=1, j = 1, 2 can be calculated easily from (14). We get the results for themean queue
lengths in the low-priority and high-priority queue in the discrete-timeMX/Geo/1 preemptive resume priority
queue, as discussed before.

Let us now assume to have found the exact valuesvj,m for ∂Vm(z1, z2)/∂zj|z1=z2=1 for j = 1, 2 and
m = 0, . . . ,M . Truncation of the power series (16) leads to

E[uj ] =
M
∑

m=0

vj,mβ
m +O(βM+1). (17)

This truncation yields accurate approximations for smallβ.
The problem is symmetric inβ in the sense that the PSA can also be constructed inβ̄ = 1− β (instead of in

β). If thevj,m are calculated for generalA(z1, z2), µ1 andµ2, this second approximation can also be calculated
directly by interchanging the roles of both queues. So, if one is interested in E[uj ] for β near 1, we can use that

E[uj] =

M
∑

m=0

ṽj,m(1 − β)m +O((1 − β)M+1), (18)

with ṽj,m = ∂Ṽm(z1, z2)/∂z3−j|z1=z2=1, Ṽm given byVm (in (13)) withA(z1, z2) replaced byA(z2, z1), and
µ1 andµ2 interchanged.

Truncation yields approximations which are accurate near 0or 1. In fact they provide the exact0- toM -th
order derivatives in0 or 1. Pad́e approximants replace the power series (16) by a rational functional. We can
hence approximate E[uj] by

[L/N ]E[uj ](β) =

∑L
l=0 uj,lβ

l

∑N
n=0wj,nβn

, (19)

with L,N and the coefficientsuj,l andwj,n chosen such that

[L/N ]E[uj ](β) =
M
∑

m=0

vj,mβ
m +O(βM+1),

[L/N ]E[uj ](β) =
M
∑

m=0

ṽj,m(1 − β)m +O((1 − β)M+1),
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i.e., such that the approximant has the correct derivativesup to orderM in both 0 and 1. These2(M + 1)
derivatives to be matched by expression (19) lead to a set of2(M + 1) equations withL + N + 1 unknowns
(coefficientsuj,l (l = 0, . . . , L) andwj,n (n = 1, . . . , N ); we use the normalizationwj,0 = 1). Every choice of
(L,N) with L + N = 2M + 1 thus leads in general to a unique solution for theuj,l (l = 0, . . . , L) andwj,n

(n = 1, . . . , N ) in terms ofvj,m andṽj,m, m = 0, . . . ,M . If one is interested in approximate formulas which
are accurate for the whole range[0, 1] of β, the generalized Padé approximants are the best choice. Note that
the [2M + 1/0]E[uj ] approximant is a polynomial, like the truncated version of the PSAs. We have observed
that the[0/2M + 1]E[uj ] approximant is usually among the most accurate ones (see also Section 5). Note
though that these Padé approximants should be used carefully, since the denominators can introduce poles in
the approximation.

Remark 2. (First-order correction) The second termV1 in the PSA equals the difference between the model
described in this paper and the preemptive resume priority queue, forβ going to 0. We find the following limits:

lim
β→0

U(z1, z2;β) − U(z1, z2; 0)

β
=
A(z1, z2)[µ2z1(z2 − 1) − µ1(z1 − 1)z2]

z1[z2 −A(z1, z2)(µ2 + (1 − µ2)z2)]

× [U(z1, z2; 0) − U(z1, Y (z1); 0) − U(0, z2; 0) + U(0, Y (z1); 0)]

lim
β→0

E[u2] − E[u2|β = 0]

β
=

E[u2|β = 0] − E[u21u1=0|β = 0]

1 − ρ2
(20)

lim
β→0

E[u1] − E[u1|β = 0]

β
= −

µ1

µ2

E[u2|β = 0] − E[u21u1=0|β = 0]

1 − ρ2
,

with 1X the indicator function of the eventX. These limits are important as they give first-order correction
terms to the priority results for a near-priority queueing system.

5 Numerical examples

We now compare the PSA approximations to simulation resultsand investigate the influence of some parameters
on the mean queue lengths. Throughout this section, we consider deterministic service times of one slot. We
consider a generalized processor sharing discipline as analysed in the paper. Thus, when both queues are non-
empty at the beginning of a slot, a customer of queue 1 (queue 2) is served w.p.β (1 − β) during that slot.
If one of the queues is empty, the other queue is served. Because of the work conservation property, we can
concentrate on the mean queue length of only one queue, say queue 2.

5.1 Validation of the approximations

Example 1. Assume the number of arrivals to both queues and the total number of arrivals in a slot to be
binomially distributed. More precisely, assume the following bivariate pgf of the number of class-1 and class-2
arrivals during a slot:

A(z1, z2) =

(

1 +
λ1

2
(z1 − 1) +

λ2

2
(z2 − 1)

)2

. (21)

Figure 1 depicts the approximations (17) and (18) as a function ofβ for increasingM . The arrival ratesλ1

andλ2 are 0.7 and 0.1. We have simulated the system forβ = 0, 0.1, . . . , 1 (crosses in the figure). The horizon-
tal lines (M = 0) equal the values for the priority queues (β = 0 andβ = 1 respectively). Figure 1 confirms
that the PSA approximations are indeed accurate forβ near 0 and near 1 and that more terms provide larger
regions forβ where the accuracy is good. However, as can also be seen from this figure, the approximations
deteriorate (rapidly) forβ away from 0 and 1. This can be dealt with using the Padé approximants introduced
in Section 4. Figure 2 depicts the Padé approximants (19) for the same example as in Figure 1 and forM = 3.
It displays the approximants forN = 0, 2, 5 and7 (andL = 2M + 1 −N ).
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Figure 1: Truncation approximations of E[u2] for binomially distributed arrival batch sizes with arrival rates
λ1 = 0.7 andλ2 = 0.1.
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Figure 2: Pad́e approximations of E[u2] for binomially distributed arrival batch sizes with arrival ratesλ1 = 0.7
andλ2 = 0.1.

Example 2. Assume the arrivals of both classes to be a sequence of two independent geometrically distributed
random variables with meansλ1 andλ2 respectively, i.e.

A(z1, z2) =
1 − λ1

1 − λ1z1

1 − λ2

1 − λ2z2
.

We again concentrate on queue 2. Figure 3 depicts the mean class-2 content as a function ofβ for λ1 = 0.7
andλ2 = 0.1. The same conclusions as for Figure 1 can be drawn, albeit that it is more pronounced that the
PSA forβ works best for smallβ and the one for̄β = 1 − β for β near 1. We can again construct similar Padé
approximants.
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Figure 3: Truncation approximations of E[u2] for geometrically distributed arrival batch sizes with means
λ1 = 0.7 andλ2 = 0.1.

λ
α

0.1 0.3 0.5 0.7 0.9

0.1 4.8334e-4 1.1755e-3 1.4608e-3 1.2829e-3 5.7582e-4
0.2 2.0833e-3 5.2967e-3 6.9146e-3 6.4153e-3 3.0622e-3
0.3 5.0689e-3 1.3516e-2 1.8668e-2 1.8533e-2 9.6076e-3
0.4 9.7846e-3 2.7456e-2 4.0439e-2 4.3625e-2 2.5293e-2
0.5 1.6678e-2 4.9428e-2 7.8298e-2 9.3511e-2 6.3182e-2
0.6 2.6339e-2 8.2767e-2 1.4231e-1 1.9231e-1 1.6054e-1
0.7 3.9567e-2 1.3237e-1 2.4944e-1 3.9111e-1 4.3844e-1
0.8 5.7460e-2 2.0558e-1 4.2880e-1 8.0254e-1 1.3614e+0
0.9 8.1576e-2 3.1367e-1 7.3150e-1 1.6875e+0 5.1812e+0

Table 1: First-order corrections for near-priority queues

5.2 Influence of input parameters on the mean system content for near-priority systems

Again consider the example of the binomially distributed arrival batch sizes (Expression (21)) and service
times of one slot. The total arrival rate is given byλ = λ1 + λ2 and we define the fraction of class-2 arrivals
α := λ2/λ. Table 1 displays some values of the first-order correction term (the first derivative of the mean class-
2 queue content inβ = 0, see Formula (20)) for particular values ofλ andα. Some interesting observations can
be made: Firstly, the correction term increases with increasing load for a constant value ofα. This is expected
since for high loads the number of customers in the class-1 buffer is usually non-zero, thus sharing the server
with this buffer, even for a small percentage of the time can have a large influence. For small arrival rates,
one of the buffers is almost always empty and the service discipline does not play an important role. A second
observation is that for a given arrival rate the correction term first increases withα, reaches a maximum and
then decreases. Inα = 0 andα = 1, the correction term equals 0.

Similar conclusions can be drawn from Table 2, where we show the relative first-order correction

∂V1(z1, z2)

∂z1

/

∂V0(z1, z2)

∂z1

∣

∣

∣

∣

∣

z1=z2=1

.
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λ
α

0.1 0.3 0.5 0.7 0.9

0.1 4.8213e-2 3.8883e-2 2.8836e-2 1.7989e-2 6.2436e-3
0.2 1.0363e-1 8.6892e-2 6.7277e-2 4.4032e-2 1.6127e-2
0.3 1.6767e-1 1.4656e-1 1.1920e-1 8.2751e-2 3.2572e-2
0.4 2.4209e-1 2.2126e-1 1.9030e-1 1.4200e-1 6.1596e-2
0.5 3.2922e-1 3.1560e-1 2.8910e-1 2.3548e-1 1.1656e-1
0.6 4.3210e-1 4.3589e-1 4.2847e-1 3.8770e-1 2.2984e-1
0.7 5.5480e-1 5.9106e-1 6.2813e-1 6.4360e-1 4.8814e-1
0.8 7.0296e-1 7.9392e-1 9.1885e-1 1.0872e+0 1.1509e+0
0.9 8.8453e-1 1.0634e+0 1.3495e+0 1.8789e+0 3.0964e+0

Table 2: Relative first-order corrections for near-priority queues

This is a measure for the relative effect of giving a small share of the processor’s time to the class-1 queue
in the priority system. Here, the relative first-order correction does not go to 0 forα → 0 (in fact it tends to
λ/(2 − λ) for this arrival process). The reason is that the mean class-2 queue length in the priority case equals
0 for α = 0. For low loads the value of the relative first-order correction term is maximal forα = 0 and is a
strictly decreasing function inα. For high loads, a maximum is reached for someα > 0.

We can conclude that an increase of the total arrival rate notonly results in an absolute increase of the first-
order correction term, but also in an increase relative to the priority result. A GPS schedule has more impact
when the arrival rate is high. Our results are therefore especially useful for these high arrival rates as they give a
significant first-order (and even higher-order) correctionterm(s) to the priority result. The examples also show
that these correction terms are sensitive to the parametersof the system, which in turn shows the necessity of
the obtained formulas.

6 Continuous-time results

We now sketch how the discrete-time results lead to results for the continuous-time generalized processor
sharing system. This continuous-time model is the most prominent subclass of the model in [9], there called
coupled processors; see also [13] for an analysis of the symmetric coupled processor model and see [14] for an
approximate analysis of “cycle stealing” in coupled processors.

Assume that arrivals occur to both queues according to independent Poisson processes with arrival ratesλ∗1
andλ∗2 respectively. The service times of customers in queuej are exponentially distributed with mean1/µ∗j .
The processor is shared in the following way: when both queues are non-empty, queue 1 is served with rateβ
(0 ≤ β ≤ 1 without loss of generality) while queue 2 is served with rate1 − β. When one of both queues is
empty, the other queue is served with rate 1.

We outline in this section that we can find the distribution ofthe number of customers at a random point
in time from the results of the discrete-time case. We therefore show that the pgfs of the numbers of arrivals
and the service times as well as the functional equation (7) go to their continuous-time counterparts. Similar
approaches were taken in [4, 15].

Let us divide the time axis into equal intervals of length∆. We first define arrival and service processes in
the discrete-time case that scale to the above continuous-time arrival and service processes. Define therefore

µj =µ∗j∆, (22)

A(z1, z2) =(1 − λ∗1∆ + λ∗1∆z1)(1 − λ∗2∆ + λ∗2∆z2). (23)

The service times of class-j expressed in number of slots are geometrically distributedwith parameterµj , so
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their pgf is given by

Sj(z) =
µ∗j∆

1 − (1 − µ∗j∆)z
. (24)

The Laplace-Stieltjes transform of the service times in continuous time for the slot lengths going to zero equals

S∗
j (s) = lim

∆→0
Sj(e

−s∆) =
µ∗j

s+ µ∗j
. (25)

The interarrival times between non-empty batches in the discrete-time model are geometrically distributed
with parameterA(0, 0), i.e., their pgf is given by

I(z) =
(1 −A(0, 0))z

1 −A(0, 0)z
,

with A(0, 0) = 1 − (λ∗1 + λ∗2)∆ +O(∆2). Similarly as for the service times, we get that the Laplace-Stieltjes
transform of the interarrival times in continuous time for the slot length going to zero is exponential with mean
1/(λ∗1 + λ∗2). The pgf of the number of customers arriving in a batch is thengiven by

A(z1, z2) −A(0, 0)

1 −A(0, 0)
=

(λ∗1z1 + λ∗2z2)∆ +O(∆2)

(λ∗1 + λ∗2)∆ +O(∆2)
.

Hence, for∆ going to zero, the interarrival times between batches are exponentially distributed with mean
1/(λ∗1 + λ∗2) and a batch consists of a customer arrival in the first queue with probabilityλ∗1/(λ

∗
1 + λ∗2) or a

customer arrival in the second queue with probabilityλ∗2/(λ
∗
1 + λ∗2). We thus conclude that the arrival process

into both queues converges to two independent Poisson processes with parametersλ∗1 andλ∗2.
With µj andA(z1, z2) as in (22)-(23), the discrete-time arrival and service processes converge to Poisson

arrivals and exponential service times for∆ → 0. Sinceβ is the probability that a class-1 customer is served in
a slot, this is the fraction of time class-1 customers are served when both queues are non-empty, in the limit for
∆ going to zero. When we substituteµj andA(z1, z2) by (22)-(23) in the functional equation (7), we arrive at

F1(z1, z2)∆ + F2(z1, z2)∆
2 + F3(z1, z2)∆

3 = 0, (26)

with

F1(z1, z2) = K∗(z1, z2)U(z1, z2) −K∗
00(z1, z2)U(0, 0) −K∗

10(z1, z2)U(z1, 0) −K∗
01(z1, z2)U(0, z2)

and

K∗(z1, z2) =(1 − β)µ1(z1 − 1)z2 + βµ2z1(z2 − 1) − z1z2(λ1(z1 − 1) − λ2(z2 − 1))

K∗
00(z1, z2) =βµ1(z1 − 1)z2 + (1 − β)µ2z1(z2 − 1)

K∗
10(z1, z2) =β(µ2z1(z2 − 1) − µ1(z1 − 1)z2)

K∗
01(z1, z2) =(1 − β)(µ1(z1 − 1)z2 − µ2z1(z2 − 1)).

The precise expressions ofF2(z1, z2) andF3(z1, z2) are not important for the further discussion. It suffices
to know that - likeF1(z1, z2) - they are linear functions inU(z1, z2), U(z1, 0), U(0, z2) andU(0, 0), with
coefficients analytic in the whole complex plane. Therefore, the three functionsFi are analytic at least in the
region |z1| < 1 and |z2| < 1. For ∆ → 0 the first term in (26) is dominant. The functional equation thus
converges to

F1(z1, z2) = 0 (27)
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for ∆ → 0. This is indeed the functional equation of the continuous-time GPS system described in [9]. Since
there is only one normalized solution of this functional equation inside the unit disk, the solution described in
this paper for the discrete-time functional equation evolves to the solution of (27) for∆ → 0 and we can thus
directly find approximations for the continuous-time GPS queueing system from the results in sections 3-4.

Note that we can also find results for the continuous-time GPSsystem with batch arrivals, by choosing a
less restrictiveA(z1, z2). Our discrete-time results can furthermore show the influence of discretizing time on
the performance measures. When a continuous-time model is used to approximate a discrete-time model, our
results can also quantify the error that is introduced, as a function of the slot length.

7 Conclusions

We studied a discrete-time two-queue Generalized Processor Sharing system in this paper. When customers are
present in both queues, the queues are served with probability β and1 − β respectively. We developed a novel
technique based on Power Series Approximations of the jointprobability generating function in the parameter
β. The coefficients of the power terms are iteratively calculated starting from the constant term. This constant
term is the joint pgf of a priority queue (β = 0).

By truncating the power series, we find good approximations for the means of the numbers of customers
in both queues, for smallβ and, by symmetry, forβ near 1. Interpolation techniques led to more accurate
approximations. A major advantage of the technique over thestandard boundary value problem solution tech-
nique (described in the appendix) is that the formulas for say the mean queue lengths are explicit in the input
parameters and require no additional numerical effort. Therefore they can be important in for instance control
problems, where an optimalβ is to be found given the delay requirements of both types of traffic.

The developed technique is promising to deal in general withthe analysis of queueing systems with some
sort of coupling. Examples are queues with a Packet-based Generalized Processor Sharing scheduling and a
tandem queue where the two queues share a single processor. Another interesting topic is the Generalized
Processor Sharing queue withthree(or more) classes. The theory of boundary value problems hasnot been
developed for problems with more than two dimensions.

A Solution to the boundary value problem

In this appendix we present the solution to a more general form of the functional equation (1) in terms of
a Riemann-Hilbert boundary value problem. IntroducingUk;x,y(z1, z2) := Uk(z1, z2) with initial condition
u1,0 = x, u2,0 = y and

Φx,y(r, z1, z2) :=
∞

∑

k=0

rkUk;x,y(z1, z2), (28)

we have for|r| < 1, |z1| ≤ 1, |z2| ≤ 1:

[z1z2 − rψ(z1, z2)]Φx,y(r, z1, z2) =rA(z1, z2){[βµ2z1(z2 − 1) + (1 − β)µ1(z1 − 1)z2]Φx,y(r, 0, 0)

+ (1 − β)[µ2z1(z2 − 1) − µ1(z1 − 1)z2]Φx,y(r, z1, 0)

+ β[µ1(z1 − 1)z2 − µ2z1(z2 − 1)]Φx,y(r, 0, z2)} + zx+1
1 zy+1

2 , (29)

with
ψ(z1, z2) := A(z1, z2)[(1 − βµ1 − (1 − β)µ2)z1z2 + (1 − β)µ2z1 + βµ1z2]. (30)

It should be noticed thatψ(z1, z2) is the generating function of a pair of non-negative, integer-valued random
variables. Formula (29) has the following global form:

K(r, z1, z2)Φx,y(r, z1, z2) (31)

=rK00(z1, z2)Φx,y(r, 0, 0) + rK10(z1, z2)Φx,y(r, z1, 0) + rK01(z1, z2)Φx,y(r, 0, z2) + zx+1
1 zy+1

2 ,
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with thekernelK(r, z1, z2) being defined as

K(r, z1, z2) := z1z2 − rψ(z1, z2). (32)

Random walks on the two-dimensional lattice in the first quadrant of the plane that give rise to functional
equations and kernels of the type as in (31) and (32) are discussed by Cohen [7]. In such random walks, the
steps to the West, South-West and South are at most one. In [7]it is sketched how this class of random walks,
typically arising in queueing models, can be analysed via a transformation to a two-dimensional boundary
value problem of mathematical physics, like a Riemann or Riemann-Hilbert problem. In Part II of [8] a much
more detailed exposition of this approach is presented, fora slightly more restricted class of two-dimensional
random walks. The kernel of the random walk that is studied there contains the kernel that features in (32).
In this appendix, we sketch the way in which this boundary value approach can be used to determine the
generating functionΦx,y(r, z1, z2) of the two-dimensional queueing problem that was presentedin Section 1.
We distinguish between four steps.

A.1 The zerotuples of the kernel

Obviously, the generating functionΦx,y(r, z1, z2) should be finite for all zerotuples(ẑ1, ẑ2) ofK(r, z1, z2) with
|ẑ1| ≤ 1, |ẑ2| ≤ 1.
Let

A(r) := {(z1, z2) : K(r, z1, z2) = 0, |z1| ≤ 1, |z2| ≤ 1}.

Then for all(ẑ1, ẑ2) ∈ A, one must require that

rK00(ẑ1, ẑ2)Φx,y(r, 0, 0) + rK10(ẑ1, ẑ2)Φx,y(r, ẑ1, 0) + rK01(ẑ1, ẑ2)Φx,y(r, 0, ẑ2) + ẑx+1
1 ẑy+1

2 = 0. (33)

If one can construct functionsΦx,y(r, z, 0) andΦx,y(r, 0, z) which are regular in|z| < 1, continuous in|z| ≤ 1,
and satisfy (33) for every zerotuple(ẑ1, ẑ2) ∈ A, thenΦxy(r, z1, z2) follows from (29) and the problem is
solved. As outlined in Section 1 of [7], one may restrict oneself to consideration of a suitablesubsetS1 × S2

of A. Indeed, if there exist curvesS1 andS2, with S1 ⊂ {z1 : |z1| ≤ 1} andS2 ⊂ {z2 : |z2| ≤ 1}, and a
one-to-one mapz1 = ω(z2) from S2 to S1 such that(ω(ẑ2), ẑ2) is a zerotuple ofK(r, z1, z2) for all ẑ2 ∈ S2,
then the following holds. If functionsΦx,y(r, z, 0) andΦx,y(r, 0, z) can be constructed that areregular for
|z| < 1, continuousfor |z| ≤ 1, and that satisfy (33) for all zerotuples(ẑ1, ẑ2) with ẑ1 = ω(ẑ2), ẑ2 ∈ S2, then
by analytic continuationtheseΦx,y(r, z, 0) andΦx,y(r, 0, z) satisfy (33) forall zerotuples(ẑ1, ẑ2) of A [7].

A.2 A suitable set of zerotuples

Let us now consider the construction of the curvesS1 andS2. While there are many possible choices here, it is
important to make a choice that leads to tractable numericaltechniques for obtaining the analytic continuations
mentioned above.

In [8] the following choice is proposed. Lets be traversing the unit circle|s| = 1. Let z1 = g(r, s)s and
z2 = g(r, s)s−1, with g such that it makes the kernel zero:

K(r, g(r, s)s, g(r, s)s−1) = 0.

So in our case, with the kernel given by (32),g should satisfy

g2 = rψ(gs, gs−1). (34)

Rouch́e’s theorem implies that there are exactly two zeros of this equation satisfying|g| ≤ 1. In fact, in our
case one of these two zeros is zero, due toψ(0, 0) = 0. Now take

S1(r) := {z1 : z1 = g(r, s)s, |s| = 1},

S2(r) := {z2 : z2 = g(r, s)s−1, |s| = 1}.
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A.3 Preparing the ground for a Riemann boundary value problem

We next want to constructΦx,y(r, z, 0) andΦx,y(r, 0, z) that are regular in|z| < 1, continuous in|z| ≤ 1,
and that satisfy (33) for all(ẑ1, ẑ2) with ẑ1 = ω(ẑ2), ẑ2 ∈ S2. To accomplish this, one may solve aRiemann
boundary value problem; see, e.g., Gakhov [10] for an extensive discussion of such boundary value problems,
that aim to determine functions which are regular inside respectively outside a certain contour and satisfy a
particular relation on that contour – the boundary. To be able to formulate such a boundary value problem, we
need one more step. One can show (cf. [8], Part II) that for thecurvesS1(r) andS2(r) there exists a unique
simple closed contourL(r) in thep-plane, and functionsz1(r, p) andz2(r, p) such that the following holds:

(i) z1(r, p) : L+(r) → S+
1 (r) is regular and univalent forp ∈ L+(r),

(ii) z2(r, p) : L−(r) → S+
2 (r) is regular and univalent forp ∈ L−(r),

(iii) z1(r, p) = ω(z2(r, p)) for p ∈ L(r), ω(·) being a one-to-one map fromS2(r) ontoS1(r).

HereC+ andC− denote the interior and exterior of a closed contourC, and univalent means thatz1(r, p1) 6=
z1(r, p2) for p1 6= p2. Hence (i) and (ii) can be reformulated as:

• z1(r, p) is a conformal mapping ofL+(r) into S+
1 (r),

• z2(r, p) is a conformal mapping ofL−(r) into S+
2 (r).

The curveL(r) can be determined by solving a particular integral equation, cf. Section II.3.6 of [8].

A.4 The Riemann boundary value problem

Sincez1(r, p) is regular and univalent forp ∈ L+(r) andz2(r, p) is regular and univalent forp ∈ L−(r),
Φx,y(r, z1(r, p), 0) also is a regular function forp ∈ L+(r) and continuous forp ∈ L+(r)

⋃

L(r), and simi-
larly Φx,y(r, 0, z2(r, p)) is a regular function forp ∈ L−(r) and continuous forp ∈ L−(r)

⋃

L(r). We are now
ready to formulate a standard Riemann-type boundary value problem:

Determine two functionsΩ1(r, p) := Φx,y(r, z1(r, p), 0), p ∈ L+(r)
⋃

L(r), and
Ω2(r, p) := Φx,y(r, 0, z2(r, p)), p ∈ L−(r)

⋃

L(r), such thatΩ1(r, p) is regular forp ∈ L+(r) and continuous
for p ∈ L+(r)

⋃

L(r), Ω2(r, p) is regular forp ∈ L−(r) and continuous forp ∈ L−(r)
⋃

L(r), Ω1(r, 0) =
Φx,y(r, 0, 0), lim|p|→∞Ω2(r, p) = Φx,y(r, 0, 0), and on theboundaryL(r), the functionsΩ1(r, p) andΩ2(r, p)
satisfy the relation (with appropriate functionsH(r, p) andh(r, p), cf. (31)):

Ω1(r, p) = H(r, p)Ω2(r, p) + h(r, p), p ∈ L(r). (35)

The solution of this boundary value problem may be found in [10], see also Section I.2 of [8].
As observed before, now thatΦx,y(r, z1, 0) andΦx,y(r, 0, z2) are found forz1 ∈ S+

1 (r) andz2 ∈ S+
2 (r),

one obtainsΦx,y(r, z1, z2) first for z1 ∈ S+
1 (r) andz2 ∈ S+

2 (r), and finally for|z1| ≤ 1, |z2| ≤ 1 via analytic
continuation.

We end this appendix with several remarks.

Remark 3. It should be noticed that the initial conditionsu1,0 = x, u2,0 = y occur in the functionh(r, p) in
(35). Further observe that, if the initial state is a set ofrandom variables(u1,0, u2,0) = (X,Y ), with bivariate
pgf U0(z1, z2) =

∑∞
x=0

∑∞
y=0 P (X = x, Y = y)zx

1z
y
2 , then the last term in the right-hand side of (29) is

replaced byz1z2U0(z1, z2). This affectsh(r, p), but not the solution approach.

Remark 4. The kernelK(r, z1, z2) has exactly the same form as the kernel that is considered throughout Part
II of [8], but the behaviour of the random walk in the interiorof the first quadrant, that we consider, slightly
deviates in the interior from the behaviour of the random walk that is being considered in that Part II. That
implies that a slightly different Riemann boundary value problem results.
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Remark 5. It is easily seen thatψ(0, 0) = 0; indeed, at most one customer is served per time slot, and hence
random walk transitions to the South-West are not possible.In Sections II.3.10-12 of [8], kernels with this
special feature are treated in detail. It turns out that nowS1(r) andS2(r) are traversedtwice if s traverses
the unit circle|s| = 1 once. Furthermore, one has to distinguish between the casesd

dz
ψ(z, 0)z=0 > (<,=

) d
dz
ψ(0, z)z=0, as these cases lead to different positions of the pointz = 0 w.r.t. the contoursS1(r) andS2(r),

and consequently to slightly different analytic treatments. For the sake of exposition, let us restrict ourselves
to the symmetric case that the random variablesa1,k and a2,k are exchangeable, i.e., P (a1,k = i, a2,k =
j) = P (a1,k = j, a2,k = i) for all i, j = 0, 1, . . . , and thatµ1 = µ2 = 1 andβ = 1

2 . Thenψ(z1, z2) =

A(z1, z2)(z1 + z2)/2 and d
dz
ψ(z, 0)z=0 = d

dz
ψ(0, z)z=0, leading toz1 = 0 ∈ S1(r) andz2 = 0 ∈ S2(r). The

equation determiningg(r, s) now is (cf. (34)):

g − rA(gs, gs−1)
s+ s−1

2
= 0.

The contourL(r) in this symmetric case turns out to be a circle, with center at1
2 and radius1

2 (see Section
II.3.12 of [8]). If, moreover, onlyP (a1,k = a2,k = 0) = A0,0, P (a1,k = 1, a2,k = 0) = A1,0, P (a1,k =
0, a2,k = 1) = A0,1 andP (a1,k = 1, a2,k = 1) = A1,1 are possibly non-zero, then the equation determining
g(r, s) reduces to a quadratic equation:

g − r[A0,0 +A1,0g(s+ s−1) +A1,1g
2]
s+ s−1

2
= 0,

from which the contoursS1(r) andS2(r) are easily determined.

Remark 6. If the steady-state distribution of the joint queue-lengthdistribution in our model exists, then its
generating functionΦ(z1, z2) can be determined viaΦ(z1, z2) = limr→1(1−r)Φx,y(r, z1, z2). In Section II.3.9
of [8], the details of this approach are presented; in Section II.2.16, for the case of asymmetrictwo-dimensional
random walk, it is outlined how one candirectly handle the steady-state case. Here one considers the kernel
K(1, z1, z2), identifying a contourL(1) and zeros(z1(1, p), z2(1, p)) of the kernel, and formulating a Riemann
boundary value problem forΦ(z1(1, p), 0) andΦ(0, z2(1, p)) with boundaryL(1).

Remark 7. In order to determine performance measures like the mean steady-state queue lengths, one has to
evaluate quantities liked

dz
Φ(z, 1)z=1. This requires the numerical determination ofL(1), and of (the analytic

continuation of) the conformal mappings fromS1(r) andS2(r), respectively, toL(r). Finally, a numerical
analysis is required of the singular contour integrals thatspecifyΦ(z, 0) andΦ(0, z). We refer to Part IV of
[8] for an extensive discussion of such numerical aspects. While it turns out to be possible to obtain numerical
values of such performance measures, the analysis is quite involved. We have hence decided to concentrate in
this paper on an alternative approach for thesteady-stateanalysis of the queueing model under consideration –
a method that has several novel aspects, and that allows us toobtain numerical values in a more straightforward
manner.
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