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Abstract

We consider a polling system of N queues Q1, . . . , QN , cyclically visited by a single server.
Customers arrive at these queues according to independent Poisson processes, requiring generally
distributed service times. When the server visits Qi, i = 1, . . . , N , it serves a number of
customers according to a certain visit discipline. This discipline is assumed to belong to the
class of branching-type disciplines, which includes gated and exhaustive service. The special
feature of our study is that, within each queue, we do not restrict ourselves to service in order
of arrival (FCFS); we are interested in the effect of different service disciplines, like Last-Come-
First-Served, Processor Sharing, Random Order of Service, and Shortest Job First. After a
discussion of the joint distribution of the numbers of customers at each queue at visit epochs of
the server to a particular queue, we determine the Laplace-Stieltjes transform of the cycle-time
distribution, viz., the time between two successive visits of the server to, say, Q1. This yields the
transform of the joint distribution of past and residual cycle time, w.r.t. the arrival of a tagged
customer at Q1. Subsequently concentrating on the case of gated service at Q1, we use that
cycle-time result to determine the (Laplace-Stieltjes transform of the) waiting-time distribution
at Q1.

Next to locally gated visit disciplines, we also consider the globally gated discipline. Again,
we consider various non-FCFS service disciplines at the queues, and we determine the (Laplace-
Stieltjes transform of the) waiting-time distribution at an arbitrary queue.

1 Introduction

We consider a polling system of N queues Q1, . . . , QN , cyclically visited by a single server. Customers
arrive at these queues according to independent Poisson processes, requiring generally distributed
service times. Polling systems find many applications in manufacturing, computer-communications,
road traffic, maintenance and several other fields, and hence they have been extensively studied.
We refer to Takagi [15] and Vishnevskii & Semenova [17] for two surveys. In polling system design
several decisions need to be made, for instance one needs to decide on (i) the order of service of the
queues, (ii) the number of customers to be served in a queue during a server visit, and (iii) the order
of service of the customers within each queue. Regarding (i), a fixed cyclic order is usually assumed,
but random polling orders and polling tables have also been studied. With regard to (ii), many
visit disciplines have been considered. Well-known visit disciplines are the exhaustive discipline (the
server serves the queue until it has become empty), the gated discipline (when the server arrives
at a queue to find K customers, it serves exactly those K customers, and no more), and the 1-
limited discipline (the server serves just one customer, assuming at least one is present). Hardly any
attention has been given to (iii). It is almost invariably assumed that the order of service within
each queue is FCFS (First-Come-First-Served). However, in [18] several other service disciplines are
considered, like PS (Processor Sharing), ROS (Random Order of Service), LCFS (Last-Come-First-
Served), SJF (Shortest Job First), and fixed priorities. Using the recently developed MVA (Mean
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Value Analysis) approach for polling systems [20], the mean waiting times at the various queues are
obtained, for the case of cyclic polling and either the exhaustive or the gated visit discipline at each
queue. It is demonstrated in [18] that one can quite easily determine the mean waiting times in this
case, and that the effect of the service order may be rather profound, in particular in the case of
exhaustive service.

The present paper builds upon [18]. Our goal is to determine the waiting-time distributions at
the various queues of a cyclic polling system, for several service disciplines. This allows us to study
the effect of different service disciplines. We assume the visit disciplines at the various queues belong
to the class of branching-type disciplines [11], which includes gated and exhaustive service but which
does not include, e.g., 1-limited service. However, we restrict the determination of the waiting-time
distribution at some queue to the case that the visit discipline at that particular queue is gated. In a
future study we intend to tackle the more difficult problem of deriving the waiting-time distribution
at a queue with exhaustive service.

Next to locally gated visit disciplines, we also consider the globally gated discipline, which op-
erates as follows: When the server arrives at Q1, a gate is closed for all queues simultaneously. In
the next cycle, the server serves exactly those customers who are located before the gate, i.e., those
who were already present when the server arrived at Q1. Again, we consider various non-FCFS
service disciplines at the queues, and we determine the LST (Laplace-Stieltjes transform) of the
waiting-time distribution at an arbitrary queue.

The motivation for our work is partly theoretical: we would like to obtain a better insight into
the effect of service orders in polling systems, and we would like to develop mathematical tools to
accomplish this. However, we are also motivated by the fact that there are many real-world examples
where scheduling customer service in a non-FCFS manner would be beneficial. For example, polling
models are being used to study the 802.11 and Bluetooth protocols, and scheduling policies at routers
and I/O systems in web servers. In such applications, often featuring high workload variability, it
may be advantageous to give non-FCFS service. Another example is provided by the Stochastic
Economic Lot Scheduling Problem (SELSP; see [19] for a survey). In SELSP, a single machine
produces multiple standardized products, with setup times between the production of different
products. Again, scheduling within the queues is natural and often necessary.

Our approach is as follows. In the case of a branching-type visit discipline at all the queues,
Resing [11] has obtained the joint distribution of the number of customers at each queue at visit
epochs of the server to a particular queue. His result is easily seen to remain valid when the service
order at a queue is not FCFS. Using this queue-length result, we determine the LST of the cycle-time
distribution, viz., the time between two successive visits of the server to, say, Q1. This yields the
transform of the joint distribution of past and residual cycle time, w.r.t. the arrival of a tagged
customer at Q1. Finally, we use that cycle-time result to determine the (LST of the) waiting-time
distribution at Q1. Differentiation of this transform gives waiting-time moments, generalizing the
mean waiting-time results recently obtained via Mean Value Analysis in [18].

The paper is organized as follows. Section 2 contains a model description. In Section 3 we study
the cycle time in the cyclic polling system with a branching-type visit discipline at each queue.
These results are then used in Section 4, which contains an analysis of the waiting time distribution
in a gated queue, for various service orders like FCFS, LCFS, PS, ROS and SJF. We then show, in
Section 5, how our ideas can be applied to polling systems that are served in a globally gated fashion.
Finally, Section 6 contains some concluding remarks and mentions topics for further research.

2 Model Description

A single server visits N queues Q1, . . . , QN in cyclic order. Customers arrive at these queues ac-
cording to independent Poisson processes {Ni(t), t ≥ 0} with arrival rate λi at Qi, i = 1, . . . , N .
The service requirements of customers at Qi, to be called type-i customers, are i.i.d. (independent,
identically distributed) random variables, with distribution Bi(·) and LST βi(·), i = 1, . . . , N ; Bi

will denote a generic service time at Qi. The switch-over times of the server from Qi to Qi+1 (QN+1

denoting Q1) have distribution Si(·) and LST σi(·), i = 1, . . . , N ; Si will denote a generic switch-over
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time from Qi. The server even switches among queues when all queues are empty. All interarrival
times, service times and switch-over times are assumed to be independent.

When the server visits Qi, it serves a number of customers according to a certain visit discipline.
We first concentrate on polling disciplines that belong to the class of branching-type disciplines,
as introduced in Resing [11]. This class is characterized by the fact that each queue satisfies the
following property:

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of the
server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function h(z1, . . . , zN ), which may be any N -dimensional
probability generating function.

Important examples of branching-type disciplines are Exhaustive service (the server visits a queue
until it has emptied the queue) and Gated service (during a visit to a queue, the server serves exactly
those customers who were present at the beginning of that visit). 1-limited service (the server serves
just one customer during a visit, if there is at least one customer present at the beginning of the
visit) does not belong to the class of branching-type disciplines. Borst [6] gives a slight extension of
Property 2.1 that is also held by a globally gated polling system:

Property 2.2 If there are ki customers present in Qi at the beginning of a visit to Qπ(i) with
π(i) ∈ {1, ..., N}, then during the course of the visit to Qi, each of these ki customers will effec-
tively be replaced in an i.i.d. manner by a random population having probability generating function
hi(z1, z2, ..., zN ), which may be any N -dimensional probability generating function.

When we begin to discuss globally gated visit disciplines, as introduced in Boxma et al. [8], it will
be clear that Property 2.2 is satisfied. Under this discipline the server, in a cycle starting at Q1,
only serves the customers that are present at a polling instant at Q1.

Resing [11] has shown that, if Property 2.1 holds at each queue, the joint queue-length process
at polling instants of a fixed queue is a so-called multi-type branching process (MTBP) with immi-
gration. The theory of MTBP (see Athreya and Ney [3] or Resing [11]) now leads to an expression
for the generating function of the joint queue length process at polling instants.

For a given visit discipline, we still have to specify the service discipline during the visit to a
queue. The special feature of the present paper is that we do not restrict ourselves to service in
order of arrival (FCFS); we are interested in the effect of different service disciplines (like LCFS, PS,
ROS, SJF) on the waiting times of customers.

Define ρi := λiEBi the traffic intensity at Qi, and denote by ρ :=
∑N

i=1 ρi the total traffic
intensity. We restrict ourselves to the case ρ < 1. For the class of polling systems discussed in this
paper, this condition guarantees that the vectors of queue lengths at polling epochs and at arbitrary
epochs have steady-state distributions.

3 The Cycle-Time in the Branching-Type Polling Model

In this section we determine the LST of the cycle time C for Q1, i.e., the time between two successive
visits of the server to Q1. In Theorem 3.1 we compute the LST of the conditional cycle time, given
the numbers of customers present at all buffers in the polling system at the beginning of the cycle.
By unconditioning, the cycle time transform is obtained (Corollary 3.1). But first we present some
results from Resing [11], which will be used in the sequel.

In Section 2 we mentioned the class of branching-type visit disciplines (Resing [11]); see Property 2.1.
We assume that each queue in our polling system satisfies this property, with generating function
hi(z1, . . . , zN ) at Qi, i = 1, . . . , N . For gated service at Qi,

hi(z1, . . . , zN ) = βi(
N∑

j=1

λj(1− zj)). (1)
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For exhaustive service at Qi, with πi(·) denoting the LST of the busy period of M/G/1 queue Qi in
isolation, i.e., an M/G/1 queue with arrival rate λi and service time distribution Bi(·):

hi(z1, . . . , zN ) = πi(
∑

j 6=i

λj(1− zj)). (2)

Resing [11] has proven the following. Let P (z1, . . . , zN ) denote the GF of the steady-state joint
distribution of the numbers of customers X1, . . . , XN in Q1, . . . , QN at an arbitrary visit beginning
of the server at Q1. Then

P (z1, . . . , zN ) =
∞∏

n=0

g(fn(z1, . . . , zN )). (3)

The functions fn(z1, . . . , zN ) are defined inductively by

f0(z1, . . . , zN ) = (z1, . . . , zN ),
fn(z1, . . . , zN ) = (f (1)(fn−1(z1, . . . , zN )), . . . , f (N)(fn−1(z1, . . . , zN ))), (4)

where the off-spring GFs f (i)(z1, . . . , zN ), i = 1, . . . , N , are given by

f (i)(z1, . . . , zN ) = hi(z1, . . . , zi, f
(i+1)(z1, . . . , zN ), . . . , f (N)(z1, . . . , zN )). (5)

The immigration GF g(z1, . . . , zN ) is given by

g(z1, . . . , zN ) =
N∏

i=1

σi(
i∑

k=1

λk(1− zk) +
N∑

k=i+1

λk(1− f (k)(z1, . . . , zN ))). (6)

Let us now turn to the cycle time. Denoting the visit time (time spent in a queue by the server) of
Qi by Vi, i = 1, . . . , N , we have

C =
N∑

k=1

(Vk + Sk). (7)

Let θi(ω) represent the LST of the time that the server spends at Qi due to the presence of one
customer there. In the case of gated service, θi(ω) = βi(ω), the service time LST; in the case
of exhaustive service, θi(ω) = πi(ω), the busy-period LST. We also need to introduce the follow-
ing functions: ψi(ω) = ω + λi(1 − θi(ω)), i = 1, . . . , N , and ψi,N (ω) = ψi+1(ψi+2(...(ψN (ω)))),
i = 1, . . . , N ; here ψN,N (ω) = ω.

Theorem 3.1 The LST of the cycle time C, conditional on the numbers of customers in all queues
at the beginning of the cycle, is given by:

E(e−ωC |Xi = mi, 1 ≤ i ≤ N) =
N∏

i=1

σi(ψi,N (ω))θmi
i (ψi,N (ω)). (8)

Proof.
In the formulas below, the condition ”m1, . . . ,mk” denotes X1 = m1, . . . , Xk = mk.

E(e−ωC |m1, . . . , mN ) = E(e−ω
PN

j=1(Vj+Sj)|m1, . . . , mN ) (9)

= σN (ω)θmN

N (ω)E(e−(ω+λN (1−θN (ω)))
PN−1

j=1 (Vj+Sj)|m1, . . . , mN−1)

= σN (ω)θmN

N (ω)σN−1(ψN (ω))θmN−1
N−1 (ψN (ω))E(e−ψN−1(ψN (ω))

PN−2
j=1 (Vj+Sj)|m1, . . . , mN−2).

Repeating the above iteration procedure finally yields the statement of the theorem.

Deconditioning immediately gives the cycle time LST for Q1:
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Corollary 3.1

E(e−ωC) =
N∏

i=1

σi(ψi,N (ω)) P (θ1(ψ1,N (ω)), . . . , θi(ψi,N (ω)), . . . , θN (ψN,N (ω))). (10)

A similar type of expression can be given for polling systems that satisfy Property 2.2. Notice
that the state of the polling system at the embedded instants when the server begins its visit at Q1

forms a MTBP, either with or without immigration, depending on the setup times. Unlike Resing’s
property, however, this is not true at any of the other visit epochs in a globally gated visit discipline.
Even so, in the globally gated case one can still easily compute the steady-state distribution at any
other epoch by knowing the steady-state distribution at Q1.

3.1 The Biased Cycle Length

Throughout this paper, we will be interested in the distribution of various components of the steady-
state cycle time, given that a particular type of customer arrived during such a cycle. Knowing that
such an arrival occurred will bias the length of the cycle, and this must be accounted for.

Throughout this paper, our cycles will always begin at the moment the server begins to work
on jobs present at Q1. Assuming that a customer arrives to Q1 during a cycle, let C∗, Cp and Cr

denote the total biased cycle length, the amount of time between the beginning of the cycle and the
arrival of the tagged customer to Q1, and the amount of time between the arrival of such a tagged
customer and the end of the cycle, respectively. Clearly C∗ = Cp + Cr, and the tagged customer
will not be served until the next cycle begins. C∗ will also be referred to throughout parts of the
paper as the cycle time of the tagged customer. When we look at the globally gated case, we will
assume that all gates in the system are synchronized with the gate at Q1, and so this same choice
of cycles will be appropriate when we are interested in the sojourn time distribution of customers
that arrive at Qi, for 1 ≤ i ≤ N .

Our goal is to now relate their distributions to the distribution of C, which is the steady-state
unbiased cycle-length. It is known that, conditional on C∗, the distribution of Cp is uniform on
[0, C∗]. Furthermore, it is also known in the literature (see, for example, [16]) that

dP (C∗ ≤ x) =
xdP (C ≤ x)

E(C)
. (11)

From this result, it is then immediately clear that

E(C∗) =
E(C2)
E(C)

,

E(Cp) = E(Cr) =
E(C2)
2E(C)

.

Moreover, we can use (11) to compute the joint LST of Cp and Cr:
∫ ∞

t=0

∫ ∞

u=0

e−ate−budP (Cp ≤ t;Cr ≤ u) =
E[e−aC ]− E[e−bC ]

(b− a)E(C)
. (12)

The derivation of these last results is known, and also beyond the scope of the paper so a
discussion of their derivation has been omitted. To appease the interested reader, we will mention
that these results can be derived through the use of Palm theory, which can be used to capture the
biases that are mentioned above. The Palm framework allows us to work with the fact that, under
the Palm measure induced by the point process consisting of the times at which a cycle begins, the
sequence of cycle lengths formed in the stationary version of this polling system forms a stationary
sequence, but does not form an i.i.d. sequence. If this were true, we could instead have made use of
well-known results from renewal theory: for instance, the reader may recognize that E (Cr) has the
same form as the first moment of the stationary residual lifetime from a renewal process. References
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on Palm theory are numerous: examples of more recent references include [5] and [13] (both focus
on applications in queueing), along with [16].

Throughout our analysis, we will also make use of what is known in the literature as the
stationary-excess operator R (see, for instance, Abate and Whitt [1]), which is defined in the follow-
ing way: for a given nonnegative random variable X,

P (RX ≤ t) =
1

E(X)

∫ t

0

P (X > s)ds, t ≥ 0.

We will also be applying this operator multiple times to a given random variable, and to denote this
we will use the abbreviation RX,n, where RX,0 = X, RX,1 = RX , and for any n ≥ 0, RX,n+1 =
RRX,n

.
The reader should note that for cycle times, RC and Cr will both be used throughout various

parts of the paper, even though they both have the same distribution. The former will typically be
used within computations, while the latter will exclusively be used to represent a particular residual
cycle time observed by a tagged customer.

Now we are ready to state the following lemma, which will prove to be useful while computing
the first and second moments of many of the types of sojourn times considered in this paper.

Lemma 3.1 For a, b ≥ 0, a 6= b,

E(e−aC)− E(e−bC)
(b− a)E(C)

=
n∑

k=0

(−a)kE(Rk
C)

k!
E(e−bRC,k+1) + (−a)n+1E(Rn+1

C )
(n + 1)!

[
E(e−aRC,n+1)− E(e−bRC,n+1)

(b− a)E(RC,n+1)

]
. (13)

Proof The LST of RC is known, and can be found in, for instance, [1]:

E(e−ωRC ) =
1− E(e−ωC)

ωE(C)
. (14)

Equation (13) then follows from (12) and (14):

E(e−aC)− E(e−bC)
(b− a)E(C)

=
1− E(e−bC)
(b− a)E(C)

− 1− E(e−aC)
(b− a)E(C)

=
b

b− a
E(e−bRC )− a

b− a
E(e−aRC )

= E(e−bRC )− aE(RC)
[
E(e−aRC )− E(e−bRC )

(b− a)E(RC)

]
.

At this point we begin to see a pattern: for any n ≥ 1,

E(e−aC)− E(e−bC)
(b− a)E(C)

=
n∑

k=0

(−a)k




k∏

j=1

E(RC,j)


E(e−bRC,k+1)

+ (−a)n+1




n+1∏

j=1

E(RC,j)




[
E(e−aRC,n+1)− E(e−bRC,n+1)

(b− a)E(RC,n+1)

]
(15)

where products of the form
∏0

j=1 will be understood to equal 1.
The proof will be complete once we compute each of the products found in (15). Notice that
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E(e−ωC) = 1− ωE(C)E(e−ωRC )
= 1− ωE(C) + ω2E(C)E(RC)E(e−ωRC,2)

= . . . =
∞∑

k=0

(−ω)k
k−1∏
m=0

E(RC,m).

Therefore

k−1∏
m=0

E(RC,m) =
E(Ck)

k!
,

so for each k ≥ 1,

k∏
m=1

E(RC,m) =
E(Ck+1)

(k + 1)!E(C)
=
E(Rk

C)
k!

.

This proves (13). ♦

4 Sojourn times at a gated queue

In this section we will be interested in the sojourn time distribution of a tagged customer that
visits a gated queue, at a time when the system is in steady-state. We will first derive the LST
of the sojourn time for policies that are nonanticipating, i.e. those that are not influenced by the
service times of customers in the queue. For anticipating policies, it will be more useful to derive
the conditional LST of the sojourn time, given the amount of service brought to the buffer by the
tagged customer.

4.1 Nonanticipating policies

4.1.1 First-Come-First-Served

We will begin this section by computing the LST of the sojourn time of a tagged customer that visits
a queue, whose customers are served in accordance to a FCFS scheduling policy. If Bi,k denotes the
service time of the kth customer that arrives to Qi during the cycle time of the tagged customer and
Ni(t) denotes the number of type-i customers that arrive during a time interval of length t, then
clearly

TFCFS = Cr +
N1(C

p)+1∑

k=1

B1,k.

Here TFCFS represents the sojourn time of a tagged customer that arrives to Q1 while the system
is in equilibrium. Notice that we have suppressed the fact that we’re referring to Q1 in our notation
for TFCFS , and we will continue to do so throughout the rest of this section. The reason why we
will follow this practice is because, for gated systems, the gate at Q1 only moves at the moment
the server begins working there. This allows us to conclude that the waiting time distribution has
the same form for all other Qi that operate under a gated scheme; the only difference would involve
considering cycles that begin at the moment the server begins working at Qi instead of Q1.

After conditioning on the past and residual cycle lengths, we see that
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E(e−ωTF CF S ) = E(e−ω(Cr+
PN1(Cp)+1

k=1 B1,k))

=
∫ ∞

0

∫ ∞

0

e−ωu
∞∑

n=0

β1(ω)n+1 (λ1t)ne−λ1t

n!
dP (Cp ≤ t, Cr ≤ u)

= β1(ω)
∫ ∞

0

∫ ∞

0

e−ωue−λ1(1−β1(ω))tdP (Cp ≤ t, Cr ≤ u)

= β1(ω)
[
E(e−λ1(1−β1(ω))C)− E(e−ωC)
E(C)(ω − λ1(1− β1(ω)))

]

= β1(ω)E(e−ωDF CF S ), (16)

where DFCFS denotes the delay of the tagged customer.
The first moment of TFCFS is well-known, and can be found in many places throughout the

polling literature (see, for instance, [7] or [14]):

E(TFCFS) = E(B1) + E(Cr)(1 + ρ1).

We will now show how to efficiently use (16) to compute both the first and second moment of
TFCFS . By applying Lemma 3.1 to (16), we see that for each n ≥ 1, when ω ↓ 0,

E(e−ωDF CF S ) =
n∑

k=0

(−1)k(λ1(1− β1(ω))kE(Rk
C)

k!
E(e−ωRC,k+1) +O(ωn+1).

Due to the fact that

λ1(1− β1(ω)) = ρ1ω − λ1
E(B2

1)
2

ω2 +O(ω3), ω ↓ 0

we find that the LST of DFCFS can also be expressed in the following way: as ω ↓ 0,

E(e−ωDF CF S ) = E(e−ωRC )− λ1(1− β1(ω))E(RC)E(e−ωRC,2) + (λ1(1− β1(ω)))2
E(R2

C)
2

E(e−ωRC,3) +O(ω3)

= 1− E(RC)(1 + ρ1)ω +
[
λ1
E(B2

1)
2

E(RC) +
E(R2

C)
2

[
1 + ρ1 + ρ2

1

]]
ω2 +O(ω3).

Thus,

E(D2
FCFS) = λ1E(B2

1)E(RC) + E(R2
C)

(
1 + ρ1 + ρ2

1

)
,

which also implies that

E(T 2
FCFS) = λ1E(B2

1)E(RC) + E(R2
C)

[
1 + ρ1 + ρ2

1

]
+ 2E(B1)E(RC)(1 + ρ1) + E(B2

1).

4.1.2 Last-Come-First-Served

The LST of the sojourn time of a tagged customer under the Last-Come-First-Served (LCFS) disci-
pline has a form that is similar to the LST of TFCFS . Under LCFS, all of the workload that arrives
to Q1 after the tagged customer, yet during the cycle time of the tagged customer, will be processed
before him, and so

TLCFS = Cr +
N1(C

r)+1∑

k=1

B1,k.
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In this case, B1,k denotes the amount of work brought to Q1 by the kth customer that arrives during
Cr. By performing a similar calculation as above, we see that the LST of TLCFS is just

E(e−ωTLCF S ) = E(e−ω(Cr+
PN1(Cr)+1

k=1 B1,k))

=
∫ ∞

0

e−ωt
∞∑

n=0

β1(ω)n+1 (λ1t)ne−λ1t

n!
dP (Cr ≤ t)

= β1(ω)E(e−(ω+λ1(1−β1(ω)))Cr

)

= β1(ω)
[
1− E(e−(ω+λ1(1−β1(ω)))C)
E(C)(ω + λ1(1− β1(ω)))

]

= β1(ω)E(e−ωDLCF S ). (17)

The form of this LST makes it easy to compute moments without resorting to either differenti-
ation or the use of Lemma 3.1. Clearly,

ω + λ1(1− β1(ω)) = (1 + ρ1)ω − λ1
E(B2

1)ω2

2
+O(ω3), ω ↓ 0

and this simple fact will allow us to rewrite the LST of DLCFS in the following way:

E(e−ωDLCF S ) =
∞∑

n=1

(−1)n−1((1 + ρ1)ω − λ1
E(B2

1)
2

ω2)n−1 E(Cn)
n!E(C)

= 1−
(

(1 + ρ1)ω − λ1E(B2
1)ω2

2

)
E(RC) +

(
(1 + ρ1)ω − λ1E(B2

1)ω2

2

)2 E(R2
C)

2
+O(ω3)

= 1− (1 + ρ1)E(RC)ω +
[
λ1
E(B2

1)E(RC)
2

+ (1 + ρ1)2
E(R2

C)
2

]
ω2 +O(ω3), ω ↓ 0.

Hence, the first two moments of this random variable are just

E(DLCFS) = (1 + ρ1)E(RC)

and

E(D2
LCFS) = λ1E(B2

1)E(RC) + (1 + ρ1)2E(R2
C).

From this, we can now compute the first and second moments of the sojourn time:

E(TLCFS) = E(B1) + E(RC)(1 + ρ1) = E(TFCFS),

and

E(T 2
LCFS) = λ1E(B2

1)E(RC) + (1 + ρ1)2E(R2
C) + 2E(B1)E(RC)(1 + ρ1) + E(B2

1)
= E(T 2

FCFS) + ρ1E(R2
C).

We see that the second moment of TLCFS is larger than the one of TFCFS , which proves that the
sojourn time under LCFS is actually more variable than its FCFS counterpart.
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4.1.3 Random Order of Service

The final nonanticipating policy that we will analyze in this paper is known as the Random Order
of Service (ROS) policy. Unfortunately, the LST of the sojourn time under this policy isn’t as nice
as the previous cases, as the reader will see from the derivation below. To compute the LST, let’s
imagine that the server immediately creates an order in which he will serve the customers currently
waiting in the buffer, and let U denote the position of the tagged customer within this ordering.
Clearly U is a uniform random variable on 1, 2, ..., N1(Cp) + N1(Cr) + 1. Therefore,

E(e−ωTROS ) = E(e−ω(Cr+
PU

k=1 B1,k))

=
∫ ∞

0

∫ ∞

0

e−ωuE(e−ω
PU

k=1 B1,k |Cp = t, Cr = u)dP (Cp ≤ t, Cr ≤ u)

= β1(ω)
∫ ∞

0

∫ ∞

0

e−ωu
∞∑

n=0

n∑

k=0

β1(ω)k

n + 1
(λ1(t + u))ne−λ1(t+u)

n!
dP (Cp ≤ t, Cr ≤ u).

Notice that

(1− β1(ω))
n∑

k=0

β1(ω)k

n + 1
=

1− β1(ω)n+1

n + 1
=

∫ 1

β1(ω)

xndx

and so

E(e−ωTROS ) =
β1(ω)

1− β1(ω)

∫ ∞

0

∫ ∞

0

∫ 1

β1(ω)

e−ωue−λ1(1−x)(t+u)dxdP (Cp ≤ t, Cr ≤ u) (18)

=
β1(ω)

E(C)(1− β1(ω))

∫ 1

β1(ω)

(E(e−λ1(1−x)C)− E(e−(ω+λ1(1−x))C))
ω

dx. (19)

What is nice about this expression is the appearance of the ω term in the denominator. We will
show in Section 5 that this form allows us to manipulate the transform in a different manner, in
order to compute higher moments of the sojourn time.

Again, the mean sojourn time in this case is the same as in the other cases, i.e.

E(TROS) = E(B1) + E(RC)(1 + ρ1).

The second moment is just

E(T 2
ROS) = λ1E(B2

1)E(RC) + 2E(B1)E(RC)(1 + ρ1) +
E(R2

C)
2

(
2 + 3ρ1 + 2ρ2

1

)
+ E(B2

1)

= E[T 2
FCFS ] +

ρ1

2
E(R2

C).

Clearly E(T 2
LCFS) > E(T 2

ROS) > E(T 2
FCFS). Indeed, our analysis has shown that FCFS seems to

perform the best among all of the nonanticipating policies considered here. One cannot help but
wonder if a stronger ordering relationship can be established among the distributions of these sojourn
times; this is a question that we plan to investigate in a future paper.

4.2 Anticipating policies

Now we will be interested in analyzing policies that use information about the size of the jobs in the
system in order to decide how and when various jobs are served. The two policies that we consider
in this section are the Shortest Job First (SJF) and the Processor Sharing (PS) policies. Suppose
that when the server arrives to Q1, it orders the jobs in increasing order, i.e., let B1,(k) denote the
kth-smallest job in Q1, where 1 ≤ k ≤ N1(Cp) + N1(Cr) + 1. Then it is clear that
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TPS = Cr +
U∑

k=1

(N1(Cp) + N1(Cr) + 1− k + 1)(B1,(k) −B1,(k−1)) (20)

and

TSJF = Cr +
U∑

k=1

B1,(k). (21)

Here we use the convention that B1,(0) = 0 with probability one.
Unfortunately, working with order statistics is often a cumbersome task, and so we will not be

able to explicitly use these expressions when we compute the LST of the sojourn time, for a general
service time distribution. The reader may notice, however, that if the services are exponentially
distributed, then TPS is equal in distribution to TROS . This follows from the following simple
property of exponential random variables (see, for instance, page 19 of [9]):

Proposition 4.1 Let X1, X2, ..., Xn denote a collection of n independent and identically distributed
exponential random variables with rate α. If X(k) denotes the kth-smallest random variable among
the population, then the n variables X(k) −X(k−1), 1 ≤ k ≤ n (set X(0) = 0) are independent and
X(k) −X(k−1) is exponentially distributed with rate (n− k + 1)α.

Even in this case, however, the distribution of TSJF is still difficult to handle. To get around
this dilemma, we will need to condition on the service time of the tagged customer.

4.2.1 Conditioning on the service time

Suppose that a tagged customer arrives to Q1 with an amount of work x. Then the sojourn time
of the customer depends on three things: the remaining amount of time it takes for the server to
reach Q1, and the amount of work brought by customers that arrived before, and after, the tagged
customer to Q1. For a given scheduling policy Γ, let TΓ(x) denote the sojourn time of a tagged
customer, conditional on the amount of work it brings to the system. Under many policies, this
random variable can be written in the following way:

TΓ(x) = x + Cr +
N1(C

p)∑

k=1

g1(B1,k, x) +
N1(C

r)∑
m=1

g2(B1,m, x). (22)

Here gi : [0,∞)× [0,∞) → R, i = 1, 2 are functions that capture how the tagged customer’s sojourn
time is affected by customers that arrive before and after him, respectively. For example, if Γ
represents the FCFS policy, g1(y, x) = y and g2(y, x) = 0, since all customers arriving ahead of the
tagged customer will be served first, and no customer arriving afterward will affect the sojourn time.
The reader should of course keep in mind that gi could depend on x as well (such as when analyzing
the SJF case), which is why we allow gi to depend on x.

Modeling the sojourn times in this manner will allow us to easily compute the LST of TΓ(x).
For ω ≥ 0, we find that

E(e−ωTΓ(x)) = E(e−ω(Cr+
PN1(Cp)

k=1 g1(B1,k,x)+
PN1(Cr)

m=1 g2(B1,m,x)))

=
∫ ∞

0

∫ ∞

0

e−ω(x+v+
PN1(u)

k=1 g1(B1,k,x)+
PN1(v)

k=1 g2(B1,k,x))dP (Cp ≤ u,Cr ≤ v)

= e−ωx

∫ ∞

0

∫ ∞

0

e−ωve−λ1(1−φ1(ω,x))ue−λ1(1−φ2(ω,x))vdP (Cp ≤ u,Cr ≤ v),
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where φi(ω, x) = E(e−ωgi(B1,x)), for i = 1, 2, and Bφ,i denotes a random variable with LST φi.
Therefore,

E(e−ωTΓ(x)) = e−ωxE(e−λ1(1−φ1(ω,x))C)− E(e−(ω+λ1(1−φ2(ω,x)))C)
E(C)(ω + λ1(φ1(ω, x)− φ2(ω, x)))

. (23)

Showing that the SJF policy fits within this framework is simple: just set g1(y, x) = g2(y, x) =
y1(y ≤ x). This follows from the fact that all, and only all, jobs present that are of a size smaller
than x will be served before the tagged customer.

The PS discipline can also be modeled in this manner. Suppose we choose g1(y, x) = g2(y, x) =
min(y, x). Then

x + Cr +
N1(C

p)∑

k=1

min(B1,k, x) +
N1(C

r)∑
m=1

min(B1,m, x)

= Cr +
U−1∑

k=1

B1,(k) + (N1(Cp) + N1(Cr) + 1− U + 1)x

= Cr +
U−1∑

k=1

k∑

l=1

(B1,(l) −B1,(l−1))

+ (N1(Cp) + N1(Cr) + 1− U + 1)(x−B1,(U−1))

+
U−1∑

l=1

(N1(Cp) + N1(Cr) + 1− U + 1)(B1,(l) −B1,(l−1))

= Cr +
U−1∑

l=1

U−1∑

k=l

(B1,(l) −B1,(l−1))

+ (N1(Cp) + N1(Cr) + 1− U + 1)(x−B1,(U−1))

+
U−1∑

l=1

(N1(Cp) + N1(Cr) + 1− U + 1)(B1,(l) −B1,(l−1))

= Cr +
U−1∑

l=1

(U − 1− l + 1)(B1,(l) −B1,(l−1))

+ (N1(Cp) + N1(Cr) + 1− U + 1)(x−B1,(U−1))

+
U−1∑

l=1

(N1(Cp) + N1(Cr) + 1− U + 1)(B1,(l) −B1,(l−1))

= Cr +
U−1∑

l=1

(N1(Cp) + N1(Cr) + 1− l + 1)(B1,(l) −B1,(l−1))

+ (x−B1,(U−1))(N1(Cp) + N1(Cr) + 1− U + 1)

and so it follows from (20) that this choice of g1 and g2 correctly models the sojourn time of the
tagged customer under PS. In the next two subsections, we will treat both the PS and the SJF cases
in further detail.

4.2.2 Processor Sharing

Now we are ready to analyze the sojourn time of a tagged customer at Q1, which utilizes the
processor-sharing rule when providing everyone with service.

It should be noted that similar models, for the single-queue case, have been studied in the
literature before. Rege and Sengupta [10], for instance, derive various performance measures for
what is known as a gated M/M/1 queue, which operates as follows: the server provides service to
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at most m ≥ 1 customers, in a processor-sharing fashion. Once a group has been served, the server
then begins serving the next (up to) m waiting customers, and so on. The works of Avi-Itzhak and
Halfin [4] and Rietman and Resing [12] focus on various extensions of this model. In particular, [4]
considers a gated M/G/1 queue, and they consider not only the processor-sharing discipline, but
other “conservative” scheduling disciplines, which include FCFS, LCFS, and ROS. They also analyze
the same type of model in [12], but they go a step further by deriving the joint distribution of both
the amount of time a customer spends on both sides of the gate, and the number of customers on
both sides of the gate.

We will now begin our calculation of the conditional LST of the sojourn time under PS. From
(23), we see that

E(e−ωTP S(x)) = e−ωxE(e−λ1(1−φ(ω,x))C)− E(e−(ω+λ1(1−φ(ω,x)))C)
ωE(C)

. (24)

where φ(ω, x) = E(e−ω min(Bk,x)). This expression is nice, in that it is given in terms of the LST of
the cycle time. To find the unconditional LST of TPS , we only need to integrate with respect to the
service time distribution, however in many cases this transform will not be tractable.

Let us assume for now that B1 is exponential with parameter µ1. Then

E(e−ωTP S ) =
1

ωE(C)

∫ ∞

0

e−ωx
[
E(e−λ1

ω
µ1+ω (1−e−(µ1+ω)x)C)− E(e−(ω+

λ1ω
µ1+ω (1−e−(µ1+ω)x)C))

]
µ1e

−µ1xdx.

Fortunately this integral can be simplified. First of all,
∫ ∞

0

e−ωxE(e−
λ1ωC
µ1+ω (1−e−(µ1+ω)x))µ1e

−µ1xdx = E
(

e−
λ1ωC
µ1+ω

∫ ∞

0

e
λ1ωC
µ1+ω e−(µ1+ω)x

µ1e
−(µ1+ω)xdx

)

= E

(
e−

λ1ωC
µ1+ω

µ1

λ1ωC

∫ 0

−λ1ωC
µ1+ω

e−udu

)

= E
(

1
ρ1ωC

(1− e−
λ1ωC
µ1+ω )

)
.

Now that we have performed this calculation, it is easy to see that
∫ ∞

0

e−ωxE(e−(ω+
λ1ωC
µ1+ω (1−e−(µ1+ω)x)))µ1e

−µ1xdx = E
(

e−ωC

ρ1ωC
(1− e−

λ1ωC
µ1+ω )

)
,

and so

E[e−ωTP S ] =
1

ρ1ω2E(C)
E

(
(1− e−λ1

ω
µ1+ω C)(1− e−ωC)

C

)

=
1

ρ1ω2E(C)
E

(∫ λ1ω
µ1+ω

0

(1− e−ωC)e−Cydy

)

=
1

ρ1ω2E(C)

∫ λ1ω
µ1+ω

0

(f(y)− f(y + ω))dy

where
f(y) = E(e−yC).

The reason why we choose to represent this transform as an integral is because it will help us obtain
higher moments of the sojourn time. The approach involves a couple of Taylor series approximations,
and it will be given in Section 5.

Throughout the rest of this subsection, we will be interested in how much we can conclude about
the distribution of the sojourn time, without assuming that the service times are exponential. An
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application of Wald’s equality can be used to compute the first moment of TPS(x) by using (22),
and it can also be found in [18].

In this case,
E(TPS(x)) = x + E(Cr)(1 + 2ρ1(x))

where ρ1(x) = λ1E[min(B1, x)] = λ1E[Bφ]. One can easily check that this result also agrees with
the first moment calculation found in [4], where they essentially look at the special case of a polling
system with zero setup times, and only one buffer.

At first glance, the LST of TPS(x) doesn’t look like a nice function to differentiate, but it’s still
not too difficult to make use of it in order to compute the first and second moment. By applying
Lemma 3.1 to (24), we find that

E(e−ωDP S(x)) =
n∑

k=0

(−(1− φ(ω)))kλk
1

E(Rk
C)

k!
E(e−(ω+λ1(1−φ(ω)))RC,k+1) +O(ωn+1) ω ↓ 0.

Furthermore, since

1− φ(ω) = E(Bφ)ω − E(B2
φ)

2
ω2 +O(ω3), ω ↓ 0

and

ω + λ1(1− φ(ω)) = (1 + ρ1(x))ω − λ1

E(B2
φ)

2
ω2 +O(ω3), ω ↓ 0,

we have for ω ↓ 0:

E(e−ωDP S(x)) = 1− E(RC)(1 + 2ρ1(x))ω +
[
λ1E(B2

φ)E(RC) +
E(R2

C)
2

(1 + 3ρ1(x) + 3ρ2
1(x))

]
ω2 +O(ω3).

This expression shows that the first and second moments of the conditional delay are just

E(DPS(x)) = E(RC)(1 + 2ρ1(x))

and

E(D2
PS(x)) = 2λ1E(B2

φ)E(RC) + E(R2
C)

(
1 + 3ρ1(x) + 3ρ2

1(x)
)
.

After unconditioning, we find that

E(DPS) = E(RC)(1 + 2λ1E(M1,2))

and

E(D2
PS) = 2λ1E(M2

1,2)E(RC) + E(R2
C)

[
1 + 3

∫ ∞

0

ρ1(x)dB1(x) + 3
∫ ∞

0

ρ2
1(x)dB1(x)

]

= 2λ1E(M2
1,2)E(RC) + E(R2

C)
[
1 + 3λ1E(M1,2) + 3P (B1 > max(RB1(1), RB1(2))ρ2

1

]

= 2λ1E(M2
1,2)E(RC) + E(R2

C)
[
1 + 3P (B1 > RB1(1))ρ1 + 3P (B1 > max(RB1(1), RB1(2))ρ2

1

]

where RB1(1) and RB1(2) are independent residual versions of B1, which are also independent of B1.
Furthermore, M1,2 = min(B1,1, B1,2) and M1,3 = min(B1,1, B1,2, B1,3). To see the second equality,
notice that

E(min(B1, x)) =
∫ ∞

0

P (min(B1, x) > u)du

=
∫ x

0

B1(y)dB1(y)

=: E(B1)P (RB1(1) ≤ x)
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and so
∫ ∞

0

ρ2
1(x)dB1(x) = λ2

1

∫ ∞

0

E(min(B1, x))2dB1(x)

= ρ2
1

∫ ∞

0

P (RB1(1) ≤ x)2dB1(x)

= ρ2
1P (B1 > max(RB1(1), RB2(2))).

From here, we can easily compute the first and second moments of the sojourn time:

E(TPS) = E(B1) + E(RC)(1 + 2P (B1 > RB1(1))ρ1)

and

E(T 2
PS) = 2λ1E(M2

1,2)E(RC) + E(R2
C)

[
1 + 3P (B1 > RB1(1))ρ1 + 3P (B1 > max(RB1(1), RB1(2))ρ2

1

]

+ 2E(B1)E(RC)(1 + 2P (B1 > RB1(1))ρ1) + E(B2
1).

At this point, our results show that serving customers according to a Processor-Sharing rule may
or may not be more efficient, in terms of mean and variance, than serving according to a FCFS rule.
The type of policy chosen should depend on the parameters of the polling system.

It may be of interest to find all values x where E(TPS(x)) ≤ E(TFCFS(x)), and where E(TPS(x)) ≥
E(TFCFS(x)). If we assume that the distribution of B1 is absolutely continuous (i.e. has a den-
sity), an application of the dominated convergence theorem shows that the set of points where
E(TPS(x)) ≥ E(TFCFS(x)) is of the form [xPS ,∞), where xPS is the solution to the equation

E(min(B1, x)) = E(B1)/2.

After some simple manipulations, we see that xPS satisfies
∫ xP S

0

B1(t)dt = E(B1)/2,

with B1(t) = P (B1 > t). This implies that xPS is the median of the residual service time distribution.
Notice that if B1 is exponential, then this is just the median of an exponential distribution, and so
we can conclude that in this case, half of all customers that arrive to the system will experience a
shorter expected sojourn time if the system operates under FCFS, and the other half will experience
a shorter expected sojourn time under PS.

4.2.3 Shortest Job First

Now we will present the LST for the sojourn time of a tagged customer that visits Q1 under the
Shortest Job First policy. Due to the fact that g1 = g2 under this policy as well,

E(e−ωTSJF (x)) = e−ωxE(e−λ1(1−φ(ω))C)− E(e−(ω+λ1(1−φ(ω)))C)
ωE(C)

,

but in this case φ(ω) = E(e−ωB11(B1≤x)). At this point, we can manipulate the transform for this
sojourn time in precisely the same manner as was done for the processor-sharing case given above,
because we never made explicit use of the form of φ. Therefore, the first and second moment of
DSJF (x) are as follows:

E(DSJF (x)) = (1 + 2ρ1(x))E(RC)

and

E(DSJF (x)2) = 2λ1E(B2
φ)E(RC) + E(R2

C)
(
1 + 3ρ1(x) + 3ρ2

1(x)
)
,
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however in this case ρ1(x) = λ1E(B11(B1 ≤ x)). The unconditional moments can also be computed,
as in the PS case. First of all,

∫ ∞

0

E(B2
11(B1 ≤ x))dB1(x) =

∫ ∞

0

∫ x

0

t2dB1(t)dB1(x) =
∫ ∞

0

∫ ∞

t

t2dB1(x)dB1(t)

=
1
2

∫ ∞

0

t22B1(t)dB1(t) =
E(M2

1,1)
2

. (25)

There is only one other integral that needs to be computed, and so
∫ ∞

0

E(B11(B1 ≤ x))2dB1(x) =
∫ ∞

0

[
E(B1)P (RB1(1) ≤ x)− xB1(x)

]2
dB1(x). (26)

We already know that
∫ ∞

0

P (RB1(1) ≤ x)2dB1(x) = P (B1 > max(RB1(1), RB1(2))) (27)

and
∫ ∞

0

x2B
2

1(x)dB1(x) =
E(M2

1,3)
3

, (28)

so
∫ ∞

0

xP (RB1(1) ≤ x)B1(x)dB1(x) = E(B1)
∫ ∞

0

P (RB1(1) ≤ x)B1(x)dB∗
1(x) (29)

= E(B1)P (RB1(1) < CB1(1) < B1) (30)

where CB1(1) is a biased service time, independent of RB1(1) and B1. Therefore, inserting (27),
(28) and (29) into (26) gives

∫ ∞

0

ρ2
1(x)dB1(x) = E(B1)2P (B1 > max(RB1(1), RB1(2)))

− 2E(B1)2P (RB1(1) < CB1(1) < B1) +
E(M2

1,3)
3

.

Using this along with (25) gives

E(D2
SJF ) = λ1E(RC)E(M2

1,2) + E(R2
C)(1 + λ1

3
2
E(M1,2))

+ 3E(R2
C)

(
ρ2
1P (B1 > max(RB1(1), RB1(2)))− 2ρ2

1P (RB1(1) < CB1(1) < B1) + λ2
1

E(M2
1,3)

3

)
.

5 A globally gated polling regime

In this section, we compute the LST of the sojourn time TΓ,i of an arbitrary type-i customer in a
globally gated polling system that serves customers at Qi according to policy Γ. In such a polling
system, the server serves only the customers who are present at the start of the cycle, i.e. a gate
is placed behind every queue just before the server polls the first queue. This polling regime is not
of a branching type visit discipline, but it satisfies Property 2.2 which allows us to decompose TΓ,i

into the sum of four parts which only depend on the total and the residual length (C∗ and Cr) of
the cycle in which a tagged customer arrives. If the number of this cycle is n, these four parts are
defined by:

1. Cr, the residual cycle length of cycle n,

16



2. the service times of all customers of type j = 1, . . . , i−1 that arrive during Cp and Cr of cycle
n,

3. Ri, the time interval between the polling epoch of Qi in cycle n + 1 and the departure of the
tagged customer,

4. the switch-over times S1, . . . , Si−1.

The LST of the total cycle time is derived in [8] and satisfies

γ(ω) = E(e−ωC) =
∞∏

i=1

σ(δ(i)(ω)),

with

σ(ω) = E(e−ω
PN

i=1 Si) =
N∏

j=1

σj(ω),

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)),

δ(ω) =
N∑

j=1

λj(1− βj(ω)).

In the same paper, the LST of the waiting time in Qi with a FCFS service discipline is derived. This
result will be discussed in the following section.

5.1 Nonanticipating policies

5.1.1 First-Come-First-Served (FCFS)

In [8], the LST of the waiting time in Qi of a globally gated system with a FCFS service discipline
is given:

E(e−ωTF CF S,i) =
1
EC

γ
(∑i

j=1 λj(1− βj(ω))
)
− γ

(∑i−1
j=1 λj(1− βj(ω)) + ω

)

ω − λi(1− βi(ω))

i−1∏

j=1

σj(ω).

The first and second moment of Ti in FCFS can be derived with Taylor series approximations in the
numerator and the denominator. We find

E(TFCFS,i) = E(Bi) + E(RC)


2

i−1∑

j=1

ρj + ρi + 1


 +

i−1∑

j=1

E(Sj) (31)

and

E(T 2
FCFS,i) = E(RC)


λiE(B2

i ) + 2(ρi + 1)E(Bi) + 2
i−1∑

j=1

λjE(B2
j ) + 4

i−1∑

j=1

ρjE(Bi)




+ E(R2
C)


3




i−1∑

j=1

ρj




2

+ ρi(ρi + 1) + 1 + 3
i−1∑

j=1

ρj(ρi + 1)




+ E(RC)


4

i−1∑

j=1

ρj + 2ρi + 2




i−1∑

j=1

E(Sj)

+ E(B2
i ) + E







i−1∑

j=1

Sj




2

 + 2E(Bi)

i−1∑

j=1

E(Sj), (32)
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where RC is equal in distribution to Cr, as pointed out in Section 3.1.

5.1.2 Last-Come-First-Served (LCFS)

In the LCFS policy, Ri consists only of the service times of the customers who arrive during the
residual cycle and the service time of the tagged customer. So we get

E(e−ω(TLCF S,i−
Pi−1

j=1 Sj)) =
∫ ∞

t=0

∫ ∞

u=0

∞∑

ki=0

e−λiu
(λiu)ki

ki!
e−ωu

×
i−1∏

j=1

e−λj(1−βj(ω))(t+u)E(e−ωRi |ki arrivals in Cr)dP (Cp ≤ t; Cr ≤ u).

Clearly, E(e−ωRi |ki arrivals in Cr) = βki+1
i (ω), the LST of the sum of ki + 1 service times. So

E(e−ω(TLCF S,i−
Pi−1

j=1 Sj)) = βi(ω)
∫ ∞

t=0

∫ ∞

u=0

∞∑

ki=0

e−λiu
(λiuβi(ω))ki

ki!
e−ωu

× e−
Pi−1

j=1 λj(1−βj(ω))(t+u)dP (Cp ≤ t; Cr ≤ u)

= βi(ω)
∫ ∞

t=0

∫ ∞

u=0

e−λi(1−βi(ω))ue−ωu

× e−
Pi−1

j=1 λj(1−βj(ω))(t+u)dP (Cp ≤ t; Cr ≤ u).

Using (12), we get:

E(e−ω(TLCF S,i−
Pi−1

j=1 Sj)) = βi(ω)
γ (Xi(ω))− γ (Xi+1(ω) + ω)

(λi(1− βi(ω)) + ω)EC
.

The first moment of TLCFS,i is exactly the same as in (31):

E(TLCFS,i) = E(Bi) + E(RC)


2

i−1∑

j=1

ρj + ρi + 1


 +

i−1∑

j=1

E(Sj).

The second moment, however, is larger than E
(
T 2

FCFS,i

)
:

E
(
T 2

LCFS,i

)
= E(RC)


λiE(B2

i ) + 2(ρi + 1)E(Bi) + 2
i−1∑

j=1

λjE(B2
j ) + 4

i−1∑

j=1

ρjE(Bi)




+ E(R2
C)


3




i−1∑

j=1

ρj




2

+ (ρi + 1)2 + 3
i−1∑

j=1

ρj(ρi + 1)




+ E(RC)


4

i−1∑

j=1

ρj + 2ρi + 2




i−1∑

j=1

E(Sj)

+ E(B2
i ) + E







i−1∑

j=1

Sj




2

 + 2E(Bi)

i−1∑

j=1

E(Sj). (33)

This should not come as a surprise, based on what we have previously seen in the gated section.
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5.1.3 Random order of Service (ROS)

For generally distributed service times and a ROS discipline, we derive the LST of the sojourn time
of a random customer. The time between the polling epoch of Qi and the departure of a tagged
type-i customer (Ri) depends on the total number of type-i customers that arrived in cycle n, say
ki. The order of service is random, so Ri is the sum of li service times, with li randomly chosen
from {1, . . . , ki}.

Because the switch-over times are independent of Cr, Ri and the service times of all other
customers that arrive during C∗, we can focus on just these three parts of the sojourn time of a
tagged customer, TROS,i−

∑i−1
j=1 Sj . Because each of these parts only depends on C∗ and/or Cr, we

condition on the residual cycle length Cr and the preceding cycle length Cp (C∗ = Cp + Cr):

E(e−ω(TROS,i−
Pi−1

j=1 Sj)) =
∫ ∞

t=0

∫ ∞

u=0

∞∑

ki=0

e−λi(t+u) (λi(t + u))ki

ki!
e−ωu

×
i−1∏

j=1

e−λj(1−βj(ω))(t+u)E(e−ωRi |ki others)dP (Cp ≤ t; Cr ≤ u).

Using the result in (12), we get

E(e−ω(TROS,i−
Pi−1

j=1 Sj)) =
βi(ω)

E(C)(1− βi(ω))
1
λi

∫ Xi+1(ω)

Xi(ω)

γ(y)− γ(y + ω)
ω

dy, (34)

with

Xi(ω) =
i−1∑

j=1

λj(1− βj(ω)). (35)

For the first and second moment of TROS,i, we differentiate (34) by using a Taylor series development
in ω and find:

E(TROS,i) = E(Bi) +
E(C2)
2E(C)


2

i−1∑

j=1

ρj + ρi + 1


 +

i−1∑

j=1

E(Sj). (36)

Indeed, the mean sojourn time consists of the mean service time of the tagged customer, the mean
residual cycle time, the mean work arriving at Q1, . . . , Qi−1 during the past and residual cycle time(
2× E(C2)

2E(C)

)
, half of the average work arriving at Qi during the past and residual cycle time and

the mean switch over times E(S1), . . . ,E(Si−1). Furthermore, the first moment is again exactly the
same as in (31).

For the second moment, we find

E(T 2
ROS,i) = E(RC)


λiE(B2

i ) + 2(ρi + 1)E(Bi) + 2
i−1∑

j=1

λjE(B2
j ) + 4

i−1∑

j=1

ρjE(Bi)




+ E(R2
C)


3




i−1∑

j=1

ρj




2

+ ρ2
i +

3
2
ρi + 1 + 3

i−1∑

j=1

ρj(ρi + 1)




+ E(RC)


4

i−1∑

j=1

ρj + 2ρi + 2




i−1∑

j=1

E(Sj)

+ E(B2
i ) + E







i−1∑

j=1

Sj




2

 + 2E(Bi)

i−1∑

j=1

E(Sj). (37)
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Note that the mean sojourn time of a type-i customer can be larger than the mean sojourn time
of a type-(i + 1) customer, because E(TROS,i+1)− E(TROS,i) ≤ 0 if

E(Bi) ≥ E(Bi+1) +
E(C2)
2E(C)

[λi+1E(Bi+1) + λiE(Bi)] + E(Si).

Furthermore, notice that, as is true in the gated case and in [4], E(T 2
FCFS,i) < E(T 2

ROS,i) <

E(T 2
LCFS,i). The differences are as follows:

E(T 2
LCFS,i)− E(T 2

ROS,i) = E(T 2
ROS,i)− E(T 2

FCFS,i) =
E(R2

C)ρi

2
.

5.2 Anticipating policies

5.2.1 Processor sharing (PS)

The derivation of the LST of the waiting time in the case of the PS service discipline is different
from the one in ROS, because the waiting time now heavily depends on the required service time
of the tagged customer. However, for exponentially(µ) distributed service times, the analysis is the
same as for ROS, because of Proposition 4.1.

Now suppose that the service times are generally distributed. To work with this, it will again be
to our advantage to condition on the amount of service brought to Qi by a tagged customer during
steady-state. If such a customer brings an amount of work x to Qi, then its sojourn time minus x
is just

DPS,i(x) = Cr +
i−1∑

j=1

(Vj + Sj) +
Ni(C

p)∑
m=1

min(Bi,m, x) +
Ni(C

r)∑
n=1

min(Bi,n, x).

Again, because the switch-over times are independent of all other quantities present in our repre-
sentation of DPS,i(x), we will focus on computing the LST of DPS,i(x)−∑i−1

j=1 Sj . If we let φi(ω, x)
denote the LST of min(Bi, x), then

E(e−ω(DP S,i(x)−Pi−1
j=1 Sj)) =

∫ ∞

t=0

∫ ∞

u=0

e−ωue−λi(1−φi(ω,x))(t+u)
i−1∏

j=1

e−λj(1−βj(ω))(t+u)dP (Cp ≤ t, Cr ≤ u)

=
γ(Xi(ω) + λi(1− φi(ω, x)))− γ(Xi(ω) + λi(1− φi(ω, x)) + ω)

ωE[C]
,

where the second equality follows from (12).
By applying Lemma 3.1, it follows that

E(DPS,i(x)−
i−1∑

j=1

Sj) = E(RC)


1 + 2

i−1∑

j=1

ρj + 2λiE(min(Bi, x))


 (38)

and

E((DPS,i(x)−
i−1∑

j=1

Sj)2) = E(RC)


2

i−1∑

j=1

λjE(B2
j ) + 2λiE(min(Bi, x)2)




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj + 3λiE(min(Bi, x))

+ 3




i−1∑

j=1

ρj + λiE(min(Bi, x))




2

 . (39)
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After unconditioning with respect to x, we conclude that

E(DPS,i −
i−1∑

j=1

Sj) = E(RC)


1 + 2

i−1∑

j=1

ρj + 2λiE(Mi,2)


 (40)

and

E((DPS,i −
i−1∑

j=1

Sj)2) = E(RC)


2

i−1∑

j=1

λjE(B2
j ) + 2λiE(M2

i,2)




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj + 3ρiP (Bi > RBi
(1)) + 3




i−1∑

j=1

ρj




2

+ 6
i−1∑

j=1

ρjρiP (Bi > RBi
(1))

+ 3ρ2
i P (Bi > max(RBi(1), RBi(2)))

]
. (41)

Finally, after combining the switch-over times and the service time of the tagged customer with (40)
and (41), we get

E(TPS,i) = E(Bi) +
i−1∑

j=1

E(Sj) + E(RC)


1 + 2

i−1∑

j=1

ρj + 2λiE(Mi,2)


 (42)

and

E(T 2
PS,i) = E(RC)


2

i−1∑

j=1

λjE(B2
j ) + 2λiE(M2

i,2)




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj + 3ρiP (Bi > RBi(1)) + 3




i−1∑

j=1

ρj




2

+ 6
i−1∑

j=1

ρjρiP (Bi > RBi(1)) + 3ρ2
i P (Bi > max(RBi(1), RBi(2)))




+ 2


E(Bi) +

i−1∑

j=1

E(Sj)


E(RC)


1 + 2

i−1∑

j=1

ρj + 2λiE(Mi,2)




+ E(B2
i ) + 2E(Bi)

i−1∑

j=1

E(Sj) + E((
i−1∑

j=1

Sj)2). (43)

5.2.2 Shortest Job First

Now we will compute the first and second moments of the sojourn time under the SJF policy. In
this case it is clear that, conditional on the service time of the tagged customer being x,

DSJF,i(x) = Cr +
i−1∑

j=1

(Vj + Sj) +
Ni(C

p)∑
m=1

Bi,m1(Bi,m ≤ x) +
Ni(C

r)∑
n=1

Bi,n1(Bi,n ≤ x).

If we mimic the above derivation of the LST of the conditional delay for the PS case, we see that

E(e−ω(DSJF,i(x)−Pi−1
j−1 Sj)) =

γ(Xi(ω) + λi(1− φi(ω, x)))− γ(Xi(ω) + λi(1− φi(ω, x)) + ω)
ωE(C)
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where in this case φi(ω, x) is the LST of Bi1(Bi ≤ x).
Just as before, we get

E(DSJF,i(x)−
i−1∑

j=1

Sj) = E(RC)


1 + 2

i−1∑

j=1

ρj + 2λiE(Bi1(Bi ≤ x))


 (44)

and

E((DSJF,i(x)−
i−1∑

j=1

Sj)2) = E(RC)


2

i−1∑

j=1

λjE(B2
j ) + 2λiE(B2

i 1(Bi ≤ x))




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj + 3λiE(Bi1(Bi ≤ x))

+ 3




i−1∑

j=1

ρj + λiE(Bi1(Bi ≤ x))




2

 . (45)

After unconditioning with respect to x, we conclude that

E(DSJF,i −
i−1∑

j=1

Sj) = E(RC)


1 + 2

i−1∑

j=1

ρj + λiE(Mi,2)


 (46)

and

E((DSJF,i −
i−1∑

j=1

Sj)2) = E(RC)


2

i−1∑

j=1

λjE(B2
j ) + λiE(M2

i,2)




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj +
3
2
ρiP (Bi > RBi(1)) + 3




i−1∑

j=1

ρj




2

+ 3
[
E(B1)2P (B1 > max(RB1(1), RB1(2)))− 2E(B1)2P (RB1(1) < CB1(1) < B1)

]

+ 3
i−1∑

j=1

ρjρiP (Bi > RBi(1)) + E(M2
1,3)


 , (47)

with Mi,2 and Mi,3 as defined in Section 4.2.2. Therefore, the first and second moments of the
sojourn time are as follows:

E(TSJF,i) = E(Bi) +
i−1∑

j=1

E(Sj) + E(RC)


1 + 2

i−1∑

j=1

ρj + λiE(Mi,2)


 (48)

and

E(T 2
SJF,i) = E(B2

i ) + 2E(Bi)
i−1∑

j=1

E(Sj) + E







i−1∑

j=1

Sj




2



+ 2


E(Bi)

i−1∑

j=1

E(Sj)





E(Bi) +

i−1∑

j=1

E(Sj) + E(RC)


1 + 2

i−1∑

j=1

ρj + λiE(Mi,2)
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+ E(RC)


2

i−1∑

j=1

λjE(B2
j ) + λiE(M2

i,2)




+ E(R2
C)


1 + 3

i−1∑

j=1

ρj +
3
2
ρiP (Bi > RBi(1)) + 3




i−1∑

j=1

ρj




2

+ 3
[
E(B1)2P (B1 > max(RB1(1), RB1(2)))− 2E(B1)2P (RB1(1) < CB1(1) < B1)

]

+ 3
i−1∑

j=1

ρjρiP (Bi > RBi
(1)) + E(M2

1,3)


 . (49)

6 Conclusion

We have obtained the (LST of the) waiting time distribution in a gated queue of a cyclic polling
system, for various service orders within that queue. The first two moments of the waiting time also
have been obtained, allowing us to study the impact of the service order.

The gated visit discipline turns out to be very tractable, thanks to the fact that the waiting times
of the customers who are being served during a visit are not affected by later arrivals which take
place in that visit period. We expect exhaustive service to be more complicated. This is a topic for
our further research. Presently the case of fixed priorities within a queue of a polling system also
receives attention in our group; cf. [2]. One could also investigate whether or not there exists a sort
of ordering among the distributions of the sojourn times considered here. We are also interested in
understanding exactly how heavy-tailed service times may influence the tail behavior of the sojourn
time, under each of the various disciplines studied in this paper.
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