
An infinite-server queue influenced by a semi-Markovian

environment

Brian H. Fralix and Ivo J.B.F. Adan
EURANDOM and Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

26th June 2008

Abstract

We consider an infinite-server queue, where the arrival and service rates are both governed
by a semi-Markov process that’s independent of all other aspects of the queue. In particular,
we derive a system of equations that are satisfied by various “parts” of the generating function
of the steady-state queue-length, while assuming that all arrivals bring an amount of work to
the system that’s either Erlang or hyperexponentially distributed. These equations are then
used to show how to derive all moments of the steady-state queue-length. We then conclude by
showing how these results can be slightly extended, and used, along with a transient version of
Little’s law, to generate rigorous approximations of the steady-state queue length in the case
that the amount of work brought by a given arrival is of an arbitrary distribution.

1 Introduction

Queues with a randomly-varying arrival and service rate have recently received quite a bit of attention
in the queueing literature. The typical setting is as follows: there is an external stochastic processes,
known as the environment, that takes values in some state space E, and these values tend to control
various aspects of the queueing system, such as the arrival rate of customers, and the speed at which
their work is processed.

Examples of such models in the single-server setting include the recent work of Nain and Nunez-
Queija [12], along with the work of Takine [16]. In [12], they consider an M/M/1 queue that
is influenced by a semi-Markovian environment which takes values in the state space {0, 1}. The
amount of time spent in state 0 has a distribution that possesses a rational Laplace-Stieltjes transform
(LST), while the amount of time spent in state 1 is generally distributed, or in particular heavy-
tailed, in the sense that it has an infinite moment-generating function. There, the main goal is to
compute the z -transform of the steady-state queue length distribution, by using techniques from
complex analysis. However, things are looked at from a different perspective in the work of [16]:
in this case the environment process is a continuous-time Markov chain, but multiple customer
classes are considered, and both the arrival and service rates change according to the environment.
Furthermore, in this model each customer brings an amount of work to the system that’s generally
distributed, with the distribution depending on the class of the customer. This paper focuses more
on properties of the busy period, and the waiting time distribution of a customer that arrives to the
system during steady-state.

Work has been very recently published in the infinite-server setting as well. In [3], they consider
an M/M/∞ queue, where only the service rates are governed by an external environment process,
which in this case is a continuous-time Markov chain (CTMC) that again takes values in two states.
Their main results include showing that the steady-state queue-length can be written as the sum
of two independent random variables, where one of these variables is Poisson, and it can also be
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interpreted as the number of customers present in a standard M/M/∞ queue. In the infinite-server
setting, we interpret the term “queue-length” as the number of customers presently in the system.
Later, D’Auria wrote a series of papers [4, 5, 6] on this topic as well. The main point of [5] is to
show that by using basic properties of Poisson processes on R2, similar stochastic decomposition
results can be obtained for the steady-state queue-length, without necessarily assuming that the
environment process is a CTMC. In particular, his result allows for virtually any asymptotically
stationary environment process, so long as that in steady state, the environment process is ergodic.
He then obtains the results of [3] by performing a scheme that involves looking at areas of random
sets, where these sets are constructed based on the behavior of the environment process. He then
uses this same type of technique in the very recent paper [6] to analyze an M/M/∞ queue with a
semi-Markovian environment.

Very recently, Falin [7] has also shown that for an M/M/∞ queue, where both the arrival rates
and the service rates are influenced by an external environment that’s semi-Markovian, it is possible
to apply what is known as a supplementary variable technique to compute the mean steady-state
queue length. This technique involves looking at a process that consists of three states: the number
of customers in the system, the state of the environment, and the time until the next environment
transition (this last state descriptor makes the process Markovian). This allows him to get an
expression for the generating function of the number of customers present in the system, and this
can be used to compute the steady-state mean queue length. Older references focusing on the
infinite-server case include O’Cinneide and Purdue [13], and Keilson and Servi [11].

The goal of this paper is to show how these results can be extended to the case when all arrivals
bring Erlang, or hyperexponential amounts of work to the system. Once these results are established,
it is easy to see that the same technique can be used for the case when arrivals bring to the system
an amount of work that consists of a mixture of Erlang distributions. However, it is well-known
(see, for instance, Asmussen [1]) that these random variables are dense in the space of nonnegative
random variables under the Prohorov metric (a weak convergence metric), so we conclude by using
this fact, along with a transient version of Little’s law, to show that some type of analysis is still
possible when the service times have a general distribution.

The main technique we will use in this paper involves looking at the queue-length process at
the transition epochs of the environment process. Once we obtain the steady-state behavior of the
process at these epochs, we will use the inversion formula (see [2]) to relate this to the steady-state
behavior of the process at an arbitrary time. It would also be possible to apply a semi-regenerative
argument (see, for example Chapter 7, Section 5 of [1]) but in this case we would also have to
assume the presence of some sort of nonlattice condition, because these arguments lead to a limiting
result. The reader should keep in mind that the Palm approach only says something about the
stationary process: however, if the process has a limiting distribution, it will coincide with the
marginal distribution of our stationary process.

2 Model description

Our paper will focus on an infinite-server queueing system, where the arrivals and service rates are
governed by a stationary semi-Markov process C := {C(t); t ∈ R}, on a finite state space E. The
transition times of C will be denoted by {Tn}n∈Z , where Z represents the set of all integers. It shall
be assumed that these random variables, along with all other random elements found in this paper,
exist on a probability space (Ω,F , P ), where Ω is an arbitrary space, F is an appropriate σ-field of
subsets of Ω, and P is a probability measure that is defined on F .

To completely describe how C evolves through time, it will suffice to give a pathwise description
of both how long it spends in each state, and how it makes transitions from one state to the
next. Hence, let Ai,j(x) = P (Tn+1 − Tn ≤ x, C(Tn+1) = j|C(Tn) = i). This represents the
probability that, given at time Tn the process C has just made a transition to state i, it will make
another transition before time Tn + x, and that transition will consist of a jump from state i to
state j. Moreover, clearly ri,j := Ai,j(∞) represents the probability that the environment jumps
directly to state j from state i. We will let αi,j(s) =

∫∞
0

e−sxdAi,j(x) denote the LST of Ai,j , and
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αi(s) =
∑

j∈E αi,j(s). Finally, let {πi}i∈E denote the stationary distribution of C at its transition
times, and let υi = E[Tn+1 − Tn|C(Tn) = i], and υ =

∑
i∈E υiπi. Our assumption of a finite E

ensures that the process C is regular, in that the expected number of its transitions in any compact
set is finite. Such conditions will not explicitly be needed throughout our analysis, but they are
needed in order to ensure that our semi-Markov process does not actually terminate at some point.

We also consider an infinite-server queueing system, which is influenced by the environment in the
following way: while the environment is in state i, the system serves the remaining amount of work
that’s possessed by each customer currently in the system at a rate µi, and new arrivals show up in
accordance with a Poisson process with rate λi, where the nth arrival to the system brings a random
amount of work Bn, with distribution function B(t). Here we follow the convention that, if {Xn}
denotes the arrival times of customers to the system, then X0 ≤ 0 < X1. Throughout the paper,
we will assume that µi > 0 for all i ∈ E, but this assumption is not essential for the analysis found
within the next three sections; it is only used to make the paper slightly more readable. Finally, we
also assume that the service requirements of all customers are independent of one another.

Thus, one could think of the arrival process in this case as being a ”semi-Markov-Modulated
Poisson process”, but of course this arrival process is not independent of how the customers are
served in the system. To specify exactly what sort of dependence structure is being assumed here
among all of the stochastic elements present in this model, it suffices to say that conditional on a
given sample path of the environment process, the arrivals arrive according to a nonhomogeneous
Poisson process, and if someone arrives at time t and brings an amount of work W , it will be in the
system for an amount of time T (t), where

W =
∫ t+T (t)

t

µC(s)ds.

In both [5] and [6], heavy use is made of the following fact from point process theory.

Theorem 2.1 Suppose N is a nonhomogeneous Poisson process on R with points {Xn}n∈Z , where
for each Borel set A,

N(A) =
∑
n∈Z

δXn(A)

where δx(A) = 1 if x ∈ A, and δx(A) = 0 otherwise. If we add to each point Xn a random variable
Yn that is independent of all other locations of N and their marks, then the new point process

M(A×B) =
∑
n∈Z

δ(Xn,Yn)(A×B)

is a nonhomogeneous Poisson process on R2.

When we say that M is a nonhomogeneous Poisson process on R2, we mean that the number of
points in any Borel set A ∈ R2 is Poisson distributed, and for any disjoint collection of Borel sets
A1, . . . , An ⊆ R2, the random variables M(A1), . . . ,M(An) are independent.

Keeping our model in mind, we see that if we add to each customer arrival time Xn its service
requirement Bn, and we condition on the sample path of the environment, the resulting point process
on R2 is Poisson. This implies that while conditioning on the environment, the number of customers
in the system at time zero is Poisson as well. Proofs of these well-known facts can be found, for
instance, in Serfozo [14].

This interesting property of Poisson processes was used in [5] to obtain a stochastic decomposition
of the queue-length into two independent quantities, where one of those quantities represents the
stationary distribution of a standard M/G/∞ queue. Indeed, a stochastic decomposition that’s
similar in type to that discussed in [5] can also be easily generalized to our setting.

Theorem 2.2 Consider an M/G/∞ system with a semi-Markov modulated arrival and service rate,
where λ := infi∈E λi > 0, and µ := supi∈E µi > 0. Then the steady-state number of customers in the
system can be decomposed into the sum of two independent random variables:
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Q = Q
M/G/∞
λ,µ + QC

where Q
M/G/∞
λ,µ represents the steady-state number of customers in the system in a standard M/G/∞

queue that processes work at a rate µ, and QC is a randomized Poisson random variable, with a
parameter that depends on the environment process C.

The proof of this result is essentially the same as the proof of the decomposition result found in
[5], with only a slight modification: a semi-Markov modulated Poisson process can be represented as
an independent sum of a homogeneous Poisson process with rate λ, along with another semi-Markov
modulated Poisson process that at times has a rate of zero. Furthermore, as is done in [5], we
will follow with a practical description of the result, by saying that the steady-state population can
be decomposed into two classes: those that would have still been in the system, regardless of the
increase of arrivals or the decrease in service speed, and the rest.

This result could very well be useful towards determining the steady-state queue length, but
our approach will not involve its use. Rather, we will first derive a system of equations containing
functions that can be interpreted as “parts” of the generating function of the steady-state queue-
length, in the special case that all customer bring an amount of work that is either Erlang or
hyperexponentially distributed. These results are then used to show how one can generate a system
of equations that consist of unknowns, which once solved for can be used to compute the mean
queue-length in steady-state. We will then conclude by providing a rigorous approximation of the
mean queue-length in steady-state for the case when the services are allowed to have any type of
distribution, by using Little’s law, along with the fact that mixtures of Erlang distributions can be
used to approximate any type of distribution with nonnegative support, with respect to the weak
convergence metric.

Throughout the paper, we will use results from stationary point process theory to relate the
stationary distribution of our process at the transition epochs of the environment to the stationary
distribution of the process at an arbitrary time. In particular, this will involve the use of the Palm
measure P0 that’s induced by the point process consisting of the transition times of the environment.
We will not go into great mathematical details to explain exactly how P0 is defined: indeed, the
interested reader has many references to choose from regarding this topic, with recent ones including
[2], Chapter 7, Section 6 of [1], and Chapter 6 of [15]. The reader merely needs to be aware of the
following facts: (i) for an event A, P0(A) can be interpreted as the probability of A, given that the
environment process changes state at time zero, and (ii) under the measure P0, the joint distribution
of (Q(Tn), C(Tn)) is the same for all n ∈ Z.

3 Exponential services

We will first consider the case when each customer brings an amount of service that is exponentially
distributed with rate ν, i.e., for each t ≥ 0,

B(t) = 1− e−νt.

The approach we will use to compute all of the factorial moments of the queue-length will basically
involve coming up with a system of equations that the functions mj(z) satisfy, where mj(z) =
E0[zQ(0)1(C(0) = j)].

Our first result provides an expression for the generating function of the steady-state queue-
length. This will be used to compute the factorial moments E[(Q(0))n] for n ≥ 1, where for x ∈ R,
(x)n = x(x− 1) · · · (x− n + 1).

Theorem 3.1 The functions mj, j ∈ E satisfy the following system of equations: for each j ∈ E,

mj(z) =
∑
i∈E

∫ ∞

0

e
−λi(1−e−µiνt)(1−z)

µiν mi(1− e−µiνt(1− z))dAi,j(t). (1)
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Proof It was mentioned in the previous section that mi(z) is equal to E0[zQ(T1)1(C(T1) = i)], so
to compute this we will first condition on Q(0) and C(0).

Suppose Q(0) = m and C(0) = i, where m ≥ 0 and i ∈ E. After conditioning on the event that
T1 = t, we see that each of these m customers will be in the system at time t with probability e−µiνt.
Furthermore, there could also be customers present in the system at time t that originally were not
there at time zero. For a given customer that arrives to the system after time 0 but before time t,
we see that the probability he or she is still in the system at time t is given by

∫ t

0

e−µiν(t−s) 1
t
ds =

1− e−µiνt

µiνt
.

Since the number of customers that arrive in (0, t] is Poisson with rate λit, we see that

E0[zQ(T1)1(C(T1) = j)|Q(0) = m,C(0) = i]

=
∫ ∞

0

∞∑
n=0

(λit)ne−λit

n!
(
1− e−µiνt(1− z)

)m
(

1− 1− e−µiνt

µiνt
(1− z)

)n

dAi,j(t)

=
∫ ∞

0

e
−λi(1−e−µiνt)(1−z)

µiν
(
1− e−µiνt(1− z)

)m
dAi,j(t).

After unconditioning, we conclude that

mj(z) =
∑
i∈E

∫ ∞

0

e
−λi(1−e−µiνt)(1−z)

µiν mi(1− e−µiνt(1− z))dAi,j(t)

which completes the proof. ♦

The following corollary then immediately follows from this result.

Corollary 3.1 The moments zn,j = E0[(Q(0))n1(C(0) = j)] satisfy the following system of equa-
tions: for n ≥ 1 and j ∈ E,

zn,j =
∑
i∈E

n∑
k=0

(
n

k

) (
λi

µiν

)n−k
[

n−k∑
l=0

(−1)l

(
n− k

l

)
αi,j((k + l)µiν)

]
zk,i. (2)

Remark Notice that (2) can be used to compute all embedded factorial moments, in a recursive
fashion: indeed, notice that the first factorial moments can be computed by solving a system of
linear equations, where the number of equations and unknowns are equal to the cardinality of E.
Furthermore, once these are known, they can be plugged into a second system, and we end up
with another system that’s of the same size as the previous system. This procedure can clearly be
repeated to produce higher moments as well.
Proof The proof of this result merely involves differentiating (1). From Leibniz rule, we see that
for each n ≥ 1,

m
(n)
j (z) =

∑
i∈E

∫ ∞

0

e
−λi(1−e−µiνt)(1−z)

µiν

n∑
k=0

(
n

k

)
e−kµiνt

(
λi

µiν
(1− e−µiνt)

)n−k

m
(k)
i (1− e−µiνt(1− z))dAi,j(t). (3)

By letting z = 1 in (3), we observe that

E0[(Q)n1(C = j)] =
∑
i∈E

∫ ∞

0

n∑
k=0

(
n

k

)
e−kµiνt

(
λi

µiν

)n−k n−k∑
l=0

(−1)l

(
n− k

l

)
e−lµiνtE0[(Q)k1(C = i)]dAi,j(t)

=
∑
i∈E

n∑
k=0

(
n

k

) (
λi

µiν

)n−k
[

n−k∑
l=0

(−1)l

(
n− k

l

)
αi,j((k + l)µiν)

]
E0[(Q)k1(C = i)].
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♦

The following formula can be used to relate the moments at a transition epoch to the moments
at an arbitrary epoch.

Theorem 3.2 For each j ∈ E,

E[zQ(0)1(C(0) = j)] =
1
υ

∫ ∞

0

e
−

λj(1−e
−µjνt

)(1−z)
µjν mj(1− eµjνt(1− z))Aj(t)πjdt, (4)

where Aj(t) = P (Tn+1 − Tn ≤ t|C(Tn) = j).

Proof From the inversion formula (see [2]), we also find that

E[zQ(0)1(C(0) = j)] =
1
υ

E0

[∫ T1

0

zQ(t)1(C(t) = j)dt

]

=
1
υ

∫ ∞

0

E0[zQ(t)|T1 > t,C(t) = j]Aj(t)πjdt.

However, under the measure P0, T0 = 0 almost surely, and furthermore,

E0[zQ(t)|T1 > t,C(t) = j]πj = πje
−

λj
µjν (1−e−µjνt)(1−z)

mj(1− e−µjνt(1− z)).

Therefore,

E[zQ(0)1(C(0) = j)] =
1
υ

∫ ∞

0

e
−

λj(1−e
−µjνt

)(1−z)
µjν mj(1− eµjνt(1− z))Aj(t)πjdt.

This proves the claim. ♦

Corollary 3.2 The nth factorial moment of the steady-state queue-length distribution is

E[(Q(0))n] =
∑
i∈E

πi

υ

n∑
k=0

(
n

k

) (
λi

µiν

)n−k n−k∑
l=0

(−1)l

(
n− k

l

)
×

[
1

(k + l)µiν
(1− αi((k + l)µiν))1(k + l > 0) + υi1(k + l = 0)

]
zk,i.

Proof After applying Leibniz rule to (4), we also see that

E[(Q(0))nzQ(0)−n1(C(0) = j)]

=
1
υ

∫ ∞

0

e
−

λj(1−e
−µjνt

)(1−z)
µjν

n∑
k=0

(
n

k

)
e−kµjνt

(
λj

µjν
(1− e−µjνt)

)n−k

m
(k)
j (1− e−µjνt(1− z))Aj(t)πjdt

and so, putting z = 1 gives

E[(Q(0))n1(C(0) = j)]

=
1
υ

∫ ∞

0

n∑
k=0

(
n

k

)
e−kµjνt

(
λj

µjν

)n−k n−k∑
l=0

(−1)l

(
n− k

l

)
e−lµjνtE0[(Q)k1(C = j)]Aj(t)πjdt

=
πj

υ

n∑
k=0

(
n

k

) (
λj

µjν

)n−k n−k∑
l=0

(−1)l

(
n− k

l

) [
(1− αj((k + l)µjν))

(k + l)µjν
1(k + l > 0) + υj1(k + l = 0)

]
× E0[(Q)k1(C = j)].
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This concludes the proof. ♦

4 Hyperexponential services

We continue by considering the case where the amount of service each customer brings to the system
is hyperexponentially distributed, i.e., for each t ≥ 0,

B(t) =
N∑

k=1

pi(1− e−νit)

where N is an integer, pi, 1 ≤ i ≤ N are probabilities summing to 1 and νi > 0, for 1 ≤ i ≤ N . In
our model, we can say that a given customer that arrives to the system is a type-i customer with
probability pi, and type-i customers bring an exponentially distributed (with rate νi) amount of
work to the system. For ease of exposition, we will focus on the case when N = 2, but it will become
clear that the same type of reasoning can be used for arbitrary N .

Again, our first step will involve deriving a system of equations, which are satisfied by the
functions mj(z1, z2) = E0[z

Q1(0)
1 z

Q2(0)
2 1(C(0) = j)].

Theorem 4.1 The functions mj, j ∈ E satisfy the following system of equations: for each j ∈ E,

mj(z1, z2) =
∑
i∈E

∫ ∞

0

e
−p1

λi
µiν1

(1−e−µiν1t)(1−z1)e
−p2

λi
µiν2

(1−e−µiν2t)(1−z2)

× mi(1− e−µiν1t(1− z1), 1− e−µiν2t(1− z2))dAi,j(t). (5)

Proof We recall that (Q1(0), Q2(0), C(0)) d= (Q1(T1), Q2(T1), C(T1)), so to compute each mj it
will again be helpful to condition on Q1(0), Q2(0), and C(0). Once we have conditioned on these
variables, it will be useful to also condition on the number of new arrivals in the interval (0, T1],
which we also condition on by assuming that it is of length t. Therefore, assuming C(0) = i, there
are four different populations to consider: (1) type-1 customers currently in the system at 0, that
leave before time T1 with probability 1− ηi, (2) type-2 customers currently in the system at 0, that
leave before T1 with probability 1− δi, (3) new type-1 customers that arrive in (0, T1], which leave
before T1 with probability 1− βi, and finally (4) new type-2 customers that arrive in (0, T1], which
leave before T1 with probability 1− γi. Thus, ηi = e−µiν1t, δi = e−µiν2t,

βi =
∫ t

0

e−µiν1(t−s) 1
t
ds =

1− e−µiν1t

µiν1

and

γi =
∫ t

0

e−µiν2(t−s) 1
t
ds =

1− e−µiν2t

µiν2
.

Now we are ready to begin our computations. Here

E0[z
Q1(T1)
1 z

Q2(T1)
2 1(C(T1) = j)|Q1(0) = i1, Q2(0) = i2, C(0) = i]

=
∫ ∞

0

∞∑
n1=0

∞∑
n2=0

(p1λit)n1e−p1λit

n1.

(p2λit)n2e−p2λit

n2.
(1− ηi + ηiz1)n1(1− δi + δiz2)n2

×(1− βi + βiz1)i1(1− γi + γiz2)i2dAi,j(t)

=
∫ ∞

0

e−p1λitηi(1−z1)e−p2λitδi(1−z2)(1− β + βz1)i1(1− γ + γz2)i2dAi,j(t)

=
∫ ∞

0

e
−p1

λi
µiν1

(1−e−µiν1t)(1−z1)e
−p2

λi
µiν2

(1−e−µiν2t)(1−z2)(1− e−µiν1t(1− z1))i1(1− e−µiν2t(1− z2))i2dAi,j(t)
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After unconditioning, we then see that

mj(z1, z2) =
∑
i∈E

∫ ∞

0

e
−p1

λi
µiν1

(1−e−µiν1t)(1−z1)e
−p2

λi
µiν2

(1−e−µiν2t)(1−z2)

× mi(1− e−µiν1t(1− z1), 1− e−µiν2t(1− z2))dAi,j(t)

and so (5) holds. ♦

This immediately gives the following corollary.

Corollary 4.1 The first moments zi,j = E0[Qi(0)1(C(0) = j)] satisfy the following system of
equations: for each j ∈ E,

z1,j =
∑
i∈E

[
πip1

λi

µiν1
(ri,j − αi,j(µiν1)) + z1,iαi,j(µiν1)

]
and

z2,j =
∑
i∈E

[
πip2

λi

µiν2
(ri,j − αi,j(µiν2)) + z2,iαi,j(µiν2)

]
.

Proof After taking partial derivatives in (5) and setting (z1, z2) = (1, 1), we end up with the
following system of equations:

E0[Q1(0)1(C(0) = j)] =
∑
i∈E

[
πip1

λi

µiν1
(ri,j − αi,j(µiν1)) + E0[Q1(0)1(C(0) = i)]αi,j(µiν1)

]
and

E0[Q2(0)1(C(0) = j)] =
∑
i∈E

[
πip2

λi

µiν2
(ri,j − αi,j(µiν2)) + E0[Q2(0)1(C(0) = i)]αi,j(µiν2)

]
,

which is the same as the equations given in the second part of the corollary. Notice that these
equations are no more difficult to solve than the ones found in [7], which are the same as system
(2); as a matter of fact, they can be split into two sets, with each set being of the same form as the
system of equations in [7]. ♦

Again, we can relate these moments to the moments at an arbitrary time.

Theorem 4.2 For each j ∈ E,

E[zQ1(0)
1 z

Q2(0)
2 1(C(0) = j)] =

1
υ

∫ ∞

0

e
−p1

λj
µjν1

(1−e−µjν1t)(1−z1)
e
−p2

λj
µjν2

(1−e−µjν2t)(1−z2)

× mj(1− e−µjν1t(1− z1), 1− e−µjν2t(1− z2))Aj(t)dt.

Proof To compute the LST of the steady-state queue-length at an arbitrary instant, we can again
use the Inversion formula to conclude that

E[zQ1(0)
1 z

Q2(0)
2 1(C(0) = j)] =

1
υ

E0

[∫ ∞

0

z
Q1(t)
1 z

Q2(t)
2 1(C(t) = j)1(T1 > t)dt

]
=

1
υ

∫ ∞

0

E0[z
Q1(t)
1 z

Q2(t)
2 |T1 > t,C(t) = j]Aj(t)πjdt.
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But T0 = 0 almost surely under P0, and furthermore,

E0[z
Q1(t)
1 z

Q2(t)
2 |T1 > t,C(t) = j]πj = πj e

−p1
λj

µjν1
(1−e−µjν1t)(1−z1)

e
−p2

λj
µjν2

(1−e−µjν2t)(1−z2)

× mj(1− e−µiν1t(1− z1), 1− e−µiν2t(1− z2)).

Therefore,

E[zQ1(0)
1 z

Q2(0)
2 1(C(0) = j)] =

1
υ

∫ ∞

0

e
−p1

λj
µjν1

(1−e−µjν1t)(1−z1)
e
−p2

λj
µjν2

(1−e−µjν2t)(1−z2)

× mj(1− e−µjν1t(1− z1), 1− e−µjν2t(1− z2))Aj(t)dt.

♦

We can then get an expression for any moment we would like of the queue-length at an arbitrary
time, by taking the appropriate derivatives.

Corollary 4.2 The mean steady-state queue-length is given by

E[Q(0)] =
∑
j∈E

1
υ

[
πj

λjp1

µjν1
υj +

[
z1,j −

λjp1

µjν1
υj

]
1− αj(µjν1)

µjν1

]

+
∑
j∈E

1
υ

[
πj

λjp2

µjν2
υj +

[
z2,j −

λjp2

µjν2
υj

]
1− αj(µjν2)

µjν2

]
(6)

Proof After taking derivatives, we see that

E[Q1(0)1(C(0) = j)] =
1
υ

[
πj

λjp1

µjν1
υj +

[
E0[Q1(0)1(C(0) = j)]− λjp1

µjν1
υj

]
1− αj(µjν1)

µjν1

]
and

E[Q2(0)1(C(0) = j)] =
1
υ

[
πj

λjp2

µjν2
υj +

[
E0[Q2(0)1(C(0) = j)]− λjp2

µjν2
υj

]
1− αj(µjν2)

µjν2

]
.

These expressions can then be used to derive (6). ♦

Remark As was mentioned in the proof, higher moments of the queue-length can also be computed
as well. For instance, the system of equations that can be used to compute E[Q1(0)Q2(0)] is as
follows:

E0[Q1(0)Q2(0)1(C(0) = j)] =
∑

i∈E
p1

ν1

λi

µi

p2

ν2

λi

µi
πi (ri,j − αi,j(µiν1)− αi,j(µiν2) + αi,j(µi(ν1 + ν2)))

+
∑
i∈E

p2

ν2

λi

µi
(αi,j(µiν1)− αi,j(µi(ν1 + ν2)))E0[Q1(0)1(C(0) = i)]

+
∑
i∈E

p1

ν1

λi

µi
(αi,j(µiν2)− αi,j(µi(ν1 + ν2)))E0[Q2(0)1(C(0) = i)]

+
∑
i∈E

αi,j(µi(ν1 + ν2))E0[Q1(0)Q2(0)1(C(0) = i)].

9



5 Erlang services

We now consider the case where the services are Erlang distributed, with N ≥ 1 phases. In this
case,

B(t) = 1−
N−1∑
k=0

(νt)ke−νt

k!
.

Again, we will assume that N = 2, but it will be clear as to how to proceed for large N .
Let Qi(t) denote the number of queueing customers present in the system that are in phase i,

for i = 1, 2. Here a phase refers to a characteristic of the customer’s service. In particular, each
customer’s service amount is Erlang distributed, and this can be broken up into two exponential
random variables. A given customer is said to be in phase 1 during the times when the server
is processing work from this first exponential amount, and he or she is in phase two during the
processing of the second amount. Throughout the rest of the paper, customers that are in phase i
will be referred to as type i customers.

Again, we can derive the same type of equations for the functions mj(z1, z2) = E0[z
Q1(0)
1 z

Q2(0)
2 1(C(0) =

j)].

Theorem 5.1 The functions mj satisfy the following system of equations: for each j ∈ E,

mj(z1, z2) =
∑
i∈E

∫ ∞

0

e−λitηi,1(1−z1)e−λitηi,2(1−z2)mi(1− βi,1 − βi,2 + βi,1z1 + βi,2z2, 1− γi,2 + γi,2z2)dAi,j(t),

where ηi,n = 1
µiνt

[
1−

∑n−1
k=0

(µiνt)ke−µiνt

k!

]
, βi,n = (µiνt)n−1e−µiνt

(n−1)! , and γi,n = (µiνt)n−2e−µiνt

(n−2)! .

Proof Clearly, we see that

E0[z
Q1(T1)
1 z

Q2(T1)
2 1(C(T1) = j)|Q1(0) = i1, Q2(0) = i2, C(0) = i]

=
∫ ∞

0

E0[z
Q1(t)
1 z

Q2(t)
2 |Q1(0) = i1, Q2(0) = i2, C(0) = i, C(t) = j]dAi,j(t)

=
∫ ∞

0

∞∑
n=0

E[zQ1(t)
1 z

Q2(t)
2 |Q1(0) = i1, Q2(0) = i2, C(0) = i, C(t) = j, N(0, t] = n]

(λit)ne−λi(t)

n.
dAi,j(t).

At this point we have to consider three different types of populations: type 1 customers that
were present in the system at time 0, type 2 customers present at 0, and new arrivals in (0, t]. If, at
the time of a transition the environment is in state i, each type 1 customer will, at time t, either be
a type 1 customer, a type 2 customer, or it will leave the system, with probabilities βi,1, βi,2, and
1− βi,1− βi,2, respectively. A type 2 customer will stay as a type 2 with probability γi,2, and a new
arrival will be type 1, type 2, or will leave with probabilities ηi,1, ηi,2, or 1− ηi,1− ηi,2, respectively.
The behavior of each customer is independent of all other customers present in the system, and
because of this we are able to just use multinomial transforms to compute the above expression.
Therefore,

E0[z
Q1(T1)
1 z

Q2(T1)
2 1(C(T1) = j)|Q1(0) = i1, Q2(0) = i2, C(0) = i]

=
∫ ∞

0

∞∑
n=0

(λit)ne−λit

n!
(1− ηi,1 − ηi,2 + ηi,1z1 + ηi,2z2)n(1− βi,1 − βi,2 + βi,1z1 + βi,2z2)i1

×(1− γi,2 + γi,2z2)i2dAi,j(t)

=
∫ ∞

0

e−λit(ηi,1(1−z1)+ηi,2(1−z2))(1− βi,1 − βi,2 + βi,1z1 + βi,2z2)i1(1− γi,2 + γi,2z2)i2dAi,j(t).
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Again, after unconditioning we find that

mj(z1, z2) =
∑
i∈E

∫ ∞

0

e−λitηi,1(1−z1)e−λitηi,2(1−z2)mi(1− βi,1 − βi,2 + βi,1z1 + βi,2z2, 1− γi,2 + γi,2z2)dAi,j(t).

All we need to do now is compute the η’s, β’s and γ’s. When computing each ηi,n, we can apply
the Campbell-Mecke formula (see [2]) to quickly deduce that for each n,

ηi,n =
∫ t

0

P (Nµiν(t− s) = n− 1)
1
t
ds

=
1

µiνt

[
1−

n−1∑
k=0

(µiνt)ke−µiνt

k!

]
.

Here Nµ is used to represent a homogeneous Poisson process with rate µ. Furthermore,

βi,n = P (N(t) = n− 1) =
(µiνt)n−1e−µiνt

(n− 1)!

and

γi,n = P (N(t) = n− 2) =
(µiνt)n−2e−µiνt

(n− 2)!
.

This concludes the proof. ♦

Corollary 5.1 The first moments zi,j = E[Qi(0)1(C(0) = j)] can be found by solving the following
systems of equations: for j ∈ E,

z1,j =
∑
i∈E

[
πi

λi

µiν
(ri,j − αi,j(µiν)) + αi,j(µiν)z1,i

]
and

z2,j =
∑
i∈E

[
πi

λi

µiν
(ri,j − αi,j(µiν) + µiνα

′

i,j(µiν))− µiνα
′

i,j(µiν)z1,i + αi,j(µiν)z2,i

]
.

Proof After taking derivatives, setting z = 1 and plugging in the correct expressions for ηn, βn

and γn, we conclude that

E0[Q1(0)1(C(0) = j)] =
∑
i∈E

[
πi

λi

µiν
(ri,j − αi,j(µiν)) + αi,j(µiν)E0[Q1(0)1(C(0) = i)]

]
and

E0[Q2(0)1(C(0) = j)] =
∑
i∈E

[
πi

λi

µiν
(ri,j − αi,j(µiν) + µiνα

′

i,j(µiν))− µiνα
′

i,j(µiν)E0[Q1(0)1(C(0) = i)]
]

+
∑
i∈E

αi,j(µiν)E0[Q2(0)1(C(0) = i)].
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♦

The moments at an arbitrary time can also be computed through the use of exactly the same
methods as was used before.

Theorem 5.2 For each j ∈ E, we see that

E[zQ1(0)
1 z

Q2(0)
2 1(C(0) = j)] =

1
υ

∫ ∞

0

e−λjtηj,1(1−z1)e−λjtηj,2(1−z2)

× mj(1− βj,1 − βj,2 + βj,1z1 + βj,2z2, 1− γj,2 + γj,2z2)Aj(t)dt.

Proof In order to convert from the embedded steady-state distribution to the steady-state distri-
bution at an arbitrary time, we’ll again use the Inversion formula:

E[zQ1(0)
1 z

Q2(0)
2 1(C(0) = j)] =

1
υ

E0

[∫ ∞

0

z
Q1(t)
1 z

Q2(t)
2 1(T > t,C(t) = j)dt

]
=

1
υ

∫ ∞

0

e−λjtηj,1(1−z1)e−λjtηj,2(1−z2)

× E0((1− βj,1 − βj,2 + βj,1z1 + βj,2z2)Q1(0)(1− γj,2 + γj,2z2)Q2(0)1(C(0) = j))
× Aj(t)dt

=
1
υ

∫ ∞

0

e−λjtηj,1(1−z1)e−λjtηj,2(1−z2)

× mj(1− βj,1 − βj,2 + βj,1z1 + βj,2z2, 1− γj,2 + γj,2z2)Aj(t)dt.

♦

Again, computing any steady-state moments of interest will involve plugging in the appropriate
values for the ηj,k, βj,k and γj,k probabilities, and then differentiating. Thus,

Corollary 5.2 The mean number of customers in the system during steady-state is just

E[Q(0)] =
∑
j∈E

E[Q1(0)1(C(0) = j)] + E[Q2(0)1(C(0) = j)]

where

E[Q(0)1(C(0) = j)] =
1
υ

[
λjπj

µjν

[
υi −

1− αj(µjν)
µjν

]
+

1− αj(µjν)
µjν

z1,j

]
and

E[Q2(0)1(C(0) = j)] =
1
υ

[
λjπj

µjν

[
υj −

1− αj(µjν)
µjν

− 1− αj(µjν)
µjν

+ α
′

j(µjν)
]]

+
1
υ

[(
1− αj(µjν)

µjν
− α

′

j(µjν)
)

z1,j

]
+

1
υ

1− αj(µjν)
µjν

z2,j .
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Proof After taking derivatives and letting z = 1, we get

E[Q1(0)1(C(0) = j)] =
1
υ

[
λjπj

µjν

[
υi −

1− αj(µjν)
µjν

]
+

1− αj(µjν)
µjν

E0[Q1(0)1(C(0) = j)]
]

and

E[Q2(0)1(C(0) = j)] =
1
υ

[
λjπj

µjν

[
υj −

1− αj(µjν)
µjν

− 1− αj(µjν)
µjν

+ α
′

j(µjν)
]]

+
1
υ

[(
1− αj(µjν)

µjν
− α

′

j(µjν)
)

E0[Q1(0)1(C(0) = j)]
]

+
1
υ

1− αj(µjν)
µjν

E0[Q2(0)1(C(0) = j)].

This concludes the proof. ♦

6 General services

At this point it is also clear that expressions for the steady-state moments of the queue-length can be
computed in the case when B(t) is a mixture of Erlang distributions, and from a result in Asmussen
[1] we also know that these distributions are dense in the space of distributions with nonnegative
support. Our goal now is to prove a continuity theorem, which will allow us to approximate all
steady-state moments of the queue-length by approximating arbitrary services with Erlang mixtures.
In this section it will be necessary to assume that µi > 0, for i ∈ E; we assumed it as well in previous
sections, but there the assumption wasn’t strictly needed.

Theorem 6.1 Let {Qm(t); t ∈ R} denote a stationary version of the queue-length process described
above, where each customer brings an amount of work Bm

n , n ∈ Z. If, for each n, Bm
n converges

weakly to Bn as m →∞, then for each integer k,

lim
m→∞

E[Qm(0)k] = E[Q(0)k].

Proof To prove this result, we will first show that, as m → ∞, E[Qm(0)|C] → E[Q(0)|C], where
C = {C(t); t ∈ R} represents the entire path of our semi-Markovian environment. Proving this will
immediately imply that E[Qm(0)k|C] → E[Q(0)k|C] for all k ≥ 2 as well, since conditional on C,
the random variables Qm(0) and Q(0) are all Poisson distributed (from Theorem 2.1), and the kth

factorial moment of a Poisson random variable is just the mean raised to the kth power.
Unfortunately, conditioning on the sample-path of C no longer allows us to use any stationary

properties of our system, so we will have to introduce a small amount of notation. Let {W (s); s ∈ R}
denote a stochastic process, where W (s) denotes the amount of work brought to the system by the
last customer to arrive at or before time s. Then, from a transient version of Little’s law (see Fralix
et al. [8]), we see that

E[Qm(0)|C] =
∫ 0

−∞
Ps(Wm(s) >

∫ 0

s

µC(x)dx)λC(s)ds.

Here P : R × F → [0, 1] is the Palm probability kernel induced by the non-homogeneous Poisson
arrival process (we’re now conditioning on C). We will not go into great detail to explain how these
probabilities are derived: rather, we will simply state that for a given event A ∈ F , Ps(A) can be
interpreted as the probability of A, given that there is an arrival at time s. Details behind the
construction of these measures can be found in, for instance, Chapter 10 of [10].
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Clearly, for each s, Ps(Wm(s) >
∫ 0

s
µC(x)dx) represents the probability that the person arriving

at time s is still in the system at time zero. It is a simple exercise to verify that the distribution
of W (s) under Ps is indeed the distribution of an arbitrary service time, so under Ps, Wm(s) ⇒
W (s) as m → ∞, where ⇒ is used to denote weak convergence. Moreover, since Ps(Wm(s) >∫ 0

s
µC(x)dx)λC(s) ≤ Ps(Wm(s) > −µs)λ, the dominated convergence theorem allows us to conclude

that the conditional first moments converge.
To show that the unconditional moments converge, notice that for each k, E[Qm(0)k|C] ≤

E[Qm,λ∗,µ∗(0)k], which represents the kth moment of an M/G/∞ queue with arrival rate λ∗ =
supi∈E λi and service speed µ∗ = infi∈E µi, that observes the same work sequence as the mth queue.
Furthermore, from a slight extension of the dominated convergence theorem (see Kallenberg [9]) we
can conclude that all moments converge as well. ♦

7 Conclusions

We have now shown that an embedded process approach can be used to both provide yet another
method of computing the moments and the generating function of the steady-state queue length of
a semi-Markov-modulated M/M/∞ queue. Moreover, the approach can also be used when mixtures
of Erlang services are considered, and this immediately gives an approximation of all moments of
the steady-state queue-length in such a system that has generally distributed service times.
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