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Abstract Single-index model is one of the most popular semiparametric model

in Econometrics. In this paper, we define a quantile regressive single-index model,

which includes the single-index structure for conditional mean and for conditional
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1 Introduction

Regression quantiles, along with the dual methods of regression rank scores, can be considered

one of the major statistical breakthroughs of the past decades. Its advantages over the other

estimation methods have been well investigated. Regression quantile methods provide a much

more complete statistical analysis of the stochastic relationships among variables; in addition,

they are more robust against possible outliers or extremely values, and can be computed via

traditional linear programming methods. Although median regression ideas go back to the 18th

century and the work of Laplace, regression quantile methods were first introduced by Koenker

and Bassett (1978). The linear regression quantile is very useful, but like linear regression it is

not flexible to capture complicated relations. For quantile regression, this disadvantage is even

worse. As an example, consider the popular AR(1)-ARCH(1) model:

yt = α0 + α1yt−1 + εt, εt = σtzt, zt ∼ IID

σ2
t = β0 + β1ε

2
t−1, β0 > 0, β1 ≥ 0,
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which cannot be fitted well by the linear quantile model.

In this paper, we focus on an important special case when the loss function is specified as

ρτ (v) = τI(v > 0)v + (τ − 1)I(v ≤ 0)v, (1)

where 0 < τ < 1 and I(.) is the identity function, leading to the τth quantile regression, see

Koenker and Bassett (1978).

Under nonparametric setting, we can state the problem as follows. Suppose Y is the response

variable and X ∈ Rd are the covariates. For loss function ρτ (.), we are interested in a function

x, mτ (x), such that

mτ (x) = arg minE{ρτ [Y −mτ (X)]
∣∣∣X = x} with respect to m ∈ L1 (2)

Function mτ (x) is called the τ−th quantile nonparametric regression function of Y on X. The

application of nonparametric quantile estimation has been intensively investigated in the litera-

ture. See for example Koenker (2005) and Kong et al (2008). As in nonparametric estimation of

the conditional mean function, there is the “curse of dimensionality” in estimation the general

multiple function mτ (x). The dimension reduction approach can thus be applied here, which is

equivalent to approximate

mτ (θ>x) = arg minE{ρτ (Y −m(θ>X))|X = x} with respect to θ ∈ Θ and m ∈ L1 (3)

where Θ = {θ : |θ| = 1}. More ideally, we come to a single-index quantile model

Y = m(θ>0 X) + ε, E(ϕ(ε)|X) = 0, a.s. (4)

A typical model is the general single-index model,

Y = g(θ>0 X, ε)

where ε is independent of X. Under such model specification, it is easy to see that

mτ (x) = gτ (θ>x) ≡ min
v
{v : P (g(θ>0 x, ε) ≤ v) ≥ τ}.

For the conditional heteroscadiscity model, where g(θ>0 X, ε) = g(θ>0 X)ε, we even have

mτ (x) = g(θ>0 X)Qτ (ε)

where Qτ (ε) is the τ−th quantile of ε. An interesting special case for this setting is the ARCH(p)

model, where X = (y2
t−1, ..., y

2
t−p)

> and Y = yt in a time series setting.
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Our main focus is the estimation of θ0. Suppose {Xi, Yi}n
i=1 are I.I.D. observations from

underlying model (4). We propose to estimate the index parameter θ0 by

θ̂ = arg min
θ∈Θ

min
aj ,bj

n∑
i=1

n∑
j=1

K(θ>Xij/h)ρ(Yi − aj − bjθ
>Xij), Xij = Xi −Xj (5)

where K(.) is a kernel function and h is a bandwidth. The minimization in (5) can be realized

through iteration. First for any initial estimate ϑ ∈ Θ, denote by [âϑ(x), b̂ϑ(x)], the minimizer

of
n∑

i=1

K(ϑ>Xix/h)ρ(Yi − a− bθ>Xix) with respect to a and b, (6)

where Xix = Xi − x. The estimate of θ0 is then updated by

θ̂ = arg min
θ∈Θ

n∑
i=1

n∑
j=1

K(ϑ>Xij/h)ρ{Yi − âϑ(Xj)− b̂ϑ(Xj)θ>Xij} (7)

Repeat (6) and (7) until convergence. The true value θ0 is thus estimated by the standardized

final estimate θ̂ := θ̂/|θ̂|.

2 Numerical studies

Again, the calculation of the above minimization problem can be decomposed into two mini-

mization problems.

• Fixing θ = ϑ and wϑ
ij = Kh(ϑ>Xij), the estimation of aj and dj are

n∑
i=1

ρ{Yi − aj − djϑ
>Xij}wϑ

ij .

• Fixing aj and dj , the minimization respect to θ can be done as follows. Again, let

Y ϑ
ij = Yi(wϑ

ij)
1/2 − aj(wϑ

ij)
1/2, Xϑ

ij = djXij(wϑ
ij)

1/2.

Then the problem becomes

min
ϑ

n∑
i,j=1

ρ{Y ϑ
ij − θ>Xϑ

ij}

Suppose the solution to the above problem is θ. Standardize it to θ := θ/||θ||.

Set ϑ = θ and repeat the two steps until convergence. Note that both steps are simple linear

quantile regression problems and that several efficient algorithms are available, see Koenker

(2005).
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Example 2.1 (Single-index median regression) In this example we consider the following

model

y = exp{−5(θ>0 X)2}+ ε, (8)

where X ∼ Σ1/2
0 X0 with X0 ∼ N(0, I5) and Σ0 = (0.5|i−j|)0≤i,j≤5. For the noise term, we

consider several distributions with both heavy tail and thin tails as well. For simplicity, we

consider the median regression only. As a comparison, we also run the MAVE where a least

square type estimation is used. With different sample sizes n = 100, 200, we carried out 100

replications. The calculation results are listed in Table 1.

Table 1: Estimation errors (and standard errors) for model (8) based on quadratic loss function
and 50% quantiles

Distribution of ε

size method 0.05t(1) 0.1(N(0, 1)4 − 3)
√

5t(5)/20 N(0,1)/4
100 MAVE 0.3641(0.3526) 0.3530(0.3102) 0.0401(0.0182) 0.0581(0.0263)

qMAVE 0.0902(0.1074) 0.1512(0.1957) 0.0833(0.0785) 0.1146(0.0651)
200 MAVE 0.3381(0.3389) 0.2859(0.2887) 0.0232(0.0091) 0.0373(0.0147)

qMAVE 0.0681(0.1415) 0.0581(0.0698) 0.0402(0.0173) 0.0652(0.0272)

the MAVE method with quadratic loss function has very bad performance when the noise

has heavy tail (e.g. t(1)) or is highly asymmetric (e.g. N(0, 1)4). With the absolute value loss

function, the performance is much better. Even in the situation when the noise has thin tail

and symmetric, qMAVE still performance reasonably well.

3 Assumptions and asymptotic properties

We adopt model (4) throughout and make the additional assumption that {(Xi, Yi)}∞i=1 are I.I.D.

observations. The extension to the case of weakly dependent time series should be straightfor-

ward but complicates matters without adding anything conceptually. Furthermore, the following

conditions are assumed in the proofs of Theorem 6.1.

(A1) For each v ∈ R, ρ(v) is absolutely continuous, i.e., there is a function ϕ(.) such that

ρ(v) = ρ(0)+
∫ v
0 ϕ(t)dt. The probability density function of εi is bounded and continuously

differentiable. E{ϕ(εi)|Xi} = 0 almost surely and E|ϕ(εi)|ν1 ≤ M0 < ∞ for some ν1 > 2.

(A2) ϕ(.) satisfies the Lipschitz condition in (aj , aj+1), j = 0, · · · ,m, where a1 < · · · < am are

finite number of jump discontinuity points of ϕ(.), a0 ≡ −∞ and am+1 ≡ +∞.
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(A3) K(.) has a compact support, say [−1, 1]⊗d and |ujK(u) − vjK(v)| ≤ C‖u − v‖ for all j

with 0 ≤ |j| ≤ 3.

(A4) The m(.) defined in (4) is bounded with continuous and bounded partial derivatives up

to the third order.

Note that (A1) and (A2) are satisfied in quantile regression. Based on (A1) and (A2), Hong

(2003) proved that there is a constant C > 0, such that for all small t and all x,

E
[
{ϕ(Y − t− a)− ϕ(Y − a)}2|X = x

]
≤ C|t| (9)

holds for all (a, x) in a neighborhood of {m(x>θ0), x}. Define

G(t;x) = E{ρ{Y −m(x>θ0) + t}|X = x}, Gi(t, x) = (∂i/∂ti)G(t;x), i = 1, 2, 3. (10)

Then it holds that

g(x) = G2(0;x) ≥ C > 0

and G3(t, x) is continuous and uniformly bounded for all x ∈ D and t near 0. For quantile

regression, g(x) = fε(0|x), where fε(.|x) is the conditional probability density function of ε

given X = x.

4 Initial estimate of θ0

We use the average derivative estimation (ADE, Hardle and Stocker, 1989; Chaudhuri et al.,

1997) method to obtain an initial estimate of θ0, observing the fact that

E[∂m(θ>0 X)/∂X] = θ0E[∂m(θ>0 X)/∂(θ>0 X)].

First for any x ∈ Rd and a kernel function H(.) : Rd → R+ which satisfies (A3), denote by

[â(x), b̂(x)], the minimizer of the following quantity

n∑
i=1

H(Xix/h0)ρ[Yi − a− b>Xix]

with respect to a and b. An initial estimate of θ0 is thus defined as

ϑ =
n∑

j=1

b̂(Xj)
/∣∣∣ n∑

j=1

b̂(Xj)
∣∣∣. (11)
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The consistency of ϑ is guaranteed by the uniform Bahadur representation of {â(x), b̂(x)}, i.e.

with probability 1, for any compact set D ∈ Rd such that f(x) > 0,[
â(x)−m(θ>0 x)

h0{b̂(x)−m′(θ>0 x)θ0}

]
= βn(x) + O{(nhd

0/ log n)−3/4} (12)

uniformly in x ∈ D, where

βn(x) =
1

nhd
0

S−1
n (x)

n∑
i=1

H(Xix/h0)ϕ{Yi −m(θ>0 x)−m′(θ>0 x)X>
ixθ0}

[
1
Xix/h0

]
and Sn(x) is the (d + 1)× (d + 1) matrix with its (j, k) entry given by

νn;j,k(x) =
∫

K(u)g(x + h0u)f(x + h0u)uk−1uj−1du.

where f(.) is the density function of X and u = (u1, · · · , ud) ∈ Rd. If nhd+4
0 / log n < ∞, then

according to Proposition 3.1 and Corollary 3.3 in Kong et al (2007), we have with probability

one,

b̂(x) = m′(θ>0 x)θ0 +
1

nhd+1
0

S−1
n (x)

n∑
i=1

H(Xix/h0)ϕ(εi)
[

1
Xix/h0

]
+ O

{
h−1

0

( log n

nhd
0

)3/4}
, (13)

uniformly in x ∈ D. This in turn implies that with probability one,

1
n

n∑
j=1

b̂(Xj) = m′(θ>0 x)θ0 +
1

n2hd+1
0

n∑
i,j=1

S−1
n (Xj)H(Xij/h0)ϕ(εi)

[
1
Xix/h0

]
+O

{
h−1

0

( log n

nhd
0

)3/4}
.

Through arguments as in Masry (1996), we know that

1
nhd

0

n∑
i=1

H(Xij/h0)ϕ(εi)
Xij

h0
= O{(nhd

0/ log n)−1/2},

1
n2hd+1

0 2

n∑
i,j=1

S−1
n (Xj)H(Xij/h0)ϕ(εi)

Xij

h0
= O{h−1

0 (nhd
0/ log n)−1/2}.

Therefore, we have established the convergence rate of the initial estimator ϑ in (11)

δϑ ≡ θ0 − ϑ = O{h−1
0 (nhd

0/ log n)−1/2}, a.s. (14)

Next, we only need to consider parametric space Θn ≡ {ϑ : |δϑ| < Ch−1
0 (nhd

0/ log n)−1/2}.
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5 Asymptotics of âϑ(x) and b̂ϑ(x)

Let aj ≡ m(X>
j θ0) and bj ≡ m′(X>

j θ0). For any ϑ ∈ Θn, define

mϑ(v) = arg min
a

E{ρ(Y − a)|X>ϑ = v}.

Let fϑ(x) (res. Fϑ(x)) be the value of the probability density (res. distribution) function of ϑ>X

at ϑ>x and define

Gϑ(t, x) = E{ρ(Y −mϑ(x) + t)|ϑ>X = ϑ>x}, Gi
ϑ(t, x) = (∂i/∂ti)Gϑ(t, x), i = 1, 2.

Suppose G2
ϑ(t, x) is continuous and uniformly bounded in the neighborhood of {mϑ(x), x} and

gϑ(x) = G2
ϑ(mϑ(x), x) > 0. With abuse of notation, let mϑ(Xj) and m′

ϑ(Xj) stand for mϑ(X>
j ϑ)

and m′
ϑ(X>

j ϑ) respectively. Denote by [âj , b̂j ] ≡ [âϑ(Xj), b̂ϑ(Xj)] the solution to (6) with x = Xj .

Based on the uniform Bahadur representation of the local polynomial estimates of M-regression

function (e.g., Kong et al, 2007), we have[
âj −mϑ(Xj)

h{b̂j −m′
ϑ(Xj)}

]
=

1
nh

S−1
nj

n∑
i=1

Kϑ
ijϕ(Y ∗

ij)
[

1
X>

ijϑ/h

]
+ O

{( log n

nh

)3/4}
uniformly in Xj ∈ D, where Snj ≡ Sn(Xj) = {gf}ϑ(Xj)I[1 + O{h + (nh/ log n)−1/2}], Kϑ

ij =

K(X>
ijϑ/h) and Y ∗

ij = Yi−mϑ(Xj)−m′
ϑ(Xj)X>

ijϑ. Hereinafter, {gf}ϑ(.) = gϑ(.)fϑ(.). Moreover,

if nh5/ log n < ∞,

âj −mϑ(Xj) =
1

nh
{gf}−1

ϑ (Xj)
n∑

i=1

Kϑ
ijϕ(Y ∗

ij) + O
{( log n

nh

)3/4}
, (15)

h{b̂j −m′
ϑ(Xj)} =

1
nh
{gf}−1

ϑ (Xj)
n∑

i=1

Kϑ
ijϕ(Y ∗

ij)X
>
ijϑ/h + O

{( log n

nh

)3/4}
,

uniformly in Xj ∈ D. In the Appendix, we further show that

mϑ(Xj)− aj = bjδ
>
ϑ{(ν/µ)ϑ(Xj)−Xj}+ o(|δϑ|), (16)

m′
ϑ(Xj)− bj = bjδ

>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj) + o(|δϑ|), (17)

EKϑ
ijϕ(Y ∗

ij) =
1
2
m

′′
(X>

j θ0)(fg)ϑ(Xj)h3 + O(h4) + o(hδϑ), (18)

EKϑ
ijϕ(Y ∗

ij)X
>
ijϑ = h4

{1
2
m

′′
(X>

j θ0)(fµ)′ϑ(Xj)

−1
6
m(3)(X>

j θ0)(fµ)ϑ(Xj)
}

+ O(h4δϑ), (19)

where (ν/µ)ϑ(Xj) ≡ νϑ(X>
j ϑ)/µϑ(X>

j ϑ) and

µϑ(v) = E[g(X)|X>ϑ = v], νϑ(v) = E[g(X)X|X>ϑ = v]. (20)
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Therefore, equation (15) could be rewritten as

âj − aj =
1
2
m

′′
(X>

j θ0)(µ/g)ϑ(Xj)h2 + bjδ
>
ϑ{(ν/µ)ϑ(Xj)−Xj}

+(nh)−1{gf}−1
ϑ (Xj)

n∑
i=1

ϕ1(Xi, Yi) + O
{( log n

nh

)3/4}
+ O(h4 + hδϑ) (21)

b̂j − bj = h2
[1
2
m

′′
(X>

j θ0){(fµ)′/(fg)}ϑ(Xj)−
1
6
m(3)(X>

j θ0){(fµ)/(fg)}ϑ(Xj)
]

+bjδ
>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj) + (nh2)−1{gf}−1

ϑ (Xj)
n∑

i=1

ϕ2(Xi, Yi)

+O
{

h4 + hδϑ +
( log n

nh

)3/4
/h

}
uniformly in j, where ϕ1(Xi, Yi) and ϕ2(Xi, Yi) are zero-mean I.I.D. random variables

ϕ1(Xi, Yi) = Kϑ
ijϕ(Y ∗

ij)− E[Kϑ
ijϕ(Y ∗

ij)]. (22)

ϕ2(Xi, Yi) = Kϑ
ijϕ(Y ∗

ij)X
>
ijϑ/h− E[Kϑ

ijϕ(Y ∗
ij)X

>
ijϑ/h].

(21) is on the almost sure convergence of âj and b̂j . As for the asymptotic bias and variance,

Welsh (1996) showed that for any x with f(.) > 0 in a neighborhood of x,

Eb̂(x) = mϑ(ϑ>x) + O(h), Varb̂(x) = O(n−1h−3), (23)

and the O(.) are uniformly in x in any compact set on which f(.) is strictly positive.

6 Asymptotics of θ̂

For previously obtained ϑ, âj , b̂j , j = 1, · · · , n, suppose θ̂ minimizes Φ̃n(θ), where

Φ̃n(θ) = Φn(θ) +
n2h

2
(θ − ϑ)>ϑϑ>(θ − ϑ), Φn(θ) =

n∑
i=1

n∑
j=1

Kϑ
ijρ(Yi − âj − b̂jθ

>Xij).

Let [âj , b̂j ] ≡ [âϑ(Xj), b̂ϑ(Xj)], Kϑ
ij = K(X>

ijϑ/h) and Yij ≡ Yi − âj − b̂jX
>
ijθ0. Then with

abuse of notations, θ̂ also minimizes

Φ̃n(θ) = Φn(θ) + n2h{1
2
(θ − θ0)>ϑϑ>(θ − θ0) + (θ0 − ϑ)>ϑϑ>(θ − θ0)}

Φn(θ) =
n∑

i=1

n∑
j=1

Kϑ
ij{ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yij)}. (24)

As |ϑ− θ0| ≤ anϑ, ϑϑ> = θ0θ
>
0 + O(anϑ). Hence for any θ with |θ − θ0| ≤ anϑ,

Φ̃n(θ) = Φn(θ) + n2h{1
2
(θ − θ0)>θ0θ

>
0 (θ − θ0) + (θ0 − ϑ)>θ0θ

>
0 (θ − θ0)}+ o(n2ha2

nϑ)
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Write

Φn(θ) = E[Φn(θ)] + δ>θ {Rn1(θ)− ERn1(θ)}+ Rn2(θ)− ERn2(θ),

where

Rn1 =
∑
i,j

Kϑ
ijϕ(Yij)b̂jXij , Rn2(θ) =

∑
i,j

Kϑ
ij

[
ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yij)− δ>θ ϕ(Yij)b̂jXij

]
.

Applying the results on E(Φn(θ)) in Lemma 6.10, we have

Φn(θ) = δ>θ Rn1 +
1
2
δ>θ Gn2δθ{1 + o(1)}+ Rn2(θ)− ERn2(θ), (25)

where

Gn2 =
∑
i,j

E[Kϑ
ijg(Xi)b̂2

jXijX
>
ij ] = n2hS2{1 + o(1)},

S2 =
∫
{m′(X>θ0)}2ωθ0(X)fθ0(X)dX,

and ωϑ(x) = E{g(X)(X − x)(X − x)>|X>ϑ = x>ϑ}. Naturally,

Φn(θ) = δ>θ (Rn1 + θ0θ
>
0 δϑ) +

1
2
δ>θ (Gn2 + θ0θ

>
0 )δθ{1 + o(1)}+ Rn2(θ)− ERn2(θ).

Our main result is as follows

Theorem 6.1 Suppose (A1)-(A4) hold. With νϑ(.) and µϑ(.) as defined in (20), we have

θ̂ − θ0 = (S2 + θ0θ
>
0 )−1 1

n

∑
i

ϕ(εi)bi{$f}θ0(Xi) + (S2 + θ0θ
>
0 )−1θ0θ

>
0 δϑ

+(S2 + θ0θ
>
0 )−1 1

n

∑
j

b2
j{(ν/µ)ϑ(Xj)−Xj} × {νϑ(Xj)−Xjµϑ(Xj)}>δϑ

+αn|ϑ− θ0|+ o(n−1/2) (26)

= (S2 + θ0θ
>
0 )−1 1

n

∑
i

ϕ(εi)bi{$f}θ0(Xi) + (S2 + θ0θ
>
0 )−1(Ω1 + θ0θ

>
0 )δϑ

+αn|ϑ− θ0|+ o(n−1/2) (27)

almost surely, where $θ(x) = E(X|X>θ = x>θ)− x, αn = o(1) uniformly in ϑ and

Ω1 ≡ lim
n→∞

n−1
∑

j

b2
jµθ0(Xj){(ν/µ)θ0(Xj)−Xj}{(ν/µ)θ0(Xj)−Xj}>

=
∫
{m′(X>θ0)}2µθ0(X){(ν/µ)θ0(X)−X}{(ν/µ)θ0(X)−X}>dFθ0(X)
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Remark 6.2 By multivariate Cauchy-Schwarz inequality, we have

E{g(X)(X − x)|X>ϑ = x>ϑ}E{g(X)(X − x)>|X>ϑ = x>ϑ}>

−E{g(X)|X>ϑ = x>ϑ}E{g(X)(X − x)(X − x)>|X>ϑ = x>ϑ} ≤ 0.

This means that for any X,

ωϑ(X)− µθ0(X){(ν/µ)θ0(X)−X}{(ν/µ)θ0(X)−X}> is non-negative definite,

whence S2 − Ω1 ≥ 0. In Lemma 6.15, we prove that if δϑ 6= 0,

0 < |(S2 + θ0θ
>
0 )−1(Ω1 + θ0θ

>
0 )δϑ|/|δϑ| < 1. (28)

This implies that the impact on θ̂−θ0 of the deviance between ϑ and θ0 decreases geometrically.

Remark 6.3 We prove Theorem 6.1 under the assumption that {(Xi, Yi)}∞i=1 are I.I.D. obser-

vations. It is possible, however to extend this result for time series observations provided that

the time dependency (usually measured by mixing coefficient) are weak enough. For example,

the stationary ∗− mixing processes, which satisfies

|P (AB)− P (B)P (A)| < φ(k)P (B)P (A) and φ(k) → 0, as k →∞,

for all A ∈ Fa
−∞, B ∈ F∞

a+k and Fb
a is the σ−algebra generated by {(Xi, Yi)}b

i=a.

The rationality behind the above conjecture is that most of the Lemmas which are used in

the proof can be replaced by their counterparts in the time series setting, namely Lemma 6.5 by

Theorem 1.4 in Bosq (1998), and Lemma 6.7 by Theorem 2 in Sen (1972), as ∗− mixing implies

all the other types of mixing conditions (Ibragimov et al, 1971). The only issue is results is yet

unavailable on law of iterated logarithm for degenerated U-statistics of dependent observations;

that is whether Lemma 6.6 is still true for ∗− mixing processes. Heuristically it is, an evidence

is that the corresponding normality is proved in Fan and Li (1999), i.e.

n−1
∑
i6=j

g(Xi, Xj) → N(0, σ2) for some constant σ > 0.

Proof of Theorem 6.1. Let anϑ = max{(n log log n)−1/2, |δϑ|}. It suffices to prove that

θ̂ − θ0 = {n2h(S2 + θ0θ
>
0 )}−1(Rn1 + θ0θ

>
0 δϑ) a.e. (29)

(n2h)−1Rn1 = 1
n

∑
i

ϕ(εi)bi{$f}θ0(Xi) + Ω1δϑ + αn|ϑ− θ0|+ o(n−1/2) a.e. (30)
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As the first step to prove (29), we show in Lemma 6.12 and Lemma 6.14 that for each fixed θ,

(n2ha2
nϑ)−1[Rn2(θ)− ERn2(θ)] = o(1) almost surely. (31)

This together with (25) and the fact that Gn2 = n2hS2{1 + o(1)} imply that for any fixed θ,

(n2ha2
nϑ)−1[Φ̃n(θ)− δ>θ (Rn1 + θ0θ

>
0 δϑ)− 1

2
n2hδ>θ (S2 + θ0θ

>
0 )δθ] → 0 almost surely.

As both Φ̃n(θ)− δ>θ (Rn1 + θ0θ
>
0 δϑ) and δ>θ (S2 + θ0θ

>
0 )δθ are convex in θ, it follows from Lemma

6.4 that for any compact set Θnθ ⊂ Θn(convex open set),

sup
θ∈Θnθ

(n2ha2
nϑ)−1|Φ̃n(θ)− δ>θ (Rn1 + θ0θ

>
0 δϑ)− 1

2
n2hδ>θ (S2 + θ0θ

>
0 )δθ| → 0 almost surely. (32)

Let ηn = {n2h(S2 + θ0θ
>
0 )}−1(Rn1 + θ0θ

>
0 δϑ). Now we are ready to prove the equivalent of (29),

i.e. : with probability 1, for any δ > 0, |θ̂ − θ0 − ηn|/anϑ ≤ δ for large n.

First note that as θ0 + ηn is bounded with probability 1, Θn can be chosen to contain Bδ
n(a

closed ball with center θ0 + ηn and radius anϑδ). Replace Θnθ in (32) by Bδ
n, we have

∆n ≡ sup
θ∈Bδ

n

(n2ha2
nϑ)−1|Φ̃n(θ)− δ>θ (Rn1 − θ0θ

>
0 δϑ)− 1

2
n2hδ>θ (S2 + θ0θ

>
0 )δθ| = o(1), a. e. (33)

Now consider the behavior of Φ̃n(θ) outside Bδ
n. Suppose θ = θ0 + ηn + anϑβν, for some β > δ

and ν a unit vector. Define θ∗ as the boundary point of Bδ
n that lies on the line segment from

θ0 + ηn to θ, i.e. θ∗ = θ0 + ηn + anϑδν. Convexity of Φn(θ) and the definition of ∆n imply

δ

β
Φ̃n(θ) + (1− δ

β
)Φ̃n(θ0 + ηn) ≥ Φ̃n(θ∗)

≥ 1
2
n2hδ2a2

nϑν>(S2 + θ0θ
>
0 )ν

−1
2
(n2h)−1R>n1(S2 + θ0θ

>
0 )−1Rn1 − n2ha2

nϑ∆n

≥ 1
2
n2hδ2a2

nϑν>(S2 + θ0θ
>
0 )ν + Φ̃n(θ0 + ηn)− 2n2ha2

nϑ∆n.

It follows that

inf
|θ−θ0−ηn|>δanϑ

Φ̃n(θ) ≥ Φ̃n(θ0 + ηn) +
β

δ
n2ha2

nϑ[
1
2
δ2ν>(S2 + θ0θ

>
0 )ν − 2∆n].

As S2 + θ0θ
>
0 are positive definite, then according to (33), with probability 1, δ2ν>S2ν > 4∆n

for large enough n. This implies that for any δ > 0 and for large enough n, the minimum of

Φ̃n(θ) must occur within Bδ
n. This implies (29).

11



To derive (30), recall that

Rn1(θ) =
∑
i,j

Kϑ
ijϕ(εi)bjXij +

∑
i,j

Kϑ
ijϕ(εi)(b̂j − bj)Xij +

∑
i,j

Kϑ
ij b̂jXij{ϕ(Yij)− ϕ(εi)} (34)

For the first term above, by Lemma 7.8 in Xia and Tong (2006), i.e.

sup
ϑ∈Θ

∣∣∣ 1
n2h

∑
i,j

{
K(ϑ>Xij/h)φj(ϑ)− Ej [K(ϑ>Xij/h)φj(ϑ)]

}
ξi(ϑ)

∣∣∣ = O
( log n

nh

)
we have

(n2h)−1
∑
i,j

Kϑ
ijϕ(εi)bjXij = n−1

∑
i

ϕ(εi)E[Kϑ
ijbjXij/h] + O{(nh/log n)−1}

Ej [Kϑ
ijbjXij/h] = bi{$f}ϑ(Xi) + δϑm′′(Xiθ0){Σf}θ0(Xi) + o(|δϑ|2 + h3)

+h2[m′′(X>
i θ0){$f}′θ0

(Xi) + m(3)(X>
i θ0){$f}θ0(Xi)]

where $ϑ = E(X − x|Xϑ = x>ϑ), Σϑ = E((X − x)(X − x)>|Xϑ = x>ϑ). Therefore,

1
n2h

∑
i,j

Kϑ
ijϕ(εi)bjXij =

1
n

∑
i

ϕ(εi)bi{$f}θ0(Xi) + o{n−1/2 + δϑ} (35)

For the second and third term in (34), we will show in Lemma 6.11 that

1
nh

∑
i

Kϑ
ijϕ(εi)(b̂j − bj)Xij = o(n−1/2) + O{δϑ(nh/ log n)−1/2)},

1
nh

∑
i,j

Kϑ
ij b̂jXij{ϕ(Yij)− ϕ(εi)} = δ>ϑ

∑
j

b2
j{(ν/µ)ϑ(Xj)−Xj}{νϑ(Xj)−Xjµϑ(Xj)}> + o(nδϑ)

uniformly in ϑ. This together with (34), (35) and (48) leads to (30). �

Appendix

Proof of (16) and (17). Using the property of conditional expectation

E{ρ(Y − a)|X>ϑ = x>ϑ} = E[E{ρ(Y − a)}|X}|X>ϑ = x>ϑ]

= E[G(m(θ>0 X)− a)|X>ϑ = x>ϑ]

= E[G{m(θ>0 X)− a;X}|X>ϑ = x>ϑ].

Using the differentiability of G(t;X), i.e.

G{m(θ>0 X)− a;X} = G(0;X) + g(X)(m(θ>0 X)− a)2/2 + O{(m(θ>0 X)− a)3}

12



For each a near m(θ>0 X) (whence m(θ>0 x) ),

E[G{m(θ>0 X)− a;X}|X>ϑ = x>ϑ]− E[G(0;X)|X>ϑ = x>ϑ]

→ E[g(X)(m(θ>0 X)− a)2|X>ϑ = x>ϑ]/2.

As ρ(.) is convex, this convergence is uniform over all a near m(θ>0 X), which implies that

the minimizer of E[G{m(θ>0 X) − a;X}|X>ϑ = x>ϑ] is also (asymptotically) the minimizer of

E[g(X)(m(θ>0 X)− a)2|X>ϑ = x>ϑ]. We have

m(θ>0 X) = m(θ>0 x) + m′(θ>0 x)θ>0 (X − x) + C{θ>0 (X − x)}2,

E[g(X)(m(θ>0 X)− a)|X>ϑ = x>ϑ] ={m(θ>0 x)− a}µϑ(x>ϑ) + m′(θ>0 x)δ>ϑ{νϑ(x>ϑ)− xµϑ(x>ϑ)}

+ O(|δϑ|2).

It is easily understood that the first statement in (16) is true.

To prove (17), consider for t → 0,

E[g(X)(m(θ>0 X)− a)|X>ϑ = x>ϑ + t] = {a−m(θ>0 x)}µϑ(x>ϑ + t) + m′(θ>0 x)E[g(X){t

+ δ>ϑ(X − x)}|X>ϑ = x>ϑ + t] + O(|δϑ|2)

= {a−m(θ>0 x)}µϑ(x>ϑ + t) + tm′(θ>0 x)µϑ(x>ϑ + t)

+ m′(θ>0 x)δ>ϑE[g(X)(X − x)|X>ϑ = x>ϑ + t]

+ O(t2|δϑ|2).

Therefore,

mϑ(ϑ>x + t) = m(θ>0 x) + tm′(θ>0 x) + m′(θ>0 x)δ>ϑ
νϑ(x>ϑ + t)− xµϑ(x>ϑ + t)

µϑ(x>ϑ + t)
+ O(|δϑ|2),

mϑ(ϑ>x) = m(θ>0 x) + m′(θ>0 x)δ>ϑ
νϑ(x>ϑ)− xµϑ(x>ϑ)

µϑ(x>ϑ)
+ O(|δϑ|2).

Suppose the first order derivative of µϑ(.) and νϑ(.) are both Lipschitz continuous. We have

mϑ(ϑ>x + t)−mϑ(ϑ>x)

= tm′(θ>0 x) + m′(θ>0 x)δ>ϑ
νϑ(x>ϑ + t)− νϑ(x>ϑ)

µϑ(x>ϑ)
−m′(θ>0 x)δ>ϑx

µϑ(x>ϑ + t)− µϑ(x>ϑ)
µϑ(x>ϑ)

+O(t2) + m′(θ>0 x)δ>ϑ{νϑ(x>ϑ + t)− xµϑ(x>ϑ + t)}µϑ(x>ϑ)− µϑ(x>ϑ + t)
µϑ(x>ϑ)µϑ(x>ϑ + t)

= tm′(θ>0 x) + tm′(θ>0 x)δ>ϑ(ν ′/µ)ϑ(x>ϑ)− tm′(θ>0 x)δ>ϑx(µ′/µ)ϑ(x>ϑ)

−tm′(θ>0 x)δ>ϑ{νϑ(x>ϑ + t)− xµϑ(x>ϑ + t)}(µ′/µ2)ϑ(x>ϑ) + O(t2)

= tm′(θ>0 x) + tm′(θ>0 x)δ>ϑ{(ν ′/µ)− x(µ′/µ)− (ν − xµ)(µ′/µ2)}+ O(t2)

13



and (17) thus follows. �

Proof of (18) and (19) Note that by (16), (17) and the continuity of G(t;X) in t defined in

(10), we have

mi −mϑ(Xj)−m′
ϑ(Xj)X>

ijϑ = m(X>
i θ0)−m(X>

j θ0)− bjδ
>
ϑ{(ν/µ)ϑ(Xj)−Xj}

−{bj + bjδ
>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj)}X>

ijϑ + o(|δϑ|)

= bjX
>
ijδϑ +

1
2
m

′′
(X>

j θ0)(θ>0 Xij)2 −
1
6
m(3)(X>

j θ0)(θ>0 Xij)3

−bjδ
>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj)X>

ijϑ− bjδ
>
ϑ{(ν/µ)ϑ(Xj)−Xj}

+o(|δϑ|) + O{(θ>0 Xij)4}

Therefore,

E[ϕ{Yi −mϑ(Xj)−m′
ϑ(Xj)X>

ijϑ}|Xi]

= bjδ
>
ϑg(Xi)Xij − bjδ

>
ϑ{(ν/µ)ϑ(Xj)−Xj}g(Xi)− bjδ

>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj)X>

ijϑg(Xi)

+
1
2
m

′′
(X>

j θ0)g(Xi)(θ>0 Xij)2 −
1
6
m(3)(X>

j θ0)g(Xi)(θ>0 Xij)3 + o(|δϑ|) + O(h4) (36)

and thus

Ei[Kϑ
ijϕ{Yi −mϑ(Xj)−m′

ϑ(Xj)X>
ijϑ}] =

1
2
m

′′
(X>

j θ0)(gf)ϑ(Xj)h3 + o(h|δϑ|) + O(h4).

This is (18). As for (19), i.e.

Ei[Kϑ
ijX

>
ijϑϕ{Yi −mϑ(Xj)−m′

ϑ(Xj)X>
ijϑ}]

=
1
2
m

′′
(X>

j θ0)(fµ)′ϑ(Xj)h4 − 1
6
m(3)(X>

j θ0)(fµ)ϑ(Xj)h4 + O(h4δϑ + h6),

it can be proved similarly based on (36) and the following facts

E[g(Xi)Xij |X>
i ϑ = X>

j ϑ + hu]

= νϑ(X>
j ϑ + hu)−Xjµϑ(X>

j ϑ + hu)

= νϑ(X>
j ϑ) + huν ′ϑ(X>

j ϑ)−Xjµϑ(X>
j ϑ)− huXjµ

′
ϑ(X>

j ϑ) + O(h2)

E[g(Xi)|X>
i ϑ = X>

j ϑ + hu] = µϑ(X>
j ϑ) + huµ′ϑ(X>

j ϑ) + O(h2)∫
K(u)E[g(Xi)Xij |X>

i ϑ = X>
j ϑ + hu]hudu = h2{(fν ′)ϑ(X>

j ϑ)−Xj(fµ′)ϑ(X>
j ϑ)}

+h2{(f ′ν)ϑ(X>
j ϑ)−Xj(f ′µ)ϑ(X>

j ϑ)}+ O(h3)∫
K(u)E[g(Xi)|X>

i ϑ = X>
j ϑ + hu]hudu = h2(µ′f + µf ′)ϑ(X>

j ϑ) + O(h3)∫
K(u)E[g(Xi)|X>

i ϑ = X>
j ϑ + hu]h2u2du = h2(µf)ϑ(X>

j ϑ) + O(h3)
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Lemma 6.4 Let {λn(θ) : θ ∈ Θ} be a sequence of random convex functions defined on a convex,

open subset Θ of Rd. Suppose λ(θ) is a real valued function on Θ such that λn(θ) tends to λ(θ)

for each θ almost surely, Then for each compact set K of Θ, with probability 1,

sup
θ∈K

|λn(θ)− λ(θ)| → 0.

Proof The condition can be restated as follows: for any fixed θ ∈ Θ, there exists some Ωθ ⊆ Ω,

such that P (Ωθ) = 1 and

λn(ω, θ)− λ(θ) → 0, for any ω ∈ Ωθ.

The conclusion can be restated that for each compact set K of Θ, there exists some Ω0 ⊆ Ω,

such that

P (Ω0) = 1 and sup
θ∈K

|λn(ω, θ)− λ(θ)| → 0, for any ω ∈ Ω0.

For such uniformity of the convergence, it is enough to consider the case where K is a cube with

edges parallel to the coordinate directions el, · · · , ed. Every compact subset of Θ can be covered

by finitely many such cubes.

Let =0 ≡ K and K+δ0 be the larger cube constructed by adding an extra layer of cubes with

sides δ0 to K. Suppose δ0 > 0 is small enough such that K+δ0 ⊂ Θ. Define 00 for the finite set

of all vertices of all the cubes that make up K+δ0
.

Now for k = 1, 2, · · · , let εk = k−1. As convexity implies continuity, there is a 0 < δk < δk−1 such

that λ(.) varies by less than εk/(d + 1) over each cube of side 3δk that intersects K. Partition

each cube in =k−1 into a union of cubes with side at most δk and denote by =k the resulted union

of cubes. Then expand K to a larger cube K+δk
by adding an extra layer of these δk−cubes

around each face. As δk < δk−1, K+δk ⊂ K+δk−1
is still within Θ. Define

0k = { vertices of all the δk − cubes that make up K+δk}
⋃

0k−1

≡ { vertices of all the δk − cubes that make up K+δk}
⋃
{0k−1

⋂
Kc}

and

Ωk =
⋂

θ∈0k

Ωθ.

As 0k is finite, we have P (Ωk) = 1 and

for any ω ∈ Ωk, Mk
n(ω) = sup

θ∈0k

|λn(ω, θ)− λ(θ)| → 0. (37)
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We first establish the connection between Mk
n(ω) and the upper bound for λn(ω, θ)− λ(θ), over

θ ∈ K, for any given ω ∈ Ωk.

For any fixed k = 1, 2, · · · , each θ in K lies within a δk-cube with vertices {θi} ∈ 0k; it can be

written as a convex combination
∑

i αiθi of those vertices, i.e.

θ =
∑

θi∈0k

αiθi,
∑

θi∈0k

αi = 1.

Then for any given ω ∈ Ωk, convexity of λn(ω, θ) in θ gives

λn(ω, θ) ≤
∑

θi∈0k

αiλn(ω, θi)

=
∑

θi∈0k

αi{λn(ω, θi)− λ(θi)}+
∑

θi∈0k

αi{λ(θi)− λ(θ)}+ λ(θ)

≤ Mk
n(ω) + max

θi∈0k

|λ(θi)− λ(θ)|+ λ(θ).

Therefore,

λn(ω, θ)− λ(θ) ≤ Mk
n(ω) + εk. (38)

Next we establish the companion lower bound. For any fixed k = 1, · · · , each θ in K lies within

a δk-cube with a vertex θ0 in K
⋂

0k:

θ = θ0 +
d∑

i=1

δiei, with |δi| ≤ δk, i = 1, · · · , d.

Without loss of generality, suppose δi ≥ 0 for each i = 1, · · · , d. Define

θik = θ0 − δ′iei, where δ′i ≡ min{c ≥ δk : θ0 − cei ∈ 0k}, i = 1, · · · , d

Note that as θ0 ∈ K
⋂

0k, δ′i must exist and δ′i < 2δk, for all i = 1, · · · , d.

Write θ0 as a convex combination of θ and these θik:

θ0 =

∏d
j=1 δ′j∏d

j=1 δ′j +
∑d

j=1 δj
∏

l 6=j δ′l
θ +

d∑
i=1

δi
∏

j 6=i δ
′
j∏d

j=1 δ′j +
∑d

j=1 δj
∏

l 6=j δ′l
θik.

Denote these convex weights by β and {βi}. As δj ≤ δk ≤ δ′j , we have β ≥ 1/(d + 1) and

βλn(ω, θ) ≥ λn(ω, θ0)−
∑

i

βiλn(ω, θik) ( convexity of λn(ω, θ) in θ)

≥ λ(θ0)−
∑

i

βiλ(θik)− 2Mk
n(ω) ( from (37))

≥ λ(θ)− εk/(d + 1)−
∑

i

βi[λ(θ) + εk/(d + 1)]− 2Mk
n(ω)

= βλ(θ)− 2εk/(d + 1)− 2Mk
n(ω)
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where the third inequality is due to the definition of δk and the fact that there exists a cube of

side 3δk which contains both θik and θ0. As β ≥ 1/(d + 1),

λn(ω, θ)− λ(θ) ≥ −2εk − 2(d + 1)Mk
n(ω).

This together with (38) implies that for any k = 1, 2, · · · , there exists some Ωk(⊇ Ωk+1) such

that P (Ωk) = 1 and

∀ω ∈ Ωk, sup
θ∈K

|λn(ω, θ)− λ(θ)| ≤ (d + 1)Mk
n(ω) + 2k−1.

Let Ω0 ≡
⋂∞

k=1 Ωk. As Ωk is a decreasing sequence and P (Ωk) = 1, we have P (Ω0) = 1 and for

any ω ∈ Ω0,

sup
θ∈K

|λn(ω, θ)− λ(θ)| ≤ (d + 1)Mk
n(ω) + 2k−1, for all k ≥ 1. (39)

Note that as n →∞, Mk
n(ω) → 0 for each fixed k, as in (37). Take limit of both sides of (39)

lim
n→∞

sup
θ∈K

|λn(ω, θ)− λ(θ)| ≤ lim
n→∞

Mk
n(ω) + k−1 = k−1, for all k ≥ 1.

This is equivalent to that with probability 1,

lim
n→∞

sup
θ∈K

|λn(ω, θ)− λ(θ)| → 0.

We now list a number of facts in the literature that will be used in our proofs later.

Lemma 6.5 [Bernstein’s inequality] Let X1, · · · , Xn be independent zero-mean real valued ran-

dom variables and there exists c > 0 such that the following Cramer’s condition are satisfied

E|Xi|k ≤ ck−2k!EX2
i < +∞, i = 1, · · · , n; k = 3, 4, · · ·

Let Sn =
∑n

i=1 Xi, then

P (|Sn| ≥ t) ≤ 2 exp
(
− t2

4
∑n

i=1 EX2
i + 2ct

)
, t > 0.

Lemma 6.6 [Theorem 1.1. Giné et al] Let X, Y, Xi, i = 1, · · · , be i.i.d. random variables

taking values in S and let g : S × S → R be a measurable function of two variables. Then,

lim sup
n

1
n log log n

∑
i6=j

g(Xi, Xj) < ∞ a.s.

if an only if the following three conditions hold:
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(a) g(.) is integrable and Eg(X, y) = 0 for almost all y ∈ S.

There exists some C < ∞ such that

(b) For all u ≥ 10 E{g2(X, Y ) ∧ u} ≤ C log log u and

(c) sup{Eg(X, Y )f1(X)f2(Y );Ef2
1 (X) ≤ 1, Ef2

2 (X) ≤ 1, ‖f1‖∞ < ∞, ‖f2‖∞ < ∞} ≤ C

Lemma 6.7 [Korolyuk et al, 1989] Let X1, X2, · · · , Xn be i.i.d. random variables. With a

symmetric kernel Φ : Xm → R, we consider the U-statistic

Un =
(

n

m

) ∑
l≤i1<···<im≤n

Φ(Xi1 , · · · , Xim)

Let θ = EΦ(X1, · · · , Xm) < ∞ and for c = 0, 1, · · · ,m, define

Φc(x1, · · · , xc) = E(Φ(X1, · · · , Xm)|X1 = x1, · · · , Xc = xc), , Φ0 = θ, Φm = Φ

gc(x1, · · · , xc) =
c∑

d=0

(−1)c−d
∑ ∑

l≤j1<···<jd≤c

Φd(xj1, · · · , xjd), σ2
1 = Eg2

1(X1)

Suppose σ2
1 > 0 and for all c = 1, · · · ,m, Eg

2c/(2c−1)
c < ∞. The with probability 1,

lim sup
n→∞

n1/2(Un − θ)
(2m2σ2

1 log log n)1/2
= 1 �

Lemma 6.8 [Berbee’s Lemma] Let (X, Y ) be a Rd × Rd′−valued random vector. Then there

exists a Rd′−valued random vector Y ∗ which has the same distribution as Y and

Y ∗ is independent of X; P (Y ∗ 6= Y ) = β(σ(X), σ(Y )) (40)

where σ(X) and σ(Y )) are the σ−algebra generated by X and Y respectively, and

β[σ(X), σ(Y )] = E sup
A∈σ(Y )

|P (A)− P (A|σ(X))|

Lemma 6.9 β[σ(X1, Y1), σ(âj , b̂j)] = O{(nh/ log3 n)−1/4}

Proof By the definition,

β[σ(X1, Y1), σ(âj , b̂j)] = E sup
A∈σ(âj ,b̂j)

|P (A)− P (A|σ(X1, Y1))|
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Rewrite (21) as

âj = Eâj +
1

nh

n∑
l 6=i

Kljϕ1(Xl, Yl) +
1

nh
Kijϕ1(Xi, Yi) + O{(nh/ log n)−3/4}

b̂j = Eb̂j +
1

nh2

n∑
i=2

Kljϕ2(Xl, Yl) +
1

nh2
Kijϕ2(Xi, Yi) + O{(nh/ log n)−3/4/h} (41)

where {ϕ1(Xl, Yl)}n
l=1, {ϕ2(Xl, Yl)}n

l=1, are two sequences of bounded and identically distributed

zero-mean random variables. Let τn = (nh/ log n)−3/4 and

S1 =
1

nh

n∑
l 6=i

Kljϕ1(Xl, Yl) =
∑

,l≤i−m

+
∑

l 6=i,i−m<l<i+m

+
∑

l≥i+m

= S11 + S12 + S13,

S2 =
1

nh2

n∑
l 6=i

Kljϕ2(Xl, Yl) =
∑

,l≤i−m

+
∑

l 6=i,i−m<l<i+m

+
∑

l≥i+m

= S21 + S22 + S23.

Note that S1/σ1 and S2/σ2 are asymptotically normal with σ1 = O((nh)1/2) and σ1 = O((nh3)1/2).

Using the fact that both ϕ1(.) and ϕ2(.) are bounded and

{S1 ≤ t1 − Eâj} ⊆ {S11 + S13 ≤ t1 − Eâj + Cm(nh)−1}

{S2 ≤ t2 − Eb̂j} ⊆ {S21 + S23 ≤ t2 − Eb̂j + Cm(nh2)−1}

we have

P{âj ≤ t1, b̂j ≤ t2|Yi, Xi}

≤ P{S1 ≤ t1 − Eâj + Cτn, S2 ≤ t1 − Eb̂j + Cτn/h|Yi, Xi}

≤ P
[
S11 + S13 ≤ t1 − Eâj + Cτn + Cm(nh)−1, S21 + S23 ≤ t2 − Eb̂jCτn/h + Cm(nh2)−1|Yi, Xi

]
≤ P

[
(S11 + S13)/σ1 ≤ (t1 − Eâj)/σ1, (S21 + S23)/σ2 ≤ (t2 − Eb̂j)/σ2

]
+φ(m) + C(nh)1/2τn + Cmn−1/2h−1

= P [âj ≤ t1, b̂j ≤ t2] + Cφ(m) + C(nh)1/2τn + Cmn−1/2h−1

Similarly, we have

P{âj ≥ t1, b̂j ≥ t2|Y1, X1} ≥ P [âj ≥ t1, b̂j ≥ t2]− φ(m)− C(nh)1/2τn − Cmn−1/2h−1

Therefore,

|P{âj ≤ t1, b̂j ≤ t2|Y1 = y, X1} − P{âj ≤ t1, b̂j ≤ t2}| ≤ φ(m) + C(nh)1/2τn + Cmn−1/2h−1.

If m = na and φ(m) = m−k for some a = 1/10 and k > 0, such that nak = O{(nh)1/2τn} with

τn = (nh/ log, n)−3/4, we have the desired result.
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Lemma 6.10 Under the assumptions (A1)–(A5), we have

EΦn(θ) = δ>θ ERn1(θ) + δ>θ Gn2δθ + o(n2h|δθ|2).

Proof Apparently it suffices to show that

EKϑ
ij{ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yi − âj − b̂jθ
>
0 Xij)}

= δ>θ E[Kϑ
ijϕ(Yi − âj − b̂jθ

>
0 Xij)b̂jXij ] + δ>θ E[Kϑ

ijXijX
>
ijg(X1)b2

j ]δθ + o(|δθ|2).

By the continuity of E[ρ(Yi − âj − tb̂j)|Xi] in t, we have

EKϑ
ij{ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yi − âj − b̂jθ
>
0 Xij)} (42)

= δ>θ E[Kϑ
ijϕ(Yi − âj − b̂jθ

>
0 Xij)b̂jXij ] + δ>θ E[Kϑ

ijXijX
>
ij{∂Eϕ(Yi − âj − b̂jt)b̂j/∂t}|t=X>

ijθ0
]δθ

+δ>θ E
[
Kϑ

ijXijX
>
ij

{
{∂Eϕ(Yi − âj − b̂jt)b̂j/∂t}|t=X>

ijθ0
− {∂Eϕ(Yi − âj − b̂jt)b̂j/∂t}|t∗

}]
δθ

where t∗ is some value between θ>Xij and θ>0 Xij .

Apply Lemma 6.8 and Lemma 6.9 to the second term in (42). There exists [ãj , b̃j ] which

has the same distribution as [âj , b̂j ], is independent of (Y1, X1) and P ([ãj , b̃j ] 6= [âj , b̂j ]) =

O{(nh/ log3 n)−1/4}. Thus

E[ϕ(Y1 − âj − b̂j(t + δ))b̂j ]− E[ϕ(Y1 − âj − b̂jt)b̂j ]

= E[ϕ{Y1 − ãj − b̃j(t + δ)}b̃j ]− E[ϕ(Y1 − ãj − b̃jt)b̃j ]

+E[{ϕ(Y1 − ãj − b̃jt)b̃j − ϕ(Y1 − âj − b̂jt)b̂j}I{[ãj , b̃j ] 6= [âj , b̂j ]}]

−E[{ϕ(Y1 − ãj − b̃j(t + δ))b̃j − ϕ(Y1 − âj − b̂j(t + δ))b̂j}I{[ãj , b̃j ] 6= [âj , b̂j ]}]

= E[ϕ{Y1 − ãj − b̃j(t + δ)}b̃j ]− E[ϕ(Y1 − ãj − b̃jt)b̃j ]

+E[{ϕ(Y1 − âj − b̂j(t + δ))− ϕ(Y1 − âj − b̂jt)}b̂jI{[ãj , b̃j ] 6= [âj , b̂j ]}]

−E[{ϕ(Y1 − ãj − b̃j(t + δ))− ϕ(Y1 − ãj − b̃jt)}b̃jI{[ãj , b̃j ] 6= [âj , b̂j ]}]

≡ T1 + T2 + T3 (43)

First due to the independency of [ãj , b̃j ] from (X1, Y1) and the continuity of G1(.;X),

T1 = E[{G1(a1 − ãj − b̃j(t + δ)|X1)−G1(a1 − ãj − b̃jt|X1)}b̃j ]

= δE[G2(a1 − ãj − b̃jt|X1)b̃2
j ] + o(δ). (44)

Next, we show that T2 = o(δ) and T3 = o(δ).
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Define [t1, t2] ≡ [(âj − Eâj)/σ1, (b̂j − Eb̂j)/σ2] are asymptotically normal, where

σ1 ≡ {Varâj}1/2 = O{(nh)−1/2}, σ2 ≡ {Varb̂j}1/2 = O{(nh3)−1/2}.

Define [t̃1, t̃2] similarly from ãj and b̃j . Note that due to the weak dependency nature of the

time series, the conditional probability density function of Yi given [t1, t2] is uniformly bounded.

Without loss of generality, assume δ > 0. As for any given values of âj and b̂j (i.e. t1 and t2),

|ϕ(Yi − âj − b̂j(t + δ))− ϕ(Yi − âj − b̂jt)| ≤ CP{t ≤ (Yi − âj)/b̂j ≤ t + δ|t1, t2} = O(δ).

Therefore, |T2| ≤ Cδ
∫

b̂jf(t1, t2)g(t1, t2)dt1dt2 = o(δ), where

g(t1, t2) =
∫

[t̃1,t̃2] 6=[t1,t2]

f(t̃1, t̃2|t1, t2)dt̃1dt̃2, with
∫

f(t1, t2)g(t1, t2)dt1dt2 = β[σ(Xi, Yi), σ(âj , b̂j)]

Similarly we can show that T3 = o(δ). This together with (43) and (44) yields

∂Eϕ(Yi − âj − b̂jt)b̂j/∂t = E[G2(a1 − ãj − b̃jt|X1)b̃2
j ] + o(1), (45)

where o(1) is uniform in i, j and t. Apply this result to the third term in (42), we have

{∂Eϕ(Yi − âj − b̂jt)b̂j/∂t}|t=X>
ijθ0

− {∂Eϕ(Yi − âj − b̂jt)b̂j/∂t}|t∗

= E[G2(ãj + b̃jt|X1)b̃2
j ]− E[G2(ãj + b̃jt

∗|X1)b̃2
j ] + o(1) = o(1).

This together with (42) and (45) leads to

EKϑ
ij{ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yi − âj − b̂jθ
>
0 Xij)}

= δ>θ E[Kϑ
ijϕ(Yi − âj − b̂jθ

>
0 Xij)b̂jXij ] + δ>θ E[Kϑ

ijXijX
>
ijG2(a1 − ãj − b̃jt|X1)b̃2

j ]δθ + o(|δθ|2)

= δ>θ E[Kϑ
ijϕ(Yi − âj − b̂jθ

>
0 Xij)b̂jXij ] + δ>θ E[Kϑ

ijXijX
>
ijg(X1)b2

j ]δθ + o(|δθ|2)

where for the last equation follows from the continuity of G2(.|X1) and (23). �

Lemma 6.11 Define Zij = Kϑ
ij b̂jXij{ϕ(Yij)− ϕ(εi)}. Then

(nh)−1
∑

j

EiZij = δ>ϑ
∑

j

b2
j{(ν/µ)ϑ(Xj)−Xj}{νϑ(Xj)−Xjµϑ(Xj)}> + o(|δϑ|+ n−1/2) (46)

∑
i,j

(Zij − EiZij) = o(n2hδϑ) (47)

(nh)−1
∑

i

Kijϕ(εi)(b̂j − bj)Xij = o(n−1/2) + O{δϑ(nh/ log n)−1/2} (48)

uniformly in ϑ, if nh4 →∞ and nh5/ log n < ∞.
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Proof To prove (46), we apply Lemma 6.8 and Lemma 6.9. Suppose [ãj , b̃j ] has the same dis-

tribution as [âj , b̂j ] and is independent of (X1, Y1). Therefore, P ([ãj , b̃j ] 6= [âj , b̂j ]}) = O(n−1/2).

Let X = σ(X1, ..., Xn).

E[{ϕ(Y1 − âj − tb̂j)− ϕ(ε1)}b̂j |X ]

= E[{ϕ(Y1 − ãj − b̃jt)− ϕ(ε1)}b̃j |X ]− E[{ϕ(Y1 − ãj − b̃jt)− ϕ(ε1)}b̃jI{[ãj , b̃j ] 6= [âj , b̂j ]}|X ]

+E[{ϕ(Y1 − âj − b̂jt)− ϕ(ε1)}b̂jI{[ãj , b̃j ] 6= [âj , b̂j ]}|X ]

= T1 − T2 + T3, (49)

and EiZij = E[K1jX1j(T1 − T2 + T3)]. First by the independency of [ãj , b̃j ] and (X1, Y1) and

the continuity of G1(.|X), we have

T1 = E[{G1(a1 − ãj − b̃jt;X1)−G1(0;X1)}b̃j ] (50)

= g(X1)E{b̃j(a1 − ãj − b̃jt)}+ O{E(a1 − ãj − b̃jt)2}.

Using the expansions of (ãj , b̃j) as given in (21), we have

a1 − ãj − b̃jX
>
1jθ0 = a1 − aj + aj − ãj − b̃jX

>
1jθ0

=
1
2
m′′(X>

j θ0){(X>
1jθ0)2} −

1
2
m′′(X>

j θ0)h2 + O{(X>
1jθ0)3}

−bjδ
>
ϑ{(ν/µ)ϑ(Xj)−Xj} − bjδ

>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj)X>

1jθ0

−h2
[1
2
m

′′
(X>

j θ0){(fµ)′/(fg)}ϑ(Xj)−
1
6
m(3)(X>

j θ0)(fµ)ϑ(Xj)
]
X>

1jθ0

+{gf}−1
ϑ (Xj)

1
nh

n∑
i=1

ϕ1(X̃i, Ỹi)−
[
{gf}−1

ϑ (Xj)
1

nh2

n∑
i=1

ϕ2(X̃i, Ỹi)}
]
X>

1jθ0

+O{(nh/ log n)−3/4(1 + δϑ/h) + h3} (51)

where ϕ1(X̃i, Ỹi), ϕ2(X̃i, Ỹi) are IID zero-mean random variables and are independent of (X1, Y1).

Therefore, E(a1 − ãj − b̃jX
>
1jθ0)2 = o(|δϑ|+ n−1/2) uniformly in ϑ and

E[Kϑ
1jX1jT1] = E[Kϑ

1jg(X1)b̃1(a1 − ãj − b̃jX
>
1jθ0)] + o(h|δϑ|+ n−1/2h) (52)

= hδ>ϑb2
j{(ν/µ)ϑ(Xj)−Xj}{νϑ(Xj)−Xjµϑ(Xj)}+ O(h2|δϑ|) + o(hn−1/2)

uniformly in ϑ, where we have used (23).

Now based on the expansion of b̃j − bj , we have

E[Kϑ
1jX1jT2] = bjE[Kϑ

1jX1j{ϕ(Y1 − ãj − b̃jX
>
ijθ0)− ϕ(ε1)}I{[ãj , b̃j ] 6= [âj , b̂j ]}] + o(n−1/2h)

= o(n−1/2h) + o(hδϑ) (53)
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uniformly in ϑ, where the last step is due to the fact that P ([ãj , b̃j ] 6= [âj , b̂j ]) = O{(nh/ log3 n)−1/4}.

Similarly we have E[Kϑ
1jX1jT2] = o(n−1/2h) + o(hδϑ). This together with (52) and (53) yields

(46).

To prove (47), first note that

ϕ(Yi − âj − b̂jθ
>
0 Xij)− ϕ(εi) = [ϕ(Yi − âj − b̂jθ

>
0 Xij)− ϕ(Yi − aj − bjθ

>
0 Xij)]

+[ϕ(Yi − aj − bjθ
>
0 Xij)− ϕ(εi)].

Therefore, based on Lemma 6.14, it suffices to show that∑
i,j

(Zij − EZij) = O(nhδϑ), Zij = Kϑ
ij b̂jXij{ϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi)}

Due to Borel-Cantelli Lemma and the fact that for any ε > 0,

P{|
∑
i,j

(Zij − EZij)| ≥ εn2hδϑ} ≤ nP{|
∑

i

(Zij − EZij)| ≥ εnhδϑ},

the problem is further reduced to prove that for any ε > 0, the quantity

P{|
∑

i

(Zij − EZij)| ≥ εnhδϑ}

is summable over n.

Let Z̃ij = Kϑ
ijbjXij{ϕ(Yi− aj−bjθ

>
0 Xij)−ϕ(εi)}. As Z̃ij is bounded and EZ̃2

ij = h(h2 +δ2
ϑ),

applying Bernstein’s inequality, we have

P{|
∑

i

(Zij − EZij)| ≥ εnhδϑ} ≤ C exp
{
−

ε2n2h2δ2
ϑ

nh3 + nhδ2
ϑ + εnhδϑ

}
= o(n−2).

Now it remains to show that

(b̂j − bj)
∑

i

Kϑ
ijXij{ϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi)} = o(nhδϑ) (54)

By expansion of b̂j − bj in (21),

b̂j − bj = h2
[1
2
m

′′
(X>

j θ0){(fµ)′/(fg)}ϑ(Xj)−
1
6
m(3)(X>

j θ0){(fµ)/(fg)}ϑ(Xj)
]

+bjδ
>
ϑ{(µν ′ − µ′ν)/µ2}ϑ(Xj) +

1
nh2

n∑
i=1

ϕ2(Xi, Yi) + O{(nh/ log n)−3/4/h}
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where Eϕ2(Xi, Yi) = 0. As ϕ(.) is bounded, we need not worry about the deterministic(bias)

term in b̂j − bj . For the stochastic part, write

(nh2)−1
∑
i,l

Kϑ
ijK

ϑ
ljXijϕ2(Xl, Yl)[ϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi)]

= (nh2)−1
∑

i

Kϑ
ijXijϕ2(Xi, Yi)[ϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi)]

+(nh2)−1
∑
i6=l

Kϑ
ijXijϕ2(Xl, Yl)[ϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi)] (55)

Again as both ϕ(.) and ϕ2(.) are bounded, handling of the first term is trivial. Now define

ϕ1(Xi, Yi) = Kϑ
ijXijϕ(Yi − aj − bjθ

>
0 Xij)− ϕ(εi),

whence c ≡ Eϕ1(Xi, Yi) = O(h3 +hδ2
ϑ) and the second term in (55) is (nh2)−1(T1 + cT2), where

T1 =
∑
i<l

[ϕ2(Xl, Yl){ϕ1(Xi, Yi)− c}+ ϕ2(Xi, Yi){ϕ1(Xl, Yl)− c}], T2 =
∑
i<l

{ϕ2(Xl, Yl) + ϕ2(Xi, Yi)}

By the law of the iterated logarithm of U-statistics in Giné et al (Lemma 6.6), T1/h = O(n log log n)

almost surely. On the other hand, by law of the iterated logarithm for U-statistics in Korolyuk

et al (Lemma 6.7), T2 = n3/2(h log log n)1/2 a.s. Since c = O(h3 + hδ2
ϑ), (nh2)−1(T1 + cT2) =

O{h−1 log log n + (nh3 log log n)1/2 + δ2
ϑ(n log log n/h)1/2} = o(nhδϑ).

Proof of (48) can be done in exact the same manner as (54). �

The proof of (31) consists of the following two Lemmas.

Lemma 6.12 Let R∗
n2(θ) =

∑
i,j

Kϑ
ij

[
ρ(Yi− âj− b̂jθ

>Xij)−ρ(Yij)−δ>θ ϕ(Yi−aj−bjX
>
ijθ0)b̂jXij

]
.

Then for any fixed θ, with probability 1,

(n2ha2
nϑ)−1[R∗

n2(θ)− ER∗
n2(θ)] = o(1). (56)

uniformly in ϑ.

Proof Define Xix = Xi − x, µix = (1, X>
ix)>, Kix = K(X>

ixϑ/h), β(x) = [m(θ>0 x),m′(θ>0 x)θ>0 ]>

and ϕni(x; t) = ϕ(Yi;µ>ixβ(x) + t). For any α, β ∈ Rd+1, let

Φni(x;α, β) = Kix

[
ρ{Yi;µ>ix(α + β + β(x))} − ρ{Yi;µ>ix(β + β(x))})− ϕni(x; 0)µ>ixα

]
= Kix

µ>ix(α+β)∫
µ>ixβ

{ϕni(x; t)− ϕni(x; 0)}dt
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and Rni(x;α, β) = Φni(x;α, β)− EΦni(x;α, β). Apparently,

Kϑ
ij

[
ρ(Yi − âj − b̂jθ

>Xij)− ρ(Yij)− δ>θ ϕ(Yi − aj − bjX
>
ijθ0)b̂jXij

]
≡ Φni(Xj ;α, β)

with α = [0, b̂jδ
>
θ ]> and β = [âj − aj , (b̂j − bj)θ>0 ]>. Let [ax, bx] ≡ [m(θ>0 x),m′(θ>0 x)] and D be

any compact subset of the support of X. For any M > 0 and ϑ ∈ Θn, define

Mϑ
n1 = Canϑ, Mϑ

n2 = C{|δϑ|+ (nh/ log n)−1/2},

Mϑ
n3 = C{|δϑ|+ (nh/ log n)−1/2/h}, B(1)

n = {α ∈ Rd+1|α = [0, α>1 ]>, |α1| ≤ Mϑ
n1}

B(2)
n = {β ∈ Rd+1|β = [b1, b2θ

>
0 ]>, |b1| ≤ Mϑ

n2, |b2| ≤ Mϑ
n3}.

As |b̂jδθ| ≤ Canϑ, |âj−aj | = O{|δϑ|+(nh/ log n)−1/2} and |(b̂j−bj)| = O{|δϑ|+(nh/ log n)−1/2/h},

(56) will follow if for any ε > 0

sup
x∈D

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

|
n∑

i=1

Rni(x;α, β)| ≤ εdn almost surely, dn = nha2
nϑ (57)

This is done in a similar style as Lemma 4.2 in Kong et al(2008). Cover D by a finite number

Tn of cubes Dk = Dn,k with side length ln = O{h(nh/ log n)−1/4} and centers xk = xn,k. Write

sup
x∈D

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

|
n∑

i=1

Rni(x;α, β)| ≤ max
1≤k≤Tn

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

Φni(xk;α, β)− EΦni(xk;α, β)
∣∣∣

+ max
1≤k≤Tn

sup
x∈Dk

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

{
Φni(xk;α, β)− Φni(x;α, β)

}∣∣∣
+ max

1≤k≤Tn

sup
x∈Dk

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

{
EΦni(xk;α, β)− EΦni(x;α, β)

}∣∣∣
≡Q1 + Q2 + Q3.

In Lemma 6.13, we will prove that Q2 = o(dn), a.e., whence Q3 ≤ EQ2 = o(dn). It thus remains

to show that Q1 ≤ εdn/3 a.e., we follow a similar proof style as in Lemma 4.2 in Kong et al

(2008).

Partition B
(i)
n , i = 1, 2 into a sequence of sub rectangles D

(i)
1 , · · · , D

(i)
J1

, i = 1, 2, such that

for all 1 ≤ j1 ≤ J1 ≤ Md+1 (M = ε−1)

∀ α, α′ ∈ D
(1)
j1

, |α− α′| ≤ Mϑ
n1/M ;

∀ β = [b1, b2θ
>
0 ]>, β′ = [b′1, b

′
2θ
>
0 ]> ∈ D

(2)
j1

, |b1 − b′1| ≤ Mϑ
n2/M, |b2 − b′2| ≤ Mϑ

n3/M
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Choose a point αj1 ∈ D
(1)
j1

and bk1 ∈ D
(2)
k1

, 1 ≤ j1, k1 ≤ J1. Then

sup
α ∈ B

(1)
n

β ∈ B
(2)
n

|
∑

i

Rix(α, β)| ≤ max
1≤j1,k1≤J1

sup
α ∈ D

(1)
j1

,

β ∈ D
(2)
k1

|
n∑

i=1

{Rix(αj1 , bk1)−Rix(α, β)}|

+ max
1≤j1,k1≤J1

|
n∑

i=1

Rix(αj1 , βk1)| = Hn1 + Hn2. (58)

We first show that any ε > 0

P
{

Hn2 ≥
εdn

2

}
≤ J2

1P
{
|

n∑
i=1

Rix(αj1 , βk1)| ≥
εdn

2

}
= O(n−a), (59)

for some a > 1. By Bernstein’s Inequality and the fact that |Rix(αj1 , βk1)| ≤ Canϑ and

VarRix(αj1 , βk1) = O[nha2
nϑ{anϑ + (nh/ log n)−1/2}], we have

TnJ2
1P

{
|

n∑
i=1

Rix(αj1 , βk1)| ≥
εdn

2

}
= TnJ2

1 exp[−ε2nhanϑ{1 + anϑ(nh/ log n)1/2)}] = O(n−a),

for some a > 1. Therefore, (59) holds.

We next consider Hn1. For each j1 = 1, · · · , J1 and i = 1, 2, partition each rectangle D
(i)
j1

further into a sequence of subrectangles D
(i)
j1,1, · · · , D

(i)
j1,J2

. Repeat this process recursively as

follows. Suppose after the lth round, we get a sequence of rectangles D
(i)
j1,j2,··· ,jl

with 1 ≤ jk ≤

Jk, 1 ≤ k ≤ l, then in the (l+1)th round, each rectangle D
(i)
j1,j2,··· ,jl

is partitioned into a sequence

of subrectangles {D(i)
j1,j2,··· ,jl,jl+1

, 1 ≤ jl ≤ Jl} such that for all 1 ≤ jl+1 ≤ Jl+1,

∀ a, a′ ∈ D
(i)
j1,j2,··· ,jl,jl+1

, |a− a′| ≤ Mϑ
n1/M

l+1,

∀ β = [b1, b2θ
>
0 ]>, β′ = [b′1, b

′
2θ
>
0 ]> ∈ D

(2)
j1,j2,··· ,jl,jl+1

, |b1 − b′1| ≤
Mϑ

n2

M l+1
, |b2 − b′2| ≤

Mϑ
n3

M l+1

where Jl+1 ≤ Md+1. End this process after the (Ln + 2)th round, with Ln being the largest

integer such that

n(2/M)Ln > dn/Mϑ
n2 (60)

Let D
(i)
l , i = 1, 2, denote the set of all subrectangles of D

(i)
0 after the lth round of partition

and a typical element D
(i)
j1,j2,··· ,jl

of D
(i)
l is denoted as D

(i)
(jl)

. Choose a point α(jl) ∈ D
(1)
(jl)

and
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β(jl) ∈ D
(2)
(jl)

and define

Vl =
∑
(jl+1)
(kl+1)

P
{∣∣∣ n∑

i=1

{Rix(α(jl), β(kl))−Rix(α(jl+1), β(kl+1))}
∣∣∣ ≥ εdn

2l+1

}
, 1 ≤ l ≤ Ln + 1,

Ql =
∑
(jl)
(kl)

P
{

sup
α ∈ D

(1)
(jl)

,

β ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(α(jl), β(kl))−Rix(α, β)}
∣∣∣ ≥ εdn

2l

}
, 1 ≤ l ≤ Ln + 2.

Then Ql ≤ Vl + Ql+1, 1 ≤ l ≤ Ln + 1. On the other hand, it is easy to see that for any

α ∈ D
(1)
(jLn+2) and β ∈ D

(2)
(kLn+2),

n|Rix(α(jLn+2), β(kLn+2))−Rix(α, β)| ≤ nMϑ
n2/MLn+2 ≤ εdn/2Ln+2

due to the choice of Ln specified in (60). Therefore, QLn+2 = 0 and it remains to show that

TnP{Hn1 ≥
εdn

2
} ≤ TnJ2

1Q1 ≤ TnJ2
1

Ln+1∑
l=1

Vl = O(n−a), for some a > 1 (61)

To find upper bound for Vl, 1 ≤ l ≤ Ln + 1, we again apply Bernstein’s inequality. As

|Rix(α(jl), β(kl))−Rix(α(jl+1), β(kl+1))| ≤ C{|α(jl) − α(jl+1)|+ |β(kl) − β(kl+1)|(δϑ + h)} ≡ Mϑ
n2

M l
,

E|Rix(α(jl), β(kl))−Rix(α(jl+1), β(kl+1))|2 ≤ h(Mϑ
n2)

3/M l,

we have

Vl ≤
( l+1∏

j=1

J2
j

)
exp[−ε2nh{1 + anϑ(nh/ log n)1/2}],

and (61) thus holds. This together with (59) completes the proof. �

Lemma 6.13 Q2 ≤ Mdn a.e., for all large enough M > 0, where

dn = nha2
nϑln/h{1 + a−1

nϑ(nh/ log n)−1/2} = o(nha2
nϑ),

if nh3/(log n)3 →∞.

Proof Let Xik = Xi − xk, µik = (1, X>
ik)
>, Kik = K(X>

ikϑ/h) and write Φni(xk;α, β) −

Φni(x;α, β) = ξi1 + ξi2 + ξi3, where

ξi1 =
(
Kikµik −Kixµix

)>
α

∫ 1

0

{
ϕni(xk;µ>ik(β + αt))− ϕni(xk; 0)

}
dt,

ξi2 = Kixµ>ixα

∫ 1

0

{
ϕni(xk;µ>ik(β + αt))− ϕni(x;µ>ix(β + αt))

}
dt,

ξi3 = Kixµ>ixα{ϕni(x; 0)− ϕni(xk; 0)}.
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Then P (Q2 > M3/2dn/3) ≤ Tn(Pn1 + Pn2 + Pn3), where

Pnj ≡ max
1≤k≤Tn

P
(

sup
x∈Dk

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

|
n∑

i=1

ξij | ≥ M3/2dn/9
)
, j = 1, 2, 3.

Based on Borel-Cantelli lemma, Q2 ≤ M3/2dn almost surely, if
∑

n TnPnj < ∞, j = 1, 2, 3.

Again this can be accomplished through similar approach in Lemma 5.1 in Kong et al(2008).

We only deal with Pnj to illustrate.

First note that if ξi1 6= 0,then either Kik 6= 0 or Kix 6= 0. Without loss of generality, suppose

Kik 6= 0, i.e. |X>
ixϑ| ≤ h, whence |X>

ixθ0| ≤ h + |δϑ| and |µ>ik(β + αt)| ≤ C{M (1)
nϑ + M

(2)
nϑ }.

For any fixed α ∈ B
(1)
n and β ∈ B

(2)
n , let Iα,β

ik = 1, if there exists some t ∈ [0, 1], such that

there are discontinuity points of ϕ(Yi − a) between µ>ik(β(xk) + β + αt)) and µ>ikβp(xk); and

Iα,β
ik = 0, otherwise. Write ξi1 = ξi1I

α,β
ik + ξi1(1− Iα,β

ik ). As |(Kikµik −Kixµix)>α| ≤ CM
(1)
nϑ ln/h

and |µ>ik(β + αt)| ≤ CM
(2)
nϑ , we have

|ξi1(1− Iα,β
ik )| ≤ CM1

nϑM2
nϑln/h = o(a2

nϑ)

uniformly in i, α, β and x ∈ Dk, if nh3/ log n3 →∞. Let Uik = I{|X>
ikϑ| ≤ 2h}. As ξi1 = ξi1Uik

(because ln = o(h)), we have

P
(

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

sup
x∈Dk

∣∣∣ n∑
i=1

ξi1(1− Iα,β
ik )

∣∣∣ >
Mdn

18

)
≤ P

( n∑
i=1

Uik >
Mnh

18C

)

≤ P
(
|

n∑
i=1

Uik − EUik| >
Mnh

36C

)
, (62)

where the second inequality follows from the fact that EUik = O(h). We can then apply to (62)

Bernstein’s inequality for independent data or Lemma 5.4 in Kong et al(2008) for dependent

case, to obtain the below result

TnP
(

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

ξi1(1− Iα,β
ik )

∣∣∣ > Mdn/18
)

is summable over n, (63)

whence
∑

n TnPn1 < ∞, is equivalent to

TnP
(

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

ξi1I
α,β
ik

∣∣∣ > Mdn/18
)

is summable over n. (64)
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To this end, first note that Iα,β
ik ≤ I{εi ∈ Sα,β

i;k }, where

Sα,β
i;k =

m⋃
j=1

⋃
t∈[0,1]

[aj −A(Xi, xk) + µ>ik(β + αt), aj −A(Xi, xk)]

⊆
m⋃

j=1

[aj − CM
(2)
nϑ , aj + CM

(2)
nϑ ] ≡ Dn, for some C > 0,

A(x1, x2) = m(x>1θ0)−m(x>2θ0)−m′(x>1θ0)(x1 − x2)>θ0

where in the derivation of Sα,β
i;k ⊆ Dn, we have used the fact that |Xik| ≤ 2h, µ>ik(β + αt) =

O(M (2)
n ) and A(Xi, xk) = O(h2 + |δϑ|2) = o(M (2)

n ) uniformly in i. As Iα,β
ik ≤ I{εi ∈ Dn}, we

have |ξi1|Iα,β
ik ≤ |ξi1|Uni, where Uni ≡ I(|Xik| ≤ 2h)I{εi ∈ Dn}, which is independent of the

choice of α and β. Therefore,

P
(

sup
α ∈ B

(1)
n ,

β ∈ B
(2)
n

∣∣∣ n∑
i=1

ξi1I
α,β
ik

∣∣∣ > Mdn/18
)
≤ P

( n∑
i=1

Uni > MnhM (2)
n /(18C)

)

≤ P
( n∑

i=1

(Uni − EUni) >
MnhM

(2)
n

36C

)
, (65)

where the first inequality is because |ξi1| ≤ CManϑln/h and the second one because EUni =

O(hM
(4)
n ). Similar to (62), we could apply either Bernstein’s inequality for independent data or

in dependent case Lemma 5.4 in Kong et al(2008) to see that (64) indeed holds. �

Lemma 6.14
∑

i,j Zij − EZij = o(n2hanϑ), where

Zij = Kij [ϕ(Yi − aj − bjθ
>
0 Xij)− ϕ(Yi − âj − b̂jθ

>
0 Xij)]b̂jXij (66)

Proof As âj − aj = O(anϑ), (b̂j − bj) = O{anϑ + (nh/ log n)1/2/h} and for any ε > 0,

P
{
|
∑
i,j

Zij − EZij | ≥ εn2hanϑ

}
≤ nP

{
|
∑

i

Zij − EZij | ≥ εnhanϑ

}
then (66) would follow if we could show that for any x,

P{ sup
α ∈ B

(1)
n

β ∈ B
(2)
n

|
∑

i

Rix(a, b)| ≥ εnhanϑ} = O(n−a) for some a > 2, (67)

where B
(1)
n = {a ∈ R : |a−ax| ≤ canϑ}, B

(2)
n = {b ∈ R : |b−bx| ≤ c{anϑ+(nh/ log n)1/2/h}}, ax =

m(θ>0 x), bx = m′(θ>0 x), Rix(a, b) = Zix(a, b)− EZix(a, b) and

Zix(a, b) = KixXix[ϕ(Yi − ax − bxθ>0 Xix)− ϕ(Yi − a− bθ>0 Xix)], Kix = K(X>
ixϑ/h)
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To this end, partition B
(i)
n , i = 1, 2 into a sequence of sub rectangles D

(i)
1 , · · · , D

(i)
J1

, i = 1, 2

such that

|D(i)
j1
| = sup

{
|a− a′| : a, a′ ∈ D

(i)
j1

}
≤ M (i)

n /M, 1 ≤ j1 ≤ J1; M ≡ ε−1

where M
(1)
n = canϑ, M

(2)
n = c{anϑ + (nh/ log n)1/2/h} and J1 ≤ M . Choose a point aj1 ∈ D

(1)
j1

and bk1 ∈ D
(2)
k1

. Then

sup
a ∈ B

(1)
n

b ∈ B
(2)
n

|
∑

i

Rix(a, b)| ≤ max
1≤j1,k1≤J1

sup
a ∈ D

(1)
j1

,

b ∈ D
(2)
k1

|
n∑

i=1

{Rix(aj1 , bk1)−Rix(a, b)}|

+ max
1≤j1,k1≤J1

|
n∑

i=1

Rix(aj1 , bk1)| = Hn1 + Hn2. (68)

We first consider Hn2.

P
{

Hn2 ≥
εnhanϑ

2

}
≤ J2

1P
{
|

n∑
i=1

Rix(aj1 , bk1)| ≥
εnhanϑ

2

}
As Rix(aj1 , bk1) is bounded and VarRix(aj1 , bk1) = O{h(anϑ + (nh/ log n)−1/2}, then by Bern-

stein’s Inequality

J2
1P

{
|

n∑
i=1

Rix(aj1 , bk1)| ≥
εnhanϑ

2

}
≤ CJ2

1 exp{−ε2n1/2h3/2} = O(n−a),

for some a > 2.

We next consider Hn1. For each j1 = 1, · · · , J1 and i = 1, 2, partition each rectangle D
(i)
j1

further

into a sequence of subrectangles D
(i)
j1,1, · · · , D

(i)
j1,J2

. Repeat this process recursively as follows.

Suppose after the lth round, we get a sequence of rectangles D
(i)
j1,j2,··· ,jl

with 1 ≤ jk ≤ Jk, 1 ≤

k ≤ l, then in the (l + 1)th round, each rectangle D
(i)
j1,j2,··· ,jl

is partitioned into a sequence of

subrectangles {D(i)
j1,j2,··· ,jl,jl+1

, 1 ≤ jl ≤ Jl} such that

|D(i)
j1,j2,··· ,jl,jl+1

| = sup
{
|a− a′| : a, a′ ∈ D

(i)
j1,j2,··· ,jl,jl+1

}
≤ M (i)

n /M l+1, 1 ≤ jl+1 ≤ Jl+1,

where Jl+1 ≤ M . End this process after the (Ln +2)th round, with Ln being the smallest integer

such that

(2/M)Ln > anϑ/M
(2)
nϑ [which means 2Ln ≤ {M (2)

nϑ /anϑ}log (M/2)/ log 2] (69)

Let D
(i)
l , i = 1, 2, denote the set of all subrectangles of D

(i)
0 after the lth round of partition

and a typical element D
(i)
j1,j2,··· ,jl

of D
(i)
l is denoted as D

(i)
(jl)

. Choose a point a(jl) ∈ D
(1)
(jl)

and
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b(jl) ∈ D
(2)
(jl)

and define

Vl =
∑
(jl)
(kl)

P
{∣∣∣ n∑

i=1

{Rix(ajl
, bkl

)−Rix(ajl+1
, bkl+1

)}
∣∣∣ ≥ εnhanϑ

2l+1

}
, 1 ≤ l ≤ Ln + 1,

Ql =
∑
(jl)
(kl)

P
{

sup
a ∈ D

(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}
∣∣∣ ≥ εnhanϑ

2l

}
, 1 ≤ l ≤ Ln + 2.

Then Ql ≤ Vl + Ql+1, 1 ≤ l ≤ Ln + 1. We first give a bound for Vl, 1 ≤ l ≤ Ln + 1. As

Rix(ajl
, bkl

)−Rix(ajl+1
, bkl+1

) is bounded and

E|Rix(ajl
, bkl

)−Rix(ajl+1
, bkl+1

)|2 ≤ h{anϑ + (nh/ log n)−1/2}/M l+1

applying Bernstein’s Inequality and using (69), we have

Vl ≤
( l+1∏

j=1

J2
j

)
exp[−ε2nh min{anϑ, a2

nϑ(nh/ log n)1/2}] ≤
( l+1∏

j=1

J2
j

)
exp(−ε2n1/2h3/2) (70)

We now focus on QLn+2. Recall the definition of Zix(a, b)

Zix(a, b) = Kix[ϕ(Yi − ax − bxθ>0 Xix)− ϕ(Yi − a− bθ>0 Xix)]Xix.

For any a ∈ D
(1)
(jl)

and b ∈ D
(2)
(kl)

, let Ia,b
i = 1, if there is a discontinuity point of ϕ(.) between

Yi − ajl
− bkl

θ>0 Xix and Yi − a− bθ>0 Xix and Ia,b
i = 0 otherwise. Write

Rix(ajl
, bkl

)−Rix(a, b) = {Rix(ajl
, bkl

)−Rix(a, b)}Ia,b
i + {Rix(ajl

, bkl
)−Rix(a, b)}(1− Ia,b

i ).

Then we have |{Rix(ajl
, bkl

)−Rix(a, b)}(1−Ia,b
i )| ≤ C{anϑ+(nh/ log n)−1/2}/M l and specifically

for l = Ln + 2

P
{

sup
a ∈ D

(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}(1− Ia,b
i )

∣∣∣ ≥ εnhanϑ

2Ln+3

}

≤ P
{ n∑

i=1

Ui ≥
1
8
Mnh

}
≤ P

{ n∑
i=1

Ui − EUi ≥
Mnh

16

}
where Ui = I{|X>

ixϑ| ≤ h} and the first inequality is due to (69). By Bernstein’s inequality, this

in turn implies that for l = Ln + 2( l+1∏
j=1

J2
j

)
P

{
sup

a ∈ D
(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}(1− Ia,b
i )

∣∣∣ ≥ εnhanϑ

2Ln+3

}
= O(n−a), (71)
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for some a > 2. Now we have to show similar result for

( l+1∏
j=1

J2
j

)
P

{
sup

a ∈ D
(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}Ia,b
i

∣∣∣ ≥ εnhanϑ

2Ln+3

}
, l = Ln + 2.

Note that for any a ∈ D
(1)
(jl)

and b ∈ D
(2)
(kl)

, Ia,b
i ≤ I{Yi ∈ Si}, where

Si = [ajl
+ bkl

θ>0 Xix − CM (2)
n /M l, ajl

+ bkl
θ>0 Xix + CM (2)

n /M l],

which is independent of a, b. Let Ui = I{|X>
ixϑ| ≤ h}I{Yi ∈ Si}. As Rix(ajl

, bkl
) − Rix(a, b) is

bounded, we have for l = Ln + 2,

P
{

sup
a ∈ D

(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}Ia,b
i

∣∣∣ ≥ εnhanϑ

2Ln+3

}

≤ P
{ n∑

i=1

Ui ≥
εnhanϑ

C2Ln+2

}
≤ P

{ n∑
i=1

Ui − EUi ≥
εnhanϑ

C2Ln+4

}
(72)

where the second inequality is due to (69). Applying Bernstein’s inequality to the right hand

side of (Bern) and observing (69) lead to

( l+1∏
j=1

J2
j

)
P

{
sup

a ∈ D
(1)
(jl)

,

b ∈ D
(2)
(kl)

∣∣∣ n∑
i=1

{Rix(ajl
, bkl

)−Rix(a, b)}Ia,b
i

∣∣∣ ≥ εnhanϑ

2Ln+3

}
= O(n−a), for l = Ln + 2

for some a > 2. This together with (71) implies that QLn+2 = O(n−a) for some a > 2. Therefore,

based on (70), we have

P
{

Hn2 ≥
εnhanϑ

2

}
≤ Q1 ≤

Ln+1∑
l=1

Vl + QLn+2 = O(n−a),

for some a > 2. �

Lemma 6.15 All eigenvalues of S−1
2 Ω1 are nonnegative and strictly smaller than 1; ϑ is the

only eigenvector of S−1
2 Ω1 corresponding to eigenvalue 0.

Proof By the definition of S2 and Ω1 and the Cauchy-Schwarz Inequality that

E{g(X)(X − x)|X>ϑ = x>ϑ}E{g(X)(X − x)|X>ϑ = x>ϑ}>

≤ E{g(X)|X>ϑ = x>ϑ}E{g(X)(X − x)(X − x)>|X>ϑ = x>ϑ},
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we know for any ϑ1, if ϑ>1 (S2 − Ω1)ϑ1 = 0, then for any x, there exists some C, such that

{g(X)}1/2ϑ>1 (X − x) ≡ C{g(X)}1/2, for all X>ϑ = x>ϑ ⇒ ϑ1 ≡ ϑ (73)

We need the following assumptions. For any ϑ1, ϑ2 ∈ Θ,

E{g(X)ϑ>2 (X − x)(X − x)>ϑ2|ϑ>1X = ϑ>1x} = 0, for any x ∈ Rd ⇒ ϑ1 ≡ ϑ2. (74)

E{g(X)ϑ>2 (X − x)|ϑ>1X = ϑ>1x} = 0, for any x ∈ Rd ⇒ ϑ1 ≡ ϑ2. (75)

For any nonzero eigenvalue λ and corresponding eigenvector x(6= ϑ)

S−1
2 Ω1x = λx ⇒ Ω1x = λS2x ⇒ x>Ω1x = λx>S2x ⇒ λ > 0

Next we show that λmax < 1 by contradiction. If not, suppose x is the corresponding eigenvector,

S−1
2 Ω1x = λmaxx ⇒ Ω1x = λmaxS2x ⇒ x>Ω1x = λmaxx>(Ω1 + S2 − Ω1)x

⇒ (1− λmax)x>Ω1x = x>(S2 − Ω1)x ≤ 0
(73)⇒ x ≡ ϑ ⇒ λmax = 0

(S2 + θ0θ
>
0 )−1(Ω1 + θ0θ

>
0 )x = λmaxx ⇒ (Ω1 + θ0θ

>
0 )x = λmax(S2 + θ0θ

>
0 )x

⇒ x>(Ω1 + θ0θ
>
0 )x = λmaxx>(S2 + θ0θ

>
0 )x ⇒ x>Ω1x ≥ λmaxx>S2x(∵ λmaxx ≥ 1)

which contradicts the fact that S2 − Ω1 > 0 if x 6= θ0. �
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