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Abstract Single-index model is one of the most popular semiparametric model
in Econometrics. In this paper, we define a quantile regressive single-index model,
which includes the single-index structure for conditional mean and for conditional
variance.
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1 Introduction

Regression quantiles, along with the dual methods of regression rank scores, can be considered
one of the major statistical breakthroughs of the past decades. Its advantages over the other
estimation methods have been well investigated. Regression quantile methods provide a much
more complete statistical analysis of the stochastic relationships among variables; in addition,
they are more robust against possible outliers or extremely values, and can be computed via
traditional linear programming methods. Although median regression ideas go back to the 18th
century and the work of Laplace, regression quantile methods were first introduced by Koenker
and Bassett (1978). The linear regression quantile is very useful, but like linear regression it is
not flexible to capture complicated relations. For quantile regression, this disadvantage is even

worse. As an example, consider the popular AR(1)-ARCH(1) model:

Yt = g +oyi—1 + &, & = oz, 2 ~ 11D

of = Bo+ Bigi_1, Bo >0, B >0,
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which cannot be fitted well by the linear quantile model.

In this paper, we focus on an important special case when the loss function is specified as
pr(v) =7I(v>0)v+ (7 —1)I(v < 0)v, (1)

where 0 < 7 < 1 and I(.) is the identity function, leading to the 7th quantile regression, see
Koenker and Bassett (1978).

Under nonparametric setting, we can state the problem as follows. Suppose Y is the response
variable and X € R are the covariates. For loss function p,(.), we are interested in a function

x, m,(z), such that
m,(x) = argmin E{p,[Y — m,(X)]|X =z} with respect to m € L (2)

Function m,(x) is called the 7—th quantile nonparametric regression function of ¥ on X. The
application of nonparametric quantile estimation has been intensively investigated in the litera-
ture. See for example Koenker (2005) and Kong et al (2008). As in nonparametric estimation of
the conditional mean function, there is the “curse of dimensionality” in estimation the general
multiple function m,(z). The dimension reduction approach can thus be applied here, which is

equivalent to approximate

m, (0" ) = argmin E{p,(Y —m(0' X))|X =z} with respect to 6 € © and m € L, (3)
where © = {6 : |#] = 1}. More ideally, we come to a single-index quantile model

Y =m0y X)+e, E(p(e)|X) =0, as. (4)
A typical model is the general single-index model,
Y =g(0) X, ¢)
where ¢ is independent of X. Under such model specification, it is easy to see that
me(z) = g+ (0 x) = Irgn{v - P(g(0g z,¢) <v) > 7}
For the conditional heteroscadiscity model, where g(6] X,¢) = g(6] X)e, we even have
me(2) = g(6] X)@r (&)

where Q- () is the 7—th quantile of €. An interesting special case for this setting is the ARCH(p)

model, where X = (y2 1, ..., yf_p)T and Y = y; in a time series setting.



Our main focus is the estimation of §y. Suppose {X;,Y;}? ; are L.LD. observations from
underlying model (4). We propose to estimate the index parameter 6y by

n n
0 = argmin min DD KO Xi/h)p(Yi — aj — b6 Xij),  Xij = X; - X; (5)
I =1 j=1

where K(.) is a kernel function and A is a bandwidth. The minimization in (5) can be realized
through iteration. First for any initial estimate ¥ € ©, denote by [ay(x), bg(z)], the minimizer
of
Z K" Xiw/h)p(Y; —a — b0 X;,;)  with respect to a and b, (6)
i=1
where X;, = X; — z. The estimate of 0y is then updated by
6 = argmin Y N K (0" Xi5/h)p{Y; — as(X;) — by(X;)0" X5} (7)

0cO
€S0

Repeat (6) and (7) until convergence. The true value 6y is thus estimated by the standardized
final estimate 0 := 6/|4)|.

2 Numerical studies

Again, the calculation of the above minimization problem can be decomposed into two mini-

mization problems.

e Fixing 6 = ¢ and wfj = Kh(ﬁTXij), the estimation of a; and d; are
n
> oY —a; — di9 Xy b
i=1

e Fixing a; and d;, the minimization respect to ¢ can be done as follows. Again, let

Y = Yiwh)V? — a; (w2, X[ = diXy (w2

Then the problem becomes
n
min | p{V} - 0T X5}
ij=1
Suppose the solution to the above problem is 6. Standardize it to 0 := 6/||6)|.

Set 1 = 6 and repeat the two steps until convergence. Note that both steps are simple linear
quantile regression problems and that several efficient algorithms are available, see Koenker

(2005).



Example 2.1 (Single-index median regression) In this example we consider the following

model
y = exp{—5(6g X)*} + ¢, (8)

where X ~ X§/2Xy with Xo ~ N(0,15) and S = (0.5/3l)y; j<5. For the noise term, we
consider several distributions with both heavy tail and thin tails as well. For simplicity, we
consider the median regression only. As a comparison, we also run the MAVE where a least
square type estimation is used. With different sample sizes n = 100, 200, we carried out 100

replications. The calculation results are listed in Table 1.

Table 1: Estimation errors (and standard errors) for model (8) based on quadratic loss function
and 50% quantiles

Distribution of ¢

size | method 0.05t(1) 0.1(N(O0,1)*=3) | +/5t(5)/20 N(0,1)/4

100 | MAVE | 0.3641(0.3526) | 0.3530(0.3102) | 0.0401(0.0182) | 0.0581(0.0263)
qMAVE | 0.0902(0.1074) | 0.1512(0.1957) | 0.0833(0.0785) | 0.1146(0.0651)

200 | MAVE | 0.3381(0.3389) | 0.2859(0.2887) | 0.0232(0.0091) | 0.0373(0.0147)
qMAVE | 0.0681(0.1415) | 0.0581(0.0698) | 0.0402(0.0173) | 0.0652(0.0272)

the MAVE method with quadratic loss function has very bad performance when the noise
has heavy tail (e.g. #(1)) or is highly asymmetric (e.g. N(0,1)%). With the absolute value loss
function, the performance is much better. Even in the situation when the noise has thin tail

and symmetric, qMAVE still performance reasonably well.

3 Assumptions and asymptotic properties

We adopt model (4) throughout and make the additional assumption that {(X;,Y;)}2, are LID.
observations. The extension to the case of weakly dependent time series should be straightfor-
ward but complicates matters without adding anything conceptually. Furthermore, the following

conditions are assumed in the proofs of Theorem 6.1.

(Al) For each v € R, p(v) is absolutely continuous, i.e., there is a function ¢(.) such that
p(v 0)+ fo t)dt. The probability density function of ; is bounded and continuously
differentiable. E{cp(ai)]Xi} = 0 almost surely and El|p(g;)|"* < My < oo for some v > 2.

(A2) ¢(.) satisfies the Lipschitz condition in (a;,aj4+1), j =0,--- ,m, where a; < --- < ap, are

finite number of jump discontinuity points of ¢(.), ag = —o0 and a;,+1 = +00.



(A3) K(.) has a compact support, say [—1,1]%? and |v/ K (u) — v/ K(v)| < Cllu — v for all j
with 0 < [j] < 3.

(A4) The m(.) defined in (4) is bounded with continuous and bounded partial derivatives up
to the third order.

Note that (Al) and (A2) are satisfied in quantile regression. Based on (A1) and (A2), Hong
(2003) proved that there is a constant C' > 0, such that for all small ¢ and all x,

Bl{p(Y —t—a) = oY —a)}|X = 2| < Cl (9)
holds for all (a,z) in a neighborhood of {m(z"6y),z}. Define
G(t;x) = E{p{Y —m(z" ) + t}|X =z}, Gi(t,x) = (0'/0t")G(t;x), i =1,2,3. (10)

Then it holds that
g(x) = G2(0;2) > C >0

and G3(t,x) is continuous and uniformly bounded for all z € D and t near 0. For quantile
regression, g(x) = f.(0|z), where f.(.|z) is the conditional probability density function of

given X = z.

4 Initial estimate of 6,

We use the average derivative estimation (ADE, Hardle and Stocker, 1989; Chaudhuri et al.,

1997) method to obtain an initial estimate of 6y, observing the fact that
E[0m(0)X)/0X] = 6o E[0m(0) X)/0(6] X)).

First for any z € R? and a kernel function H(.) : R — RT which satisfies (43), denote by

[d(z), b(x)], the minimizer of the following quantity
> H(Xio/ho)plY; — a — b Xz
i=1

with respect to @ and b. An initial estimate of 6 is thus defined as

9= ié(xn /| ié(xjw. (1)



The consistency of 9 is guaranteed by the uniform Bahadur representation of {a(x),b(x)}, i.e.

with probability 1, for any compact set D € R? such that f(z) > 0

[l mith)
ho{b(a) — m'(62)d0)

uniformly in « € D, where

] = Bu(z) + O{(nh&/logn)~3/*} (12)

Bu(z) = —S ( )ZH(Xix/hg)go{Y; —m(Hga:) —m’(% )X 90}[ X2 /ho ]

d n
’I’Lh i=1

and Sy, (z) is the (d + 1) x (d + 1) matrix with its (j, k) entry given by
il (X / K(u)g(x + hou) f(x + hou)uk—1uj—1du.

where f(.) is the density function of X and u = (u1,--- ,uq) € R% If nhd™/logn < oo, then
according to Proposition 3.1 and Corollary 3.3 in Kong et al (2007), we have with probability

one,

b(z) =m' (6] )90—1— d+1 St ZH Xiz/ho)e )[ Xun/ho ] —1—O{hal(17(?51;1)3/4}7 (13)

0

uniformly in = € D. This in turn implies that with probability one,

S

SbK,) = wl(Gha)e + thdHZs X)X hae(e) | ]
=1

0 ij=1
rof* (50) ")

Through arguments as in Masry (1996), we know that

X )
th;H Xy /ho)olei) 52 = O (b logm) 112,

1 Xij _ _
vy > st (Xij /ho)p(e0) 32 = Ofhg ! (nht/ log n) /%),
7,7=1

Therefore, we have established the convergence rate of the initial estimator ¢ in (11)
b9 = 0 — 0 = O{hg'(nhd/logn)~1/%}, a.s. (14)

Next, we only need to consider parametric space ©,, = {0 : |6y| < Chg ' (nhd/logn)~1/2}.



5 Asymptotics of ag(x) and by(x)
Let a; = m(X]TGQ) and b; = m’(X;rHO). For any ¥ € ©,,, define
my(v) = argmin E{p(Y —a)| X" = v}.

Let fg(x) (res. Fy(x)) be the value of the probability density (res. distribution) function of ¥ X

at 9"z and define
Go(t,x) = E{p(Y —mg(x) + t)[9" X =9z}, G5(t,z) = (8"/0t)Gy(t,x), i = 1,2.

Suppose G%(t, ) is continuous and uniformly bounded in the neighborhood of {my(z),z} and
gv(z) = G3(my(z),z) > 0. With abuse of notation, let my(X;) and ml(X;) stand for mg(XTﬁ)
and m%(XJTﬁ) respectively. Denote by [a;, bj] = [ag(X), by(X ;)] the solution to (6) with x = Xj;.
Based on the uniform Bahadur representation of the local polynomial estimates of M-regression

function (e.g., Kong et al, 2007), we have

aj—my(X;) | _ 1 =\ s . 1 logn\3/4
[h{éj —m;()éj)}] = ki ;Kij“‘)%) [X;ﬁ/h} +o{(55) )
uniformly in X; € D, where S,,; = S,(X;) = {gf}o(X;)I[1 + O{h + (nh/logn)~'/?}], K =

K(X;Bﬁ/h) and Y5 = Y; —my(X;) —miy(X; )XTﬁ Hereinafter, {gf}g(.) = g9(.) fu(.). Moreover,

if nh®/logn < oo,

a; —my(X;) = f{gf}ﬁ ZKW Y7 +O{(kfh")3/4}, (15)

by = mh00)) = (0715000 3 et Ko+ o (257) )

uniformly in X; € D. In the Appendix, we further show that

mo(X;) — a5 = oL/ u)o(Xy) — X5} + o(ldul), (16)
M)~y = bidh (e — W) iYe(X)) + ol(8s)), a7)
Eje(V) = sm' (X]00)(a)o(X))h* + O(*) + o(hdy), (19)

ERp(VXG0 = mH{ (X 60) (F)5(X;)
— O (T 00) (100X, } + O59), (19)
where (v/12)g(X;) = vo(X]9) (X[ ) and

Ho(v) = Blg(X)|XT0 = v, wy(v) = Blg(X)X|X 0 = 0] (20)



Therefore, equation (15) could be rewritten as

aj—ay = gm (X]80)(1/0)o (X0 + o {(w/m)a(X,) — X}

logn

Hon) {07170 D er(x ¥ + o (B ot 1 hay) 1)
=1

bj—b = h2[1

s T80 () [(F)}o(X,) = 5 (XT00)(Fi)/(F) o X))

+bi0y { (1 — W'v) /1Yo (X5) + (nh®) " Haf 1 (X)) Z@z(Xz» Yi)

+0{h4 + hdy + (logh”) /4/h}

uniformly in j, where ¢1(X;,Y;) and p2(X;,Y;) are zero-mean L.I.D. random variables

01(X;, Y;) = K o(Yy5) — E[K] (Y] (22)
02(X;, Y;) = K p(Yi5) X [0/ h — E[K (Vi) X0/,

(21) is on the almost sure convergence of a; and I;j. As for the asymptotic bias and variance,

Welsh (1996) showed that for any = with f(.) > 0 in a neighborhood of z,
Eb(z) = my(9 ) + O(h), Varb(z) = O(n~'h7?), (23)

and the O(.) are uniformly in x in any compact set on which f(.) is strictly positive.

6 Asymptotics of 0

For previously obtained ¥, a;, l;j, j=1,---,n, suppose 6 minimizes 51')”(9), where
2
- h .
$,(0) = ,(0) + 2 (0= )OI (9 —0), (6 Z Z —aj — b0" X,).
1=1 j5=1

Let [, bj] = [a9(X;), by(X;)], K = K(X0/h) and Y;; = Y; — a; — b;X].00. Then with

abuse of notations, 0 also minimizes

B, (0) = B, (0) + n2h{%(0 — 00 90T (0 — 0p) + (o — 9) 9T (0 — 60)}
a; — b0 Xi;) — p(Yij)}- (24)
1

DI
i=1 j=
As |9 — 0| < any, 99" = 0p0] + O(any). Hence for any 6 with |6 — 6o < any,

D, (0) = ©,(0) + n2h{%(9 — 00) 006, (6 — 00) + (6o — D) 6006, (6 — 6)} + o(n>ha2y)



Write
®1(0) = E[@n(0)] + 0 {Rn1(0) = ERn1(0)} + Ru2(0) — ERn2(0),
where
Z Yig)biXijs Ruo(6 Z (Vi = = b67 X35) = p(Yig) = 8 p(Yig)by X5 .
Applying the results on E(®,(0)) in Lemma 6.10, we have
®,,(0) = 6) Rp1 + %5}(;”259{1 +0(1)} + Rn2(0) — ERn2(0), (25)
where

ZE KJg(X)b2X ;X1 = n?hS2{1 + o(1)},

5 = / [ (X7 00) Yoy (X) fy (X)X,

and wy(z) = E{g(X)(X — 2)(X —2)"|X"9 = 2" 9}. Naturally,

Dy, (0) = 6 (Rn1 + 0000 69) + %@(Gng + 0088)66{1 + 0(1)} + Rpa(8) — ERp2(0).

Our main result is as follows

Theorem 6.1 Suppose (A1)-(A4) hold. With vy(.) and py(.) as defined in (20), we have

0—0y = (Sy+000))" Z o(e)bi{wfo,(Xi) + (So + 006) 2008 6y

+(S2 + 606;) Zb2 (/1)9(X;) = X;} x {vo(X;) = Xjo(X;)} 69
|V — o] + 0( 1/2) (26)
= (S +600))" ng (e)bi{w [ oy (Xi) + (S2 + 0080) (1 + 606)) )b

+an|0 — 0| + o(n 1/2) (27)

almost surely, where wy(z) = E(X|X"0 = 270) — x, o, = o(1) uniformly in ¥ and

0 = nlggonlzbzueo W/ ey (X;) — X H v/ m)ey (X5) — X5}

/{m'(XT9o)}2ueo (O] 1)9y (X) = XH v/ 1)oo (X) — X} dFg, (X)



Remark 6.2 By multivariate Cauchy-Schwarz inequality, we have

E{g(X)(X — 2)|XT9 = 2T 9} E{g(X)(X —2) [XT0 = o 0}
—B{g(X)|XT9 = 2T 9} E{g(X)(X - 2)(X — ) | X9 = T 0} <.

This means that for any X,
wy(X) = pgy (X)) (/1) (X) — XH{(v/1)g,(X) — X}" is non-negative definite,
whence Sy — €1 > 0. In Lemma 6.15, we prove that if §y #£ 0,
0 < |(S2 + 608g) (1 + 6065 )3yl /|09] < 1. (28)
This implies that the impact on 6 — 6, of the deviance between ¥ and 6y decreases geometrically.

Remark 6.3 We prove Theorem 6.1 under the assumption that {(X;,Y;)}2, are L.L.D. obser-
vations. It is possible, however to extend this result for time series observations provided that
the time dependency (usually measured by mixing coefficient) are weak enough. For example,

the stationary *— mixing processes, which satisfies
|P(AB) — P(B)P(A)| < ¢(k)P(B)P(A) and ¢(k) — 0, ask — oo,

forall A€ F2, B e FJ, and F? is the o—algebra generated by {(X;,Y;)}o_,.

The rationality behind the above conjecture is that most of the Lemmas which are used in
the proof can be replaced by their counterparts in the time series setting, namely Lemma 6.5 by
Theorem 1.4 in Bosq (1998), and Lemma 6.7 by Theorem 2 in Sen (1972), as *— mixing implies
all the other types of mixing conditions (Ibragimov et al, 1971). The only issue is results is yet
unavailable on law of iterated logarithm for degenerated U-statistics of dependent observations;
that is whether Lemma 6.6 is still true for *— mixing processes. Heuristically it is, an evidence

is that the corresponding normality is proved in Fan and Li (1999), i.e.

nt Zg(Xi,Xj) — N(0,0%) for some constant o > 0.
i#

Proof of Theorem 6.1. Let a,y = max{(nloglogn)~1/2,|dy|}. It suffices to prove that

0 — 0y = {n>h(Sy + 6008)} " (Rn1 + 006} 69) ae.  (29)

(n?h) 'Ry =2 > p(Ei)bi{w 1o, (Xi) + by + ol — Oo| + o(n=1?) a.e. (30)

10



As the first step to prove (29), we show in Lemma 6.12 and Lemma 6.14 that for each fixed 6,
(n*haZy) ' [Rn2(0) — ER,2(0)] = o(1) almost surely. (31)
This together with (25) and the fact that Gpe = n?hSe{1 + o(1)} imply that for any fixed 6,
(n%ha2y) " ®,(0) — 6 (Rn1 + 008y 69) — %nzhég(sz + 008} )d9] — 0 almost surely.

As both @,,(0) — 5) (Rn1 + 006} 69) and 8} (S + 006} )3y are convex in 6, it follows from Lemma
6.4 that for any compact set 0,9 C 0O, (convex open set),

~ 1
sup (n2ha? )Y@, (0) — 0p (Rt + 0005 69) — §n2h5g(5’2 + 006 )ds| — 0 almost surely. (32)
0€®n0

Let 7, = {n?h(S2 + 000})} "1 (Rn1 + 008} 09). Now we are ready to prove the equivalent of (29),
i.e. : with probability 1, for any § > 0, |é — 0y — nn|/any < 6 for large n.

First note that as 8y + 7, is bounded with probability 1, ©, can be chosen to contain Bg(a
closed ball with center 6y + 7, and radius a,yd). Replace ©, in (32) by Bg, we have

- 1
A, = esuB% (n%ha2y) " ®,(0) — 6 (Rn1 — 008 09) — 5n2h5§(52 + 6065)ds] = o(1), a. e. (33)
E n

Now consider the behavior of in(e) outside BZ. Suppose 0 = 0y + 1, + angBv, for some > §
and v a unit vector. Define 6* as the boundary point of Bz that lies on the line segment from

0o + nn to 0, ie. 0% = 6y + 1y + anyov. Convexity of @,(0) and the definition of A,, imply

J - 5 = -
—®n(0) + (1 = 2)Pn(00 +10) > Pn(07)
p g
1
> §n2h52a3ugu—r(52 + 6000} )v
—%(n%)*lel(SQ +0060) Ry — n?ha2, A
1 ~
> §n2h52a3“9VT(SQ + 0000 )v + O, (00 + 1) — 2n2ha? 4 A,,.

It follows that

_ - 1
inf D, (0) > D, (00 + 1) + éthaiﬂ[fa%T(sQ + 008} ) — 2A,].
‘9_90_77n|>5an19 5 2

As Sy + 608} are positive definite, then according to (33), with probability 1, §2v' Sov > 4A,,
for large enough n. This implies that for any 6 > 0 and for large enough n, the minimum of

®,,(6) must occur within BS. This implies (29).

11



To derive (30), recall that

ZKU(P (€i)b; Xi5 + ZKUS" 5@) bj) Xij + ZKﬁb Xij{o(Yij) — (i)} (34)
7-]

For the first term above, by Lemma 7.8 in Xia and Tong (2006), i.e

sup 2h2{ K (9" Xij/h)p;(9) — Bj[K (9" Xi5/h); (9 }52 }_ (10gn>

IS

we have
ZK”go e)bj Xy =n"" ng &) E[K), b Xij/h] + O{(nh/logn)~'}
EjIKDbi X5 /h] = bi{wf}o(Xs) + Sgm” (Xib0){f Yo, (Xs) + o(|09] + 1P)
+h2[m" (X[ 60){ f o, (X:) +mP (X[ 60){e f }a,(Xi)]

where wy = E(X — z|X? = 2T9), ¥y = E((X — 2)(X —2)"|X? = 2T4)). Therefore,
ngh Z eei)b X = Zso ei)bi{@ o, (Xi) + o{n™ /2 + 6y} (35)
For the second and third term in (34), we will show in Lemma 6.11 that

nhZK]<p ei)(bj — b)) X = o(n"%) + O{69(nh/logn)~/?)},

ZK%XZJ{SO Yij) — (&) —5T252 (v/m)o(X5) = XjHvo(X;) = Xjuo(X;)} + o(ndy)

umformly in 9. This together with (34), (35) and (48) leads to (30). |

Appendix
Proof of (16) and (17). Using the property of conditional expectation

E{p(Y —a)| X9 =2"9} = E[E{p(Y —a)}|X}X =20
= E[GmB)X)—a)X 9 =2z
= E[G{mB)X) —a; X} X9 =z

Using the differentiability of G(¢; X), i.e
G{m(0hX) — a; X} = G(0; X) + g(X)(m(6) X) — a)* /2 + O{(m(6) X) — a)’}

12



For each a near m(6) X) (whence m(6)z) ),
E[G{m(0) X) — a; X}| X0 = 2" 9] — E[G(0; X)| X9 = z' V]
— Blg(X)(m(@ X) - )| X9 = 2T 9)/2.
As p(.) is convex, this convergence is uniform over all a near m(#)X), which implies that
the minimizer of E[G{m(0)X) — a; X}| X9 = 2"9] is also (asymptotically) the minimizer of
Elg(X)(m(0) X) — a)?| X 9 = 2"9]. We have
m(0y X) = m(fh ) +m/(h)0) (X — z) + C{O (X — 2)}?,
Elg(X)(m(65X) — a)| X" 0 = 2"9] ={m(652) — a}us(a"0) + m' (65 2)6) {vo(a"0) — wpg(a0)}
+0(16s/%)-

It is easily understood that the first statement in (16) is true.

To prove (17), consider for t — 0,
Elg(X)(m(6y X) — a)| X" = "0 + 1] = {a — m(fgx) o (x" 9 + t) + m/ (6 2) Elg(X){t
+05(X —2)} X9 =2"9 + ] + O(]6]*)
= {a —m(0hx) o ("0 + t) + tm/ (G ) po (" 0 + 1)
+m' (0) )8, E[g(X)(X — 2)| X9 = 20 + 1
+ O(t?)69)?).

Therefore,

Tve(xT 9+ t) — zpg(x" 9+ 1)

my (9 x4+ t) = m(0)x) + tm’ (0 x) +m' (0 x)5}, AT + O(|69%),
T _ T
(9 2) = m(62) + m' (62)5] 2 i) (xfgf(x N o(ss).
v

Suppose the first order derivative of py(.) and vy(.) are both Lipschitz continuous. We have

my (0" x +t) — my(9' )

'+ t) — vy(z") (279 4+ t) — py(x"0)

= tm!(0yx) +m' (6} x)d), ol - m’(ﬁgm)cﬂ;xuﬁ

pry (7 09) o (xT9)
/ po (" 9) — pp ("9 + 1)
+O(t%) +m' (0)x)o) {vg(x" 0 +t) — zpg(x' 9 + 1)} 0@ g (70 1 0)

= tm(6)2) + tm (G )5} [)g (T 9) — e (B )8y (4 [ 1) o (T )
—tm (6 2)8 (o (aT 9 + ) — g (T 9+ )} (1 /1o (2T 9) + O(£2)

=t/ () + tm (B 2)8) {(v/ /) — (' /1) — (v — 2p) (1! /1) } + O(t?)
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and (17) thus follows. |
Proof of (18) and (19) Note that by (16), (17) and the continuity of G(¢; X) in ¢ defined in
(10), we have
mi —my(X;) —my(X;)X50 = m(X] bo) — m(X] o) — b;op{(v/p)e(X;) — X;}
—{bj + by { (' — 1'v) /1Yo (X5)} X 50 + o(|69])
= b XT(sﬁ + %mII(XT-@())(QTXij)Q — 1771(3) (XTG())(GTXZ])B
—bidp{ (' — W'v) /1P (X5) X Gy {(v/m)o(X;) — X5}

+oll8s]) + 016 i)'}
Therefore,
Blp{Y; — mo(X;) — my(X;) X911 X]
= b;8yg(Xi)Xij — bidy{(v/1)o(X;) — X;}9(Xi) = bjop{ (' — p'v) /1 }o(X;) X [;99(X:)
+ym” (X B0)g(X0) (6] Xi)? — ><X}eo>g<xi><eEXij> Follas) +O0Y  (36)

and thus

Ei[Kp{Y; — my(X;) — my(X;) X;0}] = *m "(X[ 00)(9.)o(X5)B% + o(h|ds]) + O(h*).
This is (18). As for (19), i.e
E[KJXE90{Y; — mo(X;) — mi(X;) X[9}]
1

= o (80 (Fly (X )h* — ™ (XT00)(f)a (X)) + O(h5, + 1),

it can be proved similarly based on (36) and the following facts
Elg(X;)Xi|X] 9 = XT19 + hul
= Ug(XTﬁ + hu) jll,éﬁ(X 9+ hu)

= vg(X]0) + huvy(X;0) — Xjpp(X;0) — huX;py(X; 9) + O(h?)
Elg(X;)|X] 9 = X[ 9+ hu] = pg(X 9) + hupy(X] 9) + O(h?)
/K(u)E[g(Xz-)XilezTﬁ = X} 0 + hulhudu = W*{(fv")9(X0) — X;(fu')o(X] D)}
HRH{(f'v)o (X[ 0) = X;(f'10)o (X5 0)} + O(h?)
/K X)|XT9 = XT0 + hulhudu = W21 f + pf')o (X 9) + O(h?)

/ (u)Elg(X:)|X] 0 = X[ 9 + hulh*udu = h*(uf)9(X] 9) + O(h®)
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Lemma 6.4 Let {\,(0) : 0 € ©} be a sequence of random convex functions defined on a convez,
open subset © of RY. Suppose \(0) is a real valued function on © such that \,(0) tends to \(0)

for each 0 almost surely, Then for each compact set K of ©, with probability 1,
sup [\, (0) — A(0)] — 0.
PeK

Proof The condition can be restated as follows: for any fixed 8 € ©, there exists some €y C 2,

such that P(y) =1 and
An(w,0) — A(0) — 0, for any w € Qp.

The conclusion can be restated that for each compact set K of ©, there exists some Qg C ,
such that

P(Q) =1 and sup |A\,(w,8) — (@) — 0, for any w € Q.
0eK

For such uniformity of the convergence, it is enough to consider the case where K is a cube with
edges parallel to the coordinate directions eg, - - - , eq. Every compact subset of © can be covered
by finitely many such cubes.

Let S = K and K% be the larger cube constructed by adding an extra layer of cubes with
sides 0o to K. Suppose &y > 0 is small enough such that K% c ©. Define Uy for the finite set
of all vertices of all the cubes that make up K +8%,

Now for k =1,2,---, let ¢, = k~!. As convexity implies continuity, there is a 0 < 6* < 6*~! such
that A(.) varies by less than €,/(d + 1) over each cube of side 36* that intersects K. Partition
each cube in $4_; into a union of cubes with side at most ¢* and denote by 3y, the resulted union
of cubes. Then expand K to a larger cube K +o* by adding an extra layer of these 6*—cubes

around each face. As 6% < §8=1, K+9" ¢ K+9"7" is still within ©. Define

Ur = { vertices of all the §F — cubes that make up K+5k} U Ur_1

= { vertices of all the ¥ — cubes that make up K+5k} U{Uk—l ﬂ K°}

and

Q) = ﬂ Q.

60Uy,
As Uy, is finite, we have P(Q) = 1 and
for any w € Q,, MF(w) = sup |\, (w,8) — A(6)| — 0. (37)
0V
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We first establish the connection between M (w) and the upper bound for A, (w, ) — A(6), over
0 € K, for any given w € .
For any fixed k = 1,2,---, each 6 in K lies within a 6*-cube with vertices {6;} € Uy; it can be
written as a convex combination ) . o;8; of those vertices, i.e.
0 = Zazﬂi, Z%’Zl-
0;€0y, 0;€0y

Then for any given w € Qy, convexity of \,(w, ) in 6 gives

An(w,0) < > cidn(w, ;)

eiGUk
= Y aila(w,0:) = A0} + D i A6:) — A0)} + A(0)
0,€0 0, €0
< MFw) + max |A(6;) — A(6)| + A(6).
0, €0k
Therefore,
An(w,0) — A(0) < M,]f(w) + €k (38)
Next we establish the companion lower bound. For any fixed k =1, ---, each 6 in K lies within

a 6*-cube with a vertex 6y in K () Up:

d
0 =060+ > die;, with |6, < ¥, i=1,---,d.
i=1
Without loss of generality, suppose §; > 0 for each ¢ = 1,--- ,d. Define
O;. = 0o — Oie;,  where 8, = min{c > 0 : 0y —ce; € Uy}, i=1,--- ,d

Note that as 6y € K Uy, &, must exist and §; < 26%, for all i = 1,--- ,d.

Write 6y as a convex combination of 6 and these ;:

d d
0y = HJ 15; 9+Z 51—[]7’51]
H] 1]+ZJ 19; Hl#] i:1HJ 1]+ZJ 19 Hl#]
Denote these convex weights by 8 and {3;}. As §; < 6% < &}, we have 8 > 1/(d + 1) and

Ban(w,0) > An(w,by) — Zﬂ, (w,0;1)  ( convexity of A (w,8) in 6)

v

Z@ Oir) — 2My () ( from (37))

v

AB) — e/ (d+1) Zﬁz ) + ex/(d +1)] — 2My (w)
= BAB) — 2€/(d+1) — 2MF(w)
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where the third inequality is due to the definition of §* and the fact that there exists a cube of
side 30% which contains both 6;;, and 6. As 3 > 1/(d + 1),

An(w,0) = X(0) > —2¢;, — 2(d + 1) MF(w).

This together with (38) implies that for any k£ = 1,2,---, there exists some Q4(2 Qp41) such
that P(Q) =1 and

Vw € Q, sup [Au(w,8) — A(0)] < (d+ 1)MF(w) + 2671
PeK

Let Qo = (pe; Q- As Q is a decreasing sequence and P(£;) = 1, we have P(€y) = 1 and for

any w € €,

sup |An(w,0) — A(0)] < (d + 1)MF(w) +2k71, for all k > 1. (39)
e K

Note that as n — oo, M¥(w) — 0 for each fixed k, as in (37). Take limit of both sides of (39)

lim sup | A, (w,0) — A(0)] < lim MF(w)+ k™' =k71, forall k > 1.

This is equivalent to that with probability 1,

lim sup |\, (w,0) — A(0)] — 0.
N0 PeK

We now list a number of facts in the literature that will be used in our proofs later.

Lemma 6.5 [Bernstein’s inequality] Let Xy, --- , X, be independent zero-mean real valued ran-

dom variables and there exists ¢ > 0 such that the following Cramer’s condition are satisfied
E|X;|F < F2REX? < 400, i =1, -+ ,n; k=34,

Let S, =1 Xi, then

t2
P(S,| > 1) < 2 (- ),t>o.
(1n] 2 ) < 2exp A5 EX? + 2t

Lemma 6.6 [Theorem 1.1. Giné et al] Let X, Y, X;, i = 1,---, be i.i.d. random variables

taking values in S and let g : S X § — R be a measurable function of two variables. Then,

lim sup

L S X < oo as
n nloglogn vy

if an only if the following three conditions hold:

17



(a) g(.) is integrable and Fg(X,y) = 0 for almost all y € S.

There exists some C' < oo such that
(b) For all u > 10 E{g*(X,Y) Au} < Cloglogu and
(c) sup{Eg(X,Y) f1(X)f2(Y); Eff(X) <1, Ef5(X) <1, [[filloo <00, [[f2lloc < 00} <C

Lemma 6.7 [Korolyuk et al, 1989] Let X;, X3, -+, X, be ii.d. random variables. With a
symmetric kernel ® : X™ — R, we consider the U-statistic
u = (" Z (X, X))
n m ' ' 21 ) Tm
I<i1<-<im<n
Let 0 = E®(Xq, -+, X,;n) < oo and for ¢ =0,1,--- ,m, define

cI)C(':U1>"' 7x6) :E(@(Xla 7Xm)|X1 =T, 7XC :.%'c>, 7(1)0 :07 (pm =

[

ge(w, - me) =Y (D) > Bg(wjr,c o mja), of = Bgi(Xh)

d=0 I<ji<<ja<c
Suppose 02 >0 and for all c=1,--- ,m, Eggc/(%_l) < 00. The with probability 1,
1/2 s
lim sup n = (Un ) =1 N

n—oo (2m20% loglogn)t/2

Lemma 6.8 [Berbee’s Lemma] Let (X,Y) be a R x R¥ —valued random vector. Then there

exists a R* —valued random vector Y* which has the same distribution as ¥ and
Y™ is independent of X; P(Y* #Y) = g(c(X),0(Y)) (40)
where o(X) and o(Y)) are the c—algebra generated by X and Y respectively, and

Blo(X), oY) =E sup |P(A)— P(Alo(X))|
Aco(Y)

Lemma 6.9 ([o(X1,Y1),0(aj,b;)] = O{(nh/log®n)~1/4}
Proof By the definition,

Blo(X1,Y1),0(a;,b;)] =E  sup  |P(A) = P(Alo(X1,Y1))]
AEO‘(&j,bj)

18



Rewrite (21) as

. N 1 _
aj = Ea; + e ;Kljcpl(Xl, Y)) + EKiij(Xm Y:) + O{(nh/logn) 3/4}

b; = Ebj + hzZKWg X1, V) + —= Kijoa (X3, Vi) + O{(nh/logn)~3/*/n}  (41)

1
nh?
where {¢1(X;, Y1)}y, {p2(Xi1, Y1)}, are two sequences of bounded and identically distributed

~3/4

zero-mean random variables. Let 7, = (nh/logn) and

S, = ZKl]gol X, ) = Z + Z + Z = 511 + S12 + Sis,

l;éz A<i—m  l#ii—m<I<idm  [>i4+m
Sy = h2 ZKZJQOz X, Y= > + > + Y =S+ Sa+ Sas.
1#1 JA<i—m  l#ii—m<I<i+m  [>i+m

Note that S} /oy and Sy /o9 are asymptotically normal with oy = O((nh)'/2?) and o1 = O((nh?)/?).
Using the fact that both ¢1(.) and p2(.) are bounded and

{Sl S tl — Edj} Q {511 + 513 S tl — Eflj + Cm(nh)_l}

{SQ < to — E[;]} - {521 + ;923 < to — El;j + Cm(nhQ)_l}
we have

P{a; < tlal;j < ts]Y;, X;}

< P{Sl Stl—E&j—i-CTn,SQ Stl—ElA)j—i-CTn/h‘Yi,Xi}
< P[Su + S13 <t] — Edj + Ct, + C’m(nh)*l, So1 + Sog <ty — Ei)jCTn/h + Cm(nhQ)flyyi,Xi]
< [(511 + S13)/01 < (t1 — Eaj) /o1, (Sa1 + Sa3) /o2 < (t2 — Eb; )/02}

+¢(m) + C(nh)' /27, + Cmn /207"
Pla; < th,bj < ta] + Co(m) + C(nh)?r, + Cmn~/2p~!

Similarly, we have

P{aj > t1,b; > t2|Y1, X1} > Pla; > t1,b; > to] — ¢(m) — C(nh)*?r, — Cmn~1/2p71
Therefore,
|P{a; < t1,b; < ta|V1 =y, X1} — P{aj < t1,b; < t2}]| < ¢(m) + C(nh)/?7, + Cmn~1/2p71.

If m = n® and ¢(m) = m~* for some a = 1/10 and k > 0, such that n®* = O{(nh)'/?7,} with

Tn = (nh/log, n)_3/4, we have the desired result.
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Lemma 6.10 Under the assumptions (A1)-(A5), we have
E®,,(0) = 65 ERn1(0) + 65 Gnady + o(n’h|54]?).
Proof Apparently it suffices to show that

EKJ{p(Y; — a; — b0 Xi5) — p(Yi — a; — b6 Xij)}

= ) E[KDp(Y; —a; — b0 Xi;)b; X 5] + 8y E[K} X35 X];9(X1)b2]6 + o(|d9 ).

~

By the continuity of E[p(Y; — a; — tb;)| X,] in t, we have

EK{p(Y; — a; — b0 Xi5) — p(Y; — a; — b;6) Xi;)} (42)
= Sy B[KJo(Y; — a; — b0 Xi)bj Xij] + 6y B[K) X X, {0Bp(Y; — aj — [;jt)l;j/at}hzxjjeo](se

+0p B[ K5 X XG{ OB (Y; = a5 = bit)b 00} _xz g, — {0B@(Y; — a5 — bit)b; /0t 1 } |89

where t* is some value between GTXij and HEXU.

Apply Lemma 6.8 and Lemma 6.9 to the second term in (42). There exists [a;,b;] which
has the same distribution as [&j,i)j], is independent of (Y1,X;) and P([a;,b;] # [dj,i)j]) =
O{(nh/log®n)~1/4}. Thus

Elp(Yy = a; — bj(t +0))b5] — Elp(Yi — a; — bjt)b;]
= E[p{Y1 — @ — bj(t + 0)}b;] — E[p(Y1 — @; — bjt)bj]
+E[{e(Y1 — d; — bjt)b; — o(Y1 — a; — bjt)b;}1{[dy, bj) # [a;. bj]}]
—E[{p(Y1 — d; — bj(t + 0))b; — (Y1 — a5 — bj(t + 6))b; [ {[a;, bj] # [, b;]}]
= Elp{Y1 —a; — bj(t + 6)}b;] — Elp(Y1 — &; — bjt)bj]
+E[{o(Y1 — aj — bj(t +6)) — (Y1 — a; — bit)}b;I{[dy, bj] # [ay, bj]}]
—E[{p(Y1 —a; — bj(t + ) — p(Y1 — a; — bjt)}b;I{[az, b;] # [a;, b;]}]

T+ To+4+Tg (43)

First due to the independency of [a;, b;] from (X, Y1) and the continuity of G1(.; X),

Ty = E[{Gi(ar —a; — bj(t+0)|X1) — Gi(ar — @; — bjt|X1)}b)]
= 5E[G2(a1 — C~lj — Z)Jt|X1)l~)?] + 0(5) (44)

Next, we show that To = 0(d) and T3 = 0(J).
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Define [tq,t2] = [(a; — Eaj) /o1, (53 — Ei)j)/dg] are asymptotically normal, where
o1 = {Vara; } /2 = O{(nh)"Y2}, a9 = {Varb;}/? = O{(nh3)"1/?}.

Define [f1,%s] similarly from @; and l;j. Note that due to the weak dependency nature of the
time series, the conditional probability density function of Y; given [t1, 2] is uniformly bounded.

Without loss of generality, assume J > 0. As for any given values of a; and l;j (i.e. t1 and t9),
(Vi — a; — bj(t +0)) — @(Y; — a; — bjt)| < OP{t < (V; — a;)/b; <t + bt t2} = O(3).
Therefore, |Ty| < 0(5flsjf(tl,tg)g(tl,tg)dtldtg = 0(d), where

g(tl,tg) = / f(t~1,£2|t1,t2)d£1dt~2, Wlth /f(tl,tg)g(tl,tQ)dtldtQ = ﬂ[U(Xi,}/i),U(dj,Bj)]
[E1,82)#(t1 ,t2]

Similarly we can show that Ts = o(d). This together with (43) and (44) yields
OE(Y; — 4; — bit)b; /0t = E[Ga(a1 — a; — bjt| X1)b3] + o(1), (45)
where o(1) is uniform in ¢, j and ¢. Apply this result to the third term in (42), we have

{0E@(Y; —a; — [;jt)(;j/at}‘t:XszHo — {0E@(Y; — a; — bjt)b;/0t}

t*
= E[Ga(a; + bjt|X1)b7] — E[Ga(a; + bit*|X1)b3] + o(1) = o(1).
This together with (42) and (45) leads to
EKJ{p(Y; — a; — b;j0" Xij) — p(Y; — a; — b;0) Xi;)}
= (SgE[Kg(p(Y; — &j — BJQBXZ])I;]Xz]] + (SgE[KZX”X;;GQ(CLl — (~lj — I;jﬂxl)i)?]&g + O(‘(Se’Q)
= Oy E[KJo(Y: — a; — b0 Xij)b; Xij] + 6 BIK) X33 X];9(X1)b3189 + 0(|06]*)

) iJ

where for the last equation follows from the continuity of Ga(.|X1) and (23). [
Lemma 6.11 Deﬁne Zij = KZZ;]XZJ{QO(Y;]) - (p(&)} Then

(nh) ™ EiZij =0y > bi{(v/me(X;) — X;Hve(X;) — Xjna(X;)} + o(|6s] +n /%) (46)
i i

1,]
(nh)~! Z Kijeo(ei) (by — b)) Xij = o(n™"/?) + O{89(nh/ logn)~"/?} (48)

uniformly in 9, if nh* — oo and nh®/logn < cc.
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Proof To prove (46), we apply Lemma 6.8 and Lemma 6.9. Suppose [a;, I;j] has the same dis-
tribution as [a;, Z;J] and is independent of (Xy,Y1). Therefore, P([a;, ;] # [a;, B]]}) = 0(n~Y?).
Let X = o(X1, ..., Xy).

E[{p(V1 — a; — th;) — p(1)}b;|X]
= E[{e(M1 —a; — bjt) — o(e1)}b;|X] — E[{p(Y1 — a; — bjt) — p(e1) }b;I{[a;, bj] # [, b1} X]
E[{e(Y1 — a; — bjt) — @(e1) o I{[aj, b] # [ay, bj]}|X]
= Ty —-Ty+4+Ts, (49)
and EZZ” = E[Klelj(Tl — T2 + Tg)] First by the independency of [&j, Z;J] and (Xl,Yl) and
the continuity of G1(.|X), we have
T, = E[{Gi(a1 —aj —bjt; X1) — G1(0; X1)}bj] (50)
= g(Xl)E{bj(al —a; —bjt)} + O{E(ay — a; — b;t)*}.
Using the expansions of (@, b;) as given in (21), we have
a1 — CNL]' — IN)jX—lrjeo = a1 — aj + a; — dj — ZN)J'XLQO
= S (K]0 (X, 00 - %m”(XT 0o)h? + O{(XT,00)°}
—biog{(v/)o(X;) — X;} = biop{ (' — p'v) /1 }o(X;) X100
i [5m (XTHO){(fM)’/(fg)}ﬁ(Xj) - %m< )(XTﬂo)(fu) (X)] XT;60

Horty' () ZSOI (X, Vi) — [{af}5" (X h2 sz (X;,Y3)} } X160
+0O{(nh/logn)~ 3/4(1 + 69/h) + h3} (51)

where 1 (f(i, }71), goz(f(i, }7) are IID zero-mean random variables and are independent of (X1, Y?).
Therefore, F(a1 — aj — b X7 90) = 0(|69| + n~Y/?) uniformly in ¢ and

E[K%XUTl] = E[Kfjg(Xl)i)l(al—a] bX 90)]+0(h]5g]+n 1/2h) (52)
= hpbH (v/w)o(X;) = XjHre (X)) = Xjna (X))} + O(h?|5s]) + o(hn™'/?)

uniformly in ¢}, where we have used (23).

Now based on the expansion of Z)j — bj, we have

E[K{;X1;Ts] = bE[K)X1{e(Y1 —a; — bjX500) — p(e1) H{[az, bj] # [aj,b;]}] + o(n~/?h)
= o(n"?h) + o(hdy) (53)
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uniformly in ¥, where the last step is due to the fact that P([a;, b;] # [a;,b;]) = O{(nh/log®n)~/4}.
Similarly we have E[KY X1 T2] = o(n ~1/2h) + o(hdy). This together with (52) and (53) yields
(46).

To prove (47), first note that

p(Yi— a5 — b0y Xij) — o(es) = [p(Yi— aj — b0 Xij) — p(Yi — a; — by X;)]
Hip(Yi = a; — b6 Xij) — (i),
Therefore, based on Lemma 6.14, it suffices to show that
> (Zij — EZy) = O(nhéy), Zij = Kb Xij{o(Yi — aj — b;0) Xi5) — (e:)}
0,
Due to Borel-Cantelli Lemma and the fact that for any € > 0,
P{| Z ij — BZij)| > en*hég} < nP{| Z ij — EZij)| > enhdy},

the problem is further reduced to prove that for any € > 0, the quantity
P{| Z ii — EZij)| > enhdy)}

is summable over n.
Let Z;; = Kﬁb i Xii{o(Yi— a; —b;0) Xij) —p(ei)}. As Zyj is bounded and EZEJ = h(h*+63),
applying Bernstein’s inequality, we have

221,252 -
3 2 v }: o(n 2)‘
nh’ + nhdg + enhdy

Py Z i — BEZij)| > enhéy} < cexp{
Now it remains to show that
(b =) > K5 Xig{p (Vi = a5 = by0 Xiy) = ¢(e)} = o(nhdy) (54)
By expansion of i)j —b; in (21),

by~ by = 2[5 (TR (Fa)ho(X5) — 5m® (XT80)((Fi)/ (F9)}o(X;)

0 (! — W) 1Y0(X) + 1 S a(Xe, Vi) + O (nh/ Togm) /)
i=1

23



where Epo(X;,Y;) = 0. As ¢(.) is bounded, we need not worry about the deterministic(bias)

term in l;j — b;. For the stochastic part, write
(nh?)~! Z D X oo (X0, YD) [o(Yi — aj — b0 Xij) — p(e3)]
= (nh*)7! ZK 1 Xij 02X, Yi)p(Yi — aj — b0y Xij) — (&)

+(nh?*)™! Z Xijeoa (X1, Vi) (Yi — a; — b;00 Xij) — ()] (55)
i#l

Again as both ¢(.) and p9(.) are bounded, handling of the first term is trivial. Now define
01(X5,Y:) = K[ Xi0(Yi — aj — b0 Xij) — @(e1),
whence ¢ = Ep1(X;,Y;) = O(h3+hé2) and the second term in (55) is (nh?)~1(Ty 4 T2), where

Ty = [ X0, Y {p1(Xi, Vi) — ¢} + 02(Xi, Yl {01 (X1, V1) — ¢}, To = {02(X1, YD) + 02(X5, Yi)}
i<l i<l

By the law of the iterated logarithm of U-statistics in Giné et al (Lemma 6.6), T1/h = O(nloglogn)

almost surely. On the other hand, by law of the iterated logarithm for U-statistics in Korolyuk

et al (Lemma 6.7), Ty = n%?(hloglogn)'/? a.s. Since ¢ = O(h® 4 hé3), (nh?)~"1(T1 + ¢Ta) =

O{h~'loglogn + (nh*loglogn)'/? + 62(nloglogn/h)'/?} = o(nhdy).

Proof of (48) can be done in exact the same manner as (54). [

The proof of (31) consists of the following two Lemmas.

Lemma 6.12 Let R:LQ(Q) = Z Kzﬂj [,0(}/1 - ij - Bj@TXij) - p(Y;J) - 5;—(,0()/2 — a5 — bJX;l;Ho)B]Xl]] .
Z’J
Then for any fized 0, with probability 1,

(n*hagy) " [Rra(0) — ER;y(0)] = o(1). (56)
uniformly in ¥.

Proof Define X;, = X; — , piz = (1, X],)", Kiz = K(X]9/h), B(x) = [m(0)z), m' (0, z)0)]"
and ppi(7;t) = (Vi plB(x) +t). For any o, B € RI*L let

Di(wi B) = Ko | p{Yis uli (o + B+ B(2))} = plYis ul, (B + B(@))}) = puilws 0)pifze]

pl (a+B)
= Ki / {eni(z;t) — @ni(z;0)}dt
ul.B
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and an(xv «, ﬁ) = (I)nl(xv «, ﬁ) - E(I)nz(xa «, ﬁ) Apparent1y7
K} [p(YZ- —a; — bj0" Xy5) — p(Yij) — 0ho(Yi — a; — b; X[;00)b; X5 | = Ori(Xj5 00, B)

with a = [0, Ejag] and 8 = [a; — aj, (b; — b;)83]". Let [az,bs] = [m(8)x), m(§)x)] and D be
any compact subset of the support of X. For any M > 0 and ¢ € ©,, define

MY

n

Myly = C{|89| + (nh/logn)~2/h}, B = {a € R a = [0,a]]",|a1| < M1}

| = Cayy, My = C{|0y] + (nh/ logn)*l/z},

B ={p € R™ |3 = [b1, 000", [b1| < MY, |ba| < M7}

A5 1bido] < Cang, 1a5—a| = 04|85/ (nh/ log n)~/2} and |(b;—by)] = O{I5ol-+(nh/ log m)™/2/h},
(56) will follow if for any € > 0

sup sup ]ZRm z;a, ()| < ed,, almost surely, d,, = nha?, (57)
z€D EB(1>, i=1
geBY

This is done in a similar style as Lemma 4.2 in Kong et al(2008). Cover D by a finite number

T,, of cubes Dy, = Dy, ;, with side length l,, = O{h(nh/log n)_1/4} and centers xj, = x,, ;. Write

n
sup sup | ZRm € a,ﬁ)| < max sup ‘ Z (I)m'(xk; Oé,ﬁ) - Eq’m’(ka aaﬁ)‘
2€D , ¢ B(l), =1 1<k<T, T(L1)7 =1

8 c B(Q) ﬁ c B(2)

n

+ max sup sup ‘Z{ Q2 v, B) — nz(x;aw@)}‘

1<k<T, 2€Dy, , ¢ BW, i1
s e BY

n

+ max sup sup Z{E@ni(xk;a,ﬁ)—E@ni(x;a,ﬁ)}‘
1<k<Th 2€Dy , ¢ g ' 1T

e B
=Q1 + Q2 + Qs.
In Lemma 6.13, we will prove that Q2 = o(d,,), a.e., whence Q3 < EQ2 = o(dy,). It thus remains
to show that Q1 < ed,/3 a.e., we follow a similar proof style as in Lemma 4.2 in Kong et al
(2008).
Partition Bg), i = 1,2 into a sequence of sub rectangles Dgi), e ,D(Jil), 1 = 1,2, such that
forall 1 <j; <J; < M& (M =¢1)

Yo, o ED(D

Lo —of| < My /M

V3= b1, bab]T, B8 = (b1, 500]T € DY), [by — by < MYy/M, |by — by| < MPy/M
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Choose a point «aj, € D](-}) and by, € D,(j), 1 <41,k < Ji. Then

sup |ZRix(aa )| < max sup |Z{sz aj17bk‘1) sz(a7ﬁ)}|

1<j1,k1<J
aeBr(Ll) <J1,k1SJ1 aeD (1)’ im1
8e B 5eD(2>

| Y Rl = Hoa a9

We first show that any € > 0

P> ) < pp {|ZRm 00, )| = ) = O, (59)

for some a > 1. By Bernstein’s Inequality and the fact that |Ri(ay,, 0k )| < Capy and
VarRiy (v, , Br, ) = O[nha? y{any + (nh/logn)~1/2}], we have

" edn —a
T P{13 Risles )| = 52} = T expl=nhang{1 + ang(nh/ logn)/2)}] = O(n™®).
i=1

for some a > 1. Therefore, (59) holds.

We next consider H,;,. For each j1 = 1,---,J; and ¢« = 1,2, partition each rectangle Dj(-?

M . pW

further into a sequence of subrectangles D]1 e s

Repeat this process recursively as

follows. Suppose after the Ith round, we get a sequence of rectangles D](l) o it with 1 < ji <

Jg, 1 <k <, then in the ({+1)th round, each rectangle Dj(l) jarre j, 18 partitioned into a sequence

of subrectangles {D 1 <7 < J;} such that for all 1 S g1 < Jigq,

J1sJ2s 5 diJi+1?

(@) / 9 1+1
Vaa ED]1]27 7Jz7jz+1"a_a‘ < My, /M7,
0 0
9 M M
V8= b1, babb T B = 85, 0" € DI s 1 = W1 < i b = 051 <

where J;,1 < M%!. End this process after the (L, + 2)th round, with L, being the largest
integer such that

n(2/M)F > d,, /M?, (60)

Let Dl(i), i = 1,2, denote the set of all subrectangles of D((]i) after the [th round of partition

Choose a point « ;) € ¢ DY and

and a typical element DY of DY is denoted as D G

J1,92, 301 l ()"

26



By € Dgl)) and define

ed,
Z {‘Z{sz Biky) — Riz (i, 1)s Bk }‘ > 21+1} 1<1<L,+1,
(Ji+1)
(ki41)

Q= ZP{ sup ‘Z{Rix(a(]’l),ﬂ(m)) - Rm(a,ﬁ)}‘ > %}, 1<I<L,+2

) (1) X
(31) @ €Dy i=1

(k) (2)
BE Dy

Then Q; < Vi+ Qi+1, 1 <1 < L, + 1. On the other hand, it is easy to see that for any

(1) 2)
@€ D(jLn+ ) and § € D(kL +2)’

n|Ria(0jy ) Bikr, ) — Ric(e, B)] < ndMYy /M2 < ed,, /2702

due to the choice of L, specified in (60). Therefore, 1, +2 = 0 and it remains to show that

Lp+1
TP{Hn1>—}<TJ1Q1<TJIZV} O(n™%), for some a > 1 (61)
=1

To find upper bound for V;, 1 <1< L, + 1, we again apply Bernstein’s inequality. As

My,
|Riw(a(jz)aﬁ(kz)) - Rix(a(jl+1)’ﬁ(kl+l))| =< C{’a(jz) - a(jz+1)| + |ﬁ(kl) o ﬁ(kl+1)|(5ﬁ +h)}= MZQ’
E|Rio (i, Bia)) = Ria @iy ), B o)1 < h(Mpp)* /M,

we have
I+1
Vi < (T172) explenh{1 + auolnh/ logm) /)]
j=1
and (61) thus holds. This together with (59) completes the proof. [

Lemma 6.13 Q)2 < Md,, a.c., for all large enough M > 0, where
dy, = nha? gl /h{1 + a_5(nh/logn)” 12y = o(nha ),
if nh3/(logn)? — oc.

Proof Let X = X; — xg, pip = (1,X2;€)T, Ky, = K(X;;Cﬂ/h) and write @, (zk; o, ) —
Dpi(w; a, B) = §1 + &iz + &i3, where

1
il = ( ikMik — Kz‘:cuz‘a;>T04/0 {‘Pm’(xk;ﬂsz(/B +at)) — ‘Pm’(xk;())} dt,
1
62 = Kiaplyor | {im(ons (5 + at) = eui(as (5 -+ at)
0
&iz = lqua}a{(‘an(ZE 0) @ni(l‘k‘;o)}'
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Then P(Qo > M3/%d,,/3) < Ty(Pn1 + Pna + Pn3), where

P,; = max P( sup sup ]Z@]\>M3/an/9> j=1,2,3.
1<k<Tn Ne€Dy ¢ g0 1=

ge B(2)
Based on Borel-Cantelli lemma, Q2 < M3/2d,, almost surely, if Yo TP < 00, j =1,2,3.
Again this can be accomplished through similar approach in Lemma 5.1 in Kong et al(2008).
We only deal with P,; to illustrate.
First note that if & # 0,then either K # 0 or K;, # 0. Without loss of generality, suppose
K, # 0, ie. | X0 < h, whence | X[, 00| < h+ |8g| and |u), (8 + at)| < C{Mn? + Mfl?}.

For any fixed o € B7(L and 8 € Bn ), let Iﬁf”g = 1, if there exists some t € [0, 1], such that
there are discontinuity points of ¢(Y; — a) between ul, (8(xg) + B + at)) and MZTkﬁp(l'k)' and
IZ,C = 0, otherwise. Write &1 = &1 —1—&1(1 — ) As |(Kippin — Kigptiz) o < CM n/h
and |ul, (B + at)| < C’Méﬁ), we have

€1(1 — I7)| < OMEy M2yl /h = o(a2y)

uniformly in 4, , 8 and & € Dy, if nh®/logn3 — oco. Let Uy, = I{|X;€§] < 2h}. As & = EnUi

(because I, = o(h)), we have

- Md - Mnh
P( sup sup i 1—IZ.O"5 ‘> n) < P( Ui > >
< B <€D ;51( k) 18 ; 18C
geBY

IN

P13 U BVl > 7). (2

where the second inequality follows from the fact that EU;; = O(h). We can then apply to (62)
Bernstein’s inequality for independent data or Lemma 5.4 in Kong et al(2008) for dependent

case, to obtain the below result

n
TnP< sup ‘ Y (1 - I;;ﬁ)‘ > Md, /18) is summable over n, (63)
aeBY, =1
se B

whence Zn T, P, < oo, is equivalent to

T, < sup ’ E fﬂlo"ﬂ‘ > Mdn/18) is summable over n. (64)
aeBY, =1
seB®
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To this end, first note that 188 < IH{g; € i , where
ik ik

st = U U Loy = AKX a0) + (B + at), 0 = A(X;, )]
Jj=1tel0,1]

- la; — C’My%), a; + C’My(;)] =D, forsome C >0,

<.

1
Az, 20) = (1{90) — m(x—zr%) — m'(x—lrﬂo)(xl — JJQ)TGO

3

where in the derivation of Sg,’f C D, we have used the fact that |X;| < 2h, ul (8 + at) =
O(M,SQ)) and A(X;,x) = O(h? + |0y|?) = O(M,(f)) uniformly in i. As Iﬁg”g < I{e; € Dy}, we
have ]fﬂ[ﬁc’ﬂ < [&i1|Uni, where Up; = I(|Xix| < 2h)I{e; € D,}, which is independent of the

choice of o and . Therefore,

P( su%) ’Zg,ll ﬂ‘ > Mdn/18) < P(ZUM > MnhM? >/(18(J))
a € By i=1
Be B(2)

MnhMP ) |

< P(Z;(Um- — BUni) > 5=

(65)

where the first inequality is because |;1] < CMayyl,/h and the second one because EU,; =
O(hM,(f)). Similar to (62), we could apply either Bernstein’s inequality for independent data or
in dependent case Lemma 5.4 in Kong et al(2008) to see that (64) indeed holds. [

Lemma 6.14 Z Zij — EZij; = o(n%hayy), where
Zij = Kij[p(Y; — aj — bty Xij) — o(Y; — a; — b;0 Xi;)]b; X (66)
Proof As a; — aj = O(ang), (bj — b;) = O{ang + (nh/logn)'/?/h} and for any € > 0,

{| N Zij - EZy| > 6n2hamg} < nP{\ Z Zi; — BZij| > enhamg}
1,J

then (66) would follow if we could show that for any z,

P{ sup ’ZR” a,b)| > enhany} = O(n™*) for some a > 2, (67)
« B(l) ]
where BYY) = ={a € R:|a—ay| < cany}, BY = ={be R:|b—by| < c{ang+(nh/logn)'/?/h}}, a, =
m(0)z), by =m' (0} ), Riz(a,b) = Ziz(a,b) — EZ;;(a,b) and
Zip(a,b) = Kiz Xia|p(Y; — a5 — bo) Xiz) — p(Vi — a — b0y X)), Kix = K(X,0/h)
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To this end, partition BS), 1 = 1,2 into a sequence of sub rectangles Dgi), ‘e ,DL(,?, 1 =1,2
such that

D =sup{la—a/|:a.a' € DY} < MP/M, 1<jy< s M=

where MV = Clng, MP = c{any + (nh/logn)/2/h} and J; < M. Choose a point aj, € DJ(.P
and by, € D,(j). Then

sup ’ZR” (a,b)] < max sup |Z{R”’ (aj,,br,) — Riz(a,b)}|

1<5 <
a¢€ B<1> 7 _lekl—‘h D(l)7 i=1
be B(2> be D(2)
+ max Riz(a; ,b =H + H,». 68
1<j1, ki <Ji | E m:( 719 k1)| nl n2 ( )

We first consider H,,5.

enha,, " enha,,
P{Hngz 5 ﬁ}SJ%P{|Zsz(a]17bk1)|Z 9 19}
i=1

As Riz(aj,,by,) is bounded and VarRj(aj,,b,) = O{h(ans + (nh/logn)~'/2}, then by Bern-

stein’s Inequality

ha,, _
J3P{| ZRM aji b))l = L < O expl—en! h¥ = O,

for some a > 2.

We next consider H,,;. For each j; = 1,--- ,J; and ¢ = 1, 2, partition each rectangle D]('? further
into a sequence of subrectangles D](1)17 .- DJ(? J,- Repeat this process recursively as follows.

Suppose after the [th round, we get a sequence of rectangles Dg(‘?,jz,m,jl with 1 < jp < Ji, 1 <
k < I, then in the (I + 1)th round, each rectangle D](i)

o ot is partitioned into a sequence of
1 < j; < J;} such that

subrectangles {D]1 o didien?

©) _ (%) WIVIAR! :
|Dj17j2,"',jlyjz+1| = sup {|a —a | a,a’ € D]l J25 7]l:jl+1} < MT(ZZ)/M ! » LS i = Jis

where J;11 < M. End this process after the (L, +2)th round, with L,, being the smallest integer
such that

(2/M)"n > a9 /M) [which means 257 < {M) /a,,}108 (M/2)/Tog2] (69)

Let Dl(i), i = 1,2, denote the set of all subrectangles of D(()i) after the [th round of partition

and a typical element D]( 9 g of Dl(i) is denoted as Dg) Choose a point a(;,) € ngl.l)) and
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2
b(jz) € ngl)) and define

enhanyg
Vi= Z {‘ Z{Rm a]pbkl) Rix(ajl+lvbkz+1)}‘ > TJ}’ 1<I<L,+1,
()
- enha
9
Q=Y P{ sw | > {Rialaz.br) - Rim(a,b)}‘ > S | ES )
(o) aeD) i)
(k1) be Dl

Then @Q; < Vi +Qy1, 1 <1 < L, + 1. We first give a bound for V;, 1 <1 < L, +1. As
Riz(aj,,br,) — Riz(aj,,,, by, ) is bounded and

E|Rix(ajz’bkz) - Rix(ajl+1vbkz+1)|2 < h{any + (nh/log n)_1/2}/Ml+1

applying Bernstein’s Inequality and using (69), we have

I+1 +1
V< J2 exp[—€e2nhmin{a,yg, a4(nh logn) 1/2 J exp(— Enl/2p3/2 70
m9
7=1

We now focus on Qr, +2. Recall the definition of Z;;(a,b)
Zio(a,b) = Kig[o(Y; — ap — b0} Xiz) — o(Yi — a — b} X32)) X

For any a € DS.Z)) and b € Dgil)), let If’b = 1, if there is a discontinuity point of ¢(.) between
Y, —aj, — bkleng and Y; —a — ngXix and If’b = 0 otherwise. Write

Riz(aj,, br,) — Riz(a,b) = {Riz(aj,, b,) — Riz(a,b) " + {Riz(aj,, br,) — Riz(a,b)}(1 — I™Y).

Then we have [{ Rz (aj,, br,) — Riz(a, b)}(l—[f’b)] < C{ang+(nh/logn)~2} /M" and specifically
forl=1L, +2

P{ sup ‘Z{Rix<ajl,bkl) — Rig(a,b)}(1 — If’b)‘ > enhamg}

wen i oLn+3
be DEiZ)
Mnh
SP{ZUZ>—Mnh}§P{ U, — EU; > 2" }
=1 =1

where U; = I{|X] 9| < h} and the first inequality is due to (69). By Bernstein’s inequality, this
in turn implies that for [ = L,, + 2

+1
(IL7)Pg s, \Z{Rm aisbi) — Riala,0)H(1 = 1) = TP o), (1)
= G =1

(2)
be D(kz)
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for some a > 2. Now we have to show similar result for

(HJ> L

ep»

b enhanyg
Z{leﬂ @jy bkl) Riz(a, b)}[; = oL+3

}Z:Ln+z

=1

)
6
be D(k”

Note that for any a € D!*) and b € D'? I P < I{v; € S;}, where

() (k1)

Si = [aj, + b, 00 Xiw — CMP /M aj, + by, 0} Xiw + CM2 /MY,

which is independent of a,b. Let U; = I{|X] 9| < h}I{Y; € S;}. As Riz(aj,,by,) — Riz(a,b) is
bounded, we have for [ = L,, + 2,

a, enhany
{ ESI;% ‘Z{sz a]lvbkz Rif’/’(a’ b)}IZ ' Z 2Ln+3 }
be Déi%
enhay,y enhay,y
<P{ZU_ 2Ln+2} {ZU EU—CQLn+4} (72)

where the second inequality is due to (69). Applying Bernstein’s inequality to the right hand
side of (Bern) and observing (69) lead to

2 n ‘ ‘ B ‘ a,b Gnh(lnﬁ o —a _
(HJ ) { Sl;g) ;{Rm(%,bkl) Riala, )} | > TP } — O(n~9), for | = Ly +2
be D2 S) -

for some a > 2. This together with (71) implies that Qr,,+2 = O(n™?) for some a > 2. Therefore,
based on (70), we have

L,+1

} <@ < Z Vi+Qr,42=0(n""),
=1

enhanyg

P{Hyo >
for some a > 2. [ |

Lemma 6.15 All eigenvalues of S;lQl are nonnegative and strictly smaller than 1; 9 is the

only eigenvector of 52_191 corresponding to eigenvalue 0.
Proof By the definition of Se and €y and the Cauchy-Schwarz Inequality that

E{g(X)(X = 0)| X0 = a 0} B{g(X)(X — 2)|XT0 =« 9}
< B{g(X)|X9 = 2 9} E{g(X)(X — 2)(X — ) |XT9 = 2T 0},
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we know for any 1, if 9] (So — Q1)9; = 0, then for any z, there exists some C, such that
{gXN20 (X —2) = C{g(X)}V/?, forall X 9 = 2" 9 = ¥, =0 (73)
We need the following assumptions. For any 91,99 € O,

E{g(X)05(X —2)(X —2) 93)9] X = 9l2} =0, for any z € R = 9, =95,  (74)
E{g(X)05(X — 2)[9] X =9z} =0, for any z € R = ) = ¥,. (75)

For any nonzero eigenvalue A and corresponding eigenvector z(# 9)
S{le =X = Nz =ASz =2 Qz=>\" Sz =\>0
Next we show that Apqe < 1 by contradiction. If not, suppose x is the corresponding eigenvector,

S;lgll' = )\mag:l' = le = )\ma;tSQx = $Tle = )‘maxxT(Ql + SQ - Ql)x
= (1 _ )\mam)x—rﬂlx = xT(SQ — Ql).l‘ <0 (;i) r=19= Amaz =0
(Sa + 000)) "1 (Q1 + 0000 = Anazt = (1 + 000))= = Anaz(So + 608} )z

= xT(Ql + 9098)33 = )\maxa:T(SQ + Goeg)x =2 Oz > )\maxxTng('.' Amaz® > 1)
which contradicts the fact that Sy — 21 > 0 if x # 6. |
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