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Abstract

We study sojourn times in a two-node open queueing network with
a processor sharing node and a delay node, with Poisson arrivals at the
PS node. Motivated by quality control and blood testing applications,
we consider a feedback mechanism in which customers may either leave
the system after service at the PS node or move to the delay node; from
the delay node, they always return to the PS node for new quality
controls or blood tests. We propose various approximations for the
distribution of the total sojourn time in the network; each of these
approximations yields the exact mean sojourn time, and very accurate
results for the variance. The best of the three approximations is used
to tackle an optimization problem that is mainly inspired by a blood
testing application.

1 Introduction

In this paper we study sojourn times in a two-node open queueing network
with a processor sharing (PS) node and a delay (D) node. External cus-
tomers arrive at the PS node and then either leave the system or enter the
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D node after which they return to the PS node and so on. The special fea-
ture of the processor sharing discipline is that all customers are being served
simultaneously. When there are k customers in the PS node, they all receive
a fraction 1/k of the server capacity. In the D node, there is no waiting;
a customer who enters the D node leaves it again after some random time,
that does not depend on the presence of other customers.

This work has been motivated by some practical aspects which prevail in
various industrial (quality control) and medical (blood testing) applications.
We briefly discuss an example of each of those.

Consider items which are undergoing a series of quality conformance tests.
New items arrive in the system for the first test (PS node), say, a visual
inspection for external damages. If an item fails this examination, it is
discarded (or forwarded to further activities) and leaves the system. If it
passes the first test, it is being forwarded to a processing stage (D node),
preparing it for the next planned test in the series. It is then subjected to
the second test. If it fails such a test, it leaves the system. Otherwise it is
forwarded to the D node preparing it for the third test and so on. In many
cases the second and third tests might be parts or modules for examination
and testing under operating conditions, respectively. The test node may
be represented by a PS node, as all inspected items are immediately taken
into consideration, simultaneously receiving the attention of an operator.
As we assume that a new test (if required) takes place after some random
preparation time, the preparation phase is represented by a D node.

As an example of a medical application, consider the testing for the presence
of viruses in blood testing. For example, consider HIV. Until recently, the
routine testing was based on the ELISA (Enzyme Linked Immuno-Sorbent
Assay) that detects virus-specific antibodies in the blood. This test has high
sensitivity and specificity but has a lower analytic detection limit which af-
fects the identification of positive samples very soon after HIV seroconver-
sion, as it takes time to develop a high concentration of antibodies. A new
test, PCR (Polymerase Chain Reaction) can detect viral genetic material in
the blood and has a much higher sensitivity and specificity. PCR testing
is especially advantageous in the window period soon after seroconversion
when the virus starts multiplying but antibodies are not yet at high levels.
For these samples, the ELISA test will be negative while the PCR test is
likely to be positive. However, PCR is very expensive relative to ELISA.
Therefore, blood banks in the USA and some countries in Europe established
a new protocol whereby all samples are ELISA tested and those which tested
negative for ELISA are re-tested either individually or in mini-pools (of 6-12
blood samples) with PCR. A PCR testing requires a special preparation of
the sample, a fact which causes a delay (the preparation phase is modeled
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by the D node). Accordingly, we face here a system with two testing stages:
Blood samples arrive at the PS node for an ELISA testing, and if they are
found HIV positive they leave the system. Otherwise, they are forwarded to
the D node for a preparation to the second stage (a second visit to the PS
node) which involves PCR testing. Then, they leave the system either as
HIV positive or negative. It should be noted that a similar routine is also
applied to detect HCV in blood testing. The rationale behind having pro-
cessor sharing in these blood testing applications is the following. Because
of the limited life times of some substances in the blood, arriving blood
samples should immediately be processed. This processing can be done in
parallel, for a large collection of samples.

Costs are involved with testing problems like those mentioned above, and
minimizing the costs leads to a non-trivial optimization problem. It is very
important that the total time for testing a blood sample (the total sojourn
time of a customer) is not too long. However, costs are involved in speeding
up the procedure, for example by using better equipment or using more
(or better trained) personnel, and thus we face a trade-off. To analyze this
trade-off, we need to know the probability that the total sojourn time of a
customer in the model is less than some threshold value t0. In the present
paper, we therefore study the sojourn time distribution of customers in a
two-node open queueing network, consisting of a PS node and a D node.

It should be noted that the two-node model under consideration contains
a more general feedback mechanism than required for the above-mentioned
examples. Furthermore, the method of analysis may be of independent
interest. One could, e.g., replace the PS node by a node with another
service discipline and still follow the same approach globally. See also the
related two-node studies [3, 5, 10], that consider different service disciplines
and a less general feedback mechanism.

The paper is organised as follows. In Section 2 we present a detailed de-
scription of the two-stage queueing network consisting of a PS node and
a D node. In the rest of the paper we focus our attention on the sojourn
time of a customer, i.e., the time a customer spends in the system. In view
of the fact that it is extremely difficult to obtain exact results for sojourn
time distributions if customers can overtake one another (as is the case in
processor sharing nodes, while the feedback mechanism in the D node also
leads to overtaking), we have to take recourse to approximations. Section 3
discusses three (related) methods to approximate the Laplace-Stieltjes trans-
form (LST) of the joint distribution of the total sojourn time of a customer
at the PS node and at the D node. In particular, we obtain expressions
for the mean, variance and distribution of the total sojourn time of a cus-
tomer in the system. We show that each of the three methods yields the
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exact mean sojourn times at the PS node and at the D node, and hence
also the exact mean total sojourn time. In Section 4 we present the results
of extensive numerical experiments which test the accuracy of the various
approximations. Section 5 is devoted to an optimization problem that is
relevant for both the blood testing problem and the quality conformance
testing problem. We aim to maximize a certain reward function that in-
volves the probabilities that the sojourn time of an arbitrary customer is
below a certain threshold and that it is above another threshold.

2 Model description

In this section we consider a two-node open queueing network with a proces-
sor sharing (PS) node and a delay (D) node, also called infinite server node.
The model is depicted in Figure 1. External customers arrive at the PS
node according to a Poisson process with rate λ. A departing customer sub-
sequently enters the D node with probability p1, and leaves the system with
probability 1− p1. Upon departure from the D node, a customer always re-
turns to the PS node. After the j-th visit to the PS node, a customer enters
the D node with probability pj and leaves the system with probability 1−pj ;
we assume that pK = 0, implying that no customer visits the PS node more
than K times. All service times at all visits to both nodes are independent
random variables, with distribution Bj(·) and Dj(·) at the j-th visit to the
PS and D node, respectively, and with service time LST (Laplace-Stieltjes
transform) βj(·) and δj(·) and mean βj and δj , respectively. In the sequel
we shall call a customer a type-j customer when he brings his j-th visit to a
queue. Introduce qj := P(a customer visits the PS node exactly j times)
=
∏j−1

i=1 pi(1 − pj). The total load of type-j customers at the PS node
is ρj := λβj

∏j−1
i=1 pi = λβj

∑K
i=j qi, and the total load at the PS node

is ρ :=
∑K

j=1 ρj . The total load of type-j customers at the D node is
ϕj := λδj

∏j
i=1 pi = λδj

∑K
i=j+1 qi.

The above model falls into the class of product-form queueing networks as
described in [4]. In the following we restrict ourselves to the steady-state
behavior of the two-node system. The steady-state joint distribution of the
numbers of customers X1, . . . , XK of type 1, . . . ,K at the PS node and the
numbers of customers Y1, . . . , YK−1 of type 1, . . . ,K − 1 at the D node is
known to exist iff ρ < 1, and then to have the following product form:

P(X1 = i1, . . . , XK = iK , Y1 = j1, . . . , YK−1 = jK−1)

= (1− ρ)
(i1 + · · ·+ iK)!

i1! . . . iK !
ρi1
1 . . . ρiK

K e−
PK−1

j=1 ϕj
ϕj1

1

j1!
. . .

ϕ
jK−1

K−1

jK−1!
. (2.1)
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Figure 1: The two-node open queueing network

The mean numbers of customers at both nodes are immediately derived from
(2.1), and Little’s formula subsequently gives the mean total sojourn times
at both nodes:

ESPS =
K∑

j=1

qj

j∑
i=1

βi

1− ρ
=

1
λ

ρ

1− ρ
, (2.2)

ESD =
K−1∑
l=1

δl

K∑
i=l+1

qi =
1
λ

K−1∑
l=1

ϕl. (2.3)

For our purposes we need the full distribution of the total sojourn time
in the system. Unfortunately, it is virtually impossible to obtain exact
results for sojourn time distributions in networks of queues with some form
of overtaking of customers (see [2] for an overview of results on sojourn
times in queueing networks). Two features of our model, processor sharing
and feedback, both entail overtaking. The complexity of the problem of
obtaining sojourn time results in queues with non-instantaneous feedback
was discussed in [8]. In view of the overtaking problem, we are looking for
approximation methods for the sojourn time distribution in the network.
Our study is related to [3, 5, 10]. We consider the same model, except that
(i) we allow general service time distributions in both nodes, (ii) we consider
a delay node instead of a FCFS node, and (iii) the feedback probabilities may
change in each loop. In the model of [5, 10] there is no product form solution,
and even mean sojourn times are not known; those papers concentrate on
approximating mean sojourn times.

3 Description of the approximation methods

We want to approximate the LST of the joint distribution of the total sojourn
time SPS at the PS node and SD at the D node. Denote by S

(j)
PS (S(j)

D ) the
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total sojourn time at the first j visits to the PS (D) node (S(0)
D = 0). We

can write, for Re ω1 ≥ 0, Re ω2 ≥ 0:

E[e−ω1SPS−ω2SD ] =
K∑

j=1

qjE[e−ω1S
(j)
PS−ω2S

(j−1)
D ]. (3.1)

Of course, taking ω1 = ω2 yields an expression for the total sojourn time,
S = SPS +SD, of a customer in the system. We shall present three different,
but related, approximation methods.

Method I: Independence Assumption (IA)
This approximation method is based on the following assumptions.

• Assumption 1. S
(j)
PS and S

(j−1)
D are independent, j = 1, . . . ,K.

• Assumption 2a. S
(j)
PS is distributed as the sum of j independent sojourn

times S1, . . . , Sj . The m-th term Sm is distributed as the sojourn time
of a special customer with service time distribution Bm(·) in an M/G/1
PS queue with arrival rate λ

∑K
i=1 iqi and service time distribution

B(x) :=

∑K
i=1(

∑K
j=i qj)Bi(x)∑K
i=1 iqi

. (3.2)

Assumption 2a corresponds to having an infinite feedback delay: In effect
there are now K independent Poisson arrival streams, the ith one having
arrival rate λ

∑K
j=i qj and service time distribution Bi(·). This approxi-

mation hence is based on several independence assumptions, just like the
IA, also called Independent Flow Time Approximation, which is a classic
approximation method that was proposed for a large class of queueing net-
works in [9, 13]. Hence we have also called this method IA. From (3.1) and
Assumptions 1 and 2a we obtain:

E[e−ω1SPS−ω2SD ] ≈
K∑

j=1

qj

j∏
i=1

(E[e−ω1Si ])
j−1∏
i=1

δi(ω2). (3.3)

In particular, we find from (3.3) for the mean sojourn times

ESPS =
K∑

j=1

qjES
(j)
PS ≈

K∑
j=1

qj

j∑
i=1

βi

1− ρ
=

1
λ

ρ

1− ρ
, (3.4)

ESD =
K−1∑
l=1

δl

l∏
i=1

pi =
K−1∑
l=1

δl

K∑
i=l+1

qi =
1
λ

K−1∑
l=1

ϕl. (3.5)
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These actually agree with the exact mean sojourn times at the PS node and
at the D node, as given in (2.2) and (2.3). Hence our approximation also
gives the exact mean total sojourn time.

Successive sojourn times at the PS node are nearly independent if the times
between successive visits are relatively large; in the latter case, Assumption
2a is justified. Method II takes the opposite extreme view; there it will be
assumed that the times between such successive visits to the PS node are
zero. We call this the short-circuit assumption.

Method II: Short-Circuit Assumption (SC)
This approximation method is based on the following assumptions.

• Assumption 1. S
(j)
PS and S

(j−1)
D are independent, j = 1, . . . ,K.

• Assumption 2b. S
(j)
PS has the same distribution as σ

(j)
PS , the total so-

journ time after j visits in the PS node short-circuited (i.e., with the
D node removed).

From (3.1) and Assumptions 1 and 2b we obtain:

E[e−ω1SPS−ω2SD ] ≈
K∑

j=1

qjE[e−ω1σ
(j)
PS ]

j−1∏
i=1

δi(ω2). (3.6)

The LST E[e−ω1σ
(j)
PS ] for an M/G/1 PS queue with instantaneous feedback

is the same as the LST of the sojourn time of a tagged customer having
as service time the sum of the j service times B1, . . . , Bj in an M/G/1 PS
queue without feedback, having B̂(·) =

∑K
j=1 qj(B1(·)∗· · ·∗Bj(·)) as service

time distribution for an arbitrary customer, ∗ denoting a convolution (note
that the tagged customer has exactly j passes through the feedback queue,
but that an arbitrary customer has a random number of passes). Theorem
2.2 of Ott [11] gives the LST of the sojourn time distribution of a customer
with service requirement x in an M/G/1 PS queue; integration w.r.t. the
density of B1 + · · · + Bj gives E[e−ω1σ

(j)
PS ]. The LST expression in [11] is

quite complicated. If one is satisfied by just obtaining an approximation for
the variance of S

(j)
PS (and hence of SPS), then a relatively easy expression

for the variance of the former random variable can be taken from [11], see
also (3.13) below.
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Furthermore, we find from (3.6) for the mean sojourn time

ESPS ≈
K∑

j=1

qjEσ
(j)
PS =

K∑
j=1

qjj
1

1− ρ

∑K
i=1 βi

∑K
j=i qj∑K

j=1 qjj

=

∑K
i=1 βi

∑K
j=i qj

1− ρ
=

1
λ

ρ

1− ρ
. (3.7)

The latter expression agrees with the mean sojourn time in the PS node
obtained via the first approximation, and with the exact expression. This
makes sense, as the product-form result for numbers of customers reveals
an independence of the number of customers in the PS node from the pa-
rameters at the delay node. Hence the mean number of customers, and via
Little’s formula the mean sojourn time, at the PS node is not influenced by
the parameters at the delay node. So we might as well take those parame-
ters equal to zero or to infinity – corresponding to the two approximations
considered above.

Method III: Weighted Average Approximation (WA)
Method I should work well if ESD >> ESPS , and Method II should work
well if ESD << ESPS . If the mean sojourn times at both queues are roughly
of the same size, then the approximations in (3.3) and (3.6) can be im-
proved in the following way. Replace the LST’s in the righthand side of
(3.1) by weighted sums of LST’s that correspond to the two extremes of
short-circuiting (i.e., immediate feedback to the same queue) and indepen-
dence of successive sojourn times of a customer at the same queue (i.e.,
feedback after an infinite amount of time):

E[e−ω1SPS−ω2SD ] ≈
K∑

j=1

qj

(
wE[e−ω1σ

(j)
PS ] + (1− w)

j∏
i=1

(E[e−ω1Si ])

)
j−1∏
i=1

δi(ω2).

(3.8)
We propose to choose the weight w as w = ESPS/[ESPS + ESD]. For the
mean sojourn times we of course again find the exact result.

Sojourn time variances for Methods I-III
The starting point is:

Var(S) = Var(SPS) + Var(SD) + 2cov(SPS , SD)
= Var(SPS) + Var(SD) + 2ESPSSD − 2ESPSESD. (3.9)

ESPS and ESD are known exactly, see above, and so is Var(SD): Obviously,

Var(SD) =
∑K

j=1 qjE((S(j)
D )2)−

(∑K
j=1 qjE(S(j)

D )
)2

.
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In Method I we approximate, via (3.3),

E(SPSSD) ≈
K∑

j=1

qjES
(j)
PS [δ1 + · · ·+ δj−1] =

K∑
j=1

qj

j∑
i=1

βi

1− ρ
(δ1 + · · ·+ δj−1).

(3.10)
Alternatively, in Method II, we find the same result, via (3.6),

E(SPSSD) ≈
K∑

j=1

qjEσ
(j)
PS [δ1 + · · ·+ δj−1], (3.11)

as Eσ
(j)
PS =

∑j
i=1 βi/(1− ρ).

The main problem is to approximate Var(SPS). We discuss how this is done
in each of the three methods.
Method I (Independence Assumption): Var(SPS) = E(S2

PS)− (ESPS)2, and
we approximate E(S2

PS) ≈
∑K

j=1 qj
∑j

i=1 E(S2
i ). We shall determine E(S2

i ),
Si being the sojourn time of a special customer with service time distribution
Bi(·) in an M/G/1-PS queue with general service time distribution as given
in (3.2). Let ρ denote the total traffic load, and F (·) the waiting time
distribution in the corresponding M/G/1 queue with FCFS instead of PS
service discipline. Formula (2.33) of Ott [11] gives the variance of the sojourn
time in this M/G/1-PS queue of a customer with service requirement x.
Adding (E(Si|x))2 = x2/(1− ρ)2 gives

E(S2
i |x) =

2x2

(1− ρ)2
− 2

(1− ρ)2

∫ x

y=0
(x− y)F (y)dy. (3.12)

Integrating over the distribution Bi(·) then yields E(S2
i ).

Method II (Short-Circuit Assumption): Take the variance of the total so-
journ time in the M/G/1-PS queue with instantaneous Bernoulli feedback,
which is also the total sojourn time in the M/G/1-PS queue without feed-
back but with service time distribution B̂(x) =

∑K
j=1 qj(B1 ∗ · · · ∗Bj(x)), ∗

again denoting convolution. With β̂ and β̂2 the first two moments of B̂(·), ρ̂
the traffic load, Ŝ the sojourn time and F̂ (·) the waiting time distribution in
the corresponding M/G/1 queue with FCFS instead of PS service discipline,
Formula (2.36) of Ott [11] gives:

Var(Ŝ) =
2β̂2 − β̂2

(1− ρ̂)2
− 2

(1− ρ̂)2

∫ ∞

x=0

∫ x

y=0
(x− y)F̂ (y)dydB̂(x). (3.13)

Method III: Take a weighted average, starting from (3.8).
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3.1 Discussion

In this subsection we discuss the assumptions. Assumption 1 was already
introduced and motivated in [10], for the two-node model with a PS node
and an FCFS node. Simulation experiments in [10] indicate that Assump-
tion 1 is in most cases quite close to reality in that PS/FCFS model. In
the present model, we have a product-form network, and hence the queue
lengths at jump epochs of customers are independent. Moreover, the times
at the D node are independent from those at the PS node. All this forms
additional motivation for the Independence Assumption 1. One may expect
that Assumption 2b (and hence Method II) works well in most cases. The
reason for this is the following. Short-circuit assumption 2b should be quite
accurate if ESD << ESPS . It will not be accurate if ESPS << ESD, but
in the latter case the contribution of the PS node to the total sojourn time
will be much smaller than the contribution of the D node – and the latter
contribution is exact.

3.2 The sojourn time distribution

In Section 5 we need an (approximate) expression for the distribution of the
total sojourn time of a customer. Earlier in this section we have obtained
an exact expression for its mean, and approximations for its variance and its
LST (for the latter, take ω1 = ω2 = ω in the expression for the joint trans-
form of SPS and SD). One could now invert this LST numerically (using,
e.g., the well-known procedure expounded by Abate and Whitt in several
papers; see, e.g., [1]). However, we would like to have relatively simple, ex-
plicit expressions for optimization purposes. Hence we follow another road:
We approximate Var(S) as above (using Method III in Section 5 on opti-
mization), and subsequently approximate P(S > x) by using a two-moment
approximation for this distribution. The following method is suggested for
this purpose, cf. [15]. Consider the squared coefficient of variation c2

S of S.
We distinguish between two cases, viz. (i) c2

S ≤ 1 and (ii) c2
S > 1. In case

(i), we proceed as follows. If

1
k
≤ c2

S ≤
1

k − 1
,

for some k ∈ {2, 3, . . . }, then the approximating sojourn time is with prob-
ability p a sum of k − 1 independent exponentials with common mean 1/µ
(hence an Erlang-(k−1) distributed random variable), and with probability
1 − p a sum of k independent exponentials with common mean 1/µ. By
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choosing (cf. [14])

p =
1

1 + c2
S

[kc2
S − (k(1 + c2

S)− k2c2
S)1/2], µ =

k − p

ES
,

this so-called Ek−1,k distribution matches ES and c2
S .

In case (ii), we approximate P(S < x) by a hyperexponential distribution
with balanced means, cf. p. 359 of [14]. Its density is given by

f(t) = r1µ1e−µ1t + r2µ2e−µ2t, t > 0,

where r1 +r2 = 1 and r1, r2 ≥ 0. We take r1 = 1
2(1+

√
c2S−1

c2S+1
), and choose µ1

and µ2 such that r1/µ1 = r2/µ2 (balanced means), hence 1/µ1 = ES/(2r1).

4 Numerical examples

This section contains a number of numerical examples in order to test the
various approximations of the previous section. We restrict ourselves to
the case in which customers visit the PS node at most twice: p2 = 0, as
this is the most relevant case for the blood testing example that occupies a
central place in our study. For computing the approximation of P(S < t)
we need E(S) and Var(S). Since the first moment can be computed exactly
from (2.2) and (2.3), the variance is the crucial ingredient for approximating
P(S < t). Therefore we will give some examples of computing Var(S) and
compare it to values obtained by simulating the system. We let the service
times Bj ∼ exp(1/β) = exp(µ) for j = 1, 2.

4.1 Method I (IA)

In Method I, the first and second sojourn times in the PS node are assumed
to be independent (an accurate approximation if β � δ). Hence

SPS =

{
S1 w.p. 1− p1,

S1 + S2 w.p. p1,
(4.1)

and
Var(SPS) = Var(S1) + p1Var(S2) + (p1 − p2

1)(ES2)2.

Here Var(Si), for both i = 1, 2, is the variance of the sojourn time in an
M/G/1 queue with arrival rate λ(1 + p1) and with service time distribution

1
1+p1

B1(·)+ p1

1+p1
B2(·). This service time distribution is again exp(µ), hence
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the calculations are somewhat simpler than those described in subsection
3.2 (compare in particular 3.12). This leads to

Var(SPS) = (1 + p1)Var(S1) + (p1 − p2
1)(E(S1))2, (4.2)

where S1 is the sojourn time in an M/M/1-PS queue with arrival intensity
λ(1 + p1). By [6] we have

Var(S1) =
1

µ2(1− ρ)2
2 + ρ

2− ρ
, (4.3)

which leads to

Var(SPS) =
1

µ2(1− ρ)2

(
(1 + p1)(2 + ρ)

2− ρ
+ p1(1− p1)

)
. (4.4)

4.2 Method II (SC)

This is the short-circuit assumption (valid if β � δ), which is equivalent to
having no delay node. Thus the service time distribution is given by

B(x) = (1− p1)B1(x) + p1B2(x), with
B1 ∼ exp(µ)
B2 ∼ Erl(2, µ).

(4.5)

Therefore the system behaves like an M/G/1-PS queue, with service time
distribution B(x), for which the variance of the sojourn time is given by
(3.13) (ignoring the hats that there referred to B̂(·)). By changing the
integration order one can see that∫ ∞

0

∫ x

0
(x− y)F (y) dydB(x) =

(1− p1)
∫ ∞

0
F (y)h1(y) dy + p1

∫ ∞

0
F (y)h2(y) dy =

(1− p1)I1 + p1I2,

(4.6)

where {
h1(y) = 1

µe−µy,

h2(y) = 2+µy
µ e−µy.

(4.7)

By computing the first and second moment of the service time distribution
(3.13) now gives

Var(SPS) =
3 + 6p1 − p2

1

µ2(1− ρ)2
− 2

(1− ρ)2
((1− p1)I1 + p1I2). (4.8)
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The function F (·) is the waiting time distribution in the corresponding
M/G/1-FCFS queue, of which the LST is given by

ϕ(s) =
∫ ∞

0
e−sx dF (x) =

(1− ρ)s
s− λ(1− β(s))

, (4.9)

where β(s) is the LST of the service time distribution B(·). By integration
by parts we can express the integral I1 as ϕ(µ), yielding

I1 =
1
µ2

4µ(ρ− 1)
λ(2 + p1)− 4µ

. (4.10)

For I2 we get

I2 = 2I1 −
[

d

da
(
1
a
ϕ(a))

]
a=µ

= 2I1 −
2(8µ3 − 2λµ2)(ρ− 1)
µ(4µ2 − λ(2µ + p1µ))2

.

(4.11)

It should be noted that in both Method I and II we subsequently use (3.9)
to approximate the variance of the total sojourn time, and finally we use
the method outlined in Subsection 3.2 to approximate the full sojourn time
distribution P(S < t). The latter distribution is needed in the optimization
problem that will be tackled in Section 5.

4.3 Examples

We give some numerical examples for calculating the variance of the total
sojourn time based on the above discussed approximations. The Poisson
arrival process has intensity λ = 1

100 .

Case p1 = 0.5:

PS ∼ exp(0.1), D ∼ det(1)

Var(SPS) Var(SD) Var(S)
Simulated Value 282.8 0.25 289.0
Method I (IA) 275.8 0.25 282.0

relative error (in %) 2.5 0 2.4
Method II (SC) 288.8 0.25 295.0

relative error (in %) -2.1 0 -2.1
Method III (WA) 288.1 0.25 294.3

relative error (in %) -1.8 0 -1.8
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PS ∼ exp(1), D ∼ det(1)

Var(SPS) Var(SD) Var(S)
Simulated Value 1.833 0.25 2.589
Method I (IA) 1.827 0.25 2.585

relative error (in %) 0.3 0 0.2
Method II (SC) 1.836 0.25 2.594

relative error (in %) -0.2 0 -0.2
Method III (WA) 1.832 0.25 2.589

relative error (in %) 0.1 0 0

PS ∼ exp(0.1), D ∼ det(10)

Var(SPS) Var(SD) Var(S)
Simulated Value 283.2 25 367.7
Method I (IA) 275.9 25 359.7

relative error (in %) 2.6 0 1.5
Method II (SC) 288.9 25 372.7

relative error (in %) -2.0 0 -2.0
Method III (WA) 286.0 25 369.8

relative error (in %) -1.0 0 -1.2

PS ∼ exp(1), D ∼ det(10)

Var(SPS) Var(SD) Var(S)
Simulated Value 1.816 25 31.9
Method I (IA) 1.827 25 31.9

relative error (in %) -0.6 0 0
Method II (SC) 1.836 25 31.9

relative error (in %) -1.1 0 0
Method III (WA) 1.828 25 31.9

relative error (in %) -0.7 0 0

The approximation of Var(SPS) does not depend on the sojourn time distri-
bution in the D node, except for its mean (as ESD is used in the weighted
average approximation method III, see below (3.8)). Therefore the above
shown tables can easily be extended to arbitrary service (= sojourn) time
distributions in the D node.

Case p1 = 1: Also in this case we look at a deterministic service time distri-
bution in the D node. Since we always have exactly two loops, Var(SD) = 0.
Furthermore SPS and SD are independent, which yields Var(S) = Var(SPS)+
Var(SD).
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PS ∼ exp(0.1), D ∼ det(1)

Var(SPS) Var(SD) Var(S)
Simulated Value 429.8 0 429.8
Method I (IA) 381.9 0 381.9

relative error (in %) 11.1 0 11.1
Method II (SC) 424.6 0 424.6

relative error (in %) 1.2 0 1.2
Method III (WA) 422.9 0 422.9

relative error (in %) 1.6 0 1.6

PS ∼ exp(1), D ∼ det(1)

Var(SPS) Var(SD) Var(S)
Simulated Value 2.136 0 2.136
Method I (IA) 2.124 0 2.124

relative error (in %) 0.6 0 0.6
Method II (SC) 2.15 0 2.15

relative error (in %) -0.7 0 0.7
Method III (WA) 2.142 0 2.142

relative error (in %) -0.2 0 0.2

PS ∼ exp(0.1), D ∼ det(10)

Var(SPS) Var(SD) Var(S)
Simulated Value 405 0 405
Method I (IA) 381.9 0 381.9

relative error (in %) 5.7 0 5.7
Method II (SC) 424.6 0 424.6

relative error (in %) -4.8 0 4.8
Method III (WA) 412.4 0 412.4

relative error (in %) -1.8 0 1.8

PS ∼ exp(1), D ∼ det(10)

Var(SPS) Var(SD) Var(S)
Simulated Value 2.156 0 2.156
Method I (IA) 2.125 0 2.125

relative error (in %) 1.4 0 1.4
Method II (SC) 2.151 0 2.151

relative error (in %) 0.2 0 0.2
Method III (WA) 2.129 0 2.129

relative error (in %) 1.2 0 1.2
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Conclusion: In all test cases, the three approximation methods of Section 3
yield very good results for the sojourn time variances. Method I usually
yields the least good approximation, and Method III is slightly better than
Method II; both latter methods result in errors that are typically below 2%.

5 Optimization

In this section we consider an optimization problem that is inspired by the
blood testing example of Section 1, as well as by the quality conformance
testing example of that section. In both examples, it is important to finish
the whole testing procedure within a reasonable amount of time, say before
a predetermined time t0. In quality conformance it is important to have an
upper bound on the quality control time of the items, because one wants
to either deliver them or process them quickly without unnecessary delay.
Therefore we assign a reward C0 to each item that is processed in less than
t0 time units (or equivalently, an item has a sojourn time less than t0). In
blood testing, patients are entitled to have their results within a short period
of time (i.e., before t0) so that treatment can start immediately and the risk
of infecting other individuals is diminished. Hence we assign a reward to
having a sojourn time less than some value t0. For the same reasons, in both
applications excessively long sojourn times of items in the testing network
have to be avoided so that we assign a penalty C1 on each item whose
sojourn time is greater than some prespecified time t1 > t0. The sojourn
time may be reduced by speeding up the service in the PS node and/or the
D node. This might be done by using better equipment and/or more (or
better trained) personnel, but that involves costs. We study this trade-off
problem, aiming at optimizing a ‘reward’. Our decision variables are the
mean service times at the PS and D nodes: the βi and δi. We assume that
there are costs f(βj) involved with having certain mean service times βj ,
and similarly costs g(δj) with having mean service times δj . f(·) and g(·)
are taken to be non-increasing functions. So the following reward per time
unit must be maximized (notice that the multiplication by λ in the first
terms results in rewards per customer times the number of customers per
time unit):

C := λC0P(S < t0)− λC1P(S > t1)−
K∑

j=1

f(βj)−
K−1∑
j=1

g(δj). (5.1)

Alternatively, we can put a constraint on large sojourn times by requiring
that P(S > t1) ≤ α, for some small α > 0, in which case the term λC1P(S >
t1) has to be omitted from (5.1).
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In our numerical example we treat the case K = 2, i.e.,

C := λC0P(S < t0)− λC1P(S > t1)−
2∑

j=1

f(βj)− g(δ1), (5.2)

and two choices of cost functions:

A. f(β) = a0 + a1/β and g(δ) = b0 + b1/δ, where β > β0 and δ > δ0, with
β0 and δ0 being the minimum possible mean service times, and a0 and b0

being the fixed minimum costs.

B. f(β) = a0 + a1e
−β and g(δ) = b0 + b1e

−δ.

Note that the system parameters are C0, C1, λ, a0, b0, a1, b1, β0 and δ0. We
try to choose β1, β2 and δ1 such that the reward C is maximized. Since
the optimization problem (5.2) is analytically intractable we deal with it by
numerical methods.

First we note that the parameters a0 and b0 only cause a vertical displace-
ment and can therefore be omitted. We also assume that the service time
in the PS node is exponentially distributed with parameter 1/β, where β
stays the same for every loop. Further let the D node have a deterministic
distribution with parameter δ. We also note that w.l.o.g. we can choose
C0 = 1 since other values would only result in another scaling of the whole
objective function. The arrival process parameter λ can be chosen to be
1, since changing it would only result in a different time scaling. We have
chosen t0 = 0.5 and t1 = 3. For the functions f and g we choose the ones
given in A above.

The constrained problem: In this case the objective function reads as{
C = C0P(S < t0)− 2f(β)− g(δ),
P(S > t1) ≤ α,

(5.3)

where we fix α = 0.1. The parameters left are a1 and b1, so we will discuss
different choices and the corresponding solutions β and δ:

a1 b1 β δ

1/20 1/20 0.34 0.49
1/20 1/4 0.30 1.10
1/4 1/20 0.35 0.34
1/4 1/4 0.32 0.78

In all these examples the maximum is attained at the boundary imposed by
the constraint.
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The unconstrained problem: In this case the objective function is given
by

C = C0P(S < t0)− C1P(S > t1)− 2f(β)− g(δ). (5.4)

In this case we have to choose another parameter, namely C1 and this leads
to the following solutions:

C1 = 1:

a1 b1 β δ

1/20 1/20 0.23 0.38
1/20 1/4 0.26 0.97
1/4 1/20 0.47 0.51
1/4 1/4 0.51 1.39

C1 = 5:

a1 b1 β δ

1/20 1/20 0.20 0.34
1/20 1/4 0.20 0.76
1/4 1/20 0.30 0.33
1/4 1/4 0.30 0.71

To illustrate the problem better we also include a plot of the objective
function. The chosen parameters are C1 = 5, a1 = b1 = 1/4. The plot can
be found in Figure 2.

Furthermore we give some results for the set B of functions f and g in the
unconstrained case, i.e. {

f(β) = a1e
−β,

g(δ) = b1e
−δ.

(5.5)

We choose δ ≥ δ0 = 0.1 and β ≥ β0 = 0.1 as minimal service time require-
ments. As above, C1 = 5.

a1 b1 β δ

1 1 0.10 0.79
1 2.5 0.10 1.75

2.5 1 0.25 0.77
2.5 2.5 0.23 1.60

We note that in the first case the optimal points are at the boundary imposed
by the constraints δ ≥ 0.1 and β ≥ 0.1. In the second line appears β = 0.10
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Figure 2: The objective function for the unconstrained case

while with more accuracy this should be β = 0.1021. This means that this
point is not at the boundary.
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