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The problem of competitive nucleation in the framework of Probabilistic Cellular Automata is
studied from the dynamical point of view. The dependence of the metastability scenario on the self–
interaction is discussed. An intermediate metastable phase, made of two flip–flopping chessboard
configurations, shows up depending on the ratio between the magnetic field and the self–interaction.
A behavior similar to the one of the stochastic Blume–Capel model with Glauber dynamics is found.
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Metastable states are common in nature; they show
up in connection with first order phase transitions. Well
known examples are super–cooled and super–heated liq-
uids. Their statistical mechanics description revealed to
be a challenging task. An approach based on equilibrium
states has been developed via analytic continuation tech-
niques [1] and via the introduction of equilibrium systems
on suitably restricted sets of configurations [2–4]. The
purely dynamical point of view, dating back to Ref. [5],
has been developed via the pathwise technique [6] and
the potential theoretical approach [7].

We shall stick to the dynamical description to inves-
tigate competing metastable states. This situation arise
in many physical processes, such as the crystalization of
proteins [8, 9] and their approach to equilibrium [10].
The extreme situation is represented by the glasses, in
which the presence of a huge number of minima of the
energy landscape prevents the system from reaching the
equilibrium [11]. The study of these systems is difficult,
since the minima of the energy and the decay pathways
between them change when the control parameters are
varied. It is then of interest the study of models in which
a complete control of the variations induced on the en-
ergy landscape by changes in the parameters is possible.

In this perspective, the analysis of the Blume–Capel
model in Ref. [12, 13] and that of the Potts model in Ref.
[14] are of great interest. In the Blume–Capel model the
sites of the lattice can be either empty or occupied by
a 1/2–spin particle. The interaction favors the presence
of neighboring aligned spins; the chemical potential λ
controls the tendency to have particles or lacunas on the
lattice and the magnetic field h, depending on its sign,
favors either the pluses or the minuses. Depending on
the parameters, in the zero temperature limit the stable
state is the one with all the spins up (u) or all the spins
down (d) or no particle at all (0). Let h, λ > 0, so
that the unique stable state is u, and set a = h/λ. For
a < 1 the transition from the metastable state d to u is
achieved via a sequence of increasing plus square droplets
in the sea of minuses. For 1 < a < 2 and h small, the

transition from d to u is realized via increasing squared
frames in which the internal pluses are separated by the
external minuses by a frame of zeros large one. For a > 2
and h small, the system started at d visits the state 0

before reaching u; the transition from d to 0 is achieved
via increasing zero square droplets in the sea of minuses,
while the transition from 0 to u is realized via increasing
plus square droplets in the sea of zeros.

We study, here, metastability for a Probabilistic Cel-
lular Automaton [15] with self–interaction κ, focusing on
the dependence of the metastability scenario on such a
parameter. The model interpolates those studied in Ref.
[16] (κ = 0) and [17, 18] (κ = 1). For κ = 0 each spin in-
teracts only with its nearest neighbors; for κ = 1 the self–
interaction has the same strength as the nearest neighbor
coupling. In absence of self–interaction an intermediate
metastable state shows up; it is proven that the inter-
mediate state is visited during the transition from the
metastable to the stable state. The role played by the
intermediate state changes as the self–interaction κ is
varied. Quite surprisingly, results similar to those found
in Ref. [12] for the Blume–Capel model are obtained.

Consider the two–dimensional torus Λ = {0, . . . , L −
1}2, with L even, endowed with the Euclidean metric;
x, y ∈ Λ are nearest neighbors iff their mutual distance
is equal to 1. Associate a variable σ(x) = ±1 with each
site x ∈ Λ and let S = {−1, +1}Λ be the configuration

space. Let β > 0 and κ, h ∈ [0, 1]. Consider the Markov
chain σn, with n = 0, 1, . . . , on S with transition matrix

p(σ, η) =
∏

x∈Λ

px,σ (η(x)) ∀σ, η ∈ S (1)

where, for x ∈ Λ and σ ∈ S, px,σ(·) is the probabil-
ity measure on {−1, +1} defined as px,σ(s) = 1/[1 +
exp {−2βs(Sσ(x) + h)}] with s ∈ {−1, +1} and Sσ(x) =∑

y∈Λ K(x− y)σ(y) where K(x− y) is 0 if |x− y| ≥ 2, 1
if |x−y| = 1, and κ if |x−y| = 0. The probability px,σ(s)
for the spin σ(x) to be equal to s depends only on the
values of the spins of σ in the five site cross centered at x.
The metastable behavior of model (1) has been studied
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in Ref. [16] for κ = 0 and in Ref. [17, 18] for κ = 1.
The Markov chain (1) is a probabilistic cellular au-

tomata; the chain σn, with n = 0, 1, . . . , updates all
the spins simultaneously and independently at any time.
The chain is reversible, see Ref. [15], with respect to
the Gibbs measure µ(σ) = exp{−βH(σ)}/Z with Z =∑

η∈S exp{−βH(η)} and

H(σ) = −h
∑

x∈Λ

σ(x)−
1

β

∑

x∈Λ

log cosh [β (Sσ(x) + h)] (2)

that is detailed balance p(σ, η) e−βH(σ) = p(η, σ) e−βH(η)

holds for σ, η ∈ S; hence, µ is stationary. We refer to 1/β
as to the temperature and to h as to the magnetic field;
the interaction is short range and it is possible to extract
the potentials as described in Ref. [18].

Although the dynamics is reversible w.r.t. the Gibbs
measure associated to the Hamiltonian (2), the probabil-
ity p(σ, η) cannot be expressed in terms of H(σ)−H(η),
as usually happens for Glauber dynamics. Given σ, η ∈
S, we define the energy cost

∆(σ, η) = − lim
β→∞

log p(σ, η)

β
=

∑

x∈Λ:
η(x)[Sσ(x)+h]<0

2|Sσ(x) + h| (3)

Note that ∆(σ, η) ≥ 0 and ∆(σ, η) is not necessarily equal
to ∆(η, σ); it can be proven, see [17, Section 2.6], that

e−β∆(σ,η)−βγ(β) ≤ p(σ, η) ≤ e−β∆(σ,η)+βγ(β) (4)

with γ(β) → 0 in the zero temperature limit β → ∞.
Hence, ∆ can be interpreted as the cost of the transition
from σ to η and plays the role that, in the context of
Glauber dynamics, is played by the difference of energy.

To pose the problem of metastability it is necessary to
understand the structure of the ground states; since the
Hamiltonian depends on β, their definition deserves some
thinking. The ground states are those configurations on
which the Gibbs measure µ concentrates when β → ∞;
hence, they can be defined as the minima of the energy

E(σ) = lim
β→∞

H(σ) = −h
∑

x∈Λ

σ(x) −
∑

x∈Λ

|Sσ(x) + h| (5)

For X ⊂ S, we set E(X ) = minσ∈X E(σ). For h > 0 the
configuration u, with u(x) = +1 for x ∈ Λ, is the unique
ground state, indeed each site contributes to the energy
with −h − (4 + κ + h). For h = 0, the ground states are
the configurations such that all the sites contribute to the
sum (5) with 4+κ. Hence, for κ ∈ (0, 1], the sole ground
states are the configurations u and d, with d(x) = −1
for x ∈ Λ. For κ = 0, the configurations c

e, co ∈ S
such that c

e(x) = (−1)x1+x2 and c
o(x) = (−1)x1+x2+1

for x = (x1, x2) ∈ Λ are ground states, as well. Notice
that c

e and c
o are chessboard–like states with the pluses

on the even and odd sub–lattices, respectively; we set

c = {ce, co}. Since the side length L of the torus Λ is
even, then E(ce) = E(co) = E(c).

We study those energies as a function of κ and h, re-
calling that periodic boundary conditions are considered.
We have E(u) = −L2(4+κ+2h), E(d) = −L2(4+κ−2h),
and E(c) = −L2(4 − κ); hence E(c) > E(d) > E(u) for
0 < h < κ ≤ 1, E(c) = E(d) > E(u) for 0 < h = κ ≤ 1,
and E(d) > E(c) > E(u) for 0 < κ < h ≤ 1.

We can now pose the problem of metastability at fi-
nite volume and temperature tending to zero (Friedlin–
Wentzel regime). Following Ref. [6], see also Ref. [17,
Appendix], given a sequence of configurations ω =
ω1, . . . , ωn, with n ≥ 2, we define the energy height along
the path ω as Φω = maxi=1,...,|ω|−1[E(ωi)+∆(ωi, ωi+1)].
Note that the definition does not depend on the direction
in which the path ω is followed. More precisely, denoted
by ω′ the path ωn, ωn−1, . . . , ω1, since

E(σ) + ∆(σ, η) = E(η) + ∆(η, σ) (6)

for any σ, η ∈ S, it follows that Φω = Φω′ ; (6) is conse-
quence of the detailed balance principle. Given A, A′ ⊂
S, we let the communication energy between A and A′

be the minimal energy height Φω over the set of paths ω
starting in A and ending in A′. For any σ ∈ S, we let
Iσ ⊂ S be the set of configurations with energy strictly
below E(σ) and Vσ = Φ(σ, Iσ) − E(σ) be the stability

level of σ, that is the energy barrier that, starting from
σ, must be overcome to reach the set of configurations
with energy smaller than E(σ); we set Vσ = ∞ if Iσ = ∅.
We denote by Ss the set of global minima of the energy
(5), namely, the collection of the ground states, and sup-
pose that the communication energy Γ = maxσ∈S\Ss Vσ

is strictly positive. Finally, we define the set of metastable

states Sm = {η ∈ S : Vη = Γ}. The set Sm de-
serves its name, since it is proven the following (see,
e.g., Ref. [17, Theorem A.2]): pick σ ∈ Sm, consider
the chain σn started at σ0 = σ, then the first hitting

time τSs = inf{t > 0 : σt ∈ Ss} to the ground states is
a random variable with mean exponentially large in β,
that is

lim
β→∞

1

β
log Eσ[τSs ] = Γ (7)

with Eσ the average on the trajectories started at σ.
In this regime the description of metastability is re-

duced to the computation of Ss, Γ, and Sm. We choose
the parameters of the model (1) in such a way that
0 < h < 1, h 6= κ, and 2/h, 2/(h − κ), 2/(h + κ), and
(2+κ−h)/h are not integer. The configuration u is then
the unique ground state, i.e., Ss = {u}. Two candidates
for metastability are d and c; to find Sm, one should
compute Γ and prove that either Vd or Vc is equal to Γ.
This is a difficult task, indeed all the paths ω connecting
d and c to u must be taken into account and the related
energy heights Φω computed. Since at each time step
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all the spins of the lattice can be updated, the structure
of the trajectories is highly complicated. This is why
the study of the energy landscape of probabilistic cellu-
lar automata is very difficult [17, Theorem 2.3]; such a
task is simpler for serial Glauber dynamics, where a sort
of general approach can be developed [6, Section 7.6].

We develop an heuristic argument to compute Γ. Re-
call (3) and note that κ and h have been chosen so that
Sσ(x) + h 6= 0. Thus, it follows that, given σ ∈ S, there
exists a unique η ∈ S such that ∆(σ, η) = 0; the config-
uration η is such that η(x)[Sσ(x) + h] > 0 for all x ∈ Λ
and is the unique configuration to which the system can
jump, starting from σ, with probability tending to one
in the limit β → ∞ (see (4)). We say that σ ∈ S is a lo-

cal minimum of the energy iff ∆(σ, σ) = 0; starting from
a local minimum, transitions to different configurations
have strictly positive energy cost and thus happen with
negligible probability in the zero temperature limit. It is
immediate that d and u are local minima of the energy,
while c

e and c
o are not, indeed c

e(x)[Sce(x)+h] < 0 and
c
o(x)[Sco(x) + h] < 0 for all x ∈ Λ. We also have that

∆(ce, co) = ∆(co, ce) = 0, hence at very low tempera-
ture, the system started in c

o is trapped in a continuous
flip–flop between c

o and c
e. A peculiarity of parallel dy-

namics is the existence of pairs σ, η ∈ S in which the
chain is trapped since ∆(σ, η) = ∆(η, σ) = 0; the proba-
bility to exit such a pair is exponentially small in β.

We characterize, now, the local minima and the trap-
ping pairs. For what concerns the local minima, we con-
sider a configuration σ and study the sign of Sσ(x) + h.
Suppose, first, h < κ and recall κ ≤ 1; the sign of
Sσ(x) + h equals the sign of the majority of the spins
in the five site cross centered at x. Hence, σ is a local
minimum iff for each site x there exist at least two near-
est neighbors such that the associated spins are equal to
σ(x). Suppose, now, h > κ ≥ 0; the sign of Sσ(x) + h
is negative iff at least three among the spins associated
to neighboring sites of x are minus. Hence, σ is a local
minimum iff for each site x such that σ(x) = −1 there
exist at least three negative minus neighbors and for each
site x such that σ(x) = +1 there exist at least two posi-
tive neighbors. In conclusion, for h > κ the local minima
of the energy are those configurations in which all the
pluses, if any, are precisely those associated with the sites
inside a rectangle (plus–minus droplets). For h < κ the
local minima are all the configurations that can be drawn
adding pluses to d so that each plus (resp. minus) has at
least (resp. at most) two neighboring pluses. Plus–minus
rectangular droplets are local minima also in this case.
For what concerns the trapping pairs, consider a configu-
ration σ with a rectangle of chessboard plunged in the sea
of minuses (chessboard–minus droplet) and let η be the
configuration obtained flipping all the spins associated
with sites in the chessboard rectangle. The configuration
σ, η form a trapping pair only for h > κ. Indeed, it is
immediate to show that all the spins of the chessboard

tend to flip, some thinking is necessary only for the mi-
nus corners. Let x be the corner site with σ(x) = −1,
since Sσ(x) + h = −κ + h, we have that Sσ(x) + h > 0
for h > κ and Sσ(x) + h < 0 for h < κ. Thus, the spin
tends to flip in the former case and not in the latter.

The local minima and the trapping pairs can be used
to construct the optimal paths connecting d and c to the
ground state u. We distinguish two cases.

Case h > κ ≥ 0. Although c
e and c

o are not local
minima of the energy, the system started in c is trapped
in a continuous flip–flop between c

o and c
e. This trap-

ping persists even if a rectangle of pluses is inserted in
the chessboard background (plus–chessboard droplet); a
path from c to u can be constructed with a sequence of
such droplets. The difference of energy between two plus–
chessboard droplets with side lengths respectively given
by ℓ, m ≥ 2 and ℓ, m+1 is equal to 4−2(κ+h)ℓ. It then
follows that the energy of a such a droplet is increased
by adding an ℓ–long slice iff ℓ ≥ ⌊2/(κ + h)⌋ + 1 = λu

c

(⌊x⌋ denotes the largest integer smaller than the real x).
The length λu

c
is called the critical length. It is reasonable

that the energy barrier Vc is given by the difference of en-
ergy between the smallest supercritical plus–chessboard
droplet, i.e., the plus–chessboard square droplet with
side length λu

c , and the configuration c; by using (5)
we get that such a difference of energy is equal [19] to
Γu

c = 8/(κ + h).
A path from d to u can be constructed with a sequence

of plus–minus droplets. By using (5) we get that the dif-
ference of energy between two plus–minus droplets with
side lengths respectively given by ℓ, m ≥ 2 and ℓ, m + 1
is 4(2 − hℓ). It then follows that the energy of a plus–
minus droplet is increased by adding an ℓ–long slice iff
ℓ ≥ ⌊2/h⌋+ 1 = λu

d
. The length λu

d
is the critical length

for the plus–minus droplets; by using (5) we get that the
difference of energy between the smallest supercritical
plus–minus droplet and d is equal to Γu

d
= 16/h.

An alternative path from d to u can be constructed
via a sequence of frames with the internal rectangle of
pluses separated by the external minuses by a stripe of
chessboard large one. These are peculiar trapping pairs
in which the flip–flopping spins are those associated with
the sites in the stripe of chessboard. We can prove that
the difference of energy between two frames with internal
(rectangle of pluses) side lengths respectively given by
ℓ, m ≥ 2 and ℓ, m + 1 is equal to 8 − 4(h − κ) − 4hℓ,
so that the critical length for those frames is given by
λf

d
= ⌊(2 − h + κ)/h⌋ + 1 and the difference of energy

between the smallest supercritical frame and d is equal
to Γf

d
= 16[1 − (h − κ)/2]2/h.

A path from d to c can be constructed with a sequence
of chessboard–minus droplets. By using (5) we get that
the difference of energy between two chessboard–minus
droplets with side lengths respectively given by ℓ, m ≥ 2
and ℓ, m+1 is equal to 4−2(h−κ)ℓ. It then follows that
the energy of a chessboard–minus droplet is increased by
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FIG. 1: The time unit is the time step of the chain. Solid lines
(from the left to the right) represent the magnetization of the
runs (κ, β) = (0.15, 0.55), (0.4, 0.5), (0, 025, 0.7). Dashed lines
represent the absolute value of the staggered magnetization;
the non–null curve is found for (κ, β) = (0.025, 0.7).

adding an ℓ–long slice iff ℓ ≥ ⌊2/(h − κ)⌋ + 1 = λc

d
.

The length λc

d
is the critical length for the chessboard–

minus droplets; the energy difference of energy between
the smallest supercritical chessboard–minus droplet and
d is equal to Γc

d
= 8/(h − κ).

Note that Γf

d
< Γu

d
for h, κ small. Moreover, let a =

h/κ and remark that, provided the magnetic field h is
chosen small enough as a function of a, Γc

d
< Γf

d
for

a > 2 and Γc

d
> Γf

d
for 1 < a < 2. Hence, for a > 2

we get Vd = Γc

d
, that is the chain escapes from d and

reaches the state c in a time that can be estimated as in
(7) with Γ = Γc

d
. Starting from c the chain will reach u

by overcoming the energy barrier Vc = Γu
c < Vd. Note

that Vc = Vd in the limiting case κ = 0, hence both c

and d are metastable states (results in [16] are recovered).
For 1 < a < 2, Vd = Γf

d
, that is the chain escapes from

d and reaches the state u via a sequence of increasing
frames in a time estimated as in (7) with Γ = Γf

d
.

Case h < κ ≤ 1. By paying the smallest energy cost
any local minimum can be transformed in a configura-
tion with the pluses forming well separated rectangles
(see [18]); hence, the most relevant local minima are
the plus rectangular droplets. As noted above, for this
choice of the parameters the system cannot be trapped
in chessboard–minus droplets. Thus, the energy barrier
Vd is given by the energy Γu

d
of the smallest supercritical

plus droplet. As before, we also have Vc = Γu
c . Since

Vc < Vd, we have that d is the unique metastable state,
the communication energy is Γ = Γu

d
, the tunneling time

is exp{βΓu

d
} in the sense (7), and the zero temperature

limit transition from the metastable state d to the sta-
ble state u is achieved via the nucleation of a plus–minus
square droplet with side length λu

d
. For κ = 1 the results

proven in [17] are recovered.
The metastability scenario depends on the ratio be-

tween the magnetic field and the self–interaction. For
κ = 0 the two states d and c are both metastable.
For a > 2 and h small, c is crucial, although not
metastable, since it is visited during the transition from
the metastable state d to the stable state u. For 2 >
a > 1 and h small, the chessboard configuration plays
no role at all and the exit from the metastable d state
is achieved via the direct formation of the plus phase
via a sequence of increasing frames. For 1 > a, the exit
from the metastable d state is achieved via the direct
formation of the plus phase via a sequence of increasing
plus–minus droplets. The scenario is very similar to the
one proven in Ref. [12] for the Blume–Capel model with
Glauber (serial) dynamics; the role of the chemical po-
tential λ is played here by the self–interaction κ. This be-
havior has been tested at finite temperature via a Monte
Carlo simulation [20]. We have considered L = 1000,
h = 0.2, and run the chain for (κ, β) = (0.025, 0.7),
(0.15, 0.55), (0, 4, 0.5). By measuring the staggered and
the usual magnetization, we point out that the system
visits c before reaching u only in the run κ = 0.025 and
β = 0.7 (see Figure 1), which is the only run with a > 2.
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