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Abstract

When we cut an i.i.d. sequence of letters into words according to an independent renewal
process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP)
for the empirical process of words, the rate function is the specific relative entropy of the
observed law of words w.r.t. the reference law of words. In the present paper we consider the
quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the
renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one
being the annealed rate function, the other being proportional to the specific relative entropy
of the observed law of letters w.r.t. the reference law of letters, with the former being obtained
by concatenating the words and randomising the location of the origin. The proportionality
constant equals the tail exponent of the renewal process. Earlier work by Birkner considered
the case where the renewal process has an exponential tail, in which case the rate function turns
out to be the first term on the set where the second term vanishes and to be infinite elsewhere.
In a companion paper the annealed and the quenched LDP are applied to the collision local time
of transient random walks, and the existence of an intermediate phase for a class of interacting
stochastic systems is established.
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1 Introduction and main results

1.1 Problem setting

Let E be a finite set of letters. Let E = UpenE™ be the set of finite words drawn from E. Both E and
E are Polish spaces under the discrete topology. Let P(EN) and P(EN) denote the set of probability
measures on sequences drawn from F, respectively, E/, equipped with the topology of weak conver-
gence. Write § and 6 for the left-shift acting on EN respectively, EN. Write PV (EN), pers(EN)
and P (EN), P8(EN) for the set of probability measures that are invariant and ergodic under 6,
respectively, 6.

For v € P(E), let X = (X;)ien be i.i.d. with law v. Without loss of generality we will assume
that supp(rv) = E (otherwise we replace E by supp(v)). For p € P(N), let 7 = (7;);en be i.i.d. with
law p having infinite support and satisfying the algebraic tail property

i L082(n)

pw(b:) C;OO log n

= —a, «ac€(1l,00). (1.1)

(No regularity assumption will be necessary for supp(p).) Assume that X and 7 are independent
and write P to denote their joint law. Cut words out of X according to 7, i.e., put (see Figure 1)

To:=0 and T;:=T;_1+7, €N, (1.2)

and let '
VO = (X1, 11, X1 y42,--,X7), i€N. (1.3)

Then, under the law P, Y = (Y(i))ieN is an i.i.d. sequence of words with marginal law ¢, , on E
given by

Qo (@1, @) = ]P’(Y(l) = (21,...,2n)) = p(n)v(z1) - v(zp),

(1.4)
neN z,...,z, € F.
T1 T4
T2 3 s
X y (1) v (©2) vy (3) y(4) y (5)
T T T3 Ty Ts

Figure 1: Cutting words from a letter sequence according to a renewal process.

For N € N, let (YD Yy (VNyper gtand for the periodic extension of (Y1), Y(N)) to an
element of EY, and define

N-1

Z 5~i(Y(1),...,Y(N))per € Pinv(EN)v (1'5)
1=0

1
RNZ:N

the empirical process of N-tuples of words. By the ergodic theorem, we have
w—lim Ry = ¢ P-as., (1.6)
N—o00

PV

with w — lim denoting the weak limit. The following large deviation principle (LDP) is standard
(see e.g. Dembo and Zeitouni [5], Corollaries 6.5.15 and 6.5.17). For Q € P™(EN) let

HQ|q2h) = Jim < h (@ |, ) € 0.] (17)
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be the specific relative entropy of Q w.r.t. qf?g, where = O'(Y(l), e ,Y(N)) is the sigma-algebra
generated by the first N words, Q‘f}N is the restriction of @ to Zn, and h(- | -) denotes relative
entropy. (For general properties of entropy, see Walters [13], Chapter 4.)
Theorem 1.1. [Annealed LDP| The family of probability distributions P(EN € ), N € N,
satisfies the LDP on P (EN) with rate N and with rate function I**®: P (EN) — [0, 00] given
by

"™(Q) = H(Q | g5). (1.8)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at Q) = q?,lfl,
b
and is affine.

The LDP for Ry arises from the LDP for N-tuples via a projective limit theorem. The ratio
under the limit in (1.7) is the rate function for N-tuples according to Sanov’s theorem (see e.g. den
Hollander [8], Section I1.5), and is non-decreasing in N.

1.2 Main theorems

Our aim in the present paper is to derive the LDP for P(Ry € - | X), N € N. To state our result,
we need some more notation.

Let r: EN — EN denote the concatenation map that glues a sequence of words into a sequence
of letters. For Q € P (EN) such that

mq = Eq[n] < oo, (1.9)
define U € PV(EY) as

T1—1
Z 59%(1/)(‘)] : (1.10)
k=0

Think of Wq as the shift-invariant version of the concatenation of Y under the law Q) obtained after
randomising the location of the origin.
For tr € N, let []t;: E — [E]y := UY_; E™ denote the word length truncation map defined by

1
() = m—QEQ

y=(x1,...,2n) = [Yltr := (X1, .., Tpatr), neN, z,...,z, € E. (1.11)

Extend this to a map from EN to [E]Y via

[y, P, ... ), = (e, v@Nirs - - (1.12)
and to a map from P (EN) to P ([E]N) via
[Qle(A) = Q({z € EV: [2]x € A}), A C [E] measurable. (1.13)
Note that if Q € P (EN), then [Q];, is an element of the set
pvin( BNy — 19 e PV(EY): mg < oo} (1.14)

Theorem 1.2. [Quenched LDP] Assume (1.1). Then, for v®N-a.s. all X, the family of (reqular)
conditional probability distributions P(Ry € - | X), N € N, satisfies the LDP on P™ (EN) with rate
N and with deterministic rate function 19¢: PV (EN) — [0, 00] given by

que Iﬁn(Q), if Qe fpinv,ﬁn(EuN)’
= tli_{n I ([Ql), otherwise, (1.15)
where
I"™Q) == H(Q | ¢%)) + (a — 1)mqg H(Tq | v*N). (116



Theorem 1.3. The rate function I19° is lower semi-continuous, has compact level sets, has a unique

zero at () = qg’g, and is affine. Moreover, it is equal to the lower semi-continuous extension of I'™
b

from Pinv’ﬁn(EN) to PinV(EN).

Theorem 1.2 will be proved in Sections 3 5, Theorem 1.3 in Section 6.

A remarkable aspect of (1.16) in relation to (1.8) is that it quantifies the difference between the
quenched and the annealed rate function. Note the appearance of the tail exponent a. We have not
been able to find a simple formula for 79¢(Q) when mg = oco. In Appendix A we will show that
the truncation map is continuous on all of Pm"(EN), ie.,

"(Q) = lim I*™([Qler), I(Q) = lim I"([Q]w), Q € P™(EN). (1.17)

tr—oo tr—oo

Theorem 1.2 is an extension of Birkner [2], Theorem 1. In that paper, the quenched LDP is
derived under the assumption that the law p satisfies the exponential tail property

3C <00, A>0: p(n)<Ce™ VYneN (1.18)

(which includes the case where supp(p) is finite). The rate function governing the LDP is given by

HQ|¢Z), ifQ €%,
que — PV
Q) : { 00, it Q¢ %, (1.19)
where
1 L—-1
L inv /7Ny | . _ N
= {Q e P™(EY): W—LIE:I;OE kE_O OSpkr(y) = v Q — a.s.}. (1.20)

Think of %, as the set of those )’s for which the concatenation of words has the same statistical
properties as the letter sequence X. This set is not closed in the weak topology: its closure is
fPinv(EN)'

We can include the cases where p satisfies (1.1) with « =1 or a = c0.

Theorem 1.4. (a) If « = 1, then the quenched LDP holds with I1¢ = I*™ gjven by (1.8).
(b) If a = o0, then the quenched LDP holds with rate function

HQ |45 if Jim mig, H (P, | V) =0,

(1.21)
00 otherwise.

19(Q) = {

Theorem 1.4 will be proved in Section 7. Part (a) says that the quenched and the annealed rate
function are identical when a = 1. Part (b) says that (1.19) can be viewed as the limiting case of
(1.16) as a — oco. Indeed, it was shown in Birkner [2], Lemma 2, that on PmV:fin(EN).

Uo = v if and only if Q € %,. (1.22)

Hence, (1.21) and (1.19) agree on P™-i0(EN) and the rate function (1.21) is the lower semicontin-
uous extension of (1.19) to P™¥(EN). By Birkner 2], Lemma 7, the expressions in (1.21) and (1.19)
are identical if p has exponentially decaying tails. In this sense, Part (b) generalises the result in
Birkner |2]|, Theorem 1, to arbitrary p with a tail that decays faster than algebraic.

Let mq: EN — E be the projection onto the first word, and let P(E) be the set of probability
measures on E. An application of the contraction principle to Theorem 1.2 yields the following.



Corollary 1.5. Under the assumptions of Theorem 1.2, for v®*N-a.s. all X, the family of (regular)
conditional probability distributions P(mRy € - | X), N € N, satisfies the LDP on P(E) with rate
N and with deterministic rate function I}"°: P(E) — [0,00] given by

I™(q) := inf {Iquo(Q): Qe PinV(EN), mQ = q}. (1.23)

This rate function is lower semi-continuous, has compact levels sets, has a unique zero at q = q,,,
and s convet.

Corollary 1.5 shows that the rate function in Birkner [1], Theorem 6, must be replaced by (1.23).

It does not appear possible to evaluate the infimum in (1.23) explicitly in general. For a ¢ € P(E)
with finite mean length and W en = v, we have I"(q) = h(q | qp,0)-

By taking projective limits, it is possible to extend Theorems 1.2 1.3 to more general letter
spaces. See, e.g., Deuschel and Stroock [6], Section 4.4, or Dembo and Zeitouni |5], Section 6.5, for
background on (specific) relative entropy in general spaces. The following corollary will be proved
in Section 8.

Corollary 1.6. The quenched LDP also holds when E is a Polish space, with the same rate function
as in (1.15-1.16).

In the companion paper |3] the annealed and quenched LDP are applied to the collision local
time of transient random walks, and the existence of an intermediate phase for a class of interacting
stochastic systems is established.

1.3 Heuristic explanation of main theorems
To explain the background of Theorem 1.2, we begin by recalling a few properties of entropy. Let

H(Q) denote the specific entropy of Q € P™ (EN) defined by

H(Q):= Jim < h(Q,,) € [0.0] (1.24)

where h(-) denotes entropy. The sequence under the limit in (1.24) is non-increasing in N. Since
qffﬁl is a product measure, we have the identity (recall (1.2-1.4))

H(Q | ¢5)) = —H(Q) — Egllog g, (Y1)]

(1.25)
= —H(Q) — Eg[log p(71)] — mq Eu,[log v(X1)].

Similarly,

H(Vq | v®Y) = —H(¥q) — Ey,[log v(X1)]. (1.26)

Below, for a discrete random variable Z with a law @ on a state space Z we will write Q(Z) for

the random variable f(Z) with f(z) = Q(Z = z), z € Z. Abbreviate
KN = g(v® vy and KO .= k(Y). (1.27)
In analogy with (1.14), define

perefin gy . — {Q € PUE(EN): mg < oo}. (1.28)



Lemma 1.7. [Birkner [2]|, Lemmas 3 and 4|
Suppose that Q € P& (EN) and H(Q) < co. Then, Q-a.s.,

lim - 1og Q(K™) = ~mqH(¥g)

N—oo

. 1
lim NlogQ(Tl,...,TN | K(N)) = —H, x(Q), (1.29)

N—oo

. 1
Jim log QY. Y™) = —H(Q),

with
moH(Vq) + Hy x(Q) = H(Q). (1.30)

Equation (1.30), which follows from (1.29) and the identity
QUIKM)Q(rr,..., v [ KM) =y ™,... .y ), (1.31)

identifies H, x(Q). Think of H, x(Q) as the conditional specific entropy of word lengths under the
law Q given the concatenation. Combining (1.25 1.26) and (1.30), we have

H(Q | q5)) =moH (Vg | v®Y) — Hy i (Q) — Eqllog p(71)].- (1.32)

The term —H, x(Q) — Eqllog p(71)] in (1.32) can be interpreted as the conditional specific relative
entropy of word lengths under the law Q w.r.t. p*N given the concatenation.

Note that mg < oo and H(Q) < oo imply that H(¥g) < oo, as can be seen from (1.30). Also
note that —Ey,[log v(X1)] < oo because E is finite, and —Eg[log p(71)] < 0o because of (1.1) and
mg < 0o, implying that (1.25-1.26) are proper.

We are now ready to give a heuristic explanation of Theorem 1.2. Let

R jy(X),  0<ji<-<jy<oco, (1.33)
denote the empirical process of N-tuples of words when X is cut at the points ji,...,jn (i.e.,

when T; = j; for i = 1,...,N; see (3.16 3.17) for a precise definition). Fix Q € P&fin(EN),
The probability P(Ry ~ @ | X) is a sum over all N-tuples ji,...,jn such that Rﬁ,...,jN(X) ~ Q,

weighted b N ii—4i—1) (with jo = 0). The fact that RY X) =~ (@ has three consequences:
g y 1Lz pUi—1J J i1 q

eI N

(1) The j1,...,jn must cut = N substrings out of X of total length ~ Nmg that look like the
concatenation of words that are Q-typical, i.e., that look as if generated by W¢g (possibly
with gaps in between). This means that most of the cut-points must hit atypical pieces of
X. We expect to have to shift X by ~ exp[NmgH (¥q | v®N)] in order to find the first
contiguous substring of length Nmg whose empirical shifts lie in a small neighbourhood of

Ug. By (1.1), the probability for the single increment j; — jo to have the size of this shift is
~ exp[-NamgH (Vg | v®V)).

(2) The combinatorial factor exp[ N H; x(Q)] counts how many “local perturbations” of ji,...,jn
preserve the property that Rﬁ_”’jN (X) =~ Q.

(3) The statistics of the increments j; — jo, . . ., jy — jn—1 must be close to the distribution of word
lengths under @. Hence, the weight factor Hf\;l p(ji — ji—1) must be ~ exp[NEg[log p(71)]]
(at least, for Q-typical pieces).



The contributions from (1)—(3), together with the identity in (1.32), explain the formula in (1.16)
on Per&fin(EN) - Considerable work is needed to extend (1) (3) from Per&fin(EN) to Pinv(EN). This
is explained in Section 3.5.

In (1), instead of having a single large increment preceding a single contiguous substring of
length N'mg, it is possible to have several large increments preceding several contiguous substrings,
which together have length Nmg. The latter gives rise to the same contribution, and so there is
some entropy associated with the choice of the large increments. Lemma 2.1 in Section 2.1 is needed
to control this entropy, and shows that it is negligible.

1.4 Outline

Section 2 collects some preparatory facts that are needed for the proofs of the main theorems,
including a lemma that controls the entropy associated with the locations of the large increments
in the renewal process. In Section 3 and 4 we prove the large deviation upper, respectively, lower
bound. The proof of the former is long (taking up about half of the paper) and requires a somewhat
lengthy construction with combinatorial, functional analytic and ergodic theoretic ingredients. In
particular, extending the lower bound from ergodic to non-ergodic probability measures is technically
involved. The proofs of Theorems 1.2 1.4 are in Sections 5 7, that of Corollary 1.6 is in Section 8.
Appendix A contains a proof that the annealed and the quenched rate function are continuous under
the truncation of the word length approximation.

2 Preparatory facts

Section 2.1 proves a core lemma that is needed to control the entropy of large increments in the
renewal process. Section 2.2 shows that the tail property of p is preserved under convolutions.

2.1 A core lemma

As announced at the end of Section 1.3, we need to account for the entropy that is associated with the
locations of the large increments in the renewal process. This requires the following combinatorial
lemma.

Lemma 2.1. Let w = (w;)ien be i.i.d. with Plw; = 1) =1 —-Pw; = 0) = p € (0,1), and let
a € (1,00). For N € N, let

N
Snw) = Y. J[Gi-d0)™™  (o=0) (2.1)

0<j1 < <jny<oo =1

and put
1
lim sup N log Sy (w) =: —¢(a, p) w—a.s. (2.2)

N—oo

(the limit being w-a.s. constant by tail triviality). Then

$(a,p)

;ﬁ)l 7alog(1/p) =1. (2.3)

Proof. Let 7y = min{l € N: w; = w41 = -+ = wiyn-1}. In (2.1), choosing j; = 7n and
Ji = Ji-1+1fori=2,... N, we see that Sy(w) > 7. Since

1
A}iinw N log v — log(1/p) w— a.s., (2.4)
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we have
¢(a,p) < alog(l/p)  Vpe(0,1). (2.5)

To show that this bound is sharp in the limit as p | 0, we estimate fractional moments of Sy (w).
For any 8 € (1/a, 1], using that (u + v)? < uf + 08, u,v >0, we get

Elsv@’]< 3 E{“{wh:---:w:l}ﬁ(ﬁ—ji—l)_aﬁ]
=1

0<j1 < <gn <00
N (2.6)

= > G i)

0<j1<<jN <00 i=1
= [p¢(an)]”,

where ((s) = >, cyn~°, s > 1, is Riemann’s (-function. Hence

E[% logSN(w)] < NiﬁlogE[SN(w)ﬁ} < %[logp—klog((aﬂ)]. (2.7)

Letting N — oo, and using (2.2) together with Fatou’s lemma, we obtain that

o(0.p) = lloz(1/p) ~logC(ag)] VA€ (a1l (28)
Now let p | 0, followed by # | 1/« to obtain the claim. O

Remark 2.2. Note that E[Sy(w)] = (p¢(a))V, while typically Sy(w) =~ p®Y. In the above com-
putation, this is verified by bounding suitable non-integer moments of Sy (w)/p*Y. Estimating
non-integer moments in situations when the mean is inconclusive is a useful technique in a variety
of different probabilistic contexts. See, e.g., Holley and Liggett [9] and Toninelli [12]. The proof of
Lemma 2.1 above is similar to that of Toninelli [12], Theorem 2.1.

2.2 Convolution preserves polynomial tail

The following lemma will be needed in Sections 3.3 and 3.5. For m € N, let p*"™ denote the m-fold
convolution of p.

Lemma 2.3. Suppose that p satisfies p(n) < C,n~%, n € N, for some C, < co. Then
p*™(n) < (C, vV 1)m*Tip= Vm,n € N. (2.9)

Proof. If n < m, then the right-hand side of (2.9) is > 1. So, let us assume that n > m. Then

m m m
Py = Y Jle) <> > p(z;) [T o)
Spm et =1 =1 g em>l i#j

1+ F+Tm=n
T;=x1V--VIm

1 (2.10)
D S
T1yeeyTm—1>1 1=1
=m0, [n/m]~* < C,m*Tn=
]



3 Upper bound

The following upper bound will be used in Section 5 to derive the upper bound in the definition of
the LDP.

Proposition 3.1. For any Q € Pviin(ENY and any e > 0, there is an open neighbourhood O(Q) C
PV(EN) of Q such that

lim sup % logP(Ry € 0(Q) | X) < —I"™(Q)+e X —a.s. (3.1)

N—oo

We remark that since |E| < co we automatically have I'(Q) € [0, 00) for all Q € P™v-Ain(EN) 5o
the right-hand side of (3.1) is finite.

Proof. Tt suffices to consider the case Wg # v®N. The case W = v®N, for which I""(Q) = H(Q |
q%}}l) as is seen from (1.16), is contained in the upper bound in Birkner [2|, Lemma 8. Alternatively,
by lower semicontinuity of Q" — H(Q' | q§§), there is a neighbourhood O(Q) such that

inf  H(Q' | ¢5Y) > HQ|¢Z) —e = 1™(Q) — ¢, (3.2)
Q'e0(Q)

where O(Q) denotes the closure of O(Q) (in the weak topology), and we can use the annealed
bound.
In Sections 3.1 3.5 we first prove Proposition 3.1 under the assumption that there exist « €
(1,00), C, < 00 such that
p(n) <Cpn™®, neN, (3.3)

which is needed in Lemma 2.3. In Section 3.6 we show that this can be replaced by (1.1). In
Sections 3.1-3.4, we first consider Q € P& (EN) (recall (1.28)). Here, we turn the heuristics from
Section 1.3 into a rigorous proof. In Section 3.5 we remove the ergodicity restriction. The proof is
long and technical (taking up more than half of the paper).

3.1 Step 1: Consequences of ergodicity

We will use the ergodic theorem to construct specific neighborhoods of @ € P&in(EN) that are
well adapted to formalize the strategy of proof outlined in our heuristic explanation of the main
theorem in Section 1.3.

Fix 1,61 > 0. By the ergodicity of @ and Lemma 1.7, the event (recall (1.9) and (1.27))

1
{M\K(M)] €mg+ [—61,51]}

N {—%log Q(K(M)) e moH(Yg) + [—51751]}
N {——logQ LYYy e HQ) + [—61,61]} (3.4)
|K (D)
{M Z logy ) S mQE\pQ [log I/(Xl)] + [—51751]
1 M
N {M > log p(7;) € Eqlog p(m1)] + [_51751]}

9



has Q-probability at least 1 — 8y /4 for M large enough (depending on Q), where |K(™)| is the length
of the string of letters K (M) Hence, there is a finite number A of sentences of length M, denoted
by

(%a)a=1,...a With 2, := (5@, ... y@M) € BV, (3.5)

such that fora=1,..., A,
[K(za)| € [M(mg = 21), M(mg + 1)),
QUE™) = r(zu)) € | exp[~M(moH (¥q) +er)],expl~M(moH (¥q) — =1)]].

QYW .Yy =2,) € :eXP[—M(H(Q) +¢e1)],exp[-M(H(Q) — 61)]},

I (z0)] 30
S o ((sz))e) € [MlmBuglog v(X1)] — 1), M(mqEuglogv(X1)] +1)].
k=1 i
M ' i
> tog plly ) € | M (Eqllog p(r1)] — 1), M (Eqllog p(m)] +&1)]
i=1 il
and
- 5
ZQ((Y(l),...,Y(M)):za> >1- 2L (3.7)
a=1 2
Note that (3.7) and the third line of (3.6) imply that
A (1= exp [M(H(Q) - &1)],exp [M(H(Q) + 1)) (3.8)
Abbreviate
o ={zs,a=1,... A}. (3.9)
Let
#:={CPb=1,...,B} = {k(za), a=1,..., A} (3.10)
be the set of strings of letters arising from concatenations of the individual z,’s, and let
Iy={1<a<A: k(zg) =¢®}, b=1,...,B, (3.11)

so that |I| is the number of sentences in &7 giving a particular string in %. By the second line of
(3.6), we can bound B as
B <exp [M(moH(Vg) +¢1)], (3.12)

ecause - = < and each summand 1s at least exp|—M(m + €1)].
b 2L QKM ) < 1 and each d is at 1 M(mgH (Vg

Furthermore, we have
1| < exp [M(H,k(Q)+21)], b=1,...,B, (3.13)
since
exp [ — M(moH(¥g) —e1)] > Q(r(YW,. ..,y = ¢®)
> (YW, Yy = 2,) > L] exp [ - M(H(Q) +&1)],

acly

(3.14)
and H(Q) —mqH(¥q) = Hyx(Q) by (1.32).

10



3.2 Step 2: Good sentences in open neighbourhoods
Define the following open neighbourhood of @ (recall (3.9))

{Q e P™(EY): @, (o )>1—51}. (3.15)

Here, Q(z) is shorthand for Q((Y™M,...,YM)) = 2). For € EN and for a vector of cut-points
(31, jin) €NV with 0 < j; < --- < jy < oo and N > M, let

(with (0, 71] short-hand notation for (0,j1] NN, etc.) be the sequence of words obtained by cutting
x at the positions j;, and let

1 N-1
RY : O~ (3.17)
J15-- y]N % por
— 0'(¢n)
be the corresponding empirical process. By (3.15),
RY . (x)€O —
(3.18)
#{1 Si<N-—-M: (x|(ji717ji}’ T ’x|(ji+M—17ji+Ad) € 'Q{} 2 N(1—61) -
Note that (3.18) implies that the sentence £y contains at least
C:=|(1-6)N/M| -1 (3.19)
disjoint subsentences from the set 7, i.e., there are 1 <iq,...,ic < N — M with i, —i._1 > M for
c=1,...,C such that ' ‘ '
(glie) glictl) | gletM—1)) ¢ o7 (3.20)

(we implicitly assume that N is large enough so that C' > 1). Indeed, we can e.g. construct the i.’s
iteratively as

g = —M,
i = min {k‘ > .1+ M: asentence from & starts at position k in EN}, (3.21)
c=1,...,C,

and we can continue the iteration as long as ¢M + § 1N < N. But (3.20) in turn implies that the
Ji.’s cut out of x at least C' disjoint subwords from 4, i.e.,

Gipgiorr) € B> c=1,...,C. (3.22)

3.3 Step 3: Estimate of the large deviation probability
Using Steps 1 and 2, we estimate (recall (3.15))

N

P(Ry€O[X)= Y. 1o(RY_;(X) [[eGi—iin) (3.23)
0<j1 < <jN <00 i=1
from above as follows. Fix a vector of cut-points (ji,...,jn) giving rise to a non-zero contribution

in the right-hand side of (3.23). We think of this vector as describing a particular way of cutting X
into a sentence of N words. By (3.22), at least C (recall 3.19) of the j.’s must be cut-points where

11



ﬁlhng qubqenten(’e@

\ medlum ~ \I/Q

good subsentences

Figure 2: Looking for good subsentences and filling subsentences (see below (3.25)).

a word from 2 is written on X, and these C subwords must be disjoint. As words in A arise from
concatenations of sentences from .7, this means we can find

b < <AL, {51,...,60}C{O,jl,...,jN} and (,...,(c € (3.24)
such that
Xt inicon = £(C) =0\ € Z and lc> Loy + |6(Cem1)], e=1,...,C — L. (3.25)

We call (1,...,(c the good subsentences.

Note that once we fix the ¢.’s and the (.’s, this determines C' + 1 filling subsentences (some of
which may be empty) consisting of the words between the good subsentences. See Figure 2 for an
illustration. In particular, this determines numbers my,...,mc+1 € N such that mi+---+mey1 =
N — CM, where m, is the number of words we cut between the (¢ — 1)-st and the c-th good
subsentence (and mc41 is the number of words after the C-th good subsentence).

Next, let us fix good ¢; < --- < lg and nM, ... n©) € B, satisfying

X|(Zc,fc+\n(c)|] = 77(0)7 Ec > Ec—l + |T,(c_1) |7 Cc= 17 cee )C' (326)

To estimate how many different choices of (ji,...,jn) may lead to this particular ((£.), (7(9))), we
proceed as follows. There are at most

(2M€1)C exp [M (Hx(Q) + 2&?1)]0 <exp [N(Hx(Q)+ )] (3.27)

possible choices for the word lengths inside these good subsentences. Indeed, by the first line of
(3.6), at most 2Me; different elements of 2 can start at any given position . and, by (3.13), each
of them can be cut in at most exp [M(H, x(Q) + 2¢1)] different ways to obtain an element of .
n (3.27), d2 = da(e1,61, M) can be made arbitrarily small by choosing M large and 1,6; small.

Furthermore, there are at most
N-CM-1
< C(C )> < exp[d3N] (3.28)

possible choices of the m,’s, where 63 = d3(01, M) can be made arbitrarily small by choosing M
large and d; small.

Next, we estimate the value of Hf;l p(4i — ji—1) for any (ji,...,jn) leading to the given
((£.), (n(©))). In view of the fifth line of (3.6), we have

H p(j {the i-th word falls inside the C good subsentences}

< exp [OM (Eq[log p(11)] +€1)] (3.29)

< exp [N (Eg[log p(m1)] + 64)],

12



where d4 = 64(e1,01, M) can be made arbitrarily small by choosing M large and e;,; small. The
filling subsentences have to exactly fill up the gaps between the good subsentences and so, for a given
choice of (£.), (n'?) and (m.), the contribution to [~ p(ji — ji_1) from the filling subsentences is
S:l P (be — Loy — [V (the term for ¢ = 1 is to be interpreted as p*™ (£1), and p** as &y).

By Lemma 2.3,

C

H P*mc (gc - gc—l - ‘77(6_1)’)
c=1
C
(C,Vv1) (Hm > H((fc—fc_l — |n(0—1)|)\/1)—a
= c=1

N — CM\ (a+1)c & _ o
< (Cp \ 1)C<T) H ((ﬁc —le1 — |77(C 1)|) Vv 1)

c=1

(3.30)

C
< exp[ N3] H ((be = lemr — IV v 1)~

where 05 = §(d1, M) can be made arbitrarily small by choosing M large and §; small. For the
second inequality, we have used the fact that the product HCC:1 m&*! is maximal when all factors
are equal.

Combining (3.23-3.30), we obtain

]P’(RN eO ‘ X) < exp [N(HT‘K(Q) —l—EQ[lng(Tl)] + 0o + 03 + 04 + 55)]

C
X > IT (e =ty =V vi) ™.

(€e). (') good =1

(3.31)

Combining (3.31) with Lemma 3.2 below, and recalling the identity in (1.32), we obtain the result
in Proposition 3.1 for p satisfying (3.3), with O defined in (3.15) and &€ = d2 + d3 + J4 + I5 + J6.
Note that & can be made arbitrarily small by choosing &1, d; small and M large.

3.4 Step 4: Cost of finding good sentences
Lemma 3.2. Fore1,01 > 0 and M € N,

C
1 —a
lim sup N log E | | ((fc —le1 — |77(C_1)|) v 1)

N—
> (€:), (') good =1

< —amgH(Tg | v*N) + 6 as.,

(3.32)

where d¢ = 0(g1,01, M) can be made arbitrarily small by choosing M large and €1, 61 small.
Proof. Note that, by the fourth line of (3.6), for any n € Z (recall (3.10)) and k € N,

P(n starts at position kin X) < exp [M (mgEy,, [log v(X1)] +¢1)]. (3.33)
Combining this with (3.12), we get

]P’(some element of # starts at position k in X)
< exp [M(mgEy, logv(X1)] +¢€1)] x exp [M (mqH (Vq) +£1)] (3.34)
= exp [ — M(mQH(\IJQ | 1/®N) — 261)],

13



where we use (1.26).
Next, we coarse-grain the sequence X into blocks of length

L:=|M(mg —e1)], (3.35)

and compare the coarse-grained sequence with a low-density Bernoulli sequence. To this end, define
a {0, 1}-valued sequence (A;)en inductively as follows. Put Ay := 0, and, for | € N given that
Ag, A1, ..., Aj_1 have been assigned values, define A; by distinguishing the following two cases:

(1) If Ai_; =0, then

1, if in X there is a word n € A starting in ((I — 1)L, L],
A= (3.36)
0, otherwise.

(2) If Aj_1 =1, then

if in X there are words n,n € £ starting in ((I — 2)L, (I — 1)L],

respectively, ((I — 1)L,[L] and occurring disjointly,
4 e p y, (1= 1)L, 1L] g disjointly (3.37)

)

0, otherwise.

Put
p:=Lexp[—M(mgH(¥Vq | Ny — 2e1)]. (3.38)

Then we claim
P(A; = ay,..., Ay = ay) <p™t T neN, a,...,a, € {0,1}. (3.39)

In order to verify (3.39), fix ai1,...,a, € {0,1} with ay + -+ + a,, = m. By construction, for the
event in the left-hand side of (3.39) to occur there must be m non-overlapping elements of # at
certain positions in X. By (3.34), the occurrence of any m fixed starting positions has probability
at most

exp [ —mM (mqH (¥ | Ny — 2e1)], (3.40)

while the choice of the a;’s dictates that there are at most L™ possibilities for the starting points
of the m words.
By (3.39), we can couple the sequence (A;);eny with an i.i.d. Bernoulli(p)-sequence (w;)ien such
that
A <w VieN as. (3.41)

(Note that (3.39) guarantees the existence of such a coupling for any fixed n. In order to extend
this existence to the infinite sequence, observe that the set of functions depending on finitely many
coordinates is dense in the set of continuous increasing functions on {0, 1}, and use the results in
Strassen [11].)

Each admissible choice of ¢1,...,f¢c in (3.32) leads to a C-tuple i1 < --- < i¢ such that
A, =--- = A;, =1 (since it cuts out non-overlapping words, which is compatible with (3.36
3.37)), and for any such (i1,...,ic) there are at most L¢ different admissible choices of the £.’s.
Thus, we have

C
> I (- tey = Vpv)y™ <L~ Y- H c—ie1)”® (342

c — 0 -
(66)’ (77( )) gOOd =1 A<11_< _<Alzcc<o;> c=

14



Using (3.3) and (3.19), and recalling the definition of ¢(c, p) in (2.2), we have

1
lim sup N log [r.hs. (342)] <

N—oo

— 0 <log (MmQ) —logC, — gb(oz,p)) w — a.s. (3.43)

From (3.38) we know that log(1/p) ~ M (mgH (V¢ | v*N) —2¢1) as M — oo and so, by Lemma 2.1,
we have

r.hs. (3.43) < —(1 —ex)a(moH (Vg | v®Y) — 2¢) (3.44)

for any e € (0,1), provided M is large enough. This completes the proof of Lemma 3.2, and hence
of Proposition 3.1 for Q € Per&fin(EN). O

3.5 Step 5: Removing the assumption of ergodicity

Sections 3.1-3.4 contain the main ideas behind the proof of Proposition 3.1. In the present section
we extend the bound from Pe&in(EN) to pioviin(EN) - This requires setting up a variant of the
argument in Sections 3.1-3.4 in which the ergodic components of ) are “approximated with a
common length scale on the letter level”. This turns out to be technically involved and to fall apart
into 6 substeps.

Let Q € P™-fin(EN) have a non-trivial ergodic decomposition

Q= _Q'Wo(dQ), (3.45)

Perg (EN)

where W is a probability measure on P8(EN) (Georgii [7], Proposition 7.22). We may assume
w.l.o.g. that H(Q | q M) < 00, otherwise we can simply employ the annealed bound. Thus, Wq is

in fact supported on Perg ﬁn(EN) N{Q": H(Q'| q )) < oo}

Fix € > 0. In the following steps, we will construct an open neighbourhood O(Q) c P (EN) of
Q satisfying (3.1) (for technical reasons with & replaced by some &’ = £’(g) that becomes arbitrarily
small as € | 0).

3.5.1 Preliminaries

Observing that
mo= [ moWoldQ) <o HQUE)= [ HQUE)Wol) < ox. (3.40)
'Pcrg(EN) ’Pcrg(EN)

we can find Ky, K7, m* > 0 and a compact set

@ C P™(EN) Nsupp(Wo) N{Q: H(lqyy) < Ko} (3.47)
such that

sup{H(Up | 1*N): P e ¢} < K, (3.48)
sup{mp: P € €} <m", (3.49)
the family {Zp(m): P € €} is uniformly integrable, (3.50)

Wo(€) >1—¢/2, (3.51)
| H@165) Wold@') = HQIa) - /2 (352)
/ mo H (U |[v®) Wo(dQ') > moH (Ug|v®N) —¢/2. (3.53)

€
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In order to check (3.50), observe that Eg[ri] < oo implies that there is a sequence (¢,) with
lim,,_,~o ¢, = 00 such that

EQ [Tl]l{lecn}] < - n € N. (354)

9

2,3 6’
Put N .

A ={Q € P™(E"): Eq[n11{r2c,}] > 1/n} (3.55)

and A := ﬁneN(A\n)c. Each A\n is open, hence A is closed, and by the Markov inequality we have

6 €
WQ({Q/; EQ/ [Tl]l{ﬁzcn}] > 1/71}) < HEQ [Tl]l{ﬁzcn}] § — 6 (356)
Thus,
Wo(A%) = Wo(Unen(A,)9) < = 3 6 e (3.57)
6 = m™n? 6
This implies that the mapping
Q' — mg H(Vg[v®N) is lower semicontinuous on €. (3.58)

Indeed, if w — lim,, Q;@ = Q” and (Q;@) C ¥, then lim,_ EQ% [Tl] = lim,_ o mg:, = mqQr =
Egr[r] and w —lim, . ¥ = ¥ by uniform integrability (see Birkner [2], Remark 7).

Furthermore, we can find Ny, Ly € N with Ly < Ny and a finite set W C ENo such that the
following holds. Let

W i= {mr, (0°(0): ¢ = (¢, ¢ e W0 < < ¢V} (3.59)

be the set of words of length Ly obtained by concatenating sentences from W, possibly shifting
the “origin” inside the first word and restricting to the first Lo letters. Then for all P € 2 C
pinvilin(ENY 0 @ that satisfy

PR = 1- S (3.60)
= 3cr3/e]
cew
1 P
Y PO s a2, (3.61)
0 dp,v (C)
Cew
1 Vp(w) ®N
— > . 62
LO \IJP(w) log V®LO(’LU) = H(\IJP ’ v ) 6/27 (3 6 )
weW
the following inequalities hold:
Wo(2) > 1-3¢/4, (3.63)
| B Wour) = 1@ |6 -3/ (3.64)
/ mpH(UplE) Wo(dP) > moHWe | v®Y) — 3¢ /4. (3.65)
9

We may choose the set W in such a way that

min{v®'0(¢): ¢ € Wi
max{|¢D|: ¢ € W}

O = m1n{q®N°( O):CeWA (3.66)
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3.5.2 Approximating with a given length scale on the letter level

For § > 0 and L € N, we say that P € pivfin(ENY can be (8, L)-approzimated if there exists a finite
subset @p C E[L/mP] of “ P_typical” sentences, each consisting of ~ L/mp words, such that

(ep) >1— g%v (min {P): ¢e W, P() > 0} Amin {¥p(&): £ € W, Up(£) > 0})

\F L ymp
! (3.67)
and, for all z = (y, ..., y(E/mPD) € o7p,
P(2) € [exp [~ [L/mp](H(Q) + )] exp [ ~ [L/mp|(H(Q) ~ 9)] .
(2)| € [L(1 = 0), L(1 + 0)],
P(KE/mP) = 2) € [exp [ L(H(¥q) + )], expl~L(H(¥q) - 9)],
|k(2)]
Z log v(k(z)k) € [L(1 —6),L(1 +6)] Ey,[logv(X1)], (3.68)
L/mp]
Z log p(ly™|) € [(L/mp)(1 = 6), (L/mp)(1 + )] Ep[log p(r1)],
15 € s W(2) = w0} < exp [(Lfma) (Hoyse(P) + 9]
By the third and the fifth line of (3.68) we have, using (1.26),
P(X starts with some element of k(</p)) < exp [— L(1—28)H (¥q | I/®N)}. (3.69)
For P that can be (4, L)-approximated, define an open neighbourhood of P via
u o { / inv/ 7Ny | P,(z) _
6,0)(P):=qP € P™(E"): PC) €(1—-6,146) Vzeapy, (3.70)

where @/p = o/p(d, L) is the set from (3.67-3.68). By the results of Section 3.1 and the above, for
given P € P&fin(EN) N4 and dp > 0 there exist &' € (0,00) and Lg such that

VL' > Lg: P can be (§,L')-approximated. (3.71)

Assume that a given P € & can be (§, L)-approximated for some L such that [L/mp| > Ny.
We claim that then for any P’ € 2 NUs 1) (P),

I (1+26)P(¢) if P(¢) >0,
VeEW: PO < {mln{q@)NO(C) ¢’ e W} otherwise, (3.72)
] (1 + 25)mp\1fp(£) if \pr(ﬁ) > 0,
vEEW: mplp(8) < {min{V®L0(§’): ¢ e W} otherwise, (3.73)
mp/ (1 - 35)mp (3.74)
To verify (3.72), note that, for € W,
P(¢) < > Pl + Y. P
z€dp: TN, (2)=(C zeEIL/mP I\ g/p TNy (2)=C
< (1+6) Y Plz) +P(EFmrTN arp)
z€dpimNg (2)=(C
o . o QN W
< (1+49) [P(C) + 5(111111 {P(¢): ¢eW,P(¢) >0} Amin{g;,°(¢): ¢ € W})]
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To verify (3.73), observe that, for £ € W (recall the definition of ¥p/ from (1.10)),

W1
mpUp(&) = > PC) D Ty, (0°6(C)))
cew i=0 (3.75)
<(L4+0mp¥p@)+ Y, KVIP(Q)

CEW: P(¢)=0

and that the sum in the second line above is bounded by

m%%/{m |P'(ENO \ @p) < (1 —1—5)5 (min{\llp(ﬁ): EeW,¥p(€) >0} A min{v®ro(¢): ¢ € W})
ne

(3.76)
Lastly, to verify (3.74), note that
P(Q) = (1-26)P(¢) V¢eW (3.77)
(which can be proved in the same way as (3.72)), so that
mpr =Y [ylP'(y) = D ICWIP(Q) = (1-26) Y IKVIP(Q). (3.78)
yekE CeEW CeEw
Furthermore,
mp < Y ICVIPEQ) + ez P(ENNE) + > [yP(y). (3.79)
CEW yE: |yl>cra)a

Observing that the second and the third term on the right-hand side are each at most /3, we find
that (3.78 3.79) imply (3.74).

Finally, observe that (3.72-3.74) imply that, for any P,P’ € 2 such that P can be (4, L)-
approximated for some L with [L/mp] > No and P’ € U5 1) (P),

H(P'|q2)) < H(P|d2))+2Kod +¢/2, (3.80)
mp H(Up | v5Y) < mpH(\pr | v®N) £ 2K16 + /2. (3.81)
Here, (3.80) follows from the observation
H(P' )~y
P'(¢)
< — P'(¢)lo
~ No Z S Q)
CGW
1+25 (14 20)P(¢) , min{g2)0(¢): ¢ € W} (3:82)
< — ZP 7®N0( 0 +ﬁ0 P'({)log q®N°(C)
CeW CEW:P(¢)=0 e

20
< (1+20)H(P [ ¢5)) + No log(1 + 26).

Similarly, observing that

mpVp ()
/ Upr(€)log ———+~

<(1+20)mp Y Tp()] +mp Y Upi(€)log

Lew EEW: Wp(€)=0
< (1+28)LompH(Up | v®N) 4 (1 + 28)m* log(1 + 69),

min{r®Lo(¢): & € W}
I E)

(1+20)mp¥p(§)
(1 = 3d)mpr®o(§)

(3.83)
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we obtain (3.81) in view of (3.62).

3.5.3 Approximating the ergodic decomposition

In the previous subsection, we have approximated a given P € Pe&f" je  we have constructed
a certain neighbourhood of P w.r.t. the weak topology, which requires only conditions on the
frequencies of sentences whose concatenations are = L letters long. While the required L will in
general vary with P, we now want to construct a compact ¢’ C ¢ such that Wg(%”) is still close
to 1 and all P € ¢’ can be approximated on the same scale L (on the letter level). To this end, let

Der1y = {P € Z: P can be (¢/, L)-approximated }. (3.84)
By (3.71), we have
U Der 1y =P EN) N T, (3.85)
e'€(0,e/2)
L’eN

so, in view of (3.51 3.53), we can choose

3

_ 3.86
O<er<gavi, v (3.86)
and L € N such that
Wo(ZeyL) =z 1-¢, (3.87)
/@ HQ | S5 Wo(dQ) > H@Q| ¢ -, (3.58)
€1,L
[ mamve | Y Wold@) > moi(vq | )~ (3.9)
jel,L
For P € 9., 1, let
i ~ P/(Z) €1 €1
"(P):={ P eP™(EY): 1— 14— ) .
U'(P) { e Py (EN) P(z)€< 2,+2)vzep, (3.90)

where /p is the set from (3.67 3.68) that appears in the definition of U, r)(P). Note that
U'(P) CU(, 1)(P). Indeed, infpeg, , dist(U'(P),U, y(P)°) > 0 if we metrize the weak topology.
Consequently,

¢ =€nN UPE%LLU’(P) ( D @5171;) (3.91)
is compact and satisfies Wg(%”) > 1 — ¢, and
¢ c | Ue,nP) (3.92)
PE@ELL
is an open cover. By compactness there exist R € N and (pairwise different) Q1,...,Qr €
perefin( Ny 0 ¢ such that
Ue,,)(Q1) U+ U, 1)(Qr) D ¥, (3.93)

where U, 1)(Q.) is of the type (3.70) with a set 7. C EMr satisfying (3.67-3.68) with P replaced
by @, and M, = LL/mQT].

For z € UpenE™ consider the probability measure on [0,1] given by ug.(B) == Wo({Q' €
perefin(ENY: Q'(2) € BY}), B C [0,1] measurable. Observing that

R

U U {we0,1]: wis an atom of g .} (3.94)
r=1 ZG-Q{T
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is at most countable, we can find &3 € [e1,1 + £2) (note that still &5 < €) and § > 0 such that

! erg,fin Ny . Q/(Z)/Qr(z)e[1—52—5,1—62+5]U[1+62—5,1+52+5]
WQ({Q €r (B): for some r € {1,..., R} and z € 4,

< c .
“1VEKyVmtK;y

(3.95)
Define “disjointified” versions of the U )(Q,) as follows. For = 1,..., R, put iteratively

_ L e prv iy, Q'(z) € Qr(2)(1 —e2,1+¢) for all z € & and for each r’ <r there
’ is 2/ € o such that Q'(2') € Q. (2)[1 — &3 — 6,1 + &9 + ¢
(3.96)

It may happen that some of the U, are empty or satisfy WQ(U ) = 0. We then (silently) remove
these and re-number the remaining ones. Note that each U, is an open subset of P™(EN) and

Wo( Z Wo(lh,) > 1 — 2, (3.97)
since Wo (¢ \ Uﬁzla,«) <e
For r =1,..., R, we have, using (3.80-3.81) and the choice of &5 (< 2¢7),
Wolth N 2)(HQr a5 +e) = [ H(@Q |45l WoldQ), (3.98)

Uur-Ng

Wo(d, N 7)(mq, H(Wq, | ") +¢)

v

/~ mo H(Tg | v®) Wo(dQ), (3.99)
Uu-Ng

so that altogether

ZWQ W{HQ: 1 450) + (0= Dmg, H(¥g, | v¥M)}

(3.100)
H(Q | 45) + (@ = YmqH(¥q [ *") — (3 + 3a)e.
3.5.4 More layers: long sentences with the right pattern frequencies
For 2 € UpenE™ and € = (60, ... ¢®Dy e EM (with M > |2]), let
freq (€) = 27| {1 < i < M — |2]: (69, €0+FI-0) = 2 (3.101)

be the empirical frequency of z in £&. Note that, for any P € Perg’ﬁn(EN), z € UneNE” and € > 0,
we have

A}@@P({g € EM: freq,(€) € P(z)(1—e,1+ a)}> —1 (3.102)

and
A}iinooP({é e EM: |w(€)] € M(mp —e,mp + e)}) ~1. (3.103)

For M € N and r € {1,..., R}, put
— oM .
VT,M = {f e L™
k(&) € M(mQT —e,mq, +¢), freq,(§) € Qr(2)(1 —e2,1 +&2) for all z € o, and for each }

1’ < r there is a 2/ € s such that freq., (&) & Q. (2)[1 —ea — 8,1 + 3 + 0]
(3.104)
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Note that when |E| < oo, also ]VTM] < oo. Furthermore, V, 7NV, 37 = () for r # 1. For € € V.
we have

({1gig]\7—MT+1: (€0, glin), ...,g(”M’"_l))ed}‘ M(1 - 2¢), (3.105)

in particular, there are at least K, := LM(l —3¢)/M,| elements z1,...,2Kk, € % (not necessarily
distinct) appearing in this order as disjoint subwords of £&. The z;’s can for example be constructed
in a “greedy” way, parsing & from left to right as in Section 3.2 (see, in particular, (3.21)). This
implies, in particular, that

M

(Z w ex — MTIE log p(T o
IEC <kle!1f|| (exp [(1 — &) M, Eq, llog p(r1)]]) 5106,

< exp [(1 — 4e)MEg, [log p(n)ﬂ

if M is large enough. Furthermore, for each r € {1,...,R} and n € V 77> We have

{C eV, 5 m(Q) = w()}] < exp [M(Hox(Qr) + 1), (3.107)

where §; can be made arbitrarily small by choosing € small. (Note that the quantity on the left-hand
side is the number of ways in which x(n) can be “re-cut” to obtain another element of V +.) In

order to check (3.107), we note that any ¢ € V5 must contain at least K, disjoint subsentences

from 7., and each z € o, C EMr satisfies |r(z)| > L. Hence there are at most

(M(mczr )~ KL 1)> < gleMmq, < glem™M (3.108)
K, B B |

choices for the positions in the letter sequence k(n) where the concatenations of the disjoint sub-
sentences from . can begin, and there are at most

<z\7— K;M - 1)) < el (3.109)

choices for the positions in the word sequence ( where the subsentences from 4. can begin.
By construction (recall the last line of (3.68)), each z € & can be “re-cut” in not more than
exp[(L/mq,)(H; |k (Qr) + €)] many ways. Combining these observations with the fact that

(exp [(L/mq,)(H 1 (Qr) + 6)})& < exp [ j\\j

T

M, (Hy 5 (Qr) +2)] (3.110)

we get (3.107) with 1 := e + 3elog2 +4em*log2.
We see from (3.102-3.103) and the definitions of U, and V3= that, for any € > 0

U {peth: PV, >1-2} =1 (3.111)
MeN
Hence we can choose M so large that

WQ<{P€Z/~IT: P(V, ) > 1~ %}) > Wo () (1— 5), r=1,...,R. (3.112)
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For M'>M and r =1,..., R, put
Wy = {¢ € EM': freqy, Q) >1-¢/2}. (3.113)

Note that for r # r’ (because V=NV, = = ) there cannot be much overlap between ¢ € W,y
and ne Wr’,M’:
max{k: k-suffix of ( = k-prefix of n} <eM’ (3.114)

(here, the k-prefix of n € E", k < m, consists of the first k words, the k-suffix of the last k words).
To see this, note that any subsequence of length k of ¢ must contain at least (k—eM’/2) positions
where a sentence from Vr]\"] starts, and any subsequence of length k& of n must contain at least
(k —eM'/2) positions where a sentence from VT,,’M starts, so any k appearing in (3.114) must
satisfy 2(k —eM’/2)+ < k, which enforces k < eM’. Now, (3.114) implies that we may choose M’
so large that forr =1,..., R,

!/

each ¢ € W,y contains at least (1 — s)ﬁ disjoint subsentences from V, 57 (3.115)

For P € Pefin(EN) with P(V. =) > 1 — /3 we have

T

Jim P(Wear) =1, (3.116)
and hence
U {P ely: P(Wyap)>1— a} 5 {P el: P(V ) >1- 6/3}, (3.117)

M'>M
and so we can choose M’ so large that
WQ({P €l P(Wyap)>1— s}) > Woh)1—¢), r=1,...,R. (3.118)
Now define

0(Q) = {Q' e P (EN): Q' (Wyar) > Wolh)(1 —2¢), r=1,... ,R}. (3.119)

Note that O(Q) is open in the weak topology on PinV(EN), since it is defined in terms of requirements
on certain finite marginals of Q’, and that for r =1,..., R,

QWiap) = / QWoar) WodQ) > [ @ Woar) WoldQ') > (1 — &) Woldh,)  (3.120)
Perg(EN) Uy
by (3.118), so that in fact Q € O(Q).

3.5.5 Estimating the large deviation probability: good loops and filling loops

Consider a choice of “cut-points” j; < --- < jy as appearing in the sum in (3.23). Note that, by
the definition of O(Q) (recall (3.16-3.17)),

N
Ry .in(X) €0(Q) (3.121)
enforces
{1<i<N-M'": (X|;,_,

X| € Wyear}| > NWoU,)(1-3¢), r=1,...,R,

(3.122)

Jilr e ji+M’7lvji+M’])
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when N is large enough. This fact, together with (3.114), enables us to pick at least

R
J = [(1—4e)N/MTWq(U,) (3.123)
r=1
subsentences (1, ...,y occurring as disjoint subsentences in this order on £y such that

N

M’
where we note that J > (1 —8¢)(N/M') by (3.97). Indeed, we can for example construct these ¢;’s
iteratively in a “greedy” way, parsing through £y from left to right and always picking the next pos-
sible subsentence from one of the R types whose count does not yet exceed (1 — 4€)WQ( ) (N/M'),
as follows. Let k,, be total number of subsentences of type r we have chosen after the s-th step
(kg1 = --- = ko.g = 0). If in the s-th step we have picked ¢, = (£1,...,¢® T~y
then let

Hl S]SJ Cj EWr,M’}

(1—4)Wo,) —, r=1,...,R, (3.124)

at position p,

*

p’ := min {z > p+ M': at position i in £y starts a sentence from Wy, for some u € Us},

(3.125)
where U, = {r: kys < (1 — 4e)Wqo(U,) (N/M')}, pick the next subsentence Cyy; starting at
position p’ (say, of type u) and increase the corresponding ksi1,. Repeat this until ks, >
(1—4e)WoUy) (N/M') for r=1,...,R.

In order to verify that this algorlthm does not get stuck, let rem(s, r) be the “remaining” number
of positions (to the right of the position where the word was picked in the s-th step) where a
subsentence from W, 5 begins on {x. By (3.122), we have

rem(0,7) > NWq(U,)(1 — 3¢). (3.126)

If in the s-th step a subsentence of type r is picked, then we have rem(s + 1,r) > rem(s,r) — M’,
and for 1’ # r we have rem(s + 1,7") > rem(s,r’) —eM’ by (3.114). Thus,
rem(s,r) > rem(0,r) — ks, M’ — (s — kg )M’

3.127
m(0,7) — ks, (1 — )M’ — seM’, ( )

which is > 0 as long as k., < (1 — 4e)Wo(U,) (N/M') and s < J.

A. Combinatorial consequences. By (3.115) and (3.124), Rﬁ,“.J»N (X) € O(Q) implies that {n
contains at least

R
~ N M’ N
=D [0 = 1eWol) 11 [0-e) =] (=0 -100)=) 3.128
Ci=) [a—saWolh)plla-a7] (20 -1097 (3.128)
disjoint subsentences 71, ...,nc (appearing in this order in £y) such that at least
N
M(l — 66)WQ(L{ ) of the nc's are from Vo= r=1,..., R. (3.129)

Let ki,..., ko (key1 > ke + ]\7, 1 < ¢ < C) be the indices where the disjoint subsentences 7, start
in €N7 i.e.,

ne = (&) €0+, 5@’%“7*1)) eV s i=c....C, (3.130)
and the r.’s must respect the frequencies dictated by the Wy (U,)’s as in (3.129). Thus, each choice
(J1,--.,Jn~) yielding a non-zero summand in (3.23) leads to a triple

(b1, o), (r1y...yre), (M-, W) (3.131)
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such that 7, € K(V_ 77), Lev1 > Le + |7, |, the r.’s respect the frequencies as in (3.129), and
the word 77, starts at position /. in X forc=1,...,C. (3.132)

As in Section 3.3, we call such triples good, the loops inside the subsentences 7; good loops, the
others filling loops.
Fix a good triple for the moment. In order to count how many choices of j; < --- < jn can lead
to this particular triple and to estimate their contribution, observe the following:
1. There are at most N
N-CM-1
( (C )> < exp(§)N) (3.133)

choices for the k; < --- < k¢, where ¢} can be made arbitrarily small by choosing € small and
M large.

2. Once the k.’s are fixed, by (3.107) and (3.129) there are at most

R N ~T
TT(esxo [0 (@) +a)] )7

r=1

. (3.134)
= exp [N S Wolh) (Hx(Qr) + 1)

r=1

choices for the good loops and, by (3.106), for each choice of the good loops the product of
the p(jx — jk—1)’s inside the good loops is at most

R

~ KW )
H ( exp [(1 — 4e)MEq, [log p(Tl)]])
r=1
R . (3.135)
= exp [N(l — 4e) Z Wo (U, )Eq, [log ,0(7'1)]} .
r=1
3. For each choice of the k.’s, the contribution of the filling loops to the weight is
c-1 -
p Ve 1) T o e R (e — e — )
c=1
c-1 N C
< (CV TR T b — ke = I T (e et — sV 1) ™
c=1 c=1
= C
N — CM\ (e+1)C _ —a
< V) (—5—) TI(t—ter—mahvy)
c=1
C
< PN (e~ lor — o) V1), (3.136)
c=1

where ¢, can be made arbitrarily small by choosing ¢ small and M large (and we interpret
ly =0, [79] = 0). Here, we have used Lemma 2.3 in the first inequality, as well as the fact
that the product Hg:_ll(kc+1 — k. — M) is maximal when all factors are equal in the second
inequality.
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Combining (3.133-3.136), we see that

P(Ry € O(Q)|X)
R

< e FBTIIN [N(l —4e) > Woth) (H, x(Qr) + Eq, [log ,o(ﬁ)])]
r—=1 (3.137)
C
x Y T —=tia =) v

(£3),(r3),(m;) i=1

good

We claim that X-a.s.

C
. 1 _ —a
limsup Flog >, J[ (6 =it = i) V1)
(£4),(r), (M) 1=1
sood (3.138)
R

<8y —a(l —42) Yy Wolth)mo, H(Tq, | v*"),

r=1

where d2 can be made arbitrarily small by choosing € small and L large. A proof of this is given below.
Observe next that (3.137-3.138) (recall also (1.32)) yield that X-a.s. (with § := 8] + &5 + 1 + d2)

lim sup % log ]P’(RN € O(Q)‘X)

N—o0
R
S o — (1 - 45) Z WQ(Z:{}) (H(QT’ ‘ qp, V®N) + amQrH(\IJQT ‘ V®N))
r=1
<6+ (1—4e)e(2+2a) — (1 — 45)/ _ H(Q'| %)) + (= D)mgH (Ve | v*N) W (dQ')
’Pcrg(EN)

= —(1 —4e)I"™(Q) + 6 + (1 — 4e)e(2 + 20)
(3.139)
(use (3.100) for the second inequality, and see (6.3) for the last equality), which completes the proof.

B. Coarse-graining X with R colours. It remains to verify (3.138), for which we employ
a coarse-graining scheme similar to the one used in Section 3.4 (with block lengths [(1 — e2)L],
etc.) To ease notation, we silently replace L by (1 — e3)L in the following. Split X into blocks
of L consecutive letters, define a {0,1}-valued array A;,, ¢ € N, r € {1,..., R} as in Section 3.4
inductively: For each r, put A, := 0 and, given that Ag,,A1,,...,A;—1, have been assigned

values, define A; as follows:

(1) If Aj_1, =0, then

Ay =

)

1, ifin X there is a word from k(<) starting in ((I — 1)L, L],
0, otherwise.
(3.140)
(2) If Al—l,r = 1, then
1, ifin X there are two words from k(47 starting in (({ —2)L, ({—1)L],
Ay = respectively, ((I — 1)L, L] and occurring disjointly,

0, otherwise.
(3.141)
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Put
pr = Lexp ( —(1—¢)LH(Tp, | V®N)). (3.142)

Arguing as in Section 3.4, we can couple the (4;,)ien1<r<r With an array @ = (w; ;)ien,1<r<r such
that A4;, < w;, and the sequence ((wi,l, . ,wi,R))ieN is i.i.d. with P(w;, = 1) = p,. In particular,
for each r, (w;r)ien is a Bernoulli(p;,)-sequence. There may (and certainly will be if ¥g, and ¥q ,
are similar) an arbitrary dependence between the wj 1,...,w; g for fixed 7, but this will be harmless
in the low-density limit we are interested in.

For r € {1,..., R}, put d, := WQ(L?T)(l —6¢), Dy :=[(1 — E)MmQT/L] Itn. eV, 37, then

|5(ne)| € Mmg,,(1—e,1+¢), (3.143)

so k() covers at least D, consecutive L-blocks of the coarse-graining. Furthermore, as 7. in turn
contains at least D, (1 —¢) disjoint subsentences from 7., we see that at least D, (1 —¢) of these
blocks must have Ay, = 1. Thus, for fixed X, we read off from each good triple (£.), (rc), (7,)
numbers m; < --- < m¢ such that

Mer1 > Me+ Dy, e=1,...,C—1,
{me <k <me+ Dy.: Apyp. =1} 2D, (1—¢),c=1,...,C, (3.144)
|{1§c§0: rc:r}‘ >d.C,r=1,...,R.

where m, is the number of the L-block that contains £.. Furthermore, note that for a given “coarse-
graining” (m.) and (r.) satisfying (3.144), there are at most

L¢ <2EM mameQr) < exp(d3N) (3.145)
choices for ¢, and 7, that lead to a good triple (£.), (r¢), (77.) with this particular coarse-graining.
Indeed, for each ¢ =1,...,C there are at most L choices for £, and, since each n € V- satisfies

k()] € Mg, (1—¢,1+¢), (3.146)

there are at most 25]\\4/77@@% choices for 7, (note that once £, is fixed as a “starting point” for a word
on X, choosing 7j, in fact amounts to choosing an “endpoint”). Note that d3 can be made arbitrarily
small by choosing € small and M large. Finally, (3.145) and Lemma 3.3 yield (3.138). Indeed, since

. C 1
limsup — < —,
N—oo M
i Mm
S dDylogp, < —(1-8¢) ZWQ QT (LH(\I/QT | /5N ~ log L),

r=1
by choosing € small, L and M large, and ~ sufficiently close to 1/«, the right-hand side of (3.150)
is smaller than the right-hand side of (3.138).
3.5.6 A multicolour version of the core lemma

The following is an extension of Lemma 2.1. Let R € N, @; = (w;1,...,wir) € {0, 1}, and assume
that (wi)ieN is i.i.d. with

Pwi,=1)=p,, i€N,r=1,...,R. (3.147)
Note that there may be an arbitrary dependence between the w; ,’s for fixed 7. This will be harmless
in the limit we are interested in below.
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Lemma 3.3. Let a € (1,00), € > 0, (dy,...,dg) € [0,1)% with "% d, <1, Dy,...,Dp € N,
C e N, put
C

Sc@) =Y i TT (i —mica — Drp )7, (3.148)

where the sum >.* extends over all pairs of C-tuples mg := 0 < my < --- < m¢ from N¢ and
(r1,...,rc) € {1,..., R} satisfying the constraints

mi4q Z my +D7“i7
H1<i<C:r=r}>dC, r=1,...,R, (3.149)
{m; <k <m;+D;,: wg,, =1} > D,,(1—¢), i=1,...,C.

Then w-a.s.

1
lim sup — log S¢(@)

C—oo C
1 R R
< inf <—(1 h(d) + dylog R + (log2 d,Dy + (1 — d, D, logp, ) ¢,
_ﬁye(l{l/a’l){v(ogé(av)Jr () + dolog R + (log ); +( 6); ogp)}
(3.150)
where h(d) := _Efzo dylogd, (with dy :=1—dy —--- —dg) is the entropy of d, and ¢(c) is a

function such that lim.|o ¢(e) = 0.

Proof. The proof is a variation on the proof of Lemma 2.1. We again estimate fractional moments.
For v € (1/a, 1), we have

E[(Sc)]
<Y X B(NE (kb Dy = 1) g = 1)) 2 (14D, })
i1 2t Drs Vi c
X H(ml —mi—1 — Drifl)_a’h
i=1
(3.151)
where the sum Zl extends over all (r1,...,r¢) satisfying the constraint in the second line of (3.149).
Noting that
Dy, D
P(|{k € [mi,m; + Dy, — 1)1 wgp, =1} > (1 — 5)Dri) — Z < kn>p¢,(1 — py)Primm
m=(1—€)Dy,

< pi!7Prighn,
and
‘{(rl,...,r(;) e{1,...,R\°: at least d.C of the r; =1, r = 1,...,R}|

C
< B ous o) = e[l R+ i) +o(n)]
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we see from (3.151) that

R
E[(Sc)7] <exp [C(do log R + h(d) + 0(1))] X H (2p£1—6))drC'Dr
r=1
C
X Z 1_[(7nZ —Mmi—1 D7“7;71)_Oé’y
i 2t B i
= expC [do log R + h(d) + log C(a7) + 327, d, Dy log2 + (1 — &) 7| errpr] ,
(3.152)
which yields (3.150) as in the proof of Lemma 2.1. O

3.6 Step 6: Weakening the tail assumption

We finally show how to go from (3.3) to (1.1). Suppose that p satisfies (1.1) with a certain o € (1, 00).
Then, for any o/ € (1, ), there is a Cy(’) such that (3.3) holds for this o’. Hence, as shown in
Sections 3.1 3.4, for any £ > 0 we can find a neighbourhood O(Q) c P™fin(EN) of Q such that

X —a.s.

(3.153)
The right-hand side is < —I1"(Q) + ¢ for o sufficiently close to «, so that we again get (3.1). O

1
limsup - log P(Ry € O(Q) | X) < ~H(Q | 47})) — o/ ~ 1) mq H(¥gq [ v*) + 5

4 Lower bound

The following lower bound will be used in Section 5 to derive the lower bound in the definition of
the LDP.

Proposition 4.1. For any Q € P (EN) and any open neighbourhood U(Q) C P™ (EN) of Q,
c . 1 fin
l}\l}i}élof N logP(Ry €U(Q) | X) > —I"™(Q) X —a.s. (4.1)

Proof. Suppose first that Q € Pergﬁn(EN). Then, informally, our strategy runs as follows. In X,
look for the first string of length ~ Nmg that looks typical for Wg. Make the first jump long
enough so as to land at the start of this string. Make the remaining N — 1 jumps typical for ). The
probability of this strategy on the exponential scale is the conditional specific relative entropy of
word lengths under Q w.r.t. p® given the concatenation, i.e., & exp[—N (H,;(Q)+Eg[log p(m1)])],
times the probability of the first long jump. In order to find a suitable string, we have to skip ahead
in X a distance ~ exp[NmgH (¥ | v*N)]. By (1.1), the probability of the first jump is therefore
~ exp[-NamgH (g | v®Y)]. In view of (1.16) and (1.32), this yields the claim. In the actual
proof, it turns out to be technically simpler to employ a slightly different strategy, which has the
same asymptotic cost, where we look not only for one contiguous piece of “Wg-typical” letters but

for a sequence of [ N/M| pieces, each of length ~ Mmg. Then we let N — oo, followed by M — oo.

More formally, we choose for O(Q) an open neighborhood @' C O of the type introduced in
Section 3.2, and we estimate P(Ry € O’ | X) from below by using (3.17 3.20).
Asgsume first that @ is ergodic. We can then assume that the neighbourhood i/ is given by

U=1{Q e P™(EY): (72,Q)(Cu) € (au,by), u=1,...,U} (4.2)
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forsomeU €N, L1,...,. Ly e N0 < a, <b, <1and(, GEL“,ZL: 1,...,U. Asin Section 3.1, by
ergodicity of @ we can find for each ¢ > 0 a sufficiently large M € N and a set &/ = {21,...,24} C
EM of “Q-typical sentences” satisfying (3.6-3.7) (with e; = §; = ¢, say), and additionally

1 _
MHOS]‘SM—LizﬂLu(Wza =Cu}| € (aib), a=1,...,4,u=1,...,U. (4.3)

Let % := k(7). Then from (3.6-3.7) we have that, for each b € 4,

1| = {z € & Kk(2) = b}| > exp [M(Hx(Q) — 2¢)], (4.4)
and
P(X begins with some element of %) > exp [ — Mmq(H(¥V | V&N 4 2¢)]. (4.5)
Let
0§M) :=min{i: "X begins with some element of %}, (4.6)
Ul(M) :=min{i > 7_1 + M(mg +¢): 0°X begins with some element of 8}, [=23,.... .
Restricting the sum in (3.23) over 0 < ji < -+ < ji < oo such that j; = o\™ | jo—j1,. .., jar—jnr—1

are the word lengths corresponding to the z,’s compatible with s, 0" X), jpm+1 = aéM), etc.,

we see that

1
N logP(Ry €U | X) > Hy g (Q) + Egllog p(1)] — 3¢ —a— Z log (UI(M) - Ul(%)) (4.7)

for N sufficiently large. Hence X-a.s.

1 1
l}\l{n inf N logP(Ry €U | X) > Hy x(Q) + Eqllog p(71)] — 3¢ — aME[log agM)]

> Hoyie(Q) + Eqllog p(m1)] — amq(H(¥q | v¥) —6= (48)
= —1"1(Q) — 6¢,
where we have used (4.5) in the second inequality. Now let € | 0.
It remains to remove the restriction of ergodicity of @, analogously to the proof of Birkner [2],
Proposition 2. To that end, assume that @ € Pinv’ﬁn(EN) admits a non-trivial ergodic decomposi-

tion. Then, for each € > 0, we can find Q1,...,Qgr € Perg’ﬁn(EN), Ay .., AR € (0,1), Zle Ar=1
such that Q1 +--- + ApQr € U and

ZA I"™(Qy) < I"™(Q) +¢ (4.9)

(for details see Birkner [2], p. 723; employ the fact that both terms in I™ are affine). For each
r=1,..., R, pick a small neighbourhood U, of @, such that

R
Q. clp,r=1,...,.R = Y \NQ. el (4.10)
=1

Using the above strategy for @1 for A; N loops, then the strategy for Q2 for Ao N loops, etc., we see
that

lim inf —]P’(RN clU|X) Z)\ I(Q,) — 6e > —1"™(Q) — 7e. (4.11)

N—oo
=1

O
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5 Proof of Theorem 1.2

Proof. The proof comes in 3 steps. We first prove that, for each word length truncation level tr € N,
the family P([Ryli € - | X), N € N, X-a.s. satisfies an LDP on

P (B) = {Q € P™(EY): QY| < tr) =1} (1)

(recall (1.11 1.13)) with a deterministic rate function I"([Q]; r) (this is essentially the content of
Propositions 4.1 and 3.1). Note that [Qly = Q for Q € P2V(EN), and that PV (EN) is a closed
subset of Pm"(EN), in particular, a Polish space under the relative topology (which is again the
weak topology). After we have given the proof for fixed tr, we let tr — oo and use a projective limit
argument to complete the proof of Theorem 1.2.

1. Fix a truncation level tr € N. Propositions 4.1 and 3.1 combine to yield the LDP on piov(EN)
in the following standard manner. Note that any Q € PiIV(EN) satisfies mg < oc.

la. Let O C Pé?V(EN) be open. Then, for any @ € O, there is an open neighbourhood O(Q) C
PIHV(EN) of @ such that O(Q) C O. The latter inclusion, together with Proposition 4.1, yields

lim inf N log]P’([RN]tr €0|X)> —1i(Q) X —a.s. (5.2)

N—oo

Optimising over @) € O, we get

— > — fin — a.s. :
l}\l}i}gof I log]P’([RN]tr €0 |X) égg)l (Q) X —a.s (5.3)

Here, note that, since Pé?V(EN) is Polish, it suffices to optimise over a countable set generating the
weak topology, allowing us to transfer the X-a.s. limit from points to sets (see, e.g., Comets [4],
Section III).

1b. Let £ C PIHV(EN) be compact. Then there exist M € N, Q1,...,Qn € K and open neighbour-
hoods O(Q1),...,0(Qar) C Pv(EN) such that K € UM_,O(Q,,). The latter inclusion, together
with Proposition 3.1, yields

: 1 ; fi
— < - n — a.s. . .
thvn_?Bop N logP([Rn]ir €K | X) < 1§1££MI (Qm) +¢ X —a.s Ve>0 (5.4)

Extending the infimum to @) € K and letting ¢ | 0 afterwards, we obtain

lim sup N logP([Ry]er € K| X) < — mf "(Q) X —a.s. (5.5)

N—oo

lc. Let C C PIHV(EN) be closed. Because Q — H(Q | q ™) has compact level sets, for any M < oo

the set Ky = CN{Q € P™(EN): H(Q | qy M) < M} is compact. Hence, doing annealing on X
and using (5.5), we get

1
limsup — log P([Ry]i € C | X) < max {—M, — inf Iﬁn(Q)} X —a.s. (5.6)
N—oo N Q€K

Extending the infimum to @) € C and letting M — oo afterwards, we arrive at

hmsup—log]P’([RN]tr €eC|X)< —énf (@) X —a.s. (5.7)
N—o00 eC

Equations (5.3) and (5.7) complete the proof of the conditional LDP for [Ry]i;-
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2. It remains to remove the truncation of word lengths. We know from Step 1 that, for every
tr € N, the family P([Ryli € - | X), N € N, satisfies the LDP on P ([E]Y) with rate function
Ifin Consequently, by the Dawson-Girtner projective limit theorem (see Dembo and Zeitouni [5],
Theorem 4.6.1), the family P(Ry € - | X), N € N, satisfies the LDP on P (EN) with rate function

I%*(Q) = sup Q). Qe P™(EN) (5.8)

The sup may be replaced by a limsup because the truncation may start at any level. For @ €
Piovfin(BNY e have limg_oo I ([Q]i:) = I™(Q) by Lemma A.1, and so we get the claim if we can
show that lim sup can be replaced by a limit, which is done in Step 3. Note that 19 inherits from
Ifin the properties qualifying it to be a rate function: this is part of the projective limit theorem.
For I™ these properties are proved in Section 6.

3. Since 19" is lower semi-continuous, it is equal to its lower semi-continuous regularisation

fqueQ = sup inf T9(Q"), 5.9
(@= o inf Q) (5.9

where the supremum runs over the open neighborhoods of Q. For each tr € N, [Q];, € P™V:fin (EN)
while w — limg; 00 [Q]tr = Q. So, in particular,

Y

19°(Q) = I**(Q) < sup inf I™([Qly) = lim inf I""([Q]rr), (5.10)

implying that in fact o
1(Q) = lim I™((Ql). Q€ P™(EY). (511)
O

Lemma A.1 in Appendix A, together with (5.11), shows that I9°(Q) = In(Q) for Q <
Pivfin(EN) “as claimed in the first line of (1.15).

6 Proof of Theorem 1.3

Proof. The proof comes in 5 steps.

1. Every Q € PinV(EN) can be decomposed as

Q= Q' Wo(dQ') (6.1)

perg (EN)

for some unique probability measure Wy on Porg(EN) (Georgii |7], Proposition 7.22). If Q €
pinviin(BNY “then Wy is concentrated on P&t (EN) and so, by (1.9-1.10),

mo:
meq =/ _mq Wo(dQ'), ‘I’QZ/ LWy Wo(dQ). (6.2)
’perg,ﬁn(EN) ’perg,ﬁn(EN) mQ

Since Q@ — H(Q | ¢53)) and ¥ — H(¥ | v®N) are affine (see e.g. Deuschel and Stroock [6],
Example 4.4.41), it follows from (1.16) and (6.1 6.2) that

Q= [ 1) WoldQ), (6.3
'pcrg,ﬁn(E‘N)
Since Q — Wy is affine, (6.3) shows that ™™ is affine on piov.fin( Ny
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2. Let (Qn)nen C PMV(EN) be such that w—lim, o @, = Q € P (EN). By Proposition 3.1,
for any € > 0 we can find an open neighbourhood O(Q) € P™ (EY) of Q such that

limsup%log]P’(RN €0 |X) < —IQ)+e X —a.s. (6.4)

N—oo

On the other hand, for n large enough so that @, € O(Q), we have from Proposition 4.1 that

liminf%logP(RN €0 | X)> —I'"(Q,) X —a.s. (6.5)

N—oo

Combining (6.4 6.5), we get that, for any € > 0,

lim inf I1%(Q,,) > I'™(Q) —«. (6.6)

n—oo

Now let € | 0, to conclude that I is lower semicontinuous on P2 (EN) (recall also (5.11)).

3. From (1.16) we have
™Q)>H@Q|EY) vQepminEY) (6.7)

Since {Q € P™(EN): H(Q | qgi’g) < C} is compact for all C < oo (see, e.g., Dembo and
Zeitouni [5], Corollary 6.5.15), it follows that I has compact level sets on Pm"’ﬁn(EN).

4. As mentioned at the end of Section 5, I9"¢ inherits from If™ that it is lower semicontinuous
and has compact level sets. In particular, 19" is the lower semicontinuous extension of Ifin from
pinvidin(ENY to PInv(EN). Moreover, since I is affine on PV (EN) and 9% arises as the trun-
cation limit of I (recall (5.10)), it follows that I9% is affine on P™(EN).

5. It is immediate from (1.15-1.16) that g5}’ is the unique zero of J9°,

7 Proof of Theorem 1.4

Proof. The extension is an easy generalisation of the proof given in Sections 3—4.

(a) Assume that p satisfies (1.1) with & = 1. Since the LDP upper bound holds by the annealed
LDP (compare (1.8) and (1.16)), it suffices to prove the LDP lower bound. To achieve this, we first
show that for any Q € P (EN) and & > 0 there exists an open neighbourhood O(Q) c P (EN)
of @ such that
liminfi logP(Ry € 0(Q) | X) > —I""(Q) —¢  X-as. (7.1)
N—oco N
After that, the extension from P™vfin(EN) to Pinv(EN) follows the argument in Section 5.
In order to verify (7.1), observe that, by our assumption on p(-), for any o’ > 1 there exists a
Cy > 0 such that
p(n)
ne

> Cy V' n € supp(p). (7.2)

Picking o' so close to 1 that (o — 1)moH(¥g[v®N) < /2, we can trace through the proof of
Proposition 4.1 in Section 4 to construct an open neighbourhood O(Q) € P (EYN) of Q satisfying

a1
l}\l}i}gof i logP(Ry € O(Q) | X) (7.3)

> —-H(Q | qfff) — (& = D)moH (Vg | v*N) —£/2 > —I"™(Q) —¢ X —a.s.,
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which is (7.1).

(b) We only give a sketch of the argument. Assume a = oo in (1.1). For Q € P™Vfn(EN) the
lower bound (which is non-zero only when @ € Z%,) follows from Birkner |2|, Proposition 2, or
can alternatively be obtained from the argument in Section 4. Now consider a Q) € PinVLEN) with
mqg = 00, H(Q | ¢53) < 00 and limy .o myg), H(¥(qy,, | ¥*N) = 0, let O(Q) € P™(EN) be an
open neighbourhood of @. For simplicity, we assume supp(p) = N. Fix ¢ > 0. We can find a
sequence oy | 0 such that

1
max{ — < logp(n): n < [Ncm} <e. (7.4)
Furthermore,
1
Qo 145Y) 2 HQ 1 45h) — ¢ (7.5)
for N > Ny = Ny(g,Q), and we can find trg € N such that
1 ®No L BN,
_ > o) _
o (@, 1452°) = 50 Qs 1050°) —c (7.6)
for tr > trg. Hence
H([Qlu | g5) > H(Q | q5y) — 2¢ for tr > tr. (7.7)

We may also assume that [Q]i, € O(Q) for tr > trg. For a given N > N, pick tr(IN) > trg so large
that m[Qhr(N)H(\IJ[Q]n(N) | v®N) < 6 /2. Using the strategy described at the beginning of Section 4,

we can construct a neighbourhood Oy C O(Q) of [Q]y(n) such that the conditional probability
P(Ry € On|X) is bounded below by

exp [ — N(H([Qls | qf?ﬁ) — )] x the cost of the first jump, (7.8)

where the first jump takes us to a region of size ~ Nm[Q]tr(N) on which the medium looks “\I[[Q]tr(N)_
typical”. Since, in a typical medium, the size of the first jump will be

~ exp [Nm[Q]u(N)H(\II[Qhr(N) | ¥¥)] < exp[Now], (7.9)
we obtain from (7.4) and (7.7 7.9) that
P(Ry € O(Q)|X) > exp [~ N(H(Q | ¢5)) + 4¢)] (7.10)

for N large enough.
For the upper bound we can argue as follows: For Q) € PinV(EN) put

r(Q) = limsupmq) o H(Y (g, | o). (7.11)

tr—oo

Since p satisfies the bound (3.3) for any a > 1, we obtain from the upper bound in Theorem 1.2
that the rate function at @ is at least

limsup I ([Ql) = H(Q | ¢Z5) + (0 = Hr(Q), (7.12)

tr—oo

hence equals oo if 7(Q) > 0. On the other hand, if (Q) = 0, then this is simply the annealed
bound.
O
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8 Proof of Corollary 1.6

Proof. Let E be a Polish space with metric dg (equipped with its Borel-o-algebra #g). We can
choose a sequence of nested finite partitions @, = {Ac1,...,Acn. }, ¢ € N, of E with the property
that
Vz € E: lim diam((z).) =0, (8.1)
CcC— 00

where the coarse-graining map (). maps an element of E to the element of . it is contained in.
Each o, = (E). is a finite set, which we equip with the discrete metric d.. Extend (-). to (E)~ for
each ¢ > ¢ via (Ap j#)e = Ac;i if Ap iy C Aci. Then the collection o, (-)., ¢ € N, forms a projective
family, and the projective limit

FZ{(51,52,---):506527;,<£c/>6256,1§c<c/} (82)

is again a Polish space with the metric
o
dF((gla §2, ... )7 (7717 2. )) = Z 2_Cdc(£c, 770)- (83)
c=1

We equip F' with its Borel-o-algebra Zr. We can identify E with a subset of F'via ¢ : x — ((m)c)ceN,
since ¢ is injective by (8.1). Note that «(E) is a measurable subset of F' (in general «(E) # F; it
is easy to see that ((FE) is a closed subset of F' when E is compact; for non-compact E use the
one-point compactification of F).

Note that the topology generated by dr on ¢(F) is finer than the original topology generated by
dg: By (8.1), for each x € E and € > 0, there is an &’ > 0 such that the dp-ball of radius ¢’ around
x is contained in the d-ball of radius € around z. We will make use of the fact that

the trace of Zr on ((E) agrees with the image of &g under ¢. (8.4)
To check this, note that for any x € F, the function
dp (1H(8), x), € uF),
0, otherwise,
can be pointwise approximated by functions that are constant on ¢(A.;), i = 1,...,n., and is

therefore A p-measurable. B
We extend (), in the obvious way to EY and EN, N € NU {co} (via coordinate-wise coarse-
graining), and then to P(EY), P(EY), N € N, and finally to P (EN) and P"™(EY) (by taking

image measures). Note that (-). and [-]t; commute, and

mqQ = mQ),, <\I/Q>c = \P(Q)cv Q S Pinv(EN). (8.6)
By Theorem 1.2, for each ¢ € N the family
P((Rn)c €] X), NE€N, (8.7)

X-a.s. satisfies the LDP with deterministic rate function

fin - N a—1)m v N inv,fin// ;7\ N
Jwe(g) = 4 @)= H(Q [{gZN)e) + (o — DmgH (Vg | (V*N)), Q € P in((E)Y), 55
lime, oo Ign([Q]tr), if mg = o0.

Hence, by the Dawson-Gértner projective limit theorem (see Dembo and Zeitouni [5], Theorem 4.6.1),
the family P(Ry € - | X), N € N, X-a.s. satisfies the LDP on P™ (FY) with rate function

IF(Q) = sup I ((Q)e),  Q € P™(FY). (8.9)

ceN

The following lemma follows from Deuschel and Stroock |6|, Lemma 4.4.15.
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Lemma 8.1. Let G be a Polish space, let o, = {Ac1,..., Acpn.t, ¢ = 1,2,... be a sequence of
nested finite partitions of G such that lim,_,., diam((:p}c) =0 for all x € G (with a coarse-graining
map defined as above). Then we have, for u,v € P(G),

(e | (V)e) /" h(p|v) asc— oo (8.10)

Let
PRv(FY) = {<I> e P™(FY) : m®(u(E)) = 1}, (8.11)
PR = {QeP™(F): mQu(E) =1}. (5.12)

Note that (8.4) allows to view each ® € P (EN) as an element of PV (FN) and each Q € piov(EN)
as an element of PV (FN) via the identification of E and «(E) C F. In particular, we can view v/®N
as an element of PIV(FN) and q§§ as an element of PIV(FN). We will make use of the fact that,

since each real-valued dg-continuous function on ((£) is automatically dp-continuous, the weak
topology on PIV(FN) is finer than the weak topology on P (EN).

Fix Q € P™fin(FN) Note that the functions

1 1
(N, = b ((tnQ)e | (g5n')e)  and - (Lye) = £h ((mL¥q)e | (¥7F)c) (8.13)
are non-decreasing in both coordinates. Then deduce from (8.9) and (1.16) that

Q) = swp{H(Q) [gZ)e) + (@ = migy, H(¥(g, | 7))}

= sup {SUP ih (N Qe | (2o )EN) + (o — 1) mg sup ih ((r¥q). | (V®L>c)}
ceN (nen N Len L

1 1
= sup —suph ((7yQ)c | <q§£v>c) + (@ —1)mgsup —suph ((r, Vo). | <V®L>C)
NeN N cen LeN L cen

1 1
= sup —h(7nQ q®,]jv+a—1m sup —h (m. %o | v®F
sup (@ [ gy ) + (o= 1) mg sup 7h (w1 ¥q [ v77)
= H(Q| ¢+ (a—1)mgH(Uq [ v*N), (8.14)

where we have used Lemma 8.1 in the fourth line. Note that in the third line interchanging the
suprema and splitting out the supremum over the sum is justified because of (8.13).
For Q € P™(FN) with mg = co we see from (8.9), (1.15) and (8.14) that

Y

Ip(Q) = supId™((Q)c) = supsup {H([<Q>c]tr | {ap)e) + (@ = 1) myg,, H{(¥(g),,)e | <V®N>c)}

ceN ceN treN
= sup {H(Qh | 453) + (= )migy, H(¥ig,, | ™)} (8.15)

Note that sup.cy can be replaced by tr — oo by arguments analogous to Step 3 in the proof of
Theorem 1.2.

Finally, we transfer the LDP from P (FN) to P (EN). To this end, we first verify that the
rate function is concentrated on Pg“’(ﬁN). Put

F" .= {y € F : y contains at least one letter from F \ +(E)}. (8.16)
Then g, (F") = 0. For Q € Py (FN)\ Piv(FN) we have mQ(F”) > 0, and hence

IPQ) > H(Q | ¢5)) > h(mQ | gpp) = . (8.17)
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Thus, by Dembo and Zeitouni [5], Lemma 4.1.5, the family P(Ry € - | X) satisfies for v®N-a.s. all
X an LDP on PmV(FN) with rate N and with rate function given by (1.15 1.16).

To conclude the proof, observe that we can identify P (EN) and P}E’“V(ﬁN), and that the weak
topology on P™ (EN), which is ‘built’ on dg, is not finer than that which P}EIW(FVN) inherits from
Pnv(EFN) which is ‘built’ on dp (recall the discussion following (8.11 8.12)). Consequently, the
LDP carries over. O

A Appendix: Continuity under truncation limits

The following lemma implies (1.17).

Lemma A.1. For all Q € P™-fin(EN),

lim H([Qlu | d5n) = H(Q | 4;h),
tr—oo . (Al)
Jim myg) H(Yq, [ Y) = moH (¥q | 7).
Proof. The proof is not quite standard, because @ and [Q]yr, respectively, ¥g and ¥(q),, are not “d-
close” when tr is large, so that we cannot use the fact that entropy is “d-continuous” (see Shields [10]).
Lower semi-continuity yields lim inft, o Lh.s. > r.h.s. for both limits, so we need only prove the
reverse inequality. Note that, for all Q € P™Vfin(EN),

H(Q)Sh(Q‘f}l)§h($@(7’1))+leog|E|<oo H((Vg) <log|E| < o0, H(Q|q )<oo

(A.2)
For Z a random variable, we write -Z(Z) to denote the law of Z under Q.
A.1 Proof of first half of (A.1)
Proof. Since q%}] is a product measure, we have for, any tr € N,
H(Qlw | 45) = —H([Qlw) — Eqgqy,, llog p()] [Z logv (v;)
T1AtT (A3)
1
= —H([Ql) — Eq[log p(r1 A tr)] — Eq | Y log (V,")
i=1

By dominated convergence, using that mg < oo and log p(n) < C'log(n + 1) for some C' < oo, we
see that as tr — oo the last two terms in the second line converge to

-Eq [logp 7'1 —Eq [Z log v ( )

Thus, it remains to check that

(A4)

lim H([Qlw) = H(Q). (A.5)

tr—oo

Obviously, H([Q]t) < H(Q) for all tr € N (indeed, h([Q]tr\f;N) < h(Q‘?N) for all N,tr € N,

because [QJt; is the image measure of @) under the truncation map). For the asymptotic converse,
we argue as follows. A decomposition of entropy gives

M@ = Qi )+ [ B(ZolmnY [ axlYle =2) (rvl@)(d), (49

12N
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where 7y is the projection onto the first N words, and Zo(nnY | mn[Y]ie = 2) is the conditional
distribution of the first IV words given their truncations. We have

h(zQ (rnY | 7n V] = z)) < ivj h(zQ (% | 7y[V]e = z)) (A7)
i=1

and

N

[ h( oW | mal¥he = ) (rx[@l) @)
(E
< [ (#0051 il = 2)) (v1Qhe) @2 (A5)

= [ #0110l =) i@, 10N,

where the inequality in the second line comes from the fact that conditioning on less increases
entropy, and the third line uses the shift-invariance. Combining (A.6 A.8) and letting N — oo, we
obtain

H(Q) < H(Qh) + |

(Lo | Wil = 1)) (miQla) ), (4.9)

and so it remains to check that the second term in the right-hand side vanishes as tr — oo.
Note that this term equals (write € for the empty word and w-w' for the concatenation of words

w and w')
Qw - w') [Q(w'w’)]
— . 1
2 ) 2 o) | gltu)
r(w)=tr webuie} (A.10)
== D> QlogQ")+ ., Q")log[Qlu([w")u).
Tfﬁffﬁftr T(wu;’/’e)gtr
But
0> Y Qulog[Qu(fw'lu) = Y Qu")logQ(u"), (A.11)
-r(wu;’/’e)gtr T(wujllggtr
and so the right-hand side of (A.10) vanishes as tr — oo. O

A.2 Proof of second half of (A.1)

Note that limg: o0 miQ, = MQ and w — lim¢;_ o0 \I[[Q]tr = Vg by dominated convergence, implying
that
liminf H(¥ g, | Ny > H(Wg | v®Y). (A.12)

tr—oo

So it remains to check the reverse inequality. Since v®N is product measure, we have

1 T1Atr L
H(Yiq, [ V") = —H(¥g,,) - g [Z log v <Yi( )) : (A.13)
tr i=1
By dominated convergence, as tr — oo the second term converges to
LIE‘JQ ilogy <Yi(1)) = / U (dr) logv(x). (A.14)
mQ i=1 B
Thus, it remains to check that
lim H(Vg,,) = H(¥q). (A.15)

tr—oo
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We will first prove (A.15) for ergodic @, in which case [Qlir, ¥q, Vg, are ergodic (Birkner [2],
Remark 5).
For ¥ € P¢(EN) and ¢ € (0,1), let

No(V,e) =min {#A: ACE", U(Ax E®)>¢e} (A.16)

be the (n,¢) covering number of . For any € € (0,1), we have

lim - log N, (¥, ) = H() (A.17)

n—oo N

(see Shields [10], Theorem 1.7.4). The idea behind (A.15) is that there are ~ exp[nH(Vq)] “¥o-
typical” sequences of length n, and that a “Wqg, -typical” sequence arises from a “W(-typical”
sequence by eliminating a fraction &, of the letters, where §, — 0 as tr — co. Hence N, (¥q,¢)
cannot be much larger than MV, (¥(qj,,, €) (on an exponential scale), implying that H(Vq)—H (Vq,,)
must be small.

To make this argument precise, fix € > 0 and pick Ny so large that

QUr(YW, ..., YM) € Nmg[l —e,1+¢]) >1—¢  for N > Nj. (A.18)
Pick tryp € N so large that for tr > trg and N > Np,
Q(Ef\il(ﬁ —tr); < Ne) >1—¢/2, Q(n < tr) >1—¢/2, mg,, > (1 —e)myq. (A.19)
For n > [Ny/mgq], we will construct a set B C E™ such that
Uo(B x E®) > 1, |B| < exp [n(H(¥g,,) +0)], (A.20)

where 0 can be made arbitrarily small by choosing € small in (A.18 A.19). Hence, by the asymptotic
cover property (A.17), we have H(¥q) < (14 6)H(Vq,,) and

lim inf H(V(g),) = H(Vq), (A.21)

completing the proof of (A.15).
We verify (A.20) as follows. Put N := [nmg(1 + 2¢)]. By (A.18-A.19) and the asymptotic
cover property (A.17) for W(qgy,,, there is a set A C EN such that

Eo[nla(YW,...,YW)] > (1 —e)mg (A.22)
and
N .
D,y = e +e), TW) <tr, D (F") —tr) 4 < Ne, (A23)
=1 :

V(y(1)7 A ’y(N)) e A?
while the set

B = {H([y(l)]tr, ey [y(N)]tr)’(O,[(l—e)n]] : (y(l), R ,y(N)) € A} C E((l—a)nﬂ (A.24)

satisfies
|B'| <exp [n(H(¥g,,)+¢)]. (A.25)

Put
B = {syW, ...,y on: Y,...,y")) e A} c E. (A.26)
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Observe that each 2/ € B’ corresponds to at most
B < " ) < exp [~ n(cloge + (1 — ¢)log(1 — €)) + nelog | E|] (A.27)
en

different x € B, so that
|B| < |B'|exp [ —n(eloge + (1 —¢)log(1 — €)) + nelog |El]. (A.28)
We have

[71—1

mQUq(B x E®) 2 Eq | > Ipxge (0°5(Y))14(Y D, ..., YY)
L k=0

[T1Atr—1
= EQ Z ]lB’XE'OO (eklﬁi([Y]tr)) ]IA(Y(l), ,Y(N))
L k=0 (A.29)
(71 Atr]—1
> Eq Z 15« Eoo (Hk/i([Y]tr)) —emg
L k=0
= m[q),, V(g1 (B’ x E%) —emq,
so that, finally,
m
Uo(B x B®) > —J0 g (B x B®)—e> 1. (A.30)
mq
Combining (A.25), (A.28) and (A.30), we obtain (A.20) with
§=—(cloge + (1 —¢)log(l —¢)) +¢e(1 + log|E). (A.31)

Since lim supy, ., H(¥|q),.) < H(¥q) by upper semi-continuity of H (see e.g. Georgii [7], Proposi-
tion. 15.14), this concludes the proof of (A.15) for ergodic Q.

For general Q € P (EN) we recall the ergodic decomposition formulas stated in (6.1 6.2).
These yields

m[Q’]tr ’
v :/ —== W, Wa(dQ'), A.32
[Q}tr 'Pcfgvﬁn(EN) m[Q]tr [Q }tr Q( ) ( )
and
m[Q’]tr ,
H(W r:/ 19 b (9 o0 ) W (dQ)'), 53
( [Q}t ) 'Pcrg,ﬁn(EN) m[Q]tr ( [Q }t ) Q( ) ( )

because specific relative entropy is affine. The integrand inside (A.33) is non-negative and, by the
meyr
above, converges to m—%H(\I/Q/) as tr — oo. Hence, by Fatou’s lemma,

lim inf H(¥(g),,) > / " H(Wo) Wo(dQ') = H(T), (A.34)
tr—oo Pcrg,ﬁn(EN) mQ
which concludes the proof. O
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