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1 Introdution and main results1.1 Problem settingLet E be a �nite set of letters. Let Ẽ = ∪n∈NEn be the set of �nite words drawn from E. Both E and
Ẽ are Polish spaes under the disrete topology. Let P(EN) and P(ẼN) denote the set of probabilitymeasures on sequenes drawn from E, respetively, Ẽ, equipped with the topology of weak onver-gene. Write θ and θ̃ for the left-shift ating on EN, respetively, ẼN. Write P inv(EN),Perg(EN)and P inv(ẼN),Perg(ẼN) for the set of probability measures that are invariant and ergodi under θ,respetively, θ̃.For ν ∈ P(E), let X = (Xi)i∈N be i.i.d. with law ν. Without loss of generality we will assumethat supp(ν) = E (otherwise we replae E by supp(ν)). For ρ ∈ P(N), let τ = (τi)i∈N be i.i.d. withlaw ρ having in�nite support and satisfying the algebrai tail property

lim
n→∞

ρ(n)>0

log ρ(n)

log n
=: −α, α ∈ (1,∞). (1.1)(No regularity assumption will be neessary for supp(ρ).) Assume that X and τ are independentand write P to denote their joint law. Cut words out of X aording to τ , i.e., put (see Figure 1)

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (1.2)and let
Y (i) :=

(
XTi−1+1,XTi−1+2, . . . ,XTi

)
, i ∈ N. (1.3)Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequene of words with marginal law qρ,ν on Ẽgiven by

qρ,ν

(
(x1, . . . , xn)

)
:= P

(
Y (1) = (x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn),

n ∈ N, x1, . . . , xn ∈ E.
(1.4)
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XFigure 1: Cutting words from a letter sequene aording to a renewal proess.For N ∈ N, let (Y (1), . . . , Y (N))per stand for the periodi extension of (Y (1), . . . , Y (N)) to anelement of ẼN, and de�ne

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN), (1.5)the empirial proess of N -tuples of words. By the ergodi theorem, we have
w− lim

N→∞
RN = q⊗N

ρ,ν P�a.s., (1.6)with w − lim denoting the weak limit. The following large deviation priniple (LDP) is standard(see e.g. Dembo and Zeitouni [5℄, Corollaries 6.5.15 and 6.5.17). For Q ∈ P inv(ẼN) let
H(Q | q⊗N

ρ,ν ) := lim
N→∞

1

N
h
(
Q|FN

| (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (1.7)2



be the spei� relative entropy of Q w.r.t. q⊗N
ρ,ν , where FN = σ(Y (1), . . . , Y (N)) is the sigma-algebragenerated by the �rst N words, Q|FN

is the restrition of Q to FN , and h( · | · ) denotes relativeentropy. (For general properties of entropy, see Walters [13℄, Chapter 4.)Theorem 1.1. [Annealed LDP℄ The family of probability distributions P(RN ∈ · ), N ∈ N,satis�es the LDP on P inv(ẼN) with rate N and with rate funtion Iann : P inv(ẼN) → [0,∞] givenby
Iann(Q) = H(Q | q⊗N

ρ,ν ). (1.8)This rate funtion is lower semi-ontinuous, has ompat level sets, has a unique zero at Q = q⊗N
ρ,ν ,and is a�ne.The LDP for RN arises from the LDP for N -tuples via a projetive limit theorem. The ratiounder the limit in (1.7) is the rate funtion for N -tuples aording to Sanov's theorem (see e.g. denHollander [8℄, Setion II.5), and is non-dereasing in N .1.2 Main theoremsOur aim in the present paper is to derive the LDP for P(RN ∈ · | X), N ∈ N. To state our result,we need some more notation.Let κ : ẼN → EN denote the onatenation map that glues a sequene of words into a sequeneof letters. For Q ∈ P inv(ẼN) suh that

mQ := EQ[τ1] < ∞, (1.9)de�ne ΨQ ∈ P inv(EN) as
ΨQ(·) :=

1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)

]
. (1.10)Think of ΨQ as the shift-invariant version of the onatenation of Y under the law Q obtained afterrandomising the loation of the origin.For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr := ∪tr

n=1E
n denote the word length trunation map de�ned by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E. (1.11)Extend this to a map from ẼN to [Ẽ]Ntr via
[
(y(1), y(2), . . . )

]
tr

:=
(
[y(1)]tr, [y

(2)]tr, . . .
) (1.12)and to a map from P inv(ẼN) to P inv([Ẽ]Ntr) via

[Q]tr(A) := Q({z ∈ ẼN : [z]tr ∈ A}), A ⊂ [Ẽ]Ntr measurable. (1.13)Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set
P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ < ∞}. (1.14)Theorem 1.2. [Quenhed LDP℄ Assume (1.1). Then, for ν⊗N�a.s. all X, the family of (regular)onditional probability distributions P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate

N and with deterministi rate funtion Ique : P inv(ẼN) → [0,∞] given by
Ique(Q) :=





Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise, (1.15)where

Ifin(Q) := H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N). (1.16)3



Theorem 1.3. The rate funtion Ique is lower semi-ontinuous, has ompat level sets, has a uniquezero at Q = q⊗N
ρ,ν , and is a�ne. Moreover, it is equal to the lower semi-ontinuous extension of Ifinfrom P inv,fin(ẼN) to P inv(ẼN).Theorem 1.2 will be proved in Setions 3�5, Theorem 1.3 in Setion 6.A remarkable aspet of (1.16) in relation to (1.8) is that it quanti�es the di�erene between thequenhed and the annealed rate funtion. Note the appearane of the tail exponent α. We have notbeen able to �nd a simple formula for Ique(Q) when mQ = ∞. In Appendix A we will show thatthe trunation map is ontinuous on all of P inv(ẼN), i.e.,

Iann(Q) = lim
tr→∞

Iann([Q]tr), Ique(Q) = lim
tr→∞

Ique([Q]tr), Q ∈ P inv(ẼN). (1.17)Theorem 1.2 is an extension of Birkner [2℄, Theorem 1. In that paper, the quenhed LDP isderived under the assumption that the law ρ satis�es the exponential tail property
∃C < ∞, λ > 0: ρ(n) ≤ Ce−λn ∀n ∈ N (1.18)(whih inludes the ase where supp(ρ) is �nite). The rate funtion governing the LDP is given by

Ique(Q) :=

{
H(Q | q⊗N

ρ,ν ), if Q ∈ Rν ,

∞, if Q /∈ Rν ,
(1.19)where

Rν :=

{
Q ∈ P inv(ẼN) : w−lim

L→∞

1

L

L−1∑

k=0

δθkκ(Y ) = ν⊗N Q − a.s.

}
. (1.20)Think of Rν as the set of those Q's for whih the onatenation of words has the same statistialproperties as the letter sequene X. This set is not losed in the weak topology: its losure is

P inv(ẼN).We an inlude the ases where ρ satis�es (1.1) with α = 1 or α = ∞.Theorem 1.4. (a) If α = 1, then the quenhed LDP holds with Ique = Iann given by (1.8).(b) If α = ∞, then the quenhed LDP holds with rate funtion
Ique(Q) =

{
H(Q | q⊗N

ρ,ν ) if lim
tr→∞

m[Q]trH(Ψ[Q]tr | ν⊗N) = 0,

∞ otherwise. (1.21)Theorem 1.4 will be proved in Setion 7. Part (a) says that the quenhed and the annealed ratefuntion are idential when α = 1. Part (b) says that (1.19) an be viewed as the limiting ase of(1.16) as α → ∞. Indeed, it was shown in Birkner [2℄, Lemma 2, that on P inv,fin(ẼN):
ΨQ = ν⊗N if and only if Q ∈ Rν . (1.22)Hene, (1.21) and (1.19) agree on P inv,fin(ẼN), and the rate funtion (1.21) is the lower semiontin-uous extension of (1.19) to P inv(ẼN). By Birkner [2℄, Lemma 7, the expressions in (1.21) and (1.19)are idential if ρ has exponentially deaying tails. In this sense, Part (b) generalises the result inBirkner [2℄, Theorem 1, to arbitrary ρ with a tail that deays faster than algebrai.Let π1 : ẼN → Ẽ be the projetion onto the �rst word, and let P(Ẽ) be the set of probabilitymeasures on Ẽ. An appliation of the ontration priniple to Theorem 1.2 yields the following.
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Corollary 1.5. Under the assumptions of Theorem 1.2, for ν⊗N�a.s. all X, the family of (regular)onditional probability distributions P(π1RN ∈ · | X), N ∈ N, satis�es the LDP on P(Ẽ) with rate
N and with deterministi rate funtion Ique

1 : P(Ẽ) → [0,∞] given by
Ique
1 (q) := inf

{
Ique(Q) : Q ∈ P inv(ẼN), π1Q = q

}
. (1.23)This rate funtion is lower semi-ontinuous, has ompat levels sets, has a unique zero at q = qρ,ν,and is onvex.Corollary 1.5 shows that the rate funtion in Birkner [1℄, Theorem 6, must be replaed by (1.23).It does not appear possible to evaluate the in�mum in (1.23) expliitly in general. For a q ∈ P(Ẽ)with �nite mean length and Ψq⊗N = ν⊗N, we have Ique

1 (q) = h(q | qρ,ν).By taking projetive limits, it is possible to extend Theorems 1.2�1.3 to more general letterspaes. See, e.g., Deushel and Strook [6℄, Setion 4.4, or Dembo and Zeitouni [5℄, Setion 6.5, forbakground on (spei�) relative entropy in general spaes. The following orollary will be provedin Setion 8.Corollary 1.6. The quenhed LDP also holds when E is a Polish spae, with the same rate funtionas in (1.15�1.16).In the ompanion paper [3℄ the annealed and quenhed LDP are applied to the ollision loaltime of transient random walks, and the existene of an intermediate phase for a lass of interatingstohasti systems is established.1.3 Heuristi explanation of main theoremsTo explain the bakground of Theorem 1.2, we begin by realling a few properties of entropy. Let
H(Q) denote the spei� entropy of Q ∈ P inv(ẼN) de�ned by

H(Q) := lim
N→∞

1

N
h
(
Q|FN

)
∈ [0,∞], (1.24)where h(·) denotes entropy. The sequene under the limit in (1.24) is non-inreasing in N . Sine

q⊗N
ρ,ν is a produt measure, we have the identity (reall (1.2�1.4))

H(Q | q⊗N

ρ,ν ) = −H(Q) − EQ[log qρ,ν(Y1)]

= −H(Q) − EQ[log ρ(τ1)] − mQ EΨQ
[log ν(X1)].

(1.25)Similarly,
H(ΨQ | ν⊗N) = −H(ΨQ) − EΨQ

[log ν(X1)]. (1.26)Below, for a disrete random variable Z with a law Q on a state spae Z we will write Q(Z) forthe random variable f(Z) with f(z) = Q(Z = z), z ∈ Z. Abbreviate
K(N) := κ(Y (1), . . . , Y (N)) and K(∞) := κ(Y ). (1.27)In analogy with (1.14), de�ne

Perg,fin(ẼN) :=
{

Q ∈ Perg(ẼN) : mQ < ∞
}
. (1.28)
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Lemma 1.7. [Birkner [2℄, Lemmas 3 and 4℄Suppose that Q ∈ Perg,fin(ẼN) and H(Q) < ∞. Then, Q-a.s.,
lim

N→∞

1

N
log Q(K(N)) = −mQH(ΨQ),

lim
N→∞

1

N
log Q

(
τ1, . . . , τN | K(N)

)
=: −Hτ |K(Q),

lim
N→∞

1

N
log Q

(
Y (1), . . . , Y (N)

)
= −H(Q),

(1.29)with
mQH(ΨQ) + Hτ |K(Q) = H(Q). (1.30)Equation (1.30), whih follows from (1.29) and the identity

Q(K(N))Q(τ1, . . . , τN | K(N)) = Q(Y (1), . . . , Y (N)), (1.31)identi�es Hτ |K(Q). Think of Hτ |K(Q) as the onditional spei� entropy of word lengths under thelaw Q given the onatenation. Combining (1.25�1.26) and (1.30), we have
H(Q | q⊗N

ρ,ν ) = mQH(ΨQ | ν⊗N) − Hτ |K(Q) − EQ[log ρ(τ1)]. (1.32)The term −Hτ |K(Q) − EQ[log ρ(τ1)] in (1.32) an be interpreted as the onditional spei� relativeentropy of word lengths under the law Q w.r.t. ρ⊗N given the onatenation.Note that mQ < ∞ and H(Q) < ∞ imply that H(ΨQ) < ∞, as an be seen from (1.30). Alsonote that −EΨQ
[log ν(X1)] < ∞ beause E is �nite, and −EQ[log ρ(τ1)] < ∞ beause of (1.1) and

mQ < ∞, implying that (1.25�1.26) are proper.We are now ready to give a heuristi explanation of Theorem 1.2. Let
RN

j1,...,jN
(X), 0 < j1 < · · · < jN < ∞, (1.33)denote the empirial proess of N -tuples of words when X is ut at the points j1, . . . , jN (i.e.,when Ti = ji for i = 1, . . . , N ; see (3.16�3.17) for a preise de�nition). Fix Q ∈ Perg,fin(ẼN).The probability P(RN ≈ Q | X) is a sum over all N -tuples j1, . . . , jN suh that RN

j1,...,jN
(X) ≈ Q,weighted by∏N

i=1 ρ(ji−ji−1) (with j0 = 0). The fat that RN
j1,...,jN

(X) ≈ Q has three onsequenes:(1) The j1, . . . , jN must ut ≈ N substrings out of X of total length ≈ NmQ that look like theonatenation of words that are Q-typial, i.e., that look as if generated by ΨQ (possiblywith gaps in between). This means that most of the ut-points must hit atypial piees of
X. We expet to have to shift X by ≈ exp[NmQH(ΨQ | ν⊗N)] in order to �nd the �rstontiguous substring of length NmQ whose empirial shifts lie in a small neighbourhood of
ΨQ. By (1.1), the probability for the single inrement j1 − j0 to have the size of this shift is
≈ exp[−Nα mQH(ΨQ | ν⊗N)].(2) The ombinatorial fator exp[NHτ |K(Q)] ounts how many �loal perturbations� of j1, . . . , jNpreserve the property that RN

j1,...,jN
(X) ≈ Q.(3) The statistis of the inrements j1−j0, . . . , jN −jN−1 must be lose to the distribution of wordlengths under Q. Hene, the weight fator ∏N

i=1 ρ(ji − ji−1) must be ≈ exp[NEQ[log ρ(τ1)]](at least, for Q-typial piees).
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The ontributions from (1)�(3), together with the identity in (1.32), explain the formula in (1.16)on Perg,fin(ẼN). Considerable work is needed to extend (1)�(3) from Perg,fin(ẼN) to P inv(ẼN). Thisis explained in Setion 3.5.In (1), instead of having a single large inrement preeding a single ontiguous substring oflength NmQ, it is possible to have several large inrements preeding several ontiguous substrings,whih together have length NmQ. The latter gives rise to the same ontribution, and so there issome entropy assoiated with the hoie of the large inrements. Lemma 2.1 in Setion 2.1 is neededto ontrol this entropy, and shows that it is negligible.1.4 OutlineSetion 2 ollets some preparatory fats that are needed for the proofs of the main theorems,inluding a lemma that ontrols the entropy assoiated with the loations of the large inrementsin the renewal proess. In Setion 3 and 4 we prove the large deviation upper, respetively, lowerbound. The proof of the former is long (taking up about half of the paper) and requires a somewhatlengthy onstrution with ombinatorial, funtional analyti and ergodi theoreti ingredients. Inpartiular, extending the lower bound from ergodi to non-ergodi probability measures is tehniallyinvolved. The proofs of Theorems 1.2�1.4 are in Setions 5�7, that of Corollary 1.6 is in Setion 8.Appendix A ontains a proof that the annealed and the quenhed rate funtion are ontinuous underthe trunation of the word length approximation.2 Preparatory fatsSetion 2.1 proves a ore lemma that is needed to ontrol the entropy of large inrements in therenewal proess. Setion 2.2 shows that the tail property of ρ is preserved under onvolutions.2.1 A ore lemmaAs announed at the end of Setion 1.3, we need to aount for the entropy that is assoiated with theloations of the large inrements in the renewal proess. This requires the following ombinatoriallemma.Lemma 2.1. Let ω = (ωl)l∈N be i.i.d. with P(ω1 = 1) = 1 − P(ω1 = 0) = p ∈ (0, 1), and let
α ∈ (1,∞). For N ∈ N, let

SN (ω) :=
∑

0<j1<···<jN <∞
ωj1

=···=ωjN
=1

N∏

i=1

(ji − ji−1)
−α (j0 = 0) (2.1)and put

lim sup
N→∞

1

N
log SN (ω) =: −φ(α, p) ω − a.s. (2.2)(the limit being ω-a.s. onstant by tail triviality). Then

lim
p↓0

φ(α, p)

α log(1/p)
= 1. (2.3)Proof. Let τN := min{l ∈ N : ωl = ωl+1 = · · · = ωl+N−1}. In (2.1), hoosing j1 = τN and

ji = ji−1 + 1 for i = 2, . . . , N , we see that SN (ω) ≥ τ−α
N . Sine

lim
N→∞

1

N
log τN → log(1/p) ω − a.s., (2.4)7



we have
φ(α, p) ≤ α log(1/p) ∀ p ∈ (0, 1). (2.5)To show that this bound is sharp in the limit as p ↓ 0, we estimate frational moments of SN (ω).For any β ∈ (1/α, 1], using that (u + v)β ≤ uβ + vβ, u, v ≥ 0, we get

E

[
SN (ω)β

]
≤

∑

0<j1<···<jN <∞

E

[1{ωj1
=···=ωjN

=1}

N∏

i=1

(ji − ji−1)
−αβ

]

=
∑

0<j1<···<jN <∞

pN
N∏

i=1

(ji − ji−1)
−αβ

=
[
p ζ(αβ)

]N
,

(2.6)
where ζ(s) =

∑
n∈N

n−s, s > 1, is Riemann's ζ-funtion. Hene
E

[ 1

N
log SN (ω)

]
≤

1

Nβ
log E

[
SN (ω)β

]
≤

1

β

[
log p + log ζ(αβ)

]
. (2.7)Letting N → ∞, and using (2.2) together with Fatou's lemma, we obtain that

φ(α, p) ≥
1

β
[log(1/p) − log ζ(αβ)] ∀ β ∈ (1/α, 1]. (2.8)Now let p ↓ 0, followed by β ↓ 1/α to obtain the laim.Remark 2.2. Note that E[SN (ω)] = (pζ(α))N , while typially SN (ω) ≈ pαN . In the above om-putation, this is veri�ed by bounding suitable non-integer moments of SN (ω)/pαN . Estimatingnon-integer moments in situations when the mean is inonlusive is a useful tehnique in a varietyof di�erent probabilisti ontexts. See, e.g., Holley and Liggett [9℄ and Toninelli [12℄. The proof ofLemma 2.1 above is similar to that of Toninelli [12℄, Theorem 2.1.2.2 Convolution preserves polynomial tailThe following lemma will be needed in Setions 3.3 and 3.5. For m ∈ N, let ρ∗m denote the m-foldonvolution of ρ.Lemma 2.3. Suppose that ρ satis�es ρ(n) ≤ Cρ n−α, n ∈ N, for some Cρ < ∞. Then

ρ∗m(n) ≤ (Cρ ∨ 1)mα+1n−α ∀m,n ∈ N. (2.9)Proof. If n ≤ m, then the right-hand side of (2.9) is ≥ 1. So, let us assume that n > m. Then
ρ∗m(n) =

∑

x1,...,xm≥1
x1+···+xm=n

m∏

i=1

ρ(xi) ≤
m∑

j=1

∑

x1,...,xm≥1
x1+···+xm=n
xj=x1∨···∨xm

ρ(xj)

m∏

i6=j

ρ(xi)

≤ m Cρ ⌈n/m⌉−α
∑

x1,...,xm−1≥1

m−1∏

i=1

ρ(xi)

= m Cρ ⌈n/m⌉−α ≤ Cρ mα+1 n−α.

(2.10)
8



3 Upper boundThe following upper bound will be used in Setion 5 to derive the upper bound in the de�nition ofthe LDP.Proposition 3.1. For any Q ∈ P inv,fin(ẼN) and any ε > 0, there is an open neighbourhood O(Q) ⊂
P inv(ẼN) of Q suh that

lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (3.1)We remark that sine |E| < ∞ we automatially have Ifin(Q) ∈ [0,∞) for all Q ∈ P inv,fin(ẼN), sothe right-hand side of (3.1) is �nite.Proof. It su�es to onsider the ase ΨQ 6= ν⊗N. The ase ΨQ = ν⊗N, for whih Ifin(Q) = H(Q |

q⊗N
ρ,ν ) as is seen from (1.16), is ontained in the upper bound in Birkner [2℄, Lemma 8. Alternatively,by lower semiontinuity of Q′ 7→ H(Q′ | q⊗N

ρ,ν ), there is a neighbourhood O(Q) suh that
inf

Q′∈O(Q)
H(Q′ | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − ε = Ifin(Q) − ε, (3.2)where O(Q) denotes the losure of O(Q) (in the weak topology), and we an use the annealedbound.In Setions 3.1�3.5 we �rst prove Proposition 3.1 under the assumption that there exist α ∈
(1,∞), Cρ < ∞ suh that

ρ(n) ≤ Cρ n−α, n ∈ N, (3.3)whih is needed in Lemma 2.3. In Setion 3.6 we show that this an be replaed by (1.1). InSetions 3.1�3.4, we �rst onsider Q ∈ Perg,fin(ẼN) (reall (1.28)). Here, we turn the heuristis fromSetion 1.3 into a rigorous proof. In Setion 3.5 we remove the ergodiity restrition. The proof islong and tehnial (taking up more than half of the paper).3.1 Step 1: Consequenes of ergodiityWe will use the ergodi theorem to onstrut spei� neighborhoods of Q ∈ Perg,fin(ẼN) that arewell adapted to formalize the strategy of proof outlined in our heuristi explanation of the maintheorem in Setion 1.3.Fix ε1, δ1 > 0. By the ergodiity of Q and Lemma 1.7, the event (reall (1.9) and (1.27))
{

1

M
|K(M)| ∈ mQ + [−ε1, ε1]

}

∩

{
−

1

M
log Q(K(M)) ∈ mQH(ΨQ) + [−ε1, ε1]

}

∩

{
−

1

M
log Q(Y (1), . . . , Y (M)) ∈ H(Q) + [−ε1, ε1]

}

∩





1

M

|K(M)|∑

k=1

log ν((K(M))k) ∈ mQEΨQ

[
log ν(X1)

]
+ [−ε1, ε1]





∩

{
1

M

M∑

i=1

log ρ(τi) ∈ EQ

[
log ρ(τ1)

]
+ [−ε1, ε1]

}

(3.4)
9



has Q-probability at least 1−δ1/4 for M large enough (depending on Q), where |K(M)| is the lengthof the string of letters K(M). Hene, there is a �nite number A of sentenes of length M , denotedby
(za)a=1,...,A with za := (y(a,1), . . . , y(a,M)) ∈ ẼM , (3.5)suh that for a = 1, . . . , A,

|κ(za)| ∈
[
M(mQ − ε1),M(mQ + ε1)

]
,

Q(K(M) = κ(za)) ∈
[
exp[−M(mQH(ΨQ) + ε1)], exp[−M(mQH(ΨQ) − ε1)]

]
,

Q
(
(Y (1), . . . , Y (M)) = za

)
∈
[
exp[−M(H(Q) + ε1)], exp[−M(H(Q) − ε1)]

]
,

|κ(za)|∑

k=1

log ν((κ(za))k) ∈
[
M(mQEΨQ

[log ν(X1)] − ε1),M(mQEΨQ
[log ν(X1)] + ε1)

]
,

M∑

i=1

log ρ(|y(a,i)|) ∈
[
M(EQ[log ρ(τ1)] − ε1),M(EQ[log ρ(τ1)] + ε1)

]
,

(3.6)
and

A∑

a=1

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ 1 −

δ1

2
. (3.7)Note that (3.7) and the third line of (3.6) imply that

A ∈
[
(1 − δ1) exp

[
M(H(Q) − ε1)

]
, exp

[
M(H(Q) + ε1)

]]
. (3.8)Abbreviate

A := {za, a = 1, . . . , A}. (3.9)Let
B :=

{
ζ(b), b = 1, . . . , B

}
=
{
κ(za), a = 1, . . . , A

} (3.10)be the set of strings of letters arising from onatenations of the individual za's, and let
Ib :=

{
1 ≤ a ≤ A : κ(za) = ζ(b)

}
, b = 1, . . . , B, (3.11)so that |Ib| is the number of sentenes in A giving a partiular string in B. By the seond line of(3.6), we an bound B as

B ≤ exp
[
M(mQH(ΨQ) + ε1)

]
, (3.12)beause ∑B

b=1 Q(K(M) = ζ(b)) ≤ 1 and eah summand is at least exp[−M(mQH(ΨQ) + ε1)].Furthermore, we have
|Ib| ≤ exp

[
M(Hτ |K(Q) + 2ε1)

]
, b = 1, . . . , B, (3.13)sine

exp
[
− M(mQH(ΨQ) − ε1)

]
≥ Q

(
κ(Y (1), . . . , Y (M)) = ζ(b)

)

≥
∑

a∈Ib

Q
(
(Y (1), . . . , Y (M)) = za

)
≥ |Ib| exp

[
− M(H(Q) + ε1)

]
,(3.14)and H(Q) − mQH(ΨQ) = Hτ |K(Q) by (1.32). 10



3.2 Step 2: Good sentenes in open neighbourhoodsDe�ne the following open neighbourhood of Q (reall (3.9))
O :=

{
Q′ ∈ P inv(ẼN) : Q′

|FM
(A ) > 1 − δ1

}
. (3.15)Here, Q(z) is shorthand for Q((Y (1), . . . , Y (M)) = z). For x ∈ EN and for a vetor of ut-points

(j1, . . . , jN ) ∈ N
N with 0 < j1 < · · · < jN < ∞ and N > M , let

ξN := (ξ(i))i=1,...,N =
(
x|(0,j1], x|(j1,j2], . . . , x|(jN−1,jN ]

)
∈ ẼN (3.16)(with (0, j1] short-hand notation for (0, j1] ∩ N, et.) be the sequene of words obtained by utting

x at the positions ji, and let
RN

j1,...,jN
(x) :=

1

N

N−1∑

i=0

δ
θ̃i(ξN )per (3.17)be the orresponding empirial proess. By (3.15),

RN
j1,...,jN

(x) ∈ O =⇒

#
{

1 ≤ i ≤ N − M :
(
x|(ji−1,ji], . . . , x|(ji+M−1,ji+M ]

)
∈ A

}
≥ N(1 − δ1) − M.

(3.18)Note that (3.18) implies that the sentene ξN ontains at least
C := ⌊(1 − δ1)N/M⌋ − 1 (3.19)disjoint subsentenes from the set A , i.e., there are 1 ≤ i1, . . . , iC ≤ N −M with ic − ic−1 ≥ M for

c = 1, . . . , C suh that (
ξ(ic), ξ(ic+1), . . . , ξ(ic+M−1)

)
∈ A (3.20)(we impliitly assume that N is large enough so that C > 1). Indeed, we an e.g. onstrut the ic'siteratively as

i0 = −M,

ic = min
{

k ≥ ic−1 + M : a sentene from A starts at position k in ξN

}
,

c = 1, . . . , C,

(3.21)and we an ontinue the iteration as long as cM + δ1N ≤ N . But (3.20) in turn implies that the
jic 's ut out of x at least C disjoint subwords from B, i.e.,

x|(jic ,jic+M ] ∈ B, c = 1, . . . , C. (3.22)3.3 Step 3: Estimate of the large deviation probabilityUsing Steps 1 and 2, we estimate (reall (3.15))
P
(
RN ∈ O | X

)
=

∑

0<j1<···<jN <∞

1O (RN
j1,...,jN

(X)
) N∏

i=1

ρ(ji − ji−1) (3.23)from above as follows. Fix a vetor of ut-points (j1, . . . , jN ) giving rise to a non-zero ontributionin the right-hand side of (3.23). We think of this vetor as desribing a partiular way of utting Xinto a sentene of N words. By (3.22), at least C (reall 3.19) of the jc's must be ut-points where11



PSfrag replaements �lling subsentenes
good subsentenesmedium ≈ ΨQ

X

Figure 2: Looking for good subsentenes and �lling subsentenes (see below (3.25)).a word from B is written on X, and these C subwords must be disjoint. As words in B arise fromonatenations of sentenes from A , this means we an �nd
ℓ1 < · · · < ℓC , {ℓ1, . . . , ℓC} ⊂ {0, j1, . . . , jN} and ζ1, . . . , ζC ∈ A (3.24)suh that

X|(ℓc,ℓc+|κ(ζc)|] = κ(ζc) =: η(c) ∈ B and ℓc ≥ ℓc−1 + |κ(ζc−1)|, c = 1, . . . , C − 1. (3.25)We all ζ1, . . . , ζC the good subsentenes.Note that one we �x the ℓc's and the ζc's, this determines C + 1 �lling subsentenes (some ofwhih may be empty) onsisting of the words between the good subsentenes. See Figure 2 for anillustration. In partiular, this determines numbers m1, . . . ,mC+1 ∈ N suh that m1 + · · ·+mC+1 =
N − CM , where mc is the number of words we ut between the (c − 1)-st and the c-th goodsubsentene (and mC+1 is the number of words after the C-th good subsentene).Next, let us �x good ℓ1 < · · · < ℓC and η(1), . . . , η(C) ∈ B, satisfying

X|(ℓc,ℓc+|η(c)|] = η(c), ℓc ≥ ℓc−1 + |η(c−1)|, c = 1, . . . , C. (3.26)To estimate how many di�erent hoies of (j1, . . . , jN ) may lead to this partiular ((ℓc), (η
(c))), weproeed as follows. There are at most

(
2Mε1

)C
exp

[
M
(
Hτ |K(Q) + 2ε1

)]C
≤ exp

[
N
(
Hτ |K(Q) + δ2

)] (3.27)possible hoies for the word lengths inside these good subsentenes. Indeed, by the �rst line of(3.6), at most 2Mε1 di�erent elements of B an start at any given position ℓc and, by (3.13), eahof them an be ut in at most exp
[
M(Hτ |K(Q) + 2ε1)

] di�erent ways to obtain an element of A .In (3.27), δ2 = δ2(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small.Furthermore, there are at most
(

N − C(M − 1)

C

)
≤ exp[δ3N ] (3.28)possible hoies of the mc's, where δ3 = δ3(δ1,M) an be made arbitrarily small by hoosing Mlarge and δ1 small.Next, we estimate the value of ∏N

i=1 ρ(ji − ji−1) for any (j1, . . . , jN ) leading to the given
((ℓc), (η

(c))). In view of the �fth line of (3.6), we have
N∏

i=1

ρ(ji − ji−1)
1{the i-th word falls inside the C good subsentenes}

≤ exp
[
CM

(
EQ[log ρ(τ1)] + ε1

)]

≤ exp
[
N
(
EQ[log ρ(τ1)] + δ4

)]
,

(3.29)12



where δ4 = δ4(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small. The�lling subsentenes have to exatly �ll up the gaps between the good subsentenes and so, for a givenhoie of (ℓc), (η(c)) and (mc), the ontribution to ∏N
i=1 ρ(ji − ji−1) from the �lling subsentenes is∏C

c=1 ρ∗mc(ℓc − ℓc−1 − |η(c−1)|) (the term for c = 1 is to be interpreted as ρ∗m1(ℓ1), and ρ∗0 as δ0).By Lemma 2.3,
C∏

c=1

ρ∗mc
(
ℓc − ℓc−1 − |η(c−1)|

)

≤ (Cρ ∨ 1)C

(
C∏

c=1

mα+1
c

)
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ (Cρ ∨ 1)C
(N − CM

C

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α

≤ exp[Nδ5]
C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
,

(3.30)
where δ5 = δ(δ1,M) an be made arbitrarily small by hoosing M large and δ1 small. For theseond inequality, we have used the fat that the produt ∏C

c=1 mα+1
c is maximal when all fatorsare equal.Combining (3.23�3.30), we obtain

P
(
RN ∈ O | X

)
≤ exp

[
N
(
Hτ |K(Q) + EQ[log ρ(τ1)] + δ2 + δ3 + δ4 + δ5

)]

×
∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
.

(3.31)Combining (3.31) with Lemma 3.2 below, and realling the identity in (1.32), we obtain the resultin Proposition 3.1 for ρ satisfying (3.3), with O de�ned in (3.15) and ε = δ2 + δ3 + δ4 + δ5 + δ6.Note that ε an be made arbitrarily small by hoosing ε1, δ1 small and M large.3.4 Step 4: Cost of �nding good sentenesLemma 3.2. For ε1, δ1 > 0 and M ∈ N,
lim sup
N→∞

1

N
log




∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α




≤ −α mQH(ΨQ | ν⊗N) + δ6 a.s., (3.32)where δ6 = δ(ε1, δ1,M) an be made arbitrarily small by hoosing M large and ε1, δ1 small.Proof. Note that, by the fourth line of (3.6), for any η ∈ B (reall (3.10)) and k ∈ N,
P
(
η starts at position k in X

)
≤ exp

[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
. (3.33)Combining this with (3.12), we get

P
(some element of B starts at position k in X

)

≤ exp
[
M
(
mQEΨQ

[log ν(X1)] + ε1

)]
× exp

[
M
(
mQH(ΨQ) + ε1

)]

= exp
[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
,

(3.34)13



where we use (1.26).Next, we oarse-grain the sequene X into bloks of length
L := ⌊M(mQ − ε1)⌋, (3.35)and ompare the oarse-grained sequene with a low-density Bernoulli sequene. To this end, de�nea {0, 1}-valued sequene (Al)l∈N indutively as follows. Put A0 := 0, and, for l ∈ N given that

A0, A1, . . . , Al−1 have been assigned values, de�ne Al by distinguishing the following two ases:(1) If Al−1 = 0, then
Al :=





1, if in X there is a word η ∈ B starting in ((l − 1)L, lL],
0, otherwise. (3.36)(2) If Al−1 = 1, then

Al :=





1,
if in X there are words η, η′ ∈ B starting in ((l − 2)L, (l − 1)L],respetively, ((l − 1)L, lL] and ourring disjointly,

0, otherwise. (3.37)Put
p := L exp

[
− M

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
. (3.38)Then we laim

P(A1 = a1, . . . , An = an) ≤ pa1+···+an , n ∈ N, a1, . . . , an ∈ {0, 1}. (3.39)In order to verify (3.39), �x a1, . . . , an ∈ {0, 1} with a1 + · · · + an = m. By onstrution, for theevent in the left-hand side of (3.39) to our there must be m non-overlapping elements of B atertain positions in X. By (3.34), the ourrene of any m �xed starting positions has probabilityat most
exp

[
− mM

(
mQH(ΨQ | ν⊗N) − 2ε1

)]
, (3.40)while the hoie of the al's ditates that there are at most Lm possibilities for the starting pointsof the m words.By (3.39), we an ouple the sequene (Al)l∈N with an i.i.d. Bernoulli(p)-sequene (ωl)l∈N suhthat

Al ≤ ωl ∀ l ∈ N a.s. (3.41)(Note that (3.39) guarantees the existene of suh a oupling for any �xed n. In order to extendthis existene to the in�nite sequene, observe that the set of funtions depending on �nitely manyoordinates is dense in the set of ontinuous inreasing funtions on {0, 1}N, and use the results inStrassen [11℄.)Eah admissible hoie of ℓ1, . . . , ℓC in (3.32) leads to a C-tuple i1 < · · · < iC suh that
Ai1 = · · · = AiC = 1 (sine it uts out non-overlapping words, whih is ompatible with (3.36�3.37)), and for any suh (i1, . . . , iC) there are at most LC di�erent admissible hoies of the ℓc's.Thus, we have

∑

(ℓc), (η(c)) good C∏

c=1

(
(ℓc − ℓc−1 − |η(c−1)|) ∨ 1

)−α
≤ LCL−α

∑

0<i1<···<iC<∞
Ai1

=···=AiC
=1

C∏

c=1

(ic − ic−1)
−α. (3.42)14



Using (3.3) and (3.19), and realling the de�nition of φ(α, p) in (2.2), we have
lim sup
N→∞

1

N
log [ r.h.s. (3.42) ] ≤

1 − δ1

M

(
log
(
MmQ

)
− log Cρ − φ(α, p)

)
ω − a.s. (3.43)From (3.38) we know that log(1/p) ∼ M(mQH(ΨQ | ν⊗N)−2ε1) as M → ∞ and so, by Lemma 2.1,we have r.h.s. (3.43) ≤ −(1 − ε2)α

(
mQH(ΨQ | ν⊗N) − 2ε1

) (3.44)for any ε2 ∈ (0, 1), provided M is large enough. This ompletes the proof of Lemma 3.2, and heneof Proposition 3.1 for Q ∈ Perg,fin(ẼN).3.5 Step 5: Removing the assumption of ergodiitySetions 3.1�3.4 ontain the main ideas behind the proof of Proposition 3.1. In the present setionwe extend the bound from Perg,fin(ẼN) to P inv,fin(ẼN). This requires setting up a variant of theargument in Setions 3.1�3.4 in whih the ergodi omponents of Q are �approximated with aommon length sale on the letter level�. This turns out to be tehnially involved and to fall apartinto 6 substeps.Let Q ∈ P inv,fin(ẼN) have a non-trivial ergodi deomposition
Q =

∫

Perg( eEN)
Q′ WQ(dQ′), (3.45)where WQ is a probability measure on Perg(ẼN) (Georgii [7℄, Proposition 7.22). We may assumew.l.o.g. that H(Q | q⊗N

ρ,ν ) < ∞, otherwise we an simply employ the annealed bound. Thus, WQ isin fat supported on Perg,fin(ẼN) ∩ {Q′ : H(Q′ | q⊗N
ρ,ν ) < ∞}.Fix ε > 0. In the following steps, we will onstrut an open neighbourhood O(Q) ⊂ P inv(ẼN) of

Q satisfying (3.1) (for tehnial reasons with ε replaed by some ε′ = ε′(ε) that beomes arbitrarilysmall as ε ↓ 0).3.5.1 PreliminariesObserving that
mQ =

∫

Perg( eEN)
mQ′ WQ(dQ′) < ∞, H(Q|q⊗N

ρ,ν ) =

∫

Perg( eEN)
H(Q′|q⊗N

ρ,ν )WQ(dQ′) < ∞, (3.46)we an �nd K0,K1,m
∗ > 0 and a ompat set

C ⊂ P inv(ẼN) ∩ supp(WQ) ∩ {Q : H(·|q⊗N

ρ,ν ) ≤ K0} (3.47)suh that
sup{H(ΨP | ν⊗N) : P ∈ C } ≤ K1, (3.48)
sup{mP : P ∈ C } ≤ m∗, (3.49)the family {LP (τ1) : P ∈ C } is uniformly integrable, (3.50)
WQ(C ) ≥ 1 − ε/2, (3.51)∫

C

H(Q′|q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q|q⊗N

ρ,ν ) − ε/2, (3.52)
∫

C

mQ′H(ΨQ′ |ν⊗N)WQ(dQ′) ≥ mQH(ΨQ|ν
⊗N) − ε/2. (3.53)15



In order to hek (3.50), observe that EQ[τ1] < ∞ implies that there is a sequene (cn) with
limn→∞ cn = ∞ suh that

EQ

[
τ11{τ1≥cn}

]
≤

6

π2n3

ε

6
, n ∈ N. (3.54)Put

Ân := {Q′ ∈ P inv(ẼN) : EQ′

[
τ11{τ1≥cn}

]
> 1/n} (3.55)and A := ∩n∈N(Ân)c. Eah Ân is open, hene A is losed, and by the Markov inequality we have

WQ

({
Q′ : EQ′

[
τ11{τ1≥cn}

]
> 1/n

})
≤ nEQ

[
τ11{τ1≥cn}

]
≤

6

π2n2

ε

6
. (3.56)Thus,

WQ(Ac) = WQ

(
∪n∈N(Ân)c

)
≤

ε

6

∑

n∈N

6

π2n2
=

ε

6
. (3.57)This implies that the mapping

Q′ 7→ mQ′H(ΨQ′ |ν⊗N) is lower semiontinuous on C . (3.58)Indeed, if w − limn→∞ Q′
n = Q′′ and (Q′

n) ⊂ C , then limn→∞ EQ′
n
[τ1] = limn→∞ mQ′

n
= mQ′′ =

EQ′′ [τ1] and w − limn→∞ ΨQ′
n

= ΨQ′′ by uniform integrability (see Birkner [2℄, Remark 7).Furthermore, we an �nd N0, L0 ∈ N with L0 ≤ N0 and a �nite set W̃ ⊂ ẼN0 suh that thefollowing holds. Let
W :=

{
πL0(θ

iκ(ζ)) : ζ = (ζ(1), . . . , ζ(N0)) ∈ W̃ , 0 ≤ i < |ζ(1)|
} (3.59)be the set of words of length L0 obtained by onatenating sentenes from W̃ , possibly shiftingthe �origin� inside the �rst word and restriting to the �rst L0 letters. Then for all P ∈ D ⊂

P inv,fin(ẼN) ∩ C that satisfy
∑

ζ∈fW

P (ζ) ≥ 1 −
ε

3c⌈3/ε⌉
, (3.60)

1

N0

∑

ζ∈fW

P (ζ) log
P (ζ)

q⊗N0
ρ,ν (ζ)

≥ H(P | q⊗N

ρ,ν ) − ε/2, (3.61)
1

L0

∑

w∈W

ΨP (w) log
ΨP (w)

ν⊗L0(w)
≥ H(ΨP | ν⊗N) − ε/2, (3.62)the following inequalities hold:

WQ(D) ≥ 1 − 3ε/4, (3.63)∫

D

H(P | q⊗N

ρ,ν )WQ(dP ) ≥ H(Q | q⊗N

ρ,ν ) − 3ε/4, (3.64)
∫

D

mP H(ΨP |ν
⊗N)WQ(dP ) ≥ mQH(ΨQ | ν⊗N) − 3ε/4. (3.65)We may hoose the set W̃ in suh a way that

δfW
:= min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃} ∧
min{ν⊗L0(ξ) : ξ ∈ W}

max{|ζ(1)| : ζ ∈ W̃}
> 0. (3.66)16



3.5.2 Approximating with a given length sale on the letter levelFor δ > 0 and L ∈ N, we say that P ∈ P inv,fin(ẼN) an be (δ, L)-approximated if there exists a �nitesubset AP ⊂ Ẽ⌈L/mP ⌉ of �P -typial� sentenes, eah onsisting of ≈ L/mP words, suh that
P|F⌈L/mP ⌉

(AP ) > 1 −
δ

2
δfW

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

})(3.67)and, for all z = (y(1), . . . , y(⌈L/mP ⌉)) ∈ AP ,
P (z) ∈

[
exp

[
− ⌈L/mP ⌉(H(Q) + δ)

]
, exp

[
− ⌈L/mP ⌉(H(Q) − δ)

]]
,

|κ(z)| ∈ [L(1 − δ), L(1 + δ)],

P
(
K(⌈L/mP ⌉) = z

)
∈
[
exp

[
− L(H(ΨQ) + δ)

]
, exp[−L(H(ΨQ) − δ)

]]
,

|κ(z)|∑

k=1

log ν(κ(z)k) ∈ [L(1 − δ), L(1 + δ)] EΨP

[
log ν(X1)

]
,

⌈L/mP ⌉∑

i=1

log ρ(|y(i)|) ∈ [(L/mP )(1 − δ), (L/mP )(1 + δ)] EP

[
log ρ(τ1)

]
,

|{z′ ∈ AP : κ(z) = κ(z′)}| ≤ exp
[
(L/mP )(Hτ |K(P ) + δ)

]
.

(3.68)
By the third and the �fth line of (3.68) we have, using (1.26),

P
(
X starts with some element of κ(AP )

)
≤ exp

[
− L(1 − 2δ)H

(
ΨQ | ν⊗N

)]
. (3.69)For P that an be (δ, L)-approximated, de�ne an open neighbourhood of P via

U(δ,L)(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈ (1 − δ, 1 + δ) ∀ z ∈ AP

}
, (3.70)where AP = AP (δ, L) is the set from (3.67�3.68). By the results of Setion 3.1 and the above, forgiven P ∈ Perg,fin(ẼN) ∩ C and δ0 > 0 there exist δ′ ∈ (0, δ0) and L0 suh that

∀L′ ≥ L0 : P an be (δ′, L′)-approximated. (3.71)Assume that a given P ∈ D an be (δ, L)-approximated for some L suh that ⌈L/mP ⌉ ≥ N0.We laim that then for any P ′ ∈ D ∩ U(δ,L)(P ),
∀ ζ ∈ W̃ : P ′(ζ) ≤

{
(1 + 2δ)P (ζ) if P (ζ) > 0,

min{q⊗N0
ρ,ν (ζ ′) : ζ ′ ∈ W̃} otherwise, (3.72)

∀ ξ ∈ W : mP ′ΨP ′(ξ) ≤

{
(1 + 2δ)mP ΨP (ξ) if ΨP (ξ) > 0,

min{ν⊗L0(ξ′) : ξ′ ∈ W} otherwise, (3.73)
mP ′ ≥ (1 − 3δ)mP . (3.74)To verify (3.72), note that, for ζ ∈ W̃ ,

P ′(ζ) ≤
∑

z∈AP : πN0
(z)=ζ

P ′(z) +
∑

z∈ eE⌈L/mP ⌉\AP : πN0
(z)=ζ

P ′(z)

≤ (1 + δ)
∑

z∈AP :πN0
(z)=ζ

P (z) + P ′
(
Ẽ⌈L/mP ⌉ \ AP

)

≤ (1 + δ)
[
P (ζ) +

δ

2

(
min

{
P (ζ) : ζ ∈ W̃ , P (ζ) > 0

}
∧ min{q⊗N0

ρ,ν (ζ) : ζ ∈ W̃}
)]

.17



To verify (3.73), observe that, for ξ ∈ W (reall the de�nition of ΨP ′ from (1.10)),
mP ′ΨP ′(ξ) =

∑

ζ∈fW

P ′(ζ)

|ζ(1)|−1∑

i=0

1{ξ}(πL0(θ
iκ(ζ))

)

≤ (1 + δ)mP ΨP (ξ) +
∑

ζ∈fW : P (ζ)=0

|ζ(1)|P ′(ζ)

(3.75)and that the sum in the seond line above is bounded by
max
η∈fW

|η(1)|P ′
(
ẼN0 \ AP

)
≤ (1 + δ)

δ

2

(
min

{
ΨP (ξ) : ξ ∈ W,ΨP (ξ) > 0

}
∧ min{ν⊗L0(ξ′) : ξ′ ∈ W}

)
.(3.76)Lastly, to verify (3.74), note that

P ′(ζ) ≥ (1 − 2δ)P (ζ) ∀ ζ ∈ W̃ (3.77)(whih an be proved in the same way as (3.72)), so that
mP ′ =

∑

y∈ eE

|y|P ′(y) ≥
∑

ζ∈fW

|ζ(1)|P ′(ζ) ≥ (1 − 2δ)
∑

ζ∈fW

|ζ(1)|P (ζ). (3.78)Furthermore,
mP ≤

∑

ζ∈fW

|ζ(1)|P (ζ) + c⌈3/δ⌉P
(
ẼN0 \ Ẽ

)
+

∑

y eE : |y|>c⌈3/δ⌉

|y|P (y). (3.79)Observing that the seond and the third term on the right-hand side are eah at most δ/3, we �ndthat (3.78�3.79) imply (3.74).Finally, observe that (3.72�3.74) imply that, for any P,P ′ ∈ D suh that P an be (δ, L)-approximated for some L with ⌈L/mP ⌉ ≥ N0 and P ′ ∈ U(δ,L)(P ),
H(P ′ | q⊗N

ρ,ν ) ≤ H(P | q⊗N

ρ,ν ) + 2K0δ + ε/2, (3.80)
mP ′H(ΨP ′ | ν⊗N) ≤ mP H(ΨP | ν⊗N) + 2K1δ + ε/2. (3.81)Here, (3.80) follows from the observation

H(P ′ | q⊗N

ρ,ν ) −
ε

2

≤
1

N0

∑

ζ∈fW

P ′(ζ) log
P ′(ζ)

q⊗N0
ρ,ν (ζ)

≤
1 + 2δ

N0

∑

ζ∈fW

P (ζ) log
(1 + 2δ)P (ζ)

q⊗N0
ρ,ν (ζ)

+
1

N0

∑

ζ∈fW :P (ζ)=0

P ′(ζ) log
min{q⊗N0

ρ,ν (ζ ′) : ζ ′ ∈ W̃}

q⊗N0
ρ,ν (ζ)

≤ (1 + 2δ)H(P | q⊗N

ρ,ν ) +
1 + 2δ

N0
log(1 + 2δ).

(3.82)
Similarly, observing that
mP ′

∑

ξ∈W

ΨP ′(ξ) log
mP ′ΨP ′(ξ)

mP ′ν⊗L0(ξ)

≤ (1 + 2δ)mP

∑

ξ∈W

ΨP (ξ) log
(1 + 2δ)mP ΨP (ξ)

(1 − 3δ)mP ν⊗L0(ξ)
+ mP ′

∑

ξ∈W : ΨP (ξ)=0

ΨP ′(ξ) log
min{ν⊗L0(ξ′) : ξ′ ∈ W}

ν⊗L0(ξ)

≤ (1 + 2δ)L0mP H(ΨP | ν⊗N) + (1 + 2δ)m∗ log(1 + 6δ), (3.83)18



we obtain (3.81) in view of (3.62).3.5.3 Approximating the ergodi deompositionIn the previous subsetion, we have approximated a given P ∈ Perg,fin, i.e., we have onstruteda ertain neighbourhood of P w.r.t. the weak topology, whih requires only onditions on thefrequenies of sentenes whose onatenations are ≈ L letters long. While the required L will ingeneral vary with P , we now want to onstrut a ompat C ′ ⊂ C suh that WQ(C ′) is still loseto 1 and all P ∈ C ′ an be approximated on the same sale L (on the letter level). To this end, let
Dε′,L′ :=

{
P ∈ D : P an be (ε′, L′)-approximated}. (3.84)By (3.71), we have ⋃

ε′∈(0,ε/2)

L′∈N

Dε′,L′ = Perg,fin(ẼN) ∩ C , (3.85)so, in view of (3.51�3.53), we an hoose
0 < ε1 <

ε

8(1 ∨ K0 ∨ K1)
(3.86)and L ∈ N suh that

WQ(Dε1,L) ≥ 1 − ε, (3.87)∫

Dε1,L

H(Q′ | q⊗N

ρ,ν )WQ(dQ′) ≥ H(Q | q⊗N

ρ,ν ) − ε, (3.88)
∫

Dε1,L

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′) ≥ mQH(ΨQ | ν⊗N) − ε. (3.89)For P ∈ Dε1,L, let
U ′(P ) :=

{
P ′ ∈ P inv(ẼN) :

P ′(z)

P (z)
∈
(
1 −

ε1

2
, 1 +

ε1

2

)
∀ z ∈ AP

}
, (3.90)where AP is the set from (3.67�3.68) that appears in the de�nition of U(ε1,L)(P ). Note that

U ′(P ) ⊂ U(ε1,L)(P ). Indeed, infP∈Dε1,L
dist(U ′(P ),U(ε1,L)(P )c) > 0 if we metrize the weak topology.Consequently,

C
′ := C ∩ ∪P∈Dε1,L

U ′(P )
(
⊃ Dε1,L

) (3.91)is ompat and satis�es WQ(C ′) ≥ 1 − ε, and
C

′ ⊂
⋃

P∈Dε1,L

U(ε1,L)(P ) (3.92)is an open over. By ompatness there exist R ∈ N and (pairwise di�erent) Q1, . . . , QR ∈
Perg,fin(ẼN) ∩ C suh that

U(ε1,L)(Q1) ∪ · · · ∪ U(ε1,L)(QR) ⊃ C
′, (3.93)where U(ε1,L)(Qr) is of the type (3.70) with a set Ar ⊂ ẼMr satisfying (3.67�3.68) with P replaedby Qr, and Mr = ⌈L/mQr⌉.For z ∈ ∪n∈NẼn onsider the probability measure on [0, 1] given by µQ,z(B) := WQ({Q′ ∈

Perg,fin(ẼN) : Q′(z) ∈ B}), B ⊂ [0, 1] measurable. Observing that
R⋃

r=1

⋃

z∈Ar

{
u ∈ [0, 1] : u is an atom of µQ,z

} (3.94)19



is at most ountable, we an �nd ε2 ∈ [ε1, ε1 + ε2
1) (note that still ε2 < ε) and δ̃ > 0 suh that

WQ

({
Q′ ∈ Perg,fin(ẼN) :

Q′(z)/Qr(z) ∈ [1 − ε2 − δ̃, 1 − ε2 + δ̃] ∪ [1 + ε2 − δ̃, 1 + ε2 + δ̃]for some r ∈ {1, . . . , R} and z ∈ Ar

})

≤
ε

1 ∨ K0 ∨ m∗K1
. (3.95)De�ne �disjointi�ed� versions of the U(ε,L)(Qr) as follows. For r = 1, . . . , R, put iteratively

Ũr :=

{
Q′ ∈ P inv(ẼN) :

Q′(z) ∈ Qr(z)(1 − ε2, 1 + ε) for all z ∈ Ar and for eah r′ < r thereis z′ ∈ Ar′ suh that Q′(z′) 6∈ Qr′(z
′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.96)It may happen that some of the Ũr are empty or satisfy WQ(Ũr) = 0. We then (silently) removethese and re-number the remaining ones. Note that eah Ũr is an open subset of P inv(ẼN) and

WQ

(
∪R

r=1 Ũr

)
=

R∑

r=1

WQ(Ũr) ≥ 1 − 2ε, (3.97)sine WQ

(
C ′ \ ∪R

r=1Ũr

)
≤ ε.For r = 1, . . . , R, we have, using (3.80�3.81) and the hoie of ε2 (≤ 2ε1),

WQ(Ũr ∩ D)
(
H(Qr | q⊗N

ρ,ν ) + ε
)

≥

∫

eUr∩D

H(Q′ | q⊗N

ρ,ν )WQ(dQ′), (3.98)
WQ(Ũr ∩ D)

(
mQrH(ΨQr | ν⊗N) + ε

)
≥

∫

eUr∩D

mQ′H(ΨQ′ | ν⊗N)WQ(dQ′), (3.99)so that altogether
R∑

r=1

WQ(Ũr)
{

H(Qr | q⊗N

ρ,ν ) + (α − 1)mQrH(ΨQr | ν⊗N)
}

≥ H(Q | q⊗N

ρ,ν ) + (α − 1)mQH(ΨQ | ν⊗N) − (3 + 3α)ε.

(3.100)3.5.4 More layers: long sentenes with the right pattern frequeniesFor z ∈ ∪n∈NẼn and ξ = (ξ(1), . . . , ξ(fM)) ∈ ẼM (with M > |z|), let
freqz(ξ) =

1

M

∣∣{1 ≤ i ≤ M − |z| : (ξ(i), . . . , ξ(i+|z|−1)) = z}
∣∣ (3.101)be the empirial frequeny of z in ξ. Note that, for any P ∈ Perg,fin(ẼN), z ∈ ∪n∈NẼn and ε > 0,we have

lim
M→∞

P
({

ξ ∈ ẼM : freqz(ξ) ∈ P (z)(1 − ε, 1 + ε)
})

= 1 (3.102)and
lim

M→∞
P
({

ξ ∈ ẼM : |κ(ξ)| ∈ M(mP − ε,mP + ε)
})

= 1. (3.103)For M̃ ∈ N and r ∈ {1, . . . , R}, put
V

r,fM
:=

{
ξ ∈ Ẽ

fM :

|κ(ξ)| ∈ M̃(mQr − ε,mQr + ε), freqz(ξ) ∈ Qr(z)(1 − ε2, 1 + ε2) for all z ∈ Ar, and for eah
r′ < r there is a z′ ∈ Ar′ suh that freqz′(ξ) 6∈ Qr′(z

′)[1 − ε2 − δ̃, 1 + ε2 + δ̃]

}
.(3.104)20



Note that when |E| < ∞, also |V
r,fM

| < ∞. Furthermore, V
r,fM

∩ V
r′,fM

= ∅ for r 6= r′. For ξ ∈ V
r,fM

,we have
∣∣∣
{

1 ≤ i ≤ M̃ − Mr + 1:
(
ξ(i), ξ(i+1), . . . , ξ(i+Mr−1)

)
∈ Ar

}∣∣∣ ≥ M̃(1 − 2ε), (3.105)in partiular, there are at least Kr := ⌊M̃(1 − 3ε)/Mr⌋ elements z1, . . . , zKr ∈ Ar (not neessarilydistint) appearing in this order as disjoint subwords of ξ. The zk's an for example be onstrutedin a �greedy� way, parsing ξ from left to right as in Setion 3.2 (see, in partiular, (3.21)). Thisimplies, in partiular, that
fM∏

i=1

ρ(|ξ(i)|) ≤
Kr∏

k=1

∏

w in zk

ρ(|w|) ≤
(

exp
[
(1 − ε)M̃rEQr [log ρ(τ1)]

])Kr

≤ exp
[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]
(3.106)if M̃ is large enough. Furthermore, for eah r ∈ {1, . . . , R} and η ∈ V

r,fM
, we have

∣∣{ζ ∈ V
r,fM

: κ(ζ) = κ(η)
}∣∣ ≤ exp

[
M̃(Hτ |K(Qr) + δ1)

]
, (3.107)where δ1 an be made arbitrarily small by hoosing ε small. (Note that the quantity on the left-handside is the number of ways in whih κ(η) an be �re-ut� to obtain another element of V

r,fM
.) Inorder to hek (3.107), we note that any ζ ∈ V

r,fM
must ontain at least Kr disjoint subsentenesfrom Ar, and eah z ∈ Ar ⊂ ẼMr satis�es |κ(z)| ≥ L. Hene there are at most

(
M̃(mQr + ε) − Kr(L − 1)

Kr

)
≤ 24εfMmQr ≤ 24εm∗ fM (3.108)hoies for the positions in the letter sequene κ(η) where the onatenations of the disjoint sub-sentenes from Ar an begin, and there are at most

(
M̃ − Kr(Mr − 1)

Kr

)
≤ 23εfM (3.109)hoies for the positions in the word sequene ζ where the subsentenes from Ar an begin.By onstrution (reall the last line of (3.68)), eah z ∈ Ar an be �re-ut� in not more than

exp[(L/mQr)(Hτ |K(Qr) + ε)] many ways. Combining these observations with the fat that
(

exp
[
(L/mQr)(Hτ |K(Qr) + ε)

])Kr

≤ exp
[ M̃

Mr
Mr(Hτ |K(Qr) + ε)

]
, (3.110)we get (3.107) with δ1 := ε + 3ε log 2 + 4εm∗ log 2.We see from (3.102�3.103) and the de�nitions of Ũr and V

r,fM
that, for any ε > 0

⋃

fM∈N

{
P ∈ Ũr : P (V

r,fM
) > 1 − ε

}
= Ũr. (3.111)Hene we an hoose M̃ so large that

WQ

({
P ∈ Ũr : P (V

r,fM
) > 1 −

ε

3

})
> WQ(Ũr)

(
1 −

ε

2

)
, r = 1, . . . , R. (3.112)21



For M ′ > M̃ and r = 1, . . . , R, put
Wr,M ′ :=

{
ζ ∈ ẼM ′

: freqV
r, fM

(ζ) > 1 − ε/2
}
. (3.113)Note that for r 6= r′ (beause V

r,fM
∩ V

r′,fM
= ∅) there annot be muh overlap between ζ ∈ Wr,M ′and η ∈ Wr′,M ′ :

max{k : k-su�x of ζ = k-pre�x of η} ≤ εM ′ (3.114)(here, the k-pre�x of η ∈ Ẽn, k < n, onsists of the �rst k words, the k-su�x of the last k words).To see this, note that any subsequene of length k of ζ must ontain at least (k−εM ′/2)+ positionswhere a sentene from V
r,fM

starts, and any subsequene of length k of η must ontain at least
(k − εM ′/2)+ positions where a sentene from V

r′,fM
starts, so any k appearing in (3.114) mustsatisfy 2(k − εM ′/2)+ ≤ k, whih enfores k ≤ εM ′. Now, (3.114) implies that we may hoose M ′so large that for r = 1, . . . , R,eah ζ ∈ Wr,M ′ ontains at least (1 − ε)

M ′

M̃
disjoint subsentenes from V

r,fM
. (3.115)For P ∈ Perg,fin(ẼN) with P (V

r,fM
) > 1 − ε/3 we have

lim
M ′→∞

P (Wr,M ′) = 1, (3.116)and hene
⋃

M ′>fM

{
P ∈ Ũr : P (Wr,M ′) > 1 − ε

}
⊃
{

P ∈ Ũr : P (V
r,fM

) > 1 − ε/3
}

, (3.117)and so we an hoose M ′ so large that
WQ

({
P ∈ Ũr : P (Wr,M ′) > 1 − ε

})
> WQ(Ũr)(1 − ε), r = 1, . . . , R. (3.118)Now de�ne

O(Q) :=
{
Q′ ∈ P inv(ẼN) : Q′(Wr,M ′) > WQ(Ũr)(1 − 2ε), r = 1, . . . , R

}
. (3.119)Note that O(Q) is open in the weak topology on P inv(ẼN), sine it is de�ned in terms of requirementson ertain �nite marginals of Q′, and that for r = 1, . . . , R,

Q(Wr,M ′) =

∫

Perg( eEN)
Q′(Wr,M ′)WQ(dQ′) ≥

∫

eUr

Q′(Wr,M ′)WQ(dQ′) ≥
(
1 − ε

)2
WQ(Ũr) (3.120)by (3.118), so that in fat Q ∈ O(Q).3.5.5 Estimating the large deviation probability: good loops and �lling loopsConsider a hoie of �ut-points� j1 < · · · < jN as appearing in the sum in (3.23). Note that, bythe de�nition of O(Q) (reall (3.16�3.17)),

RN
j1,...,jN

(X) ∈ O(Q) (3.121)enfores
∣∣{1 ≤ i ≤ N−M ′ : (X|(ji−1,ji], . . . ,X|(ji+M′−1,ji+M′ ]) ∈ Wr,M ′

}∣∣ ≥ NWQ(Ũr)(1−3ε), r = 1, . . . , R,(3.122)22



when N is large enough. This fat, together with (3.114), enables us to pik at least
J :=

R∑

r=1

⌈(1 − 4ε)N/M ′⌉WQ(Ũr) (3.123)subsentenes ζ1, . . . , ζJ ourring as disjoint subsentenes in this order on ξN suh that
∣∣{1 ≤ j ≤ J : ζj ∈ Wr,M ′

}∣∣ > (1 − 4ε)WQ(Ũr)
N

M ′
, r = 1, . . . , R, (3.124)where we note that J ≥ (1− 8ε)(N/M ′) by (3.97). Indeed, we an for example onstrut these ζj'siteratively in a �greedy� way, parsing through ξN from left to right and always piking the next pos-sible subsentene from one of the R types whose ount does not yet exeed (1−4ε)WQ(Ũr) (N/M ′),as follows. Let ks,r be total number of subsentenes of type r we have hosen after the s-th step(k0,1 = · · · = k0,R = 0). If in the s-th step we have piked ζs = (ξ
(p)
N , . . . , ξ

(p+M ′−1)
N ) at position p,then let

p′ := min
{
i ≥ p + M ′ : at position i in ξN starts a sentene from Wu,M ′ for some u ∈ Us

}
,(3.125)where Us := {r : kr,s < (1 − 4ε)WQ(Ũr) (N/M ′)}, pik the next subsentene ζs+1 starting atposition p′ (say, of type u) and inrease the orresponding ks+1,u. Repeat this until ks,r ≥

(1 − 4ε)WQ(Ũr) (N/M ′) for r = 1, . . . , R.In order to verify that this algorithm does not get stuk, let rem(s, r) be the �remaining� numberof positions (to the right of the position where the word was piked in the s-th step) where asubsentene from Wr,M ′ begins on ξN . By (3.122), we have
rem(0, r) ≥ NWQ(Ũr)(1 − 3ε). (3.126)If in the s-th step a subsentene of type r is piked, then we have rem(s + 1, r) ≥ rem(s, r) − M ′,and for r′ 6= r we have rem(s + 1, r′) ≥ rem(s, r′) − εM ′ by (3.114). Thus,

rem(s, r) ≥ rem(0, r) − ks,rM
′ − (s − ks,r)εM

′

= rem(0, r) − ks,r(1 − ε)M ′ − sεM ′,
(3.127)whih is > 0 as long as ks,r < (1 − 4ε)WQ(Ũr) (N/M ′) and s < J .A. Combinatorial onsequenes. By (3.115) and (3.124), RN

j1,...,jN
(X) ∈ O(Q) implies that ξNontains at least

C :=

R∑

r=1

⌈
(1 − 4ε)WQ(Ũr)

N

M ′

⌉⌈
(1 − ε)

M ′

M̃

⌉ (
≥ (1 − 10ε)

N

M̃

) (3.128)disjoint subsentenes η1, . . . , ηC (appearing in this order in ξN ) suh that at least
N

M̃
(1 − 6ε)WQ(Ũr) of the ηc's are from V

r,fM
, r = 1, . . . , R. (3.129)Let k1, . . . , kC (kc+1 ≥ kc + M̃ , 1 ≤ c < C) be the indies where the disjoint subsentenes ηc startin ξN , i.e.,

ηc =
(
ξ
(jkc)
N , ξ

(jkc+1)
N , . . . , ξ

(j
kc+ fM−1

)

N

)
∈ V

rc,fM
, i = c, . . . , C, (3.130)and the rc's must respet the frequenies ditated by the WQ(Ũr)'s as in (3.129). Thus, eah hoie

(j1, . . . , jN ) yielding a non-zero summand in (3.23) leads to a triple
(ℓ1, . . . , ℓC), (r1, . . . , rC), (η1, . . . , ηC) (3.131)23



suh that ηc ∈ κ(V
rc,fM

), ℓc+1 ≥ ℓc + |ηc|, the rc's respet the frequenies as in (3.129), andthe word ηc starts at position ℓc in X for c = 1, . . . , C. (3.132)As in Setion 3.3, we all suh triples good, the loops inside the subsentenes ηi good loops, theothers �lling loops.Fix a good triple for the moment. In order to ount how many hoies of j1 < · · · < jN an leadto this partiular triple and to estimate their ontribution, observe the following:1. There are at most (
N − C(M̃ − 1)

C

)
≤ exp(δ′1N) (3.133)hoies for the k1 < · · · < kC , where δ′1 an be made arbitrarily small by hoosing ε small and

M̃ large.2. One the kc's are �xed, by (3.107) and (3.129) there are at most
R∏

r=1

(
exp

[
M̃(Hτ |K(Qr) + δ1)

]) N
fM

WQ( eUr)

= exp
[
N

R∑

r=1

WQ(Ũr)(Hτ |K(Qr) + δ1)
] (3.134)hoies for the good loops and, by (3.106), for eah hoie of the good loops the produt ofthe ρ(jk − jk−1)'s inside the good loops is at most

R∏

r=1

(
exp

[
(1 − 4ε)M̃EQr [log ρ(τ1)]

]) N
fM

WQ( eUr)

= exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)EQr [log ρ(τ1)]
]
.

(3.135)3. For eah hoie of the kc's, the ontribution of the �lling loops to the weight is
ρ∗(k1−1)(ℓ1 − 1)

C−1∏

c=1

ρ∗(kc+1−kc−fM)(ℓc+1 − ℓc − |ηc|)

≤ (Cρ ∨ 1)Ckα+1
1

C−1∏

c=1

(kc+1 − kc − M̃)α+1
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ (Cρ ∨ 1)C
(N − CM̃

C

)(α+1)C
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α

≤ eδ′2N
C∏

c=1

(
(ℓc − ℓc−1 − |ηc−1|) ∨ 1

)−α
, (3.136)where δ′2 an be made arbitrarily small by hoosing ε small and M̃ large (and we interpret

ℓ0 = 0, |η0| = 0). Here, we have used Lemma 2.3 in the �rst inequality, as well as the fatthat the produt ∏C−1
c=1 (kc+1 − kc − M̃) is maximal when all fators are equal in the seondinequality. 24



Combining (3.133�3.136), we see that
P
(
RN ∈ O(Q)

∣∣X
)

≤ e(δ′1+δ′2+δ1)N exp
[
N(1 − 4ε)

R∑

r=1

WQ(Ũr)
(
Hτ |K(Qr) + EQr [log ρ(τ1)]

)]

×
∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α
.

(3.137)
We laim that X-a.s.

lim sup
N→∞

1

N
log

∑

(ℓi),(ri),(ηi)good C∏

i=1

(
(ℓi − ℓi−1 − |ηi−1|) ∨ 1

)−α

≤ δ2 − α(1 − 4ε)

R∑

r=1

WQ(Ũr)mQrH
(
ΨQr | ν⊗N

)
,

(3.138)where δ2 an be made arbitrarily small by hoosing ε small and L large. A proof of this is given below.Observe next that (3.137�3.138) (reall also (1.32)) yield that X-a.s. (with δ := δ′1 + δ′2 + δ1 + δ2)
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q)

∣∣X
)

≤ δ − (1 − 4ε)

R∑

r=1

WQ(Ũr)
(
H
(
Qr | qρ, ν⊗N

)
+ αmQrH

(
ΨQr | ν⊗N

))

≤ δ + (1 − 4ε)ε(2 + 2α) − (1 − 4ε)

∫

Perg( eEN )
H
(
Q′ | q⊗N

ρ,ν

)
+ (α − 1)mQ′H

(
ΨQ′ | ν⊗N

)
WQ(dQ′)

= −(1 − 4ε)Ifin(Q) + δ + (1 − 4ε)ε(2 + 2α) (3.139)(use (3.100) for the seond inequality, and see (6.3) for the last equality), whih ompletes the proof.B. Coarse-graining X with R olours. It remains to verify (3.138), for whih we employa oarse-graining sheme similar to the one used in Setion 3.4 (with blok lengths ⌈(1 − ε2)L⌉,et.) To ease notation, we silently replae L by (1 − ε2)L in the following. Split X into bloksof L onseutive letters, de�ne a {0, 1}-valued array Ai,r, i ∈ N, r ∈ {1, . . . , R} as in Setion 3.4indutively: For eah r, put A0,r := 0 and, given that A0,r, A1,r, . . . , Al−1,r have been assignedvalues, de�ne Al as follows:(1) If Al−1,r = 0, then
Al,r :=

{
1, if in X there is a word from κ(Ar) starting in ((l − 1)L, lL],
0, otherwise. (3.140)(2) If Al−1,r = 1, then

Al :=





1, if in X there are two words from κ(Ar) starting in ((l−2)L, (l−1)L],respetively, ((l − 1)L, lL] and ourring disjointly,
0, otherwise. (3.141)25



Put
pr := L exp

(
− (1 − ε)LH(ΨQr | ν⊗N)

)
. (3.142)Arguing as in Setion 3.4, we an ouple the (Ai,r)i∈N,1≤r≤R with an array ω = (ωi,r)i∈N,1≤r≤R suhthat Ai,r ≤ ωi,r and the sequene ((ωi,1, . . . , ωi,R)

)
i∈N

is i.i.d. with P(ωi,r = 1) = pr. In partiular,for eah r, (ωi,r)i∈N is a Bernoulli(pr)-sequene. There may (and ertainly will be if ΨQr and ΨQr′are similar) an arbitrary dependene between the ωi,1, . . . , ωi,R for �xed i, but this will be harmlessin the low-density limit we are interested in.For r ∈ {1, . . . , R}, put dr := WQ(Ũr)(1 − 6ε), Dr := ⌈(1 − ε)M̃mQr/L⌉. If ηc ∈ V
rc,fM

, then
|κ(ηc)| ∈ M̃mQrc

(1 − ε, 1 + ε), (3.143)so κ(ηc) overs at least Drc onseutive L-bloks of the oarse-graining. Furthermore, as ηc in turnontains at least Drc(1− ε) disjoint subsentenes from Arc , we see that at least Drc(1− ε) of thesebloks must have Ak,rc = 1. Thus, for �xed X, we read o� from eah good triple (ℓc), (rc), (ηc)numbers m1 < · · · < mC suh that
mc+1 ≥ mc + Drc , c = 1, . . . , C − 1,∣∣{mc ≤ k < mc + Drc : Ak,rc = 1}

∣∣ ≥ Drc(1 − ε), c = 1, . . . , C,∣∣{1 ≤ c ≤ C : rc = r}
∣∣ ≥ drC, r = 1, . . . , R.

(3.144)where mc is the number of the L-blok that ontains ℓc. Furthermore, note that for a given �oarse-graining� (mc) and (rc) satisfying (3.144), there are at most
LC
(
2εM̃ max

r=1,...,R
mQr

)C
≤ exp(δ3N) (3.145)hoies for ℓc and ηc that lead to a good triple (ℓc), (rc), (ηc) with this partiular oarse-graining.Indeed, for eah c = 1, . . . , C there are at most L hoies for ℓc and, sine eah η ∈ V

rc,fM
satis�es

|κ(η)| ∈ M̃mQrc
(1 − ε, 1 + ε), (3.146)there are at most 2εM̃mQrc

hoies for ηc (note that one ℓc is �xed as a �starting point� for a wordon X, hoosing ηc in fat amounts to hoosing an �endpoint�). Note that δ3 an be made arbitrarilysmall by hoosing ε small and M̃ large. Finally, (3.145) and Lemma 3.3 yield (3.138). Indeed, sine
lim sup
N→∞

C

N
≤

1

M̃
,

R∑

r=1

drDr log pr ≤ −(1 − 8ε)

R∑

r=1

WQ(Ũr)
M̃mQr

L

(
LH(ΨQr | ν⊗N) − log L

)
,by hoosing ε small, L and M̃ large, and γ su�iently lose to 1/α, the right-hand side of (3.150)is smaller than the right-hand side of (3.138).3.5.6 A multiolour version of the ore lemmaThe following is an extension of Lemma 2.1. Let R ∈ N, ωi = (ωi,1, . . . , ωi,R) ∈ {0, 1}R, and assumethat (ωi)i∈N is i.i.d. with

P(ωi,r = 1) = pr, i ∈ N, r = 1, . . . , R. (3.147)Note that there may be an arbitrary dependene between the ωi,r's for �xed i. This will be harmlessin the limit we are interested in below. 26



Lemma 3.3. Let α ∈ (1,∞), ε > 0, (d1, . . . , dR) ∈ [0, 1]R with ∑R
r=1 dr ≤ 1, D1, . . . ,DR ∈ N,

C ∈ N, put
SC(ω) :=

∑∗

m1,...,mC
r1,...,rC

C∏

i=1

(
mi − mi−1 − Dri−1

)−α
, (3.148)where the sum ∑∗ extends over all pairs of C-tuples m0 := 0 < m1 < · · · < mC from N

C and
(r1, . . . , rC) ∈ {1, . . . , R}C satisfying the onstraints

mi+1 ≥ mi + Dri ,

|{1 ≤ i ≤ C : ri = r}| ≥ drC, r = 1, . . . , R,

|{mi ≤ k < mi + Dri : ωk,ri
= 1}| ≥ Dri(1 − ε), i = 1, . . . , C.

(3.149)Then ω-a.s.
lim sup
C→∞

1

C
log SC(ω)

≤ inf
γ∈(1/a,1)

{1

γ

(
log ζ(aγ) + h(d) + d0 log R +

(
log 2

) R∑

r=1

drDr + (1 − ε)
R∑

r=1

drDr log pr

)}
,(3.150)where h(d) := −

∑R
r=0 dr log dr (with d0 := 1 − d1 − · · · − dR) is the entropy of d, and φ(ε) is afuntion suh that limε↓0 φ(ε) = 0.Proof. The proof is a variation on the proof of Lemma 2.1. We again estimate frational moments.For γ ∈ (1/α, 1), we have

E
[
(SC)γ

]

≤
∑′

r1,...,rC

∑

m1,...,mC
mi+1≥mi+Dri ∀ i

P

(
∩C

i=1

{
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

})

×
C∏

i=1

(mi − mi−1 − Dri−1)
−αγ , (3.151)where the sum∑′ extends over all (r1, . . . , rC) satisfying the onstraint in the seond line of (3.149).Noting that

P

(
|{k ∈ [mi,mi + Dri − 1] : ωk,ri

= 1}| ≥ (1 − ε)Dri

)
=

Dri∑

m=(1−ε)Dri

(
Dri

k

)
pm

r (1 − pr)
Dri−m

≤ p
(1−ε)Dri
r 2Driand

∣∣{(r1, . . . , rC) ∈ {1, . . . , R}C : at least drC of the ri = r, r = 1, . . . , R
}∣∣

≤ Rd0C

(
C

d0C d1C . . . dRC

)
= exp

[
C
(
d0 log R + h(d) + o(1)

)]
,

27



we see from (3.151) that
E
[
(SC)γ

]
≤ exp

[
C
(
d0 log R + h(d) + o(1)

)]
×

R∏

r=1

(
2p(1−ε)

r

)drCDr

×
∑

m1,...,mC
mi+1≥mi+Dri ∀ i

C∏

i=1

(mi − mi−1 − Dri−1)
−αγ

= exp C
[
d0 log R + h(d) + log ζ(aγ) +

∑R
r=1 drDr log 2 + (1 − ε)

∑R
r=1 drDrpr

]
,(3.152)whih yields (3.150) as in the proof of Lemma 2.1.3.6 Step 6: Weakening the tail assumptionWe �nally show how to go from (3.3) to (1.1). Suppose that ρ satis�es (1.1) with a ertain α ∈ (1,∞).Then, for any α′ ∈ (1, α), there is a Cρ(α

′) suh that (3.3) holds for this α′. Hene, as shown inSetions 3.1�3.4, for any ε > 0 we an �nd a neighbourhood O(Q) ⊂ P inv,fin(ẼN) of Q suh that
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQ H(ΨQ | ν⊗N) +
ε

2
X − a.s.(3.153)The right-hand side is ≤ −Ifin(Q) + ε for α′ su�iently lose to α, so that we again get (3.1).4 Lower boundThe following lower bound will be used in Setion 5 to derive the lower bound in the de�nition ofthe LDP.Proposition 4.1. For any Q ∈ P inv,fin(ẼN) and any open neighbourhood U(Q) ⊂ P inv(ẼN) of Q,

lim inf
N→∞

1

N
log P

(
RN ∈ U(Q) | X

)
≥ −Ifin(Q) X − a.s. (4.1)Proof. Suppose �rst that Q ∈ Perg,fin(ẼN). Then, informally, our strategy runs as follows. In X,look for the �rst string of length ≈ NmQ that looks typial for ΨQ. Make the �rst jump longenough so as to land at the start of this string. Make the remaining N −1 jumps typial for Q. Theprobability of this strategy on the exponential sale is the onditional spei� relative entropy ofword lengths under Q w.r.t. ρ⊗N given the onatenation, i.e., ≈ exp[−N(Hτ |K(Q)+EQ[log ρ(τ1)])],times the probability of the �rst long jump. In order to �nd a suitable string, we have to skip aheadin X a distane ≈ exp[NmQH(ΨQ | ν⊗N)]. By (1.1), the probability of the �rst jump is therefore

≈ exp[−NαmQH(ΨQ | ν⊗N)]. In view of (1.16) and (1.32), this yields the laim. In the atualproof, it turns out to be tehnially simpler to employ a slightly di�erent strategy, whih has thesame asymptoti ost, where we look not only for one ontiguous piee of �ΨQ-typial� letters butfor a sequene of ⌈N/M⌉ piees, eah of length ≈ MmQ. Then we let N → ∞, followed by M → ∞.More formally, we hoose for O(Q) an open neighborhood O′ ⊂ O of the type introdued inSetion 3.2, and we estimate P(RN ∈ O′ | X) from below by using (3.17�3.20).Assume �rst that Q is ergodi. We an then assume that the neighbourhood U is given by
U =

{
Q′ ∈ P inv(ẼN) : (πLuQ′)(ζu) ∈ (au, bu), u = 1, . . . , U

} (4.2)28



for some U ∈ N, L1, . . . , LU ∈ N, 0 ≤ au < bu ≤ 1 and ζu ∈ ẼLu , u = 1, . . . , U . As in Setion 3.1, byergodiity of Q we an �nd for eah ε > 0 a su�iently large M ∈ N and a set A = {z1, . . . , zA} ⊂
ẼM of �Q-typial sentenes� satisfying (3.6�3.7) (with ε1 = δ1 = ε, say), and additionally

1

M

∣∣{0 ≤ j ≤ M − Li : πLu(θ̃jza) = ζu}
∣∣ ∈ (ai, bi), a = 1, . . . , A, u = 1, . . . , U. (4.3)Let B := κ(A ). Then from (3.6�3.7) we have that, for eah b ∈ B,

|Ib| = |{z ∈ A : κ(z) = b}| ≥ exp
[
M(Hτ |K(Q) − 2ε)

]
, (4.4)and

P(X begins with some element of B) ≥ exp
[
− MmQ(H(ΨQ | ν⊗N) + 2ε)

]
. (4.5)Let

σ
(M)
1 := min{i : θiX begins with some element of B},

σ
(M)
l := min{i > τl−1 + M(mQ + ε) : σiX begins with some element of B}, l = 2, 3, . . . .

(4.6)Restriting the sum in (3.23) over 0 < j1 < · · · < jN < ∞ suh that j1 = σ
(M)
1 , j2−j1, . . . , jM−jM−1are the word lengths orresponding to the za's ompatible with πMmQ

(θτ1X), jM+1 = σ
(M)
2 , et.,we see that

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

N

⌊N/M⌋∑

l=1

log
(
σ

(M)
l − σ

(M)
l−1

) (4.7)for N su�iently large. Hene X-a.s.
lim inf
N→∞

1

N
log P(RN ∈ U | X) ≥ Hτ |K(Q) + EQ[log ρ(τ1)] − 3ε − α

1

M
E[log σ

(M)
1 ]

≥ Hτ |K(Q) + EQ[log ρ(τ1)] − αmQ(H(ΨQ | ν⊗N) − 6ε

= −Ifin(Q) − 6ε,

(4.8)where we have used (4.5) in the seond inequality. Now let ε ↓ 0.It remains to remove the restrition of ergodiity of Q, analogously to the proof of Birkner [2℄,Proposition 2. To that end, assume that Q ∈ P inv,fin(ẼN) admits a non-trivial ergodi deomposi-tion. Then, for eah ε > 0, we an �nd Q1, . . . , QR ∈ Perg,fin(ẼN), λ1, . . . , λR ∈ (0, 1), ∑R
r=1 λr = 1suh that λ1Q1 + · · · + λRQR ∈ U and

R∑

i=1

λrI
fin(Qr) ≤ Ifin(Q) + ε (4.9)(for details see Birkner [2℄, p. 723; employ the fat that both terms in Ifin are a�ne). For eah

r = 1, . . . , R, pik a small neighbourhood Ur of Qr suh that
Q′

r ∈ Ur, r = 1, . . . , R =⇒
R∑

i=1

λrQ
′
r ∈ U . (4.10)Using the above strategy for Q1 for λ1N loops, then the strategy for Q2 for λ2N loops, et., we seethat

lim inf
N→∞

1

N
P(RN ∈ U | X) ≥ −

R∑

i=1

λrI
fin(Qr) − 6ε ≥ −Ifin(Q) − 7ε. (4.11)29



5 Proof of Theorem 1.2Proof. The proof omes in 3 steps. We �rst prove that, for eah word length trunation level tr ∈ N,the family P([RN ]tr ∈ · | X), N ∈ N, X-a.s. satis�es an LDP on
P inv

tr (ẼN) =
{
Q ∈ P inv(ẼN) : Q(|Y (1)| ≤ tr) = 1

} (5.1)(reall (1.11�1.13)) with a deterministi rate funtion Ifin([Q]tr) (this is essentially the ontent ofPropositions 4.1 and 3.1). Note that [Q]tr = Q for Q ∈ P inv
tr (ẼN), and that P inv

tr (ẼN) is a losedsubset of P inv(ẼN), in partiular, a Polish spae under the relative topology (whih is again theweak topology). After we have given the proof for �xed tr, we let tr → ∞ and use a projetive limitargument to omplete the proof of Theorem 1.2.1. Fix a trunation level tr ∈ N. Propositions 4.1 and 3.1 ombine to yield the LDP on P inv
tr (ẼN)in the following standard manner. Note that any Q ∈ P inv

tr (ẼN) satis�es mQ < ∞.1a. Let O ⊂ P inv
tr (ẼN) be open. Then, for any Q ∈ O, there is an open neighbourhood O(Q) ⊂

P inv
tr (ẼN) of Q suh that O(Q) ⊂ O. The latter inlusion, together with Proposition 4.1, yields

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ −Ifin(Q) X − a.s. (5.2)Optimising over Q ∈ O, we get

lim inf
N→∞

1

N
log P

(
[RN ]tr ∈ O | X

)
≥ − inf

Q∈O
Ifin(Q) X − a.s. (5.3)Here, note that, sine P inv

tr (ẼN) is Polish, it su�es to optimise over a ountable set generating theweak topology, allowing us to transfer the X-a.s. limit from points to sets (see, e.g., Comets [4℄,Setion III).1b. Let K ⊂ P inv
tr (ẼN) be ompat. Then there exist M ∈ N, Q1, . . . , QM ∈ K and open neighbour-hoods O(Q1), . . . ,O(QM ) ⊂ P inv

tr (ẼN) suh that K ⊂ ∪M
m=1O(Qm). The latter inlusion, togetherwith Proposition 3.1, yields

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

1≤m≤M
Ifin(Qm) + ε X − a.s. ∀ ε > 0. (5.4)Extending the in�mum to Q ∈ K and letting ε ↓ 0 afterwards, we obtain

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ K | X

)
≤ − inf

Q∈K
Ifin(Q) X − a.s. (5.5)1. Let C ⊂ P inv

tr (ẼN) be losed. Beause Q 7→ H(Q | q⊗N
ρ,ν ) has ompat level sets, for any M < ∞the set KM = C ∩ {Q ∈ P inv

tr (ẼN) : H(Q | q⊗N
ρ,ν ) ≤ M} is ompat. Hene, doing annealing on Xand using (5.5), we get

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ max

{
−M,− inf

Q∈KM

Ifin(Q)

}
X − a.s. (5.6)Extending the in�mum to Q ∈ C and letting M → ∞ afterwards, we arrive at

lim sup
N→∞

1

N
log P

(
[RN ]tr ∈ C | X

)
≤ − inf

Q∈C
Ifin(Q) X − a.s. (5.7)Equations (5.3) and (5.7) omplete the proof of the onditional LDP for [RN ]tr.30



2. It remains to remove the trunation of word lengths. We know from Step 1 that, for every
tr ∈ N, the family P([RN ]tr ∈ · | X), N ∈ N, satis�es the LDP on P inv([Ẽ]Ntr) with rate funtion
Ifin. Consequently, by the Dawson-Gärtner projetive limit theorem (see Dembo and Zeitouni [5℄,Theorem 4.6.1), the family P(RN ∈ · | X), N ∈ N, satis�es the LDP on P inv(ẼN) with rate funtion

Ique(Q) = sup
tr∈N

Ifin([Q]tr), Q ∈ P inv(ẼN). (5.8)The sup may be replaed by a lim sup beause the trunation may start at any level. For Q ∈
P inv,fin(ẼN), we have limtr→∞ Ifin([Q]tr) = Ifin(Q) by Lemma A.1, and so we get the laim if we anshow that lim sup an be replaed by a limit, whih is done in Step 3. Note that Ique inherits from
Ifin the properties qualifying it to be a rate funtion: this is part of the projetive limit theorem.For Ifin these properties are proved in Setion 6.3. Sine Ique is lower semi-ontinuous, it is equal to its lower semi-ontinuous regularisation

Ĩque(Q) := sup
O(Q)

inf
Q′∈O(Q)

Ique(Q′), (5.9)where the supremum runs over the open neighborhoods of Q. For eah tr ∈ N, [Q]tr ∈ P inv,fin(ẼN),while w − limtr→∞[Q]tr = Q. So, in partiular,
Ique(Q) = Ĩque(Q) ≤ sup

n
inf
tr≥n

Ifin([Q]tr) = lim inf
tr→∞

Ifin([Q]tr), (5.10)implying that in fat
Ique(Q) = lim

tr→∞
Ifin([Q]tr), Q ∈ P inv(ẼN). (5.11)Lemma A.1 in Appendix A, together with (5.11), shows that Ique(Q) = Ifin(Q) for Q ∈

P inv,fin(ẼN), as laimed in the �rst line of (1.15).6 Proof of Theorem 1.3Proof. The proof omes in 5 steps.1. Every Q ∈ P inv(ẼN) an be deomposed as
Q =

∫

Perg( eEN)
Q′ WQ(dQ′) (6.1)for some unique probability measure WQ on Perg(ẼN) (Georgii [7℄, Proposition 7.22). If Q ∈

P inv,fin(ẼN), then WQ is onentrated on Perg,fin(ẼN) and so, by (1.9�1.10),
mQ =

∫

Perg,fin( eEN)
mQ′ WQ(dQ′), ΨQ =

∫

Perg,fin( eEN)

mQ′

mQ
ΨQ′ WQ(dQ′). (6.2)Sine Q 7→ H(Q | q⊗N

ρ,ν ) and Ψ 7→ H(Ψ | ν⊗N) are a�ne (see e.g. Deushel and Strook [6℄,Example 4.4.41), it follows from (1.16) and (6.1�6.2) that
Ifin(Q) =

∫

Perg,fin( eEN)
Ifin(Q′)WQ(dQ′). (6.3)Sine Q 7→ WQ is a�ne, (6.3) shows that Ifin is a�ne on P inv,fin(ẼN).31



2. Let (Qn)n∈N ⊂ P inv,fin(ẼN) be suh that w−limn→∞ Qn = Q ∈ P inv,fin(ẼN). By Proposition 3.1,for any ε > 0 we an �nd an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q suh that
lim sup
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≤ −Ifin(Q) + ε X − a.s. (6.4)On the other hand, for n large enough so that Qn ∈ O(Q), we have from Proposition 4.1 that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Ifin(Qn) X − a.s. (6.5)Combining (6.4�6.5), we get that, for any ε > 0,

lim inf
n→∞

Ifin(Qn) ≥ Ifin(Q) − ε. (6.6)Now let ε ↓ 0, to onlude that Ifin is lower semiontinuous on P inv,fin(ẼN) (reall also (5.11)).3. From (1.16) we have
Ifin(Q) ≥ H(Q | q⊗N

ρ,ν ) ∀Q ∈ P inv,fin(ẼN) (6.7)Sine {Q ∈ P inv(ẼN) : H(Q | q⊗N
ρ,ν ) ≤ C} is ompat for all C < ∞ (see, e.g., Dembo andZeitouni [5℄, Corollary 6.5.15), it follows that Ifin has ompat level sets on P inv,fin(ẼN).4. As mentioned at the end of Setion 5, Ique inherits from Ifin that it is lower semiontinuousand has ompat level sets. In partiular, Ique is the lower semiontinuous extension of Ifin from

P inv,fin(ẼN) to P inv(ẼN). Moreover, sine Ifin is a�ne on P inv,fin(ẼN) and Ique arises as the trun-ation limit of Ifin (reall (5.10)), it follows that Ique is a�ne on P inv(ẼN).5. It is immediate from (1.15�1.16) that q⊗N
ρ,ν is the unique zero of Ique.7 Proof of Theorem 1.4Proof. The extension is an easy generalisation of the proof given in Setions 3�4.(a) Assume that ρ satis�es (1.1) with α = 1. Sine the LDP upper bound holds by the annealedLDP (ompare (1.8) and (1.16)), it su�es to prove the LDP lower bound. To ahieve this, we �rstshow that for any Q ∈ P inv,fin(ẼN) and ε > 0 there exists an open neighbourhood O(Q) ⊂ P inv(ẼN)of Q suh that

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)
≥ −Iann(Q) − ε X�a.s. (7.1)After that, the extension from P inv,fin(ẼN) to P inv(ẼN) follows the argument in Setion 5.In order to verify (7.1), observe that, by our assumption on ρ(·), for any α′ > 1 there exists a

Cα′ > 0 suh that
ρ(n)

nα′ ≥ Cα′ ∀n ∈ supp(ρ). (7.2)Piking α′ so lose to 1 that (α′ − 1)mQH(ΨQ|ν
⊗N) < ε/2, we an trae through the proof ofProposition 4.1 in Setion 4 to onstrut an open neighbourhood O(Q) ⊂ P inv(ẼN) of Q satisfying

lim inf
N→∞

1

N
log P

(
RN ∈ O(Q) | X

)

≥ −H(Q | q⊗N

ρ,ν ) − (α′ − 1)mQH(ΨQ | ν⊗N) − ε/2 ≥ −Iann(Q) − ε X − a.s.,
(7.3)32



whih is (7.1).(b) We only give a sketh of the argument. Assume α = ∞ in (1.1). For Q ∈ P inv,fin(ẼN), thelower bound (whih is non-zero only when Q ∈ Rν) follows from Birkner [2℄, Proposition 2, oran alternatively be obtained from the argument in Setion 4. Now onsider a Q ∈ P inv(ẼN) with
mQ = ∞, H(Q | q⊗N

ρ,ν ) < ∞ and limtr→∞ m[Q]trH(Ψ[Q]tr | ν⊗N) = 0, let O(Q) ⊂ P inv(ẼN) be anopen neighbourhood of Q. For simpliity, we assume supp(ρ) = N. Fix ε > 0. We an �nd asequene δN ↓ 0 suh that
max

{
−

1

N
log ρ(n) : n ≤ ⌈NδN⌉

}
≤ ε. (7.4)Furthermore,

1

N
h
(
Q|FN

| q⊗N
ρ,ν

)
≥ H(Q | q⊗N

ρ,ν ) − ε (7.5)for N ≥ N0 = N0(ε,Q), and we an �nd tr0 ∈ N suh that
1

N0
h
(
([Q]tr)|FN0

| q⊗N0
ρ,ν

)
≥

1

N0
h
(
Q|FN0

| q⊗N0
ρ,ν

)
− ε (7.6)for tr ≥ tr0. Hene

H([Q]tr | q⊗N

ρ,ν ) ≥ H(Q | q⊗N

ρ,ν ) − 2ε for tr ≥ tr0. (7.7)We may also assume that [Q]tr ∈ O(Q) for tr ≥ tr0. For a given N ≥ N0, pik tr(N) ≥ tr0 so largethat m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N) ≤ δN/2. Using the strategy desribed at the beginning of Setion 4,we an onstrut a neighbourhood ON ⊂ O(Q) of [Q]tr(N) suh that the onditional probability
P(RN ∈ ON |X) is bounded below by

exp
[
− N(H([Q]tr | q⊗N

ρ,ν ) − ε)
]
× the ost of the �rst jump, (7.8)where the �rst jump takes us to a region of size ≈ Nm[Q]tr(N)

on whih the medium looks �Ψ[Q]tr(N)
-typial�. Sine, in a typial medium, the size of the �rst jump will be

≈ exp
[
Nm[Q]tr(N)

H(Ψ[Q]tr(N)
| ν⊗N)

]
≤ exp[NδN ], (7.9)we obtain from (7.4) and (7.7�7.9) that

P(RN ∈ O(Q)|X) ≥ exp
[
− N(H(Q | q⊗N

ρ,ν ) + 4ε)
] (7.10)for N large enough.For the upper bound we an argue as follows: For Q ∈ P inv(ẼN) put

r(Q) := lim sup
tr→∞

m[Q]tr(N)
H(Ψ[Q]tr(N)

| ν⊗N). (7.11)Sine ρ satis�es the bound (3.3) for any α > 1, we obtain from the upper bound in Theorem 1.2that the rate funtion at Q is at least
lim sup
tr→∞

Ifin([Q]tr) = H(Q | q⊗N

ρ,ν ) + (α − 1)r(Q), (7.12)hene equals ∞ if r(Q) > 0. On the other hand, if r(Q) = 0, then this is simply the annealedbound.
33



8 Proof of Corollary 1.6Proof. Let E be a Polish spae with metri dE (equipped with its Borel-σ-algebra BE). We anhoose a sequene of nested �nite partitions Ac = {Ac,1, . . . , Ac,nc}, c ∈ N, of E with the propertythat
∀x ∈ E : lim

c→∞
diam

(
〈x〉c

)
= 0, (8.1)where the oarse-graining map 〈·〉c maps an element of E to the element of Ac it is ontained in.Eah Ac = 〈E〉c is a �nite set, whih we equip with the disrete metri dc. Extend 〈·〉c to 〈E〉c′ foreah c′ > c via 〈Ac′,i′〉c = Ac,i if Ac′,i′ ⊂ Ac,i. Then the olletion Ac, 〈·〉c, c ∈ N, forms a projetivefamily, and the projetive limit

F =
{
(ξ1, ξ2, . . . ) : ξc ∈ Ac, 〈ξc′〉c = ξc, 1 ≤ c < c′

} (8.2)is again a Polish spae with the metri
dF

(
(ξ1, ξ2, . . . ), (η1, η2, . . . )

)
:=

∞∑

c=1

2−cdc

(
ξc, ηc

)
. (8.3)We equip F with its Borel-σ-algebra BF . We an identify E with a subset of F via ι : x 7→

(
〈x〉c

)
c∈N

,sine ι is injetive by (8.1). Note that ι(E) is a measurable subset of F (in general ι(E) 6= F ; itis easy to see that ι(E) is a losed subset of F when E is ompat; for non-ompat E use theone-point ompati�ation of E).Note that the topology generated by dF on ι(E) is �ner than the original topology generated by
dE : By (8.1), for eah x ∈ E and ε > 0, there is an ε′ > 0 suh that the dF -ball of radius ε′ around
x is ontained in the d-ball of radius ε around x. We will make use of the fat thatthe trae of BF on ι(E) agrees with the image of BE under ι. (8.4)To hek this, note that for any x ∈ E, the funtion

F ∋ ξ 7→

{
dE

(
ι−1(ξ), x

)
, ξ ∈ ι(E),

∞, otherwise, (8.5)an be pointwise approximated by funtions that are onstant on ι(Ac,i), i = 1, . . . , nc, and istherefore BF -measurable.We extend 〈·〉c in the obvious way to EN and ẼN , N ∈ N ∪ {∞} (via oordinate-wise oarse-graining), and then to P(EN ), P(ẼN ), N ∈ N, and �nally to P inv(EN) and P inv(ẼN) (by takingimage measures). Note that 〈·〉c and [·]tr ommute, and
mQ = m〈Q〉c , 〈ΨQ〉c = Ψ〈Q〉c , Q ∈ P inv(ẼN). (8.6)By Theorem 1.2, for eah c ∈ N the family

P(〈RN 〉c ∈ · | X), N ∈ N, (8.7)
X-a.s. satis�es the LDP with deterministi rate funtion

Ique
c (Q) =





Ifin
c (Q) := H

(
Q | 〈q⊗N

ρ,ν 〉c
)

+ (α − 1)mQH
(
ΨQ | 〈ν⊗N〉c

)
, Q ∈ P inv,fin(〈Ẽ〉Nc ),

limtr→∞ Ifin
c ([Q]tr), if mQ = ∞.

(8.8)Hene, by the Dawson-Gärtner projetive limit theorem (see Dembo and Zeitouni [5℄, Theorem 4.6.1),the family P(RN ∈ · | X), N ∈ N, X-a.s. satis�es the LDP on P inv(F̃N) with rate funtion
Ique
F (Q) = sup

c∈N

Ique
c (〈Q〉c), Q ∈ P inv(F̃N). (8.9)The following lemma follows from Deushel and Strook [6℄, Lemma 4.4.15.34



Lemma 8.1. Let G be a Polish spae, let Ac = {Ac,1, . . . , Ac,nc}, c = 1, 2, . . . be a sequene ofnested �nite partitions of G suh that limc→∞ diam
(
〈x〉c

)
= 0 for all x ∈ G (with a oarse-grainingmap de�ned as above). Then we have, for µ, ν ∈ P(G),

h(〈µ〉c | 〈ν〉c) ր h(µ | ν) as c → ∞. (8.10)Let
P inv

E (FN) :=
{
Φ ∈ P inv(FN) : π1Φ(ι(E)) = 1

}
, (8.11)

P inv
E (F̃N) :=

{
Q ∈ P inv(F̃N) : π1Q(ι(Ẽ)) = 1

}
. (8.12)Note that (8.4) allows to view eah Φ ∈ P inv(EN) as an element of P inv

E (FN) and eah Q ∈ P inv(ẼN)as an element of P inv
E (F̃N) via the identi�ation of E and ι(E) ⊂ F . In partiular, we an view ν⊗Nas an element of P inv
E (FN) and q⊗N

ρ,ν as an element of P inv
E (F̃N). We will make use of the fat that,sine eah real-valued dE-ontinuous funtion on ι(E) is automatially dF -ontinuous, the weaktopology on P inv

E (F̃N) is �ner than the weak topology on P inv(ẼN).Fix Q ∈ P inv,fin(F̃N). Note that the funtions
(N, c) 7→

1

N
h
(
〈πNQ〉c | 〈q

⊗N
ρ,ν 〉c

) and (L, c) 7→
1

L
h
(
〈πLΨQ〉c | 〈ν

⊗L〉c
) (8.13)are non-dereasing in both oordinates. Then dedue from (8.9) and (1.16) that

Ique
F (Q) = sup

c∈N

{
H(〈Q〉c | 〈q

⊗N

ρ,ν 〉c) + (α − 1)m〈Q〉c H(Ψ〈Q〉c | 〈ν⊗N〉c)
}

= sup
c∈N

{
sup
N∈N

1

N
h
(
〈πNQ〉c | 〈qρ,ν〉

⊗N
c

)
+ (α − 1)mQ sup

L∈N

1

L
h
(
〈πLΨQ〉c | 〈ν

⊗L〉c
)}

= sup
N∈N

1

N
sup
c∈N

h
(
〈πNQ〉c | 〈q

⊗N
ρ,ν 〉c

)
+ (α − 1)mQ sup

L∈N

1

L
sup
c∈N

h
(
〈πLΨQ〉c | 〈ν

⊗L〉c
)

= sup
N∈N

1

N
h
(
πNQ | q⊗N

ρ,ν

)
+ (α − 1)mQ sup

L∈N

1

L
h
(
πLΨQ | ν⊗L

)

= H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N), (8.14)where we have used Lemma 8.1 in the fourth line. Note that in the third line interhanging thesuprema and splitting out the supremum over the sum is justi�ed beause of (8.13).For Q ∈ P inv(F̃N) with mQ = ∞ we see from (8.9), (1.15) and (8.14) that
Ique
F (Q) = sup

c∈N

Ique
c (〈Q〉c) = sup

c∈N

sup
tr∈N

{
H([〈Q〉c]tr | 〈q

⊗N

ρ,ν 〉c) + (α − 1)m[Q]tr H(〈Ψ[Q]tr〉c | 〈ν
⊗N〉c)

}

= sup
tr∈N

{
H([Q]tr | q⊗N

ρ,ν ) + (α − 1)m[Q]tr H(Ψ[Q]tr | ν⊗N)
}

. (8.15)Note that suptr∈N an be replaed by tr → ∞ by arguments analogous to Step 3 in the proof ofTheorem 1.2.Finally, we transfer the LDP from P inv(F̃N) to P inv(ẼN). To this end, we �rst verify that therate funtion is onentrated on P inv
E (F̃N). Put

F ′′ := {y ∈ F̃ : y ontains at least one letter from F \ ι(E)}. (8.16)Then qρ,ν(F
′′) = 0. For Q ∈ P inv(F̃N) \ P inv

E (F̃N) we have π1Q(F ′′) > 0, and hene
Ique
F (Q) ≥ H(Q | q⊗N

ρ,ν ) ≥ h(π1Q | qρ,ν) = ∞. (8.17)35



Thus, by Dembo and Zeitouni [5℄, Lemma 4.1.5, the family P(RN ∈ · | X) satis�es for ν⊗N-a.s. all
X an LDP on P inv

E (F̃N) with rate N and with rate funtion given by (1.15�1.16).To onlude the proof, observe that we an identify P inv(ẼN) and P inv
E (F̃N), and that the weaktopology on P inv(ẼN), whih is `built' on dE , is not �ner than that whih P inv

E (F̃N) inherits from
P inv(F̃N), whih is `built' on dF (reall the disussion following (8.11�8.12)). Consequently, theLDP arries over.A Appendix: Continuity under trunation limitsThe following lemma implies (1.17).Lemma A.1. For all Q ∈ P inv,fin(ẼN),

lim
tr→∞

H([Q]tr | q⊗N

ρ,ν ) = H(Q | q⊗N

ρ,ν ),

lim
tr→∞

m[Q]trH(Ψ[Q]tr | νN) = mQH(ΨQ | νN).
(A.1)Proof. The proof is not quite standard, beause Q and [Q]tr, respetively, ΨQ and Ψ[Q]tr are not � d̄-lose� when tr is large, so that we annot use the fat that entropy is � d̄-ontinuous� (see Shields [10℄).Lower semi-ontinuity yields lim inftr→∞ l.h.s. ≥ r.h.s. for both limits, so we need only prove thereverse inequality. Note that, for all Q ∈ P inv,fin(ẼN),

H(Q) ≤ h(Q|F1
) ≤ h

(
LQ(τ1)

)
+ mQ log |E| < ∞, H(ΨQ) ≤ log |E| < ∞, H(Q | q⊗N

ρ,ν ) < ∞.(A.2)For Z a random variable, we write LQ(Z) to denote the law of Z under Q.A.1 Proof of �rst half of (A.1)Proof. Sine q⊗N
ρ,ν is a produt measure, we have for, any tr ∈ N,

H([Q]tr | q⊗N

ρ,ν ) = −H([Q]tr) − E[Q]tr [log ρ(τ1)] − E[Q]tr

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]

= −H([Q]tr) − EQ [log ρ(τ1 ∧ tr)] − EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i

)]
.

(A.3)By dominated onvergene, using that mQ < ∞ and log ρ(n) ≤ C log(n + 1) for some C < ∞, wesee that as tr → ∞ the last two terms in the seond line onverge to
−EQ

[
log ρ(τ1)

]
− EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
. (A.4)Thus, it remains to hek that

lim
tr→∞

H([Q]tr) = H(Q). (A.5)Obviously, H([Q]tr) ≤ H(Q) for all tr ∈ N (indeed, h([Q]tr|FN
) ≤ h(Q|FN

) for all N, tr ∈ N,beause [Q]tr is the image measure of Q under the trunation map). For the asymptoti onverse,we argue as follows. A deomposition of entropy gives
h(Q|FN

) = h([Q]tr|FN
) +

∫

[ eE]Ntr

h
(
LQ

(
πNY | πN [Y ]tr = z

))
(πN [Q]tr)(dz), (A.6)36



where πN is the projetion onto the �rst N words, and LQ(πNY | πN [Y ]tr = z) is the onditionaldistribution of the �rst N words given their trunations. We have
h
(
LQ

(
πNY | πN [Y ]tr = z

))
≤

N∑

i=1

h
(
LQ

(
Yi | πN [Y ]tr = z

)) (A.7)and ∫

[ eE]Ntr

h
(
LQ

(
Yi | πN [Y ]tr = z

))
(πN [Q]tr)(dz)

≤

∫

[ eE]Ntr

h
(
LQ

(
Yi | [Yi]tr = zi

))
(πN [Q]tr)(dz)

=

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), 1 ≤ i ≤ N,

(A.8)where the inequality in the seond line omes from the fat that onditioning on less inreasesentropy, and the third line uses the shift-invariane. Combining (A.6�A.8) and letting N → ∞, weobtain
H(Q) ≤ H([Q]tr) +

∫

[ eE]tr

h
(
LQ

(
Y1 | [Y1]tr = y

))
(π1[Q]tr)(dy), (A.9)and so it remains to hek that the seond term in the right-hand side vanishes as tr → ∞.Note that this term equals (write ε for the empty word and w ·w′ for the onatenation of words

w and w′)
−

∑

w∈Ẽ
τ(w)=tr

[Q]tr(w)
∑

w′∈Ẽ∪{ε}

Q(w · w′)

[Q]tr(w)
log

[
Q(w · w′)

[Q]tr(w)

]

= −
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′) +
∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr).

(A.10)But
0 ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log [Q]tr([w
′′]tr) ≥

∑

w′′∈Ẽ
τ(w′′)≥tr

Q(w′′) log Q(w′′), (A.11)and so the right-hand side of (A.10) vanishes as tr → ∞.A.2 Proof of seond half of (A.1)Note that limtr→∞ m[Q]tr = mQ and w− limtr→∞ Ψ[Q]tr = ΨQ by dominated onvergene, implyingthat
lim inf
tr→∞

H(Ψ[Q]tr | νN) ≥ H(ΨQ | ν⊗N). (A.12)So it remains to hek the reverse inequality. Sine ν⊗N is produt measure, we have
H(Ψ[Q]tr | νN) = −H(Ψ[Q]tr) −

1

m[Q]tr

EQ

[
τ1∧tr∑

i=1

log ν
(
Y

(1)
i

)]
. (A.13)By dominated onvergene, as tr → ∞ the seond term onverges to

1

mQ
EQ

[
τ1∑

i=1

log ν
(
Y

(1)
i

)]
=

∫

E
ΨQ(dx) log ν(x). (A.14)Thus, it remains to hek that

lim
tr→∞

H(Ψ[Q]tr) = H(ΨQ). (A.15)37



We will �rst prove (A.15) for ergodi Q, in whih ase [Q]tr, ΨQ, Ψ[Q]tr are ergodi (Birkner [2℄,Remark 5).For Ψ ∈ Perg(EN) and ε ∈ (0, 1), let
Nn(Ψ, ε) = min

{
#A : A ⊂ En,Ψ(A × E∞) ≥ ε

} (A.16)be the (n, ε) overing number of Ψ. For any ε ∈ (0, 1), we have
lim

n→∞

1

n
logNn(Ψ, ε) = H(Ψ) (A.17)(see Shields [10℄, Theorem I.7.4). The idea behind (A.15) is that there are ≈ exp[nH(ΨQ)] �ΨQ-typial� sequenes of length n, and that a �Ψ[Q]tr-typial� sequene arises from a �ΨQ-typial�sequene by eliminating a fration δtr of the letters, where δtr → 0 as tr → ∞. Hene Nn(ΨQ, ε)annot be muh larger thanNn(Ψ[Q]tr, ε) (on an exponential sale), implying that H(ΨQ)−H(Ψ[Q]tr)must be small.To make this argument preise, �x ε > 0 and pik N0 so large that

Q
(
|κ(Y (1), . . . , Y (N))| ∈ NmQ[1 − ε, 1 + ε]

)
> 1 − ε for N ≥ N0. (A.18)Pik tr0 ∈ N so large that for tr ≥ tr0 and N ≥ N0,

Q
(∑N

i=1(τ1 − tr)+ < Nε
)

> 1 − ε/2, Q
(
τ1 ≤ tr

)
> 1 − ε/2, m[Q]tr > (1 − ε)mQ. (A.19)For n ≥ ⌈N0/mQ⌉, we will onstrut a set B ⊂ En suh that

ΨQ(B × E∞) ≥ 1
2 , |B| ≤ exp

[
n(H(Ψ[Q]tr) + δ)

]
, (A.20)where δ an be made arbitrarily small by hoosing ε small in (A.18�A.19). Hene, by the asymptotiover property (A.17), we have H(ΨQ) ≤ (1 + δ)H(Ψ[Q]tr) and

lim inf
tr→∞

H(Ψ[Q]tr) ≥ H(ΨQ), (A.21)ompleting the proof of (A.15).We verify (A.20) as follows. Put N := ⌈nmQ(1 + 2ε)⌉. By (A.18�A.19) and the asymptotiover property (A.17) for Ψ[Q]tr, there is a set A ⊂ ẼN suh that
EQ

[
τ11A(Y (1), . . . , Y (N))

]
> (1 − ε)mQ (A.22)and

|κ(y(1), . . . , y(N))| ≥ n(1 + ε), τ(y(1)) ≤ tr,
N∑

i=1

(τ(y(i)) − tr)+ < Nε,

∀ (y(1), . . . , y(N)) ∈ A,

(A.23)while the set
B′ :=

{
κ([y(1)]tr, . . . , [y

(N)]tr)|(0,⌈(1−ε)n⌉] : (y(1), . . . , y(N)) ∈ A
}
⊂ E⌈(1−ε)n⌉] (A.24)satis�es

|B′| ≤ exp
[
n(H(Ψ[Q]tr) + ε)

]
. (A.25)Put

B :=
{
κ(y(1), . . . , y(N))|(0,n] : (y(1), . . . , y(N)) ∈ A

}
⊂ En. (A.26)38



Observe that eah x′ ∈ B′ orresponds to at most
|E|εn

(
n

εn

)
≤ exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

] (A.27)di�erent x ∈ B, so that
|B| ≤ |B′| exp

[
− n(ε log ε + (1 − ε) log(1 − ε)) + nε log |E|

]
. (A.28)We have

mQΨQ(B × E∞) ≥ EQ

[
τ1−1∑

k=0

1B×E∞

(
θkκ(Y )

)1A(Y (1), . . . , Y (N))

]

= EQ

[
τ1∧tr−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)1A(Y (1), . . . , Y (N))

]

≥ EQ




τ1∧tr|−1∑

k=0

1B′×E∞

(
θkκ([Y ]tr)

)

− εmQ

= m[Q]trΨ[Q]tr(B
′ × E∞) − εmQ,

(A.29)
so that, �nally,

ΨQ(B × E∞) ≥
m[Q]tr

mQ
Ψ[Q]tr(B

′ × E∞) − ε ≥ 1
2 . (A.30)Combining (A.25), (A.28) and (A.30), we obtain (A.20) with

δ = −
(
ε log ε + (1 − ε) log(1 − ε)

)
+ ε
(
1 + log |E|

)
. (A.31)Sine lim suptr→∞ H(Ψ[Q]tr) ≤ H(ΨQ) by upper semi-ontinuity of H (see e.g. Georgii [7℄, Proposi-tion. 15.14), this onludes the proof of (A.15) for ergodi Q.For general Q ∈ P inv,fin(ẼN), we reall the ergodi deomposition formulas stated in (6.1�6.2).These yields

Ψ[Q]tr =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

Ψ[Q′]tr WQ(dQ′), (A.32)and
H(Ψ[Q]tr) =

∫

Perg,fin( eEN)

m[Q′]tr

m[Q]tr

H(Ψ[Q′]tr)WQ(dQ′), (A.33)beause spei� relative entropy is a�ne. The integrand inside (A.33) is non-negative and, by theabove, onverges to mQ′

mQ
H(ΨQ′) as tr → ∞. Hene, by Fatou's lemma,

lim inf
tr→∞

H(Ψ[Q]tr) ≥

∫

Perg,fin( eEN)

mQ′

mQ
H(ΨQ′)WQ(dQ′) = H(ΨQ), (A.34)whih onludes the proof.Referenes[1℄ M. Birkner, Partile Systems with Loally Dependent Branhing: Long-Time Behaviour, Ge-nealogy and Critial Parameters, Dissertation, Johann Wolfgang Goethe-Universität Frankfurtam Main, 2003.http://publikationen.ub.uni-frankfurt.de/volltexte/2003/314/39
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