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α-stable Lévy motion for α < 2. This complements results by Slade (1988), who proves
convergence to Brownian motion for nearest-neighbor self-avoiding walk in high dimension.

MSC 2000. 82B41.
Keywords and phrases. Self-avoiding walk, lace expansion, α-stable processes, mean-field behavior.

1 Introduction and results

1.1 The model

We study self-avoiding walk on the hypercubic lattice Zd. We consider Zd as a complete graph, i.e., the
graph with vertex set Zd and corresponding edge set Zd×Zd. We assign each (undirected) bond {x, y}
a weight D(x−y), where D is a probability distribution specified in Section 1.1 below. If D(x−y) = 0,
then we can omit the bond {x, y}.

Two-point function. For every lattice site x ∈ Zd, we denote by

Wn(x) = {(w0, . . . , wn) |w0 = 0, wn = x, wi ∈ Zd, 1 ≤ i ≤ n− 1} (1.1)

the set of n-step walks from the origin 0 to x. We call such a walk w ∈ Wn(x) self-avoiding if wi 6= wj
for i 6= j with i, j ∈ {0, . . . , n}. We define c0(x) = δ0,x and, for n ≥ 1,

cn(x) :=
∑

w∈Wn(x)

n∏
i=1

D(wi − wi−1)1{w is self-avoiding}. (1.2)



where D is specified below. We refer to D as the step distribution, having in mind a random walker
taking steps that are distributed according to D. Without loss of generality we can assume here that
D(0) = 0.

The self-avoiding walk measure is the measure Qn on the set of n-step paths Wn =
⋃
x∈ZdWn(x) =

{0} × Zdn defined by

Qn(w) :=
1
cn

n∏
i=1

D(wi − wi−1)1{w is self-avoiding}, (1.3)

where cn =
∑

x∈Zd cn(x).
We consider the the Green’s function Gz(x), x ∈ Zd, defined by

Gz(x) =
∞∑
n=0

cn(x) zn. (1.4)

We further introduce the susceptibility as

χ(z) :=
∑
x∈Zd

Gz(x) (1.5)

and define zc, the critical value of z, as the convergence radius of the power series (1.4), i.e.

zc := sup {z |χ(z) <∞} . (1.6)

The main part of our analysis is based on Fourier space analysis. Unless specified otherwise, k will
always denote an arbitrary element from the Fourier dual of the discrete lattice, which is the torus
[−π, π)d. The Fourier transform of a function f : Zd → C is defined by f̂(k) =

∑
x∈Zd f(x) eik·x.

The step distribution D. Let h be a non-negative bounded function on Rd which is almost every-
where continuous, and symmetric under the lattice symmetries of reflection in coordinate hyperplanes
and rotations by ninety degrees. Assume that there is an integrable function H on Rd with H(te)
non-increasing in t ≥ 0 for every unit vector e ∈ Rd, such that h(x) ≤ H(x) for all x ∈ Rd. Furthermore
we require h to decay as |x|−d−α as |x| → ∞, where α > 0 is a parameter of the model. In particular,
there exists a positive constants ch such that

h(x) ∼ ch|x|−d−α whenever |x| → ∞, (1.7)

where ∼ denotes asymptotic equivalence, i.e., f(x) ∼ g(x) if f(x)/g(x) → 1. For α ≤ 2 we assume
further that h(x) can be extended to a function on Rd that is rotation invariant. The monotonicity and
integrability hypothesis on H imply that

∑
x h(x/L) <∞ for all L, with x/L = (x1/L, . . . , xd/L).

We then consider D of the form

D(x) =
h(x/L)∑
y∈Zd h(y/L)

, x ∈ Zd, (1.8)

where L is a spread-out parameter (to be chosen large later on). We note that the κth moment∑
x∈Zd |x|κD(x) does not exist if κ ≥ α, but exists and equals O(Lκ) if κ < α.

Lemma 1.1 (Properties of D). The step distribution D satisfies the following properties:

(i) there is a constant C such that, for all L ≥ 1,

‖D‖∞ ≤ CL−d; (1.9)
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(ii) there is a constants c > 0 such that

1− D̂(k) > c if ‖k‖∞ ≥ L−1, (1.10)
1− D̂(k) < 2− c, k ∈ [−π, π)d; (1.11)

(iii) there is a constant vα > 0 such that, as |k| → 0,

1− D̂(k) ∼

{
vα|k|α∧2 if α 6= 2,
v2|k|2 log(1/ |k|) if α = 2.

(1.12)

Chen and Sakai [3, Prop. 1.1] show that D satisfies conditions (1.9)–(1.11). We prove in Appendix A
that also (1.12) holds. It follows from [3, (1.7)] that vα ≤ O(Lα∧2).

An example of h satisfying all of the above is

h(x) = (|x| ∨ 1)−d−α, (1.13)

in which case D has the form

D(x) =
(|x/L| ∨ 1)−d−α∑
y∈Zd (|y/L| ∨ 1)−d−α

, x ∈ Zd. (1.14)

1.2 Weak convergence of the end-to-end displacement.

For α ∈ (0,∞), we write

kn :=

{
k (vαn)−1/α∧2, if α 6= 2
k (v2n log

√
n)−1/2, if α = 2

(1.15)

so that
lim
n→∞

n [1− D̂(kn)] = |k|α∧2. (1.16)

Theorem 1.2 (Weak convergence of end-to-end displacement). Assume that D is of the form (1.8),
where the spread-out parameter L is sufficiently large. Then self-avoiding walk in dimension d > dc =
2(α ∧ 2) satisfies

ĉn(kn)
ĉn(0)

→ exp{−Kα |k|α∧2} as n→∞, (1.17)

where

Kα =
(

1 +
∑
x∈Zd

∞∑
n=2

nπn(x) zcn−1
)−1


1, if α ≤ 2;

1 + (2d vα)−1
∑
x∈Zd

∞∑
n=0

|x|2 πn(x) zcn, if α > 2. (1.18)

The quantities πn(x) appearing in (1.18) are known as lace expansion coefficients. We do not
perform the lace expansion in this paper. References to the derivation of the lace expansion and various
bounds on these lace expansion coefficients are given later on. Under the conditions of Theorem 1.2,
(2.21) and (2.58) below imply that Kα is a finite constant.
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1.3 Mean-r displacement.

The mean-r displacement is defined as

ξ(r)(n) :=
(∑

x∈Zd |x|rcn(x)
cn

)1/r

, (1.19)

where we recall cn =
∑

x∈Zd cn(x) = ĉn(0). For r = 2 this is the mean-square displacement, and already
well understood. For example, van der Hofstad and Slade [10] prove the following rather general version:

Theorem 1.3 (Mean-square displacement [10]). Consider self-avoiding walk with step distribution D
given in Section 1.1 with α > 2. Then there is a constant C > 0 such that, as n→∞,

1
cn

∑
x∈Zd

|x|2cn(x) = C n (1 + o(1)). (1.20)

The proof of Theorem 1.3 is also based on lace expansion. In the sequel we prove a complementary
result for r < 2.

Theorem 1.4 (Mean-r displacement of order r). Under the assumptions of Theorem 1.2, for any
r < α ∧ 2,

ξ(r)(n) �

{
n1/(α∧2), if α 6= 2,
(n log n)1/2, if α = 2,

(1.21)

as n→∞.

In view of (1.20) we conjecture that (1.21) actually holds for all positive values of r, even though
our proof applies only to r < α ∧ 2.

1.4 Convergence to Brownian motion and α-stable processes.

In order to deal with the cases α = 2 and α 6= 2 simultaneously, we write

fα(n) =

{
(vαn)−1/(α∧2) if α 6= 2,
(v2n log

√
n)−1/2 if α = 2,

(1.22)

such that, for example, kn = fα(n) k, cf. (1.15). Given an n-step self-avoiding walk w, define

Xn(t) = (2dKα)−
1
α∧2 fα(n)w(bntc), t ∈ [0, 1]. (1.23)

We aim to identify the scaling limit of Xn, and the appropriate space to study the limit is the space of
Rd-valued càdlàg-functions D([0, 1],Rd) equipped with the Skorokhod topology.

For α ∈ (0, 2], W (α) denotes the standard α-stable Lévy measure, normalized such that∫
eik·B

(α)(t) dW (α) = e−|k|
αt/(2d), (1.24)

where B(α) is a (càdlàg version of) standard symmetric α-stable Lévy motion (in the sense of [14,
Definition 3.1.3]). Note that W (2) is the Wiener measure, and B(2) is Brownian motion. By 〈·〉n we
denote expectation with respect to the self-avoiding walk measure Qn in (1.3).
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Theorem 1.5 (Weak convergence to α-stable processes and Brownian motion). Under the assumptions
in Theorem 1.2,

lim
n→∞

〈f(Xn)〉n =
∫
f dW (α∧2), (1.25)

for every bounded continuous function f : D([0, 1],Rd)→ R. That is to say, Xn converges in distribution
to an α-stable Lévy motion for α < 2, and to Brownian motion for α ≥ 2. Equivalently, Qn converges
weakly to W (α∧2).

In order to prove convergence in distribution, we need two properties: (i) the convergence of finite-
dimensional distributions, and (ii) tightness of the family {Xn}. We shall now consider the former.

Convergence of finite-dimensional distributions means for every N = 1, 2, 3, . . . , any 0 < t1 < · · · <
tN ≤ 1, and any bounded continuous function g : RdN → R,

lim
n→∞

〈
g
(
Xn(t1), . . . , Xn(tN )

)〉
n

=
∫
g
(
B(α∧2)(t1), . . . , B(α∧2)(tN )

)
dW (α∧2). (1.26)

The distribution of a random variable is determined by its characteristic function, hence it suffices to
consider functions g of the form

g(x1, . . . , xN ) = exp{ik · (x1, . . . , xN )}, (1.27)

where k =
(
k(1), . . . , k(N)

)
∈ (−π, π]dN and xi ∈ Rd, i = 1, . . . , N . We rather use the equivalent form

g(x1, . . . , xN ) = exp{ik · (x1, x2 − x1, . . . , xN − xN−1)}, (1.28)

which better fits in our setting.
For n = (n(1), . . . , n(N)) ∈ NN , with n(1) < · · · < n(N), we define

ĉ(N)
n (k) :=

∑
x1,x2,...,xn(N)

exp

i
N∑
j=1

k(j) · (xn(j) − xn(j−1))


×
n(N)∏
i=1

D(xi − xi−1)1{(0,x1,x2,...,xn(N) ) is self-avoiding}

(1.29)

as the N -dimensional version of (1.2), with n(0) = 0. An alternative representation is

ĉ(N)
n (k) =

∑
w∈W

n(N)

eik·∆w(n)W (w) 1{w is self-avoiding}, (1.30)

where W (w) =
∏|w|
i=1D(wi − wi−1) is the weight of the walk w (|w| denotes the length) and

k ·∆w(n) =
N∑
j=1

k(j) · (wn(j) − wn(j−1)) .

We fix a sequence bn converging to infinity slowly enough such that

fα(n)α∧1 bn = o(1), (1.31)

for example bn = log n.
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Theorem 1.6 (Finite-dimensional distributions). Let N be a positive integer, k(1), . . . , k(N) ∈ (−π, π]d,
0 = t(0) < t(1) < · · · < t(N) ∈ R, and g = (gn) a sequence of real numbers satisfying 0 ≤ gn ≤ bn. Denote

kn =
(
k(1)
n , . . . , k

(N)
n

)
= fα(n)

(
k(1), . . . , k(N)

)
,

nT =
(
bnt(1)c, . . . , bnt(N−1)c, bnT c

)
with T = t(N)(1− gn). Under the conditions of Theorem 1.2,

lim
n→∞

ĉ(N)

nT(kn)
ĉnT (0)

= exp

−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

 (1.32)

holds uniformly in g.

Let us emphasize that (1.32) has indeed the required form. Let gn ≡ 0 in Theorem 1.6, so that
nT =

(
bnt(1)c, . . . , bnt(N)c

)
. Then〈

exp
{
ik ·∆Xn(nT)

}〉
n

=
〈

exp
{
i (2dKα)−

1
α∧2 kn ·∆ • (nT)

}〉
n

=
ĉ(N)

nT

(
(2dKα)−

1
α∧2 kn

)
ĉnT (0)

,

and this converges to

exp

− 1
2d

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))


as n → ∞, as we aim to show for (1.26). Thus the finite dimensional distributions of (long-range)
self-avoiding walk converge to those of an α-stable Lévy motion, which proves that this is the only
possible scaling limit.

1.5 Discussion and related work

Long-range self-avoiding walk has rarely been studied. Klein and Yang [18] show that the endpoint of a
weakly self-avoiding walk jumping m lattice sites along the coordinate axes with probability proportional
to 1/m2, is Cauchy distributed. A similar result for strictly self-avoiding walk is obtained by Cheng [5].

In a previous paper [8] it is shown that long-range self-avoiding walk exhibits mean-field behavior
above dimension dc = 2(α ∧ 2). More specifically, it is shown that under the conditions of Theorem 1.2,
the Fourier transform of the critical two-point function satisfies Ĝzc(k) = (1 +O(β))/(1− D̂(k)), where
β = O(L−d) is an arbitrarily small quantity. Hence, on the level of Fourier transforms, the critical
two-point functions of long-range self-avoiding walk and long-range simple random walk are very close.
Indeed, the results in [8] suggest that the two models behave similar for d > dc, and we prove this belief
in a rather strong form by showing that both objects have the same scaling limit.

Chen and Sakai [4] prove an analogue of Theorem 1.2 for oriented percolation, and in fact our method
of proving Theorem 1.2 is very much inspired by the method in [4]. The bounds on the diagrams are
different for the two different models, but the general strategy works equally well with either model. In
particular, the spatial fractional derivatives as in (2.30) are used for the first time in [4].

Slade [15, 16] proves convergence of the nearest-neighbor self-avoiding walk to Brownian motion in
sufficiently high dimension, using a finite-memory cut-off. Hara and Slade [7] provide an alternative
argument by using fractional derivative estimates. An account of the latter approach is contained in
the monograph [13, Sect. 6.6]. All of these proofs use the lace expansion, which was introduced by
Brydges and Spencer [2] to study weakly self-avoiding walk.
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2 The scaling limit of the endpoint: Proof of Theorem 1.2

2.1 Overview of proof

The lace expansion obtains an expansion of the form

cn+1(x) = (D ∗ cn)(x) +
n+1∑
m=2

(πm ∗ cn+1−m) (x) (2.1)

for suitable coefficients πm(x), see e.g. [9, Sect. 2.2.1] or [17, Sect. 3] for a derivation of the lace
expansion. We multiply (2.1) by zn+1 and sum over n ≥ 0. By letting

Πz(x) =
∞∑
m=2

πm(x)zm (2.2)

for z ≤ zc, and recalling Gz(x) =
∑∞

n=0 cn(x)zn, this yields

Gz(x) = δ0,x + z(D ∗Gz)(x) + (Gz ∗Πz)(x). (2.3)

We proceed by proving Theorem 1.2 subject to certain bounds on the lace expansion coefficients
πn(x) to be formulated below. A Fourier transformation of (2.3) yields

Ĝz(k) = 1 + z D̂(k) Ĝz(k) + Ĝz(k) Π̂z(k), k ∈ [−π, π)d, (2.4)

and this can be solved for Ĝz(k) as

Ĝz(k)−1 = 1− z D̂(k)− Π̂z(k), k ∈ [−π, π)d. (2.5)

Since zc is characterized by Ĝzc(0)−1 = 0, one has Π̂zc(0) = 1− zc, and hence

Ĝz(k)−1 = (zc − z) D̂(k) +
(

Π̂zc(k)− Π̂z(k)
)

+ zc(1− D̂(k)) +
(

Π̂zc(0)− Π̂zc(k)
)
. (2.6)

If we let

A(k) := D̂(k) + ∂zΠ̂z(k)
∣∣
z=zc

, (2.7)

B(k) := 1− D̂(k) +
1
zc

(
Π̂zc(0)− Π̂zc(k)

)
, (2.8)

Ez(k) :=
Π̂zc(k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)

∣∣
z=zc

, (2.9)

then

zc Ĝz(k) =
1

[1− z/zc] (A(k) + Ez(k)) +B(k)

=
1

[1− z/zc]A(k) +B(k)
−Θz(k), (2.10)

where
Θz(k) =

[1− z/zc]Ez(k)(
[1− z/zc] (A(k) + Ez(k)) +B(k)

) (
[1− z/zc]A(k) +B(k)

) . (2.11)

If Ĝz(k)−1 is understood as a function of z, then A(k) denotes the linear contribution, Ez(k) denotes
the higher order contribution (which will turn out to be asymptotically negligible), and B(k) denotes
the constant term.
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For the first term in (2.10) we write

1
[1− z/zc]A(k) +B(k)

=
1

A(k) +B(k)

∞∑
n=0

(
z

zc

)n( A(k)
A(k) +B(k)

)n
. (2.12)

For z < zc, we can write Θz(k) as a power series,

Θz(k) =
∞∑
n=0

θn(k) zn. (2.13)

Since Ĝz(k) =
∑∞

n=0 ĉn(k)zn and B(0) = 0, we thus obtained

ĉn(k) =
1
zc

(
z−nc

A(k) +B(k)

(
A(k)

A(k) +B(k)

)n
+ θn(k)

)
, ĉn(0) =

1
zc

(
z−nc
A(0)

+ θn(0)
)
. (2.14)

In Section 2.3 we prove the following bound on the error term θn:

Lemma 2.1. Under the conditions of Theorem 1.2, |θn(k)| ≤ O(z−nc n−ε) for all ε ∈
(
0,
(

d
α∧2 − 2

)
∧ 1
)

uniformly in k ∈ [−π, π)d.

Equation (2.14) and Lemma 2.1 imply the following corollary:

Corollary 2.2. Under the conditions of Theorem 1.2,

ĉn(0) = Ξ z−nc
(
1 +O(n−ε)

)
, (2.15)

where ε ∈
(
0,
(
d/(α ∧ 2)− 2

)
∧ 1
)

and

Ξ = [zcA(0)]−1 =

zc +
∑
x∈Zd

∞∑
m=2

mπm(x) zmc

−1

∈ (0,∞). (2.16)

By (2.14) and Lemma 2.1, for ε ∈
(
0,
(

d
α∧2 − 2

)
∧ 1
)
,

ĉn(kn)
ĉn(0)

=
(
1 +O(n−ε)

) A(0)
A(kn) +B(kn)

(
A(kn)

A(kn) +B(kn)

)n
+O(n−ε)

=
(
1 +O(n−ε)

) A(0)
A(kn) +B(kn)

(2.17)

×

(
1 +
−n(1− D̂(kn))A(kn)−1B(kn)[1− D̂(kn)]−1

n

)n
+O(n−ε).

As n→∞, we have that n(1− D̂(kn))→ |k|α∧2 by (1.16),

A(kn)→ A(0) = 1 +
∑
x∈Zd

∞∑
m=2

mπm(x) zm−1
c .

The convergence

lim
n→∞

B(kn)
1− D̂(kn)

=

{
1, if α ≤ 2;
1 + (2d vα)−1

∑
x∈Zd |x|2 Πzc(x), if α > 2.

(2.18)

follows directly from the following proposition:
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Proposition 2.3. Under the conditions of Theorem 1.2,

lim
|k|→0

Π̂zc(0)− Π̂zc(k)
1− D̂(k)

=

{
0, if α ≤ 2;
(2d vα)−1

∑
x∈Zd |x|2 Πzc(x), if α > 2.

(2.19)

If a sequence hn converges to a limit h, then (1 + hn/n)n converges to eh. The above estimates
imply

lim
n→∞

−n(1− D̂(kn))A(kn)−1B(kn)[1− D̂(kn)]−1 = −Kα |k|α∧2

and
lim
n→∞

A(0)
A(kn) +B(kn)

= 1.

We thus have proved Theorem 1.2 subject to Lemma 2.1 and Proposition 2.3. We want to emphasize
that the bounds on the lace expansion coefficients πn(x) enter the calculation only through (2.19) and
the error bound in Lemma 2.1.

2.2 Bounding the lace expansion coefficients

In this section we prove an estimate on moments of the lace expansion coefficients πn(x). This estimate
is used to prove Proposition 2.3. Let us begin by stating the moment estimate.

Lemma 2.4 (Finite moments of the lace expansion coefficients). For α > 0, d > 2(α ∧ 2) and L
sufficiently large, we let

δ

{
∈
(
0 , (α ∧ 2) ∧ (2− 2(α ∧ 2))

)
if α 6= 2,

= 0 if α = 2.
(2.20)

Then, for any z ≤ zc, ∑
x∈Zd

∞∑
n=0

|x|α∧2+δ |πn(x)| zn <∞. (2.21)

The fact that the (α ∧ 2+δ)th moment of Πzc(x) exists is the key to the proof of (2.19). Interestingly,
there is a crossover between the phases α < 2 and α > 2, with α = 2 playing a special role. A version
of Lemma 2.4 in the setting of oriented percolation is contained in [4, Proposition 3.1].

Before we start with the proof of Lemma 2.4, we shall review some basic facts about structure
and convergence of quantities related to πn(x) introduced in (2.1)–(2.2). Our main reference for that
is the monograph by Slade [17], who gives a detailed account of the lace expansion for percolation.
Other references are [9, 13]. We shall also need results from [8], where a long-range version of the step
distribution is considered. For n ≥ 2, N ≥ 1, x ∈ Zd, there exist quantities π(N)

n (x) ≥ 0 such that

πn(x) =
∞∑
N=1

(−1)Nπ(N)
n (x). (2.22)

A combination of Theorem 4.1 with Lemma 5.10 (both references to Slade [17]), together with β =
O(L−d) [8, Prop. 2.2] shows ∑

x∈Zd

∞∑
n=2

π(N)
n (x) znc < O(L−d)N , (2.23)
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where the constant in the O-term is uniform for all N . Consequently, (2.23) is summable in N ≥ 1
provided that L is sufficiently large, and hence

Π̂zc(k) ≤
∑
x∈Zd

∞∑
n=2

|πn(x)| znc <∞. (2.24)

Lemma 2.4 implies Proposition 2.3, as we will show now.

Proof of Proposition 2.3 subject to Lemma 2.4. We first prove the assertion for α ≤ 2, and afterwards
consider α > 2.

For α ≤ 2, we choose δ ≥ 0 as in (2.20), hence α+δ ≤ 2. Then we use 0 ≤ 1−cos(k ·x) ≤ O(|k ·x|α+δ)
to estimate ∣∣∣Π̂zc(0)− Π̂zc(k)

∣∣∣ ≤ ∑
x∈Zd

∞∑
n=2

[1− cos(k · x)] |πn(x)| znc

≤
∑
x∈Zd

∞∑
n=2

O(|k · x|α+δ) |πn(x)| znc

≤ O(1) |k|α |k|δ
∑
x∈Zd

∞∑
n=2

|x|α+δ |πn(x)| znc . (2.25)

We use (1.12) and Lemma 2.4 to bound further

|Π̂zc(0)− Π̂zc(k)|
1− D̂(k)

=

{
O(|k|δ) if α < 2,
O(1/ log(1/|k|)) if α = 2,

(2.26)

which proves (2.19) for α ≤ 2.
For α > 2, we fix δ ∈ (0, 2 ∧ (d− 4)). We apply the Taylor expansion

1− cos(k · x) =
1
2

(k · x)2 +O(|k · x|2+δ), (2.27)

together with spatial symmetry of the model and Lemma 2.4 to obtain

Π̂zc(0)− Π̂zc(k) =
∑
x∈Zd

∞∑
n=2

[1− cos(k · x)]πn(x) znc =
|k|2

2d

∑
x∈Zd

∞∑
n=2

|x|2 πn(x) znc +O(|k|2+δ). (2.28)

Eq. (2.19) for α > 2 now follows from (2.28) and (1.12).

In the remainder of the section we prove Lemma 2.4. A key point in the proof is the use of a new
form of (spatial) fractional derivative, first applied by Chen and Sakai [4] in the context of oriented
percolation.

Proof of Lemma 2.4. For t > 0, ζ ∈ (0, 2), we let

K ′ζ :=
∫ ∞

0

1− cos(v)
v1+ζ

dv ∈ (0,∞), (2.29)

yielding

tζ =
1
K ′ζ

∫ ∞
0

1− cos(ut)
u1+ζ

du. (2.30)
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For α > 0 and d > 2(α ∧ 2), we choose δ as in (2.20). For x ∈ Zd we write x = (x1, . . . , xd). Then
by reflection and rotation symmetry of πn(x),

∑
x∈Zd

∞∑
n=0

|x|α∧2+δ |πn(x)| zn ≤ d (α∧2+δ)/2+1
∑
x∈Zd

∞∑
n=0

|x1|α∧2+δ
∞∑
N=2

π(N)
n (x) znc , (2.31)

cf. [4, Lemma 4.1]. We now apply (2.30) with ζ = δ1, δ2, given by

δ1 ∈
(
δ , (α ∧ 2) ∧ (2− 2(α ∧ 2))

)
, (2.32)

δ2 = α ∧ 2 + δ − δ1. (2.33)

This yields

O(1)
∫ ∞

0

du
u1+δ1

∫ ∞
0

dv
v1+δ2

∑
x∈Zd

∞∑
n=0

∞∑
N=2

[1− cos(ux1)] [1− cos(v x1)]π(N)
n (x) znc (2.34)

as an upper bound of (2.31). We write the double integral appearing in (2.34) as the sum of four terms,
I1 + I2 + I3 + I4, where

I1 =
∞∑
N=2

∫ 1

0

du
u1+δ1

∫ 1

0

dv
v1+δ2

∑
x∈Zd

∞∑
n=0

[1− cos(
⇀
u · x)] [1− cos(

⇀
v · x)]π(N)

n (x) znc (2.35)

with
⇀
u = (u, 0, . . . , 0) ∈ Rd,

⇀
v = (v, 0, . . . , 0) ∈ Rd, (2.36)

and I2, I3, I4 are defined similarly:

I2 =
∫ 1

0
du
∫ ∞

1
dv · · · , I3 =

∫ 1

0
du
∫ ∞

1
dv · · · , I4 =

∫ ∞
1

du
∫ ∞

1
dv · · · . (2.37)

We now show that I1, . . . , I4 are all finite, which implies (2.21). The bound I4 <∞ simply follows from
1 − cos t ≤ 2 and (2.24). In order to prove the bounds I1, I2, I3 < ∞ we need the particular structure
of the π(N)

n (x)-terms.
To this end, we define

G̃z(x) = z(D ∗Gz)(x), x ∈ Zd, (2.38)

and
B̃(z) = sup

x∈Zd
(Gz ∗ G̃z)(x). (2.39)

In [17, Theorem 4.1] it is shown that for z ≥ 0, N ≥ 1,∑
x∈Zd

[1− cos(k · x)] Π(1)
z (x) = 0 (2.40)

and ∑
x∈Zd

[1− cos(k · x)] Π(N)
z (x) ≤ N

2
(N + 1)

(
sup
x

[1− cos(k · x)]Gz(x)
)
B̃(z)N−1, N ≥ 2. (2.41)

These bounds are called diagrammatic estimates, because the lace expansion coefficients π(N)
z (x) are

expressed in terms of diagrams, whose structure is heavily used in the derivation of the above bounds.
The composition of the diagrams and their decomposition into two-point functions as in (2.40)–(2.41)
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is described in detail in [17, Sections 3 and 4]. It is clear that a slight modification of this procedure
proves the bound

∑
x∈Zd

∞∑
n=0

[1− cos(
⇀
v · x)] [1− cos(

⇀
u · x)]π(N)

n (x) zn

≤ O(N4) B̃(z)N−2

(
sup
x

[1− cos(
⇀
v · x)]Gz(x)

)
×
(

sup
y

∑
x∈Zd

[1− cos(
⇀
u · x)]Gz(x)Gz(y − x)

)
.

(2.42)

Given (2.42), it remains to show the following three bounds:

B̃(zc) = sup
x∈Zd

(Gzc ∗ G̃zc)(x) ≤ O
(
L−d

)
; (2.43)

sup
x

[1− cos(
⇀
v · x)]Gzc(x) ≤ O

(
vα∧2

)
; (2.44)

sup
y

∑
x∈Zd

[1− cos(
⇀
u · x)]Gzc(x)Gzc(y − x) ≤ O

(
u(d−2(α∧2))∧(α∧2)

)
. (2.45)

Suppose (2.43)–(2.45) were true, then

∑
x∈Zd

∞∑
n=0

[1− cos(
⇀
u · x)] [1− cos(

⇀
v · x)]π(N)

n (x) zcn

≤ O
(
N4
)
O
(
L−d

)N−2
O
(
vα∧2

)
O
(
u(d−2(α∧2))∧(α∧2)

)
.

(2.46)

Since δ1 < (α ∧ 2) ∧ (d − 2(α ∧ 2)) and δ2 < α ∧ 2, we obtain that I1 is finite for L sufficiently large,
as desired. Similarly, it follows that I2 and I3 are finite. It remains to prove (2.43)–(2.45), and we use
results from [8] to prove it.

We introduce the quantity

λz := 1− 1
Ĝz(0)

= 1− 1
χ(z)

∈ [0, 1]. (2.47)

Then λz satisfies the equality
Ĝz(0) = Ĉλz(0), (2.48)

where Ĉλz(k) = [1 − λzD̂(k)]−1 is the Fourier transform of the simple random walk Green’s function.
This definition is motivated by the intuition that Ĝz(k) and Ĉλz(k) are comparable in size and, moreover,
the discretized second derivative

∆kĜz(l) := Ĝz(l − k) + Ĝz(l + k)− 2Ĝ(l) (2.49)

is bounded by

Uλz(k, l) := 200 Ĉλz(k)−1
{
Ĉλz(l − k)Ĉλz(l) + Ĉλz(l)Ĉλz(l + k) + Ĉλz(l − k)Ĉλz(l + k)

}
. (2.50)

To make this more precise, we consider the function f : [0, zc]→ R, defined by

f := f1 ∨ f2 ∨ f3 (2.51)
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with

f1(z) := z, f2(z) := sup
k∈[−π,π)d

Ĝz(k)
Ĉλz(k)

, (2.52)

and

f3(z) := sup
k,l∈[−π,π)d

|∆kĜz(l)|
Uλz(k, l)

, (2.53)

It is an important result in [8] that, under the conditions of Theorem 1.2, the function f is uniformly
bounded on [0, zc), cf. [8, Prop. 2.5 and 2.6]. In fact, it is shown that f(z) ≤ 1 + O(L−d), but for our
need it suffices to have f uniformly bounded. Since the bound is uniform, we can conclude that even
f(zc) <∞.

Indeed, (2.43) follows by standard methods from [8, Proposition 2.2], see e.g. [17, (5.28) in conjunc-
tion with Lemma 5.10]. Furthermore, (2.44) is proven in [8, Lemma B.5] in the context of the Ising
model, but applies verbatim to self-avoiding walk. It remains to prove (2.45). Since

sup
y

∑
x∈Zd

[1− cos(
⇀
u · x)]Gzc(x)Gzc(y − x)

= sup
y

∫
[−π,π)d

e−il·y
(
Ĝzc(l)−

1
2

(
Ĝzc(l −

⇀
u) + Ĝzc(l +

⇀
u)
))

Ĝzc(l)
dl

(2π)d

≤
∫

[−π,π)d

∣∣∣∣12 ∆⇀
u
Ĝzc(l)

∣∣∣∣ Ĝzc(l) dl
(2π)d

, (2.54)

our bounds f2(zc) ≤ K and f3(zc) ≤ K, together with λzc = 1, imply that

sup
y

∑
x∈Zd

[1− cos(
⇀
u · x)]Gzc(x)Gzc(y − x)

≤ 100K2 Ĉ1(
⇀
u)−1

∫
[−π,π)d

(
Ĉ1(l − ⇀

u) Ĉ1(l +
⇀
u) + Ĉ1(l − ⇀

u) Ĉ1(l)

+ Ĉ1(l) Ĉ1(l +
⇀
u)
)
Ĉ(l)

dl
(2π)d

= O(1) [1− D̂(
⇀
u)]
∫

[−π,π)d

(
1

[1− D̂(l − ⇀
u)] [1− D̂(l +

⇀
u)] [1− D̂(l)]

+
1

[1− D̂(l − ⇀
u)] [1− D̂(l)]2

+
1

[1− D̂(l +
⇀
u)] [1− D̂(l)]2

)
dl

(2π)d
.

(2.55)

Chen and Sakai show that the integral term on the right hand side of (2.55) is bounded above by
O
(
u(d−3(α∧2))∧0

)
, cf. [4, (4.30)–(4.33)]. Furthermore, 1− D̂(

⇀
u) ≤ O

(
uα∧2

)
by (1.12). The combination

of the above inequalities implies (2.45), and hence the claim follows.

2.3 Error bounds

The proof of Lemma 2.1 is the final piece in the proof of Theorem 1.2. Our proof of Lemma 2.1 makes
use of the following lemma:

Lemma 2.5. Consider a function g given by the power series g(z) =
∑∞

n=0 anz
n, with zc as radius of

convergence.
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(i) If |g(z)| ≤ O(|zc−z|−b) for some b ≥ 1, then |an| ≤ O(z−nc log(n)) if b = 1, or |an| ≤ O(z−nc nb−1)
if b > 1.

(ii) If |g′(z)| ≤ O(|zc − z|−b) for some b > 1, then |an| ≤ O(z−nc nb−2).

The proof of assertion (i) is contained in [6, Lemma 3.2], and (ii) is a direct consequence of (i) since
(i) implies that |nan| ≤ O(z−nc nb−1). Lemma 2.5 is the key to the proof of Lemma 2.1.

Proof of Lemma 2.1. We recall

Θz(k) =
∞∑
n=0

θn(k) zn, (2.56)

where
Θz(k) =

[1− z/zc]Ez(k)(
[1− z/zc] (A(k) + Ez(k)) +B(k)

) (
[1− z/zc]A(k) +B(k)

) . (2.57)

We fix ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1) and aim to prove |θn(k)| ≤ O(z−nc n−ε), where the constant in the
O-term is uniform for k ∈ [−π, π)d. By Lemma 2.5 it is sufficient to show |∂zΘz(k)| ≤ O

(
|zc−z|−(2−ε)),

and we prove this now.
Before bounding ∂zΘz(k), we consider derivatives of Π̂z(k) (the Fourier transform of Πz(x) intro-

duced in (2.2)). The first derivative of ∂zΠ̂z(k) is converging absolutely for z ≤ zc, i.e.,

∑
x∈Zd

∞∑
n=2

n |πn(x)| zn−1
c <∞, (2.58)

cf. [13, Theorem 6.2.9] for a proof in the finite-range setting, and again [8] for the extension to long-range
systems. Moreover, we claim that

∑
x∈Zd

∞∑
n=2

n(n− 1)ε |πn(x)| zn−1
c <∞; (2.59)

for ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1). The bound (2.59) can be proved by considering temporal fractional
derivatives, as introduced in [13, Section 6.3]. In particular, the proof of [13, Theorem 6.4.2] shows

sup
x∈Zd

∞∑
n=2

n(n− 1)ε cn(x) zn−1
c ≤ O(1)

∫
[−π,π)d

∑
n≥2

n(n− 1)εD̂(k)n−2 dk
(2π)d

, (2.60)

(see the first displayed identity in [13, p. 196]). On the one hand, D̂(k) = 1− (1− D̂(k)) ≤ e−(1−D̂(k)) ≤
e−c1 |k|

α∧2
for some constant c1 > 0, by (1.12). On the other hand, −D̂(k) ≤ 1 − c2 for a positive

constant c2, by (1.10). Together these bounds yield∫
[−π,π)d

D̂(k)n−2 dk
(2π)d

≤
∫

k∈[−π,π)d :

D̂(k)≥0

e−c1 (n−2) |k|α∧2 dk
(2π)d

+
∫

k∈[−π,π)d :

D̂(k)<0

(1− c2)n−2 dk
(2π)d

≤ O(n−d/(α∧2)) + (1− c2)n−2 ≤ O(n−d/(α∧2)). (2.61)
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Hence the right hand side of (2.60) is less than or equal to∑
n≥2

n(n− 1)εO(n−d/(α∧2)), (2.62)

and this is finite if 1 + ε− d/(α ∧ 2) < −1. Furthermore, the proof of [13, Corollary 6.4.3] shows that

∑
x∈Zd

∞∑
n=2

n(n− 1)ε |πn(x)| zn−1
c ≤ O(1)

(
sup
x∈Zd

∞∑
n=2

n(n− 1)ε cn(x) zn−1
c

)
(2.63)

under the conditions of Theorem 1.2. This proves (2.59).
We first prove

Ez(k) ≤ O(|zc − z|ε) (2.64)

by considering the power series representation of Π̂z(k) in (2.9):

Ez(k) =
1

zc − z
∑
x

∑
n≥2

eik·x πn(x) (znc − zn)−
∑
x

∑
n≥2

eik·x πn(x)n zn−1
c . (2.65)

Since
znc − zn

zc − z
=

n−1∑
i=0

zi z(n−1)−i
c , (2.66)

one has

Ez(k) =
∑
x

∑
n≥2

eik·x πn(x)
n−1∑
i=1

(
zi − zic

)
z(n−1)−i
c . (2.67)

For every ζ, ε ∈ (0, 1) and n ≥ 2,∣∣1− ζn−1
∣∣ =

∣∣∣∣(1− ζn−1)1−ε
(

1− ζn−1

1− ζ

)ε
(1− ζ)ε

∣∣∣∣
≤

∣∣∣∣∣
n−2∑
l=0

ζ l

∣∣∣∣∣
ε

(1− ζ)ε ≤ (n− 1)ε (1− ζ)ε . (2.68)

Applying this for ζ = z/zc, we obtain for z < zc and 0 < i < n,

∣∣zi − zic∣∣ z(n−1)−i
c =

∣∣∣∣∣1−
(
z

zc

)i∣∣∣∣∣ zn−1
c ≤

∣∣∣∣∣1−
(
z

zc

)n−1
∣∣∣∣∣ zn−1
c

≤
∣∣∣∣1− z

zc

∣∣∣∣ε (n− 1)ε zn−1
c . (2.69)

Insertion into (2.67) yields

|Ez(k)| ≤ (zc − z)ε
∑
x

∑
n≥2

n(n− 1)ε |πn(x)| zn−1
c ≤ O(|zc − z|ε), (2.70)

where the last bound uses (2.59). We further differentiate (2.9) to get

∂zEz(k) =
(zc − z) ∂z

(
Π̂zc(k)− Π̂z(k)

)
+
(
Π̂zc(k)− Π̂z(k)

)
(zc − z)2

=
1

zc − z

(
Π̂zc(k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)

)
. (2.71)
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A calculation similar to (2.65)–(2.70) shows

|∂zEz(k)| ≤
∣∣∣∣Ez(k)
zc − z

∣∣∣∣+
1

zc − z

∣∣∣∣∣∣
∑
x

∑
n≥2

eik·x πn(x)n
(
zn−1
c − zn−1

)∣∣∣∣∣∣ ≤ O(|zc − z|ε−1). (2.72)

We write D1 and D2 for the two factors in the denominator in (2.57). Then

z2
c ∂zΘz(k) =

zc
D1D2

(
(zc − z) ∂zEz(k)− Ez(k)

)
− zc − z

(D1D2)2
Ez(k)

((
−A(k)− Ez(k) + (zc − z) ∂zEz(k)

)
D2 −D1A(k)

)
.

(2.73)

After further cancelation of D1-, D2-terms we are left with D1 and D2 in the denominator only, hence
a lower bound on them suffices. Indeed, there is a constant c > 0 such that

|D1| =
∣∣∣zc Ĝz(k)

∣∣∣−1
≥ z−1

c χ(z) ≥ c (zc − z) , (2.74)

where the last bound follows from [8, (1.24) and Theorem 1.3]. Furthermore,

|D2| ≥ c (zc − z) (2.75)

because D2 is a linear function in (zc− z). The lower bounds on D1 and D2, together with the bounds
on Ez(k) and ∂zEz(k) in (2.64) and (2.72), prove that (2.73) is uniformly bounded for all z ≤ zc, and
in particular

∂zΘz(k) ≤ O(|zc − z|−(2−ε)). (2.76)

Finally, assertion (ii) in Lemma 2.5 implies

θn(k) ≤ O(z−nc n−ε) (2.77)

for all ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1), uniformly in k.

3 The mean-r displacement: proof of Theorem 1.4

Proof of Theorem 1.4. Our proof uses methods similar to those developed in Section 2.2, and again
a key ingredient is the equality in (2.30). Recalling (1.22) we note that (1.21) can be rewritten as
ξ(r)(n) � fα(n)−1. Also, we write x1 for the first component of the vector x ∈ Zd, and denote by

⇀
u the

vector
⇀
u = (u, 0, . . . , 0) ∈ Rd, see also (2.36). We use reflection and rotation symmetry of cn in the first

line, and (2.30) in the second line to obtain

1
cn

∑
x∈Zd

|x|rcn(x) �
∑
x∈Zd

|x1|r
cn(x)
cn

�
∑
x∈Zd

∫ ∞
0

du
u1+r

[1− cos(
⇀
u · x)]

cn(x)
cn

=
∫ ∞
fα(n)

du
u1+r

∑
x∈Zd

[1− cos(
⇀
u · x)]

cn(x)
cn

+
∫ fα(n)

0

du
u1+r

(
1− ĉn(

⇀
u)

ĉn(0)

)
. (3.1)
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For the first integral on the right hand side of (3.1) we use 0 ≤ [1− cos(
⇀
u · x)] ≤ 2 yielding

0 ≤
∫ ∞
fα(n)

du
u1+r

∑
x∈Zd

[1− cos(
⇀
u · x)]

cn(x)
cn

≤
∫ ∞
fα(n)

du
u1+r

= O
(
fα(n)−r

)
. (3.2)

For the second integral, we substitute u by fα(n)u to obtain∫ fα(n)

0

du
u1+r

(
1− ĉn(

⇀
u)

ĉn(0)

)
= fα(n)−r

∫ 1

0

du
u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
, (3.3)

where
⇀
un = fα(n)

⇀
u (compare with kn in (1.15)). Suppose we know∫ 1

0

du
u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
� 1, (3.4)

then it would follow that c−1
n

∑
x |x|rcn(x) � fα(n)−r, as desired.

It remains to show (3.4) is indeed true. The idea is the following. If the ratio ĉn(
⇀
un)/ĉn(0) is

replaced by its limit exp{−Kαu
α∧2} (cf. Theorem 1.2), then Taylor expansion shows

1− exp{−Kαu
α∧2} = Kαu

α∧2 +O
(
u2(α∧2)

)
,

and since α ∧ 2− (1+r) > −1, the integral in (3.4) converges. However, a careful consideration of error
terms makes the argument look slightly more complicated.

We write
hn = −n(1− D̂(

⇀
un))A(

⇀
un)−1B(

⇀
un)[1− D̂(

⇀
un)]−1. (3.5)

By (2.17), (
1− ĉn(

⇀
un)

ĉn(0)

)
=
(
1 +O(n−ε)

) [
1− A(0)

A(
⇀
un) +B(

⇀
un)

(
1 +

hn
n

)n]
. (3.6)

Taylor expansion shows

n log

(
1 +

hn
n

)
= hn +O

(
h2
n

n

)
and (

1 +
hn
n

)n
= en log(1+hn/n) = ehn

(
1 +O

(
h2
n

n

))
.

Insertion into (3.6) obtains(
1− ĉn(

⇀
un)

ĉn(0)

)
=
(
1 +O(n−ε)

) A(0)

A(
⇀
un) +B(

⇀
un)

[
A(

⇀
un) +B(

⇀
un)

A(0)
− 1 +

(
1− ehn

)
−O

(
h2
n

n

)
ehn
]
.

(3.7)

We remark that the limit in (1.16) is uniform in u ∈ (0, 1], and the bound (2.26) implies that
B(

⇀
un) � [1 − D̂(

⇀
un)] uniformly in u ∈ (0, 1]. We show below that the limit A(

⇀
un) → A(0) is also

uniform. Consequently, also limn→∞ hn = −Kuα∧2 is a uniform limit, and this is important since we
are integrating u over the interval (0, 1].
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We finally show that

A(
⇀
un) +B(

⇀
un)

A(0)
− 1 =

A(
⇀
un)−A(0) +B(

⇀
un)

A(0)
≤ uα∧2o(1) (3.8)

as n → ∞, uniformly in u. By (2.18), B(
⇀
un) � [1− D̂(

⇀
un)] = O(1/n)uα∧2. We choose δ as in (2.20),

so that in particular 0 ≤ (α ∧ 2) + δ ≤ 2. Consequently,∣∣∣A(
⇀
un)−A(0)

∣∣∣ ≤ [1− D̂(
⇀
un)] +

∑
x∈Zd

∞∑
n=2

[1− cos(
⇀
un · x)]n |πn(x)| zn−1

c

= uα∧2O(1/n) +
∑
x∈Zd

∞∑
n=2

O
(
|⇀un|(α∧2)+δ|x|(α∧2)+δ

)
n |πn(x)| zn−1

c

Since |⇀un|(α∧2)+δ � u(α∧2)+δ/n1+δ/(α∧2) for α 6= 2, and |⇀un|(α∧2)+δ � u2/(n log
√
n) for α = 2, we bound

further ∑
x∈Zd

∞∑
n=2

O
(
|⇀un|(α∧2)+δ|x|(α∧2)+δ

)
n |πn(x)| zn−1

c

≤ O
(
u(α∧2)+δ

) ∑
x∈Zd

∞∑
n=2

|x|(α∧2)+δ |πn(x)| zn−1
c ×

{
n−δ/(α∧2), if α 6= 2,
(log n)−1, if α = 2,

(3.9)

and this is bounded above by uα∧2o(1) by appeal to Lemma 2.4. In particular, this implies that
A(

⇀
un)→ A(0) uniformly in u.
We have proven that the only non-vanishing contribution towards (3.7) comes from the term 1−ehn.

Since the sequence hn converges uniformly to the negative limit −Kα u
α∧2, there is an n0 such that

for all n ≥ n0, −2Kα u
α∧2 ≤ hn ≤ −Kα u

α∧2/2. Consequently, 1 − ehn is positive for n ≥ n0, and
1− ehn ≤ O

(
uα∧2

)
by Taylor expansion. Therefore,

0 ≤

(
1− ĉn(

⇀
un)

ĉn(0)

)
≤ O

(
uα∧2

)
(3.10)

as n→∞, where the bounds on the error terms do not depend on n. Hence for r < α ∧ 2, the integral∫ 1

0

du
u1+r

(
1− ĉn(

⇀
un)

ĉn(0)

)
(3.11)

converges, and is positive for sufficiently large n. The combination of (3.2), (3.3) and (3.10) implies the
claim.

4 Convergence of finite dimensional distributions:
proof of Theorem 1.6

Proof of Theorem 1.6. The proof is via induction over N , and is very much inspired by the proof of
[13, Theorem 6.6.2], where finite-range models were considered. The flexibility in the last argument of
nT is needed to perform the induction step. We shall further write nt(j) and nT instead of bnt(j)c and
bnT c for brevity.
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To initialize the induction we consider the case N = 1. Since ĉ(1)

nT(kn) = ĉnT (k(1)
n ), the assertion for

N = 1 is a minor generalization of Theorem 1.2. In fact, if we replace n by nT , then instead of (1.16)
we have

nT [1− D̂(kn)] = nt(1)(1− gn)
[
1− D̂

(
fα(t(1)n) k (t(1))1/(α∧2)

)]
→ |k|α∧2 t(1) as n→∞. (4.1)

With an appropriate change in (2.17) we obtain (1.32) for N = 1 from Theorem 1.2.
To advance the induction we prove (1.32) assuming that it holds when N is replaced by N − 1. For

a path w ∈ Wn and 0 ≤ a ≤ b ≤ n it will be convenient to write

K[a,b](w) := 1{(wa,...,wb) is self-avoiding}. (4.2)

We further consider the quantity J[a,b](w) that arises in the algebraic derivation of the lace expansion
as in [17, Sect. 3.2]. For our needs it suffices to know that∑

w∈Wn(x)

W (w)J[0,n](w) = πn(x) (4.3)

and, for any integers 0 ≤ m ≤ n and paths w ∈ Wn,

K[0,n](w) =
∑
I3m

K[0,I1](w) J[I1,I2](w)K[I2,n](w), (4.4)

where the sum is over all intervals I = [I1, I2] of integers with either 0 ≤ I1 < m < I2 ≤ n or
I1 = m = I2. We refer to [17, (3.13)] for (4.3), and to [13, Lemma 5.2.5] for (4.4). By (1.30) and (4.4),

ĉ(N)

nT(kn) =
∑

I3nt(N−1)

∑
w∈WnT

eikn·∆w(nT)W (w) K[0,I1](w) J[I1,I2](w)K[I2,nT ](w). (4.5)

Let
≤
c (N) and

>
c (N) denote the contributions towards (4.5) corresponding to intervals I with length

|I| = I2 − I1 ≤ bn and |I| > bn, respectively. It will turn out that the latter contribution is negligible.
We take n sufficiently large so that (nt(N−1) − nt(N−2)) ∨ (nt(N) − nt(N−1)) ≥ bn and

≤
c (N)

nT(kn) =
∑

I3nt(N−1)

|I|≤bn

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)
n , . . . , k

(N−1)
n

)
× ĉnT−I2(k(N)

n )

×
∑

w∈W|I|

exp
{
ik(N−1)
n · wnt(N−1)−I1 + ik(N)

n · (wI2−I1 − wnt(N−1)−I1)
}
W (w) J[0,|I|](w).

(4.6)

We use ey = 1 +O(|y|α∧1) and (4.3) to see that the second line in (4.6) is equal to∑
x

(
1 +O(|fα(n)x|α∧1)

)
π|I|(x). (4.7)

By the induction hypothesis,

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)
n , . . . , k

(N−1)
n

)
= ĉI1(0) exp

−Kα

N−1∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

+ o(1)
(4.8)

and
ĉnT−I2(k(N)

n ) = ĉnT−I2(0) exp
{
−Kα |k(N)|α∧2 (t(N) − t(N−1))

}
+ o(1), (4.9)
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where the error terms are uniform in |I| ≤ bn.
Substituting (4.7)–(4.9) into (4.6) yields

≤
c (N)

nT(kn) = exp

−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))

 ≤
c (N)

nT(0) + Θ + o(1) (4.10)

where
|Θ| ≤

∑
I3nt(N−1)

|I|≤bn

ĉI1(0) ĉnT−I2(0)
∑
x

O
(
|fα(n)x|α∧1

)
π|I|(x). (4.11)

In (4.11) there are precisely m−1 ways to choose the interval I 3 nt(N−1) of length |I| = m. We further
bound

|Θ|
ĉnT (0)

≤
bn∑
m=1

m
∑
x

O
(
|fα(n)x|α∧1

)
πm(x) zmc

≤ O(|fα(n)|α∧1 bn)
∞∑
m=1

∑
x

|x|α∧2 |πm(x)| zmc = o(1), (4.12)

where Corollary 2.2 is used in the first inequality, m ≤ bn in the second, and the last estimate uses
(1.31) and Lemma 2.4. Recalling ĉ(N)

nT(k) =
≤
c (N)

nT(k)+
>
c (N)

nT(k),

≤
c (N)

nT(kn)
ĉnT (0)

= exp

−Kα

N∑
j=1

|k(j)|α∧2 (t(j) − t(j−1))


(

1−
>
c (N)

nT(0)
ĉnT (0)

)
+
|Θ|

ĉnT (0)
+

>
c (N)

nT(kn)
ĉnT (0)

, (4.13)

and it suffices to show
>
c (N)

nT(kn)/ĉnT (0) = o(1) as n→∞. By bounding | eikn·∆w(nT) | ≤ 1 in (4.5), and
using again (4.3) and Corollary 2.2,

>
c (N)

nT(kn)
ĉnT (0)

≤ O(1)
∞∑

m=bn+1

m
∑
x

|πm(x)| zmc , (4.14)

which vanishes as n → ∞ by (2.58) and the fact that bn → ∞ as n → ∞. We have completed the
advancement of the induction, and all error terms occurring are uniform in sequences g = (gn) that
satisfy 0 ≤ gn ≤ bn. This proves (1.32) for all N ≥ 1.

5 Tightness

In this section we prove tightness of the sequence Xn, the missing piece for the proof of Theorem 1.5.
Indeed, tightness is implied by Theorem 1.4 and the following tightness criterion.

Proposition 5.1 (Tightness criterion [1]). The sequence {Xn} is tight in D([0, 1],Rd) if the limiting
process X has a.s. no discontinuity at t = 1 and there exist constants C > 0, r > 0 and a > 1 such that
for 0 ≤ t1 < t2 < t3 ≤ 1 and for all n,

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n ≤ C|t3 − t1|
a. (5.1)

This proposition is a slight modification of Billingsley [1, Theorem 15.6], where (15.21) is replaced
by the stronger moment condition on the bottom of page 128 (both references to Billingsley [1]).
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Corollary 5.2 (Tightness). The sequence {Xn} in (1.23) is tight in D([0, 1],Rd).

Proof. We first remark that α-stable Lèvy motion indeed has a version without jumps at fixed times,
and hence no discontinuity at t = 1 occurs, see e.g. [11, Theorem 13.1]. Fix r = 3/4 (α ∧ 2) (in fact,
any choice r ∈ ((α ∧ 2)/2, α ∧ 2) is possible). Again we write nt for bntc, for brevity. The left hand
side of (5.1) can be written as

fα(n)2r

cn (2dKα)2r/(α∧2)

∑
w∈Wn

|w(nt2)− w(nt1)|r |w(nt3)− w(nt2)|rW (w)K[0,n](w), (5.2)

where K[0,n](w) was defined in (4.2). Since

K[0,n](w) ≤ K[0,nt1](w)K[nt1,nt2](w)K[nt2,nt3](w)K[nt3,n](w) (5.3)

and, by Corollary 2.2,
c−1
n ≤ O(1) c−1

nt1
c−1
nt2−nt1 c

−1
nt3−nt2 c

−1
n−nt3 , (5.4)

we can bound (5.2) from above by

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n

≤ O(1) fα(n)2r 1
cnt2−nt1

∑
w∈Wnt2−nt1

|w(nt2 − nt1)|r

× 1
cnt3−nt2

∑
w∈Wnt3−nt2

|w(nt3 − nt2)|r

= O(1) fα(n)2r
(
ξ(r)(nt2 − nt1)

)r (
ξ(r)(nt3 − nt2)

)r
.

(5.5)

By Theorem 1.4 and (1.22),(
ξ(r)(nt∗ − nt∗)

)r
≤ O(1) fα(n)−r (t∗ − t∗)r/(α∧2) (5.6)

for any 0 ≤ t∗ < t∗ ≤ 1, so that

〈|Xn(t2)−Xn(t1)|r |Xn(t3)−Xn(t2)|r〉n ≤ O(1) (t3 − t1)2r/(α∧2) = O(1) (t3 − t1)3/2. (5.7)

This proves tightness of the sequence {Xn}.

Proof of Theorem 1.5. The convergence in distribution in Theorem 1.5 is implied by convergence of
finite dimensional distributions and tightness of the sequence Xn, see e.g. [1, Theorem 15.1]. Hence,
Theorem 1.6 and Corollary 5.2 imply Theorem 1.5.

A Aymptotics of the step distribution

Proof of (1.12). We consider separately the cases α > 2 and α ≤ 2.
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Case α > 2. Since cos(t) = 1− t2/2 + o(t2) as t→ 0, we have

D̂(k) =
∑
x∈Zd

eik·x D(x) =
∑
x∈Zd

cos(k · x)D(x)

=
∑
x∈Zd

D(x)−
∑
x∈Zd

(
1
2

d∑
j=1

(kj xj)2 + o
(
|k · x|2

))
D(x)

= 1− 1
2

∑
x∈Zd

(
d∑
j=1

k2
j x

2
j + 2

∑
1≤j≤n≤d

kj kn xj xn

)
D(x) + o

(
|k|2
)
. (A.1)

By reflection symmetry, ∑
x∈Zd

∑
1≤j≤n≤d

kj kn xj xnD(x) = 0.

Furthermore, as D is symmetric under rotations by ninety degree,∑
x∈Zd

x2
1D(x) =

∑
x∈Zd

x2
2D(x) = · · · = 1

d

∑
x∈Zd

|x|2D(x),

so that

D̂(k) = 1− |k|
2

2d

∑
x∈Zd

|x|2D(x) + o
(
|k|2
)
. (A.2)

Setting
∑

x∈Zd |x|2D(x) = 2d vα proves the claim.

Case α ≤ 2. The case α ≤ 2 requires a more elaborate calculation. This part of the proof is adapted
from Koralov and Sinai [12, Lemma 10.18], who consider the one-dimensional continuous case. We can
write D(x) as

D(x) = c
1 + g(x)
|x|d+α

, (A.3)

where c is a positive constant and g is a bounded function on Rd obeying g(x)→ 0 as |x| → 0. By our
assumption, g is rotation invariant for |x| > M . We might limit ourselves to the case |k| ≤ 1/M and
split the sum defining D̂(k) as

D̂(k) =
∑
|x|≤M

eik·xD(x) +
∑

M<|x|≤1/|k|

eik·xD(x) +
∑

1/|k|<|x|

eik·xD(x). (A.4)

Denote by S1, S2 and S3 the three sums on the right hand side of (A.4). A calculation similar to (A.2)
shows

S1 =
∑
|x|≤M

D(x) +O
(
|k|2
)

=
∑
|x|≤M

D(x) +

{
o
(
|k|α

)
if α < 2,

o
(
|k|2 log 1

|k|
)

if α = 2.
(A.5)

For S3 we substitue x by y/|k| yielding

S3 = |k|d+α
∑

y∈|k|Zd
|y|>1

c
1 + g(y/|k|)
|y|d+α

eiek·y, (A.6)
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where ek = k/|k| is the unit vector in direction k. By translation invariance of g and Riemann sum
approximation we obtain

S3 = |k|α
(∫
|y|≥1

c
1 + g(y/|k|)
|y|d+α

eiy1 dy + o(1)

)
, (A.7)

with y1 being the first coordinate of the vector y. Finally, the dominated convergence theorem obtains

S3 = |k|αc
∫
|y|≥1

eiy1

|y|d+α
dy + o

(
|k|α

)
, (A.8)

where the integral contributes towards vα.
Since D is symmetric, the sum defining S2 can be split as

S2 =
∑

M<|x|≤1/|k|

(
eik·x−1− ik · x

)
D(x) +

∑
M<|x|

D(x)−
∑

1/|k|<|x|

D(x). (A.9)

Consider first the last sum. As before, we substitute x by y/|k|, use Riemann sum approximation and
finally dominated convergence to obtain∑

1/|k|<|x|

D(x) = |k|α+d
∑

y∈|k|Zd
|y|>1

c
1 + g(y/|k|)
|y|d+α

= |k|αc
∫
|y|≥1

eiy1

|y|d+α
dy + o

(
|k|α

)
. (A.10)

It remains to understand the first sum on the right hand side of (A.9). We treat this term with the
same recipe as above yielding∑

M<|x|≤1/|k|

(
eik·x−1− ik · x

)
D(x)

= |k|αc
∫
|k|M≤|y|≤1

1 + g(y/|k|)
|y|d+α

(
y2

1 +O
(
|y1|2+ε

))
dy + o

(
|k|α

)
.

(A.11)

For α < 2 the integral is uniformly bounded in k, and hence the dominated convergence theorem can
be used one more time to obtain the desired asymptotics. However, if α = 2 then the dominating
contribution towards (A.11) is

|k|2
∫
|k|M≤|y|≤1

y2
1

|y|d+α
dy =

|k|2

d

∫
|k|M≤|y|≤1

1
|y|d

dy = const |k|2
(

log
1
|k|

+ log
1
M

)
. (A.12)

Summarizing our calculations, we obtain

D̂(k) =
∑
x∈Zd

D(x)− vα|k|α + o
(
|k|α

)
= 1− vα|k|α + o

(
|k|α

)
(A.13)

for α < 2, and

D̂(k) = 1− vα|k|2 log
1
|k|

+ o

(
|k|2 log

1
|k|

)
(A.14)

for α = 2, where vα is composed of the various integrals arising during the proof.
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