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Abstract

We present a two-stage group testing model for the detection of
viruses in blood samples in the presence of random window periods.
As usual, if a tested group is found to be positive, all its members
are treated individually. The groups that were tested negative return
for a second round after a certain time, new blood samples are taken
and tested after pooling. The given system parameters are the size
of the population to be screened, the incidence rates of the infections,
the probability distributions of the lengths of the window periods, and
the costs of group tests. The objective is to minimize the expected
cost of running the system, which is composed of the cost of the con-
ducted group tests and penalties on delayed test results and on mis-
classifications (noninfected persons declared to be positive and, more
importantly, persons whose infections have not been identified). By an
appropriate choice of the group size and the waiting time for the second
round of testings one wants to optimize the various trade-offs involved.
We derive in closed form all the probabilistic quantities occurring in
the objective function and the constraints. Several numerical examples
are given. The model is also extended to the case of several types of
viruses with different window periods.
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1 Introduction

In this paper we consider a two-stage group testing model for the detection
of viruses in blood samples in the presence of window periods.

Due to the high cost of advanced techniques like Nuclear Acid Testing
(NAT), pooling methods have been frequently adopted when a large num-
ber of blood samples has to be screened for hepatitis B (HBV), hepatitis C
(HCV), human immunodeficiency virus (HIV), or syphilis, for example in
blood banks or in mass screenings.

A serious problem of testing for viral diseases is the presence of window
periods, defined as the period elapsing from the time a person is infected by
some virus until antibodies can be detected. Examples of average window
periods for some viruses are: 22 days for HIV, 60 for HBV and 70 for HCV,
but in individual cases window periods can be substantially longer.

In this paper we suggest and study the following model. Blood samples
of a large number of individuals have to be tested for one or several viral
diseases. Blood samples are taken, pooled in groups of equal size (which is a
decision variable) and then tested. If a tested group is found to be positive,
all persons in it are treated individually. In order to take into account the
window periods, the other groups return for a second round of testing after
a certain time (a second decision variable), new blood samples are taken and
tested after pooling, using the same groups as in the first stage. The given
system parameters are the size of the population to be tested, the incidence
rates of the infections, the probability distributions of the (random) lengths
of the window periods, and the costs of group tests. The objective is to
minimize the expected cost of running the system, which is composed of
the cost of the conducted group tests and penalties on delayed test results
and on misclassifications (noninfected persons declared to be positive and,
more importantly, persons whose infections have not been identified). By
an appropriate choice of the group size and the waiting time for the second
round of testings one wants to optimize the various trade-offs involved.

As a classical cost-efficient method to classify items from some finite pop-
ulation into different categories, group testing has been applied in various
areas, first of all for blood testing to detect syphilis, HIV or other diseases
[12, 6, 5, 9, 14, 16], but also in genetics [10, 11, 15], quality control for in-
dustrial production systems [13, 1], drug discovery [18], and communication
networks [17]. A key reference is the monograph [4]. In [2] a more detailed
discussion of the literature and a classification of group testing models ac-
cording to various dichotomies are given. Several studies deal with false
results within a grouping framework, e.g. [6, 14, 8, 3]. Two-stage Bayesian



procedures have been considered in [8, 7], proposing protocols that allow to
detect false-negative results in the second stage that might have passed the
first stage unnoticed.

The paper is organized as follows. In Section 2 we present the model in
detail for the case of only one kind of virus. We formulate the optimization
problem and derive in closed form all the probabilistic quantities occurring
in the objective function and the constraints. In Section 3 we extend the
model to the case of several types of viruses with different window periods.
Section 4 is devoted to numerical examples.

2 Model I: single cause of contamination

2.1 Description and assumptions

For simplicity we call a single blood sample an item. We first consider the
possibility of an item’s infection by only one virus with a random window
period; the case of infections by more than one virus will be discussed later.
We make the following assumptions.

(i) Individuals to be tested. The population consists of N fresh items which
are testable in groups of size m. We only consider group sizes m that divide
N. This assumption avoids some computational and analytic complexity
and causes only a negligible loss of generality in practical situations.

(ii) Bernoulli assumption. The expected proportion g of good items in the
population is assumed to be known in advance (and will usually be close to
1). Every item is good (not infected) with probability ¢ independently of
the others. We set p=1—g.

(iii) Test results. For every group test there are two possible outcomes:
‘clean’, implying that no virus can be detected at the time of testing, or
‘contaminated’, implying that at least one item in the tested group has to
be infected. Under this assumption, outcomes like ‘false negative’ or ‘false
positive’ for tested groups are excluded.

(iv) Window periods. The window period of the virus is assumed to be a
random variable taking values in the nonnegative integers (counting the time
units until detectability), and having a known distribution. We denote by
aj, j =0,1,2,..., the probability that a given item has a window period of
length j at the beginning of stage 1.

(v) Objective. We want to separate the population into clean and con-



taminated groups by means of pooled testing as accurately and quickly as
possible by minimizing some cost function. The individuals belonging to
groups found contaminated are immediately treated individually because of
the suspected presence of viruses.

(vi) The group testing procedure. Every group is tested one or two times.
One test is mandatory. A group which is found contaminated in stage 1
is not further group tested; the members of such a group are immediately
called in for further individual testing to identify the infected persons. A
group that is found clean at the first stage can still be contaminated as it
may contain infected items which have not yet passed their window periods.
Accordingly, in order to improve the quality of the testing procedure, the
members of all groups declared noncontaminated at stage 1 will be called
in after some time r (a decision variable) and have their blood again pooled
(using the groups from the first stage) and tested. Only if found again to
be clean, such a group will be finally declared good; otherwise the persons
in this group will be treated individually. It is assumed that at each stage
all groups are tested at the same time. The cost for testing a group of size
m (in either stage) is ¢(m); it may thus depend on the group size.

The model parameters

N (population size),

p (infection probability),

{c(m)} (costs of testing a group of size m),

(aj)jez, (probability distribution of the duration of the window pe-
riod)

are assumed to be given. Our decision variables are the group size m and
the waiting time r before conducting the second stage tests. Note that in
the case of an unbounded window period distribution misclassifications of
bad items cannot be avoided completely: however large r is chosen, the
probability of not detecting a bad item will always be positive.

Clearly, a larger m leads to less expensive group testing but more wrong
classifications, which may be costly. A larger » may lead to the detection of
more bad items but increases the waiting times of items classified as good
in both stages. An optimal selection of m and r will have to cope with these
trade-offs and find the right balance.

Remark. The items transferred to the second stage of group testing are
exactly the ones which are either not infected or infected with a positive re-
maining window period. They are interchangeable so that it does not matter



how the groups in the second stage are put together. One may also use a dif-
ferent group size for them and take it as a third decision variable. Since this
extension would lead to more complicated formulas without adding crucial
insight or requiring new methodology, we have made the assumption that
the groups in the second stage will be the same as in the first stage (if
transferred).

2.2 The underlying distributions

Let | = N/m denote the number of groups, assuming without loss of gener-
ality that N/m is integer. Let

Ay = Z Ay (21)

Jj=r+1

A, is the probability that the window period is larger than r. Let Z; be the
number of clean items in group 7, ¢ = 1,...,[, that are not classified as good
(because their group is found to be contaminated in stage 1 or stage 2) and
let Z = Zi:l Z; be their total number in the set of all [ groups. Similarly,
let W; be the number of bad items in group i that are finally (wrongly)
classified as ‘good’ and let W = Zizl W; be their total number. Knowing
the distributions of these random variables is crucial for the selection of the
decision parameters.

Theorem 1

P(Z = k) = (Z)qkpm_k (1—A;“—k), k=1,...,m—1,

(2.2)

P(Z; =0) = [q+pA]" +p™ (1 - AT, (2.3)
Pz = (le)*lv ( )

P(W; = k) = (’Z);;kqm—kA’;, k=1,...,m, (2.5)
P(W; =0) =1~ [g+pA]" + 4", (2.6)
Py = (]P)Wl)*l’ ( )

where (Py)* denotes the Ifold convolution of Py with itself.

Proof. Zi,...,Z;and Wy, ..., W are iid so that (2.4) and (2.7) are obvious.
Next, Z; = 0 means that one of the following two events occurs: either (i)
the ith group passes both stages successfully, which is the case if and only
if each of the m items is either good or has a window period larger than r



(probability (g + pA,)™); or (ii) the ith group is found to be contaminated
and all its items are bad (probability p™[1 — A”]). This yields (2.3).

For the event {Z; = k}, k € {1,...,m — 1}, to occur, there have to be
exactly k clean items among the m items chosen for the ith group and the
window period of at least one of the m — k > 1 bad items in the group must
have passed before or at time r. This yields (2.2). For the event {W; = k},
k € {1,...,m}, to occur, there have to be exactly k bad items among the
m items in the ith group and all the corresponding k£ window periods are
larger than r. Finally, W; = 0 means that all items in the ¢th group are
good or there are exactly k bad items for some k € {1,...,m} of which at
least one has a window period not exceeding r. Adding the corresponding
probabilities we obtain (2.6) because

P(W;=0)=1-Y P(W;=k)
k=1
m % m m—
=1+q" =) )pkq AN

Remark. Z; cannot take the value m because a group consisting only of
good items will never be classified as contaminated. Indeed, summing (2.2)-
(2.3) over k= 0,...,m — 1 easily yields 3.3"°;' P(Z; = k) = 1. On the other
hand, W; takes every value 0, ..., m with positive probability.

Some related important probabilities are given in the next theorem.

Theorem 2 Define the events

B: a given group is not declared contaminated in stage 1;

C': all m items in a given group are clean;

D: a given group passes successfully the two consecutive stages.

Then we have

(1)

P(C)=q™, (2.8)

(i)
P(B) = g+ p(1 — a0)]™, (2.9)

(iii)
P(D) = [¢ + pA™, (2.10)



(iv)

(2.11)

P(D | B) = ( a4+ p4, )>m

q+p(l—ap
(v)

P(C'| B) = <M)m (2.12)
(vi)
P(W =0) = (1—[g+pA]" +q™)". (2.13)

Proof. (i) - (iii) follow immediately from the independence assumptions,
and (iv) - (v) are elementary conditional probabilities derived from (i) - (iii).
(vi) is a special case of (2.7) combined with (2.6). [

2.3 The objective function

We now turn to the formulation of the cost minimization problem. Recall (cf.
Section 2.1) that the model parameters N, p, {c(m)} and {a;} are assumed
to be given, and that our decision variables are the group size m and the
waiting time r before conducting the second stage tests. The following costs
and rewards can be considered:

(a) After the testing, a random number Y of groups has successfully passed
the two consecutive stages. Clearly, Y ~ B(l,P(D)), where P(D) is
given in (2.10). Let p(r) be the penalty per item due to a delay of r
time units before getting the test result; p(r) is assumed to be some
nondecreasing function. Then the total penalty caused by delays is
p(rymY.

(b) The total cost of testing is the sum of the cost of the [ tests in stage
1 and of the random number of tests in stage 2 and is thus given by
c¢(m)[l+ (I—Y1)], where Y7 is the number of groups which do not reach
stage 2. Clearly, Y1 ~ B(l,P(B)).

(c) For each of the N items to be tested some fee a > 0 will be collected.

(d) For every good item which belongs to some group that is found con-
taminated (so that individual treatment is required) we introduce a
penalty 7. The total number of these items has been denoted by Z so
that this type of misclassification leads to a total cost of 7w Z.

(e) A crucial cost is due to the bad items that are declared good; such
a wrong decision can have disastrous consequences. When this is the
case a constraint on P(W > 0) seems appropriate. In any case we can
put a high penalty b > 0 on each misclassified bad item.



The total net reward is the difference of the revenue and the costs and thus
given by
aN — p(r)mY —c(m)[2l = Y1] —nZ — bW.

Since the revenue alV is considered to be fixed independently of the design
variables m and r, we only have to take the total cost into account. We
want to minimize its expected value, which can be written as

R(m,r) = p(r)mE(Y) + ¢(m)[2l — E(Y7)] + 7E(Z) + bE(W). (2.14)

Note that
N
B(Y) = IP(D) = —[g+pA]", (2.15)
E(Y1) = IB(B) =~ [q -+ p(1 — ao)]" (2.16)
and, from Theorem 1,
E(Z)=Nq[1-{q+pA}""], (2.17)
E(W) = NpA, [¢+pA]™ ", (2.18)

so that all the terms in (2.14) can be easily computed.

Due to the particular importance of avoiding misclassifications of bad items,
i.e., overlooking infections, we will put a constraint on W. If one wants the
total number of wrongly classified bad items to be very small with a high
reliability, a natural constraint is P(W = 0) > 1 — v, where v € (0,1) is a
preassigned level, which in practice should of course be close to 0. Another
possibility is a constraint on the expected value of W, say E(W) < w for
some small threshold value w.

Our general optimization problem can now be formulated in the following
form:

Cost minimization:
min,, , R(m,r)
subject to

P(W=0)>1—~.

(2.19)

Alternatively, the last constraint may be replaced by
E(W) < w.

Note that also P(W = 0) is given explicitly in Theorem 2 (for E(W) see
(2.18)). Therefore, we are left with numerical deterministic minimization
problems.



If p(m) and ¢(m) are simple sequences, the cost function R(m,r) is a linear
combination of elementary functions. For example, taking p(r) = ar and
c¢(m) = ym" (as in Section 4) with positive constants a, v and 1 we obtain

R(m,r) =N [ar(q + pA)™ +ym"T 2 — (¢4 (1 — a)p)™]
+mq 1= (¢+pA)" ] + bpAr (g + pA)" .

One can try to first find, for fixed r, the minimum with respect to m (treating
m as a continuous variable) and then, in a second stage, to minimize with
respect to r, at least in the case of a geometric window size distribution
(considered in our examples below). However, setting the derivative with
respect to m equal to zero results in a transcendental equation for m and is
thus analytically intractable (and also note that the constraint has not yet
been taken into account). A numerical approach seems unavoidable even
under the simplest assumptions.

3 The case of several viruses with different win-
dow periods

Our model can be generalized to the case of several viruses as possible causes
of contamination. We develop here the case of two viruses.

Denote by qi1,q12,¢21, 22 the probabilities that the item contains both
viruses or only virus 1 or only virus 2 or none of them, respectively. Let
a; (B;) be the probability that a given item has a window period of length
i (j), where 4,5 € {0,1,2,...}. We suppose that in case both viruses are
present in the same item the durations of the two window periods are inde-
pendent random variables. The other model assumptions are exactly as in
Section 2, and we want to minimize the same objective function (given by
(2.14)). Hence, we have to determine the probabilities P(B) and P(D) and
the distributions Pz = (Pz,)* and Py = (Pyw,)* in the two-virus case.

Theorem 3 Let A, = Y772 g, Br =32 1 Bi. In the two-virus model



we have

P(B) = [g22 + q11(1 — ao)(1 — Bo) + q12(1 — ap) + g21(1 — Bo)]™,

(3.1)
P(D) = [QQ2 + q11A7‘Br + (J12Ar + QQIBr]ma (32)

m ki1 kis k

P(Z;=k) = Z <l<: ko k k) 0 5 53 a5
k11,k12,k21>0:k11+k12+k21=m—Fk 11, #12, R21,
% <1 _ Ak11+kuBk11+k21>
r r )

k=1,...,m—1

(3.3)

P(Z; = 0)) = [q22 + (11 A Br + @124y + ¢ B;] "

E { m ki1 k12 m—ki1—ki2
- (kn k12, m — k11 — km)qn h2
k11,k12>0:k11+k12<m ’ ’

% (1 . A7lf11+k123;ﬂ—k12) , (3.4)
]P) W B k B m k11 k12 k21 m—k
(W, = k) = Z b o ko — ke 411 41274921 422
k11,k12,k212>0:k11+k12+ko1=Fk R 2
w Abutke gRutha g (3.5)

m - "
P(Wi:O)ZQ22+Z Z <k11,/€12,k’217m_k>

k=1 ki1,k12,k21>0:k11+k12+k21=Fk

ki1 k1o k —k k11+kio ki1 +k
X Q11 13 0o1 499 [1— Atz gratha, (3.6)

Proof. A given group is not declared to be contaminated in stage 1 if
and only if for each of its m items the following holds: it is either good
(probability goo) or contains at least one virus with positive window period
(probability ¢11(1 — ag)(1 — Bo) + q12(1 — o) + q21(1 — Bp)). This proves
(3.1). A given group passes successfully both stages if and only if each of
its m items is either good or contains viruses whose window periods are all
larger than r (probability q114,B, + qi2A, + g21B;). This argument leads
to (3.2).

The event Z; = 0 occurs if and only if the ith group has the following prop-
erty: either it passes both stages successfully, i.e., each of the viruses present
has a window period larger than r, or the group is found to be contaminated
and all its items are bad. The first case has probability P(D). The second
case is equivalent to the existence of nonnegative integers ki1, k12, ko1 satis-
fying k11 + k12 + k21 = m such that the following holds:

(a) k11 items carry both viruses, k12 items carry only virus 1, ko; items carry
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only virus 2;
(b) at least one of these viruses has a window period of at most 7 time units.

For k € {1,...,m — 1} the event Z; = k occurs if and only if the ith group
has the following property: there are nonnegative integers k11, k12, k21 such
that k11+k12+ko1 = m—k such that (a) and (b) above hold and additionally

(c) the remaining k items are good.

The probability that among ki1 + k12 + k21 bad items as in (a) no virus has
a window period of at most r time units is equal to

(ATBr)k“AkmBkm,
and (3.3) and (3.4) follow easily (for (3.4) one has to use ko1 = m—ki11 —ki2).

For k € {1,...,m} the event W; = k occurs if and only if the underlying
group has the following property: there are nonnegative integers ki1, k12, k21
such that k11 + k12 + k21 = k and

(i) k11 items carry both viruses, ko items carry only virus 1, ko items carry
only virus 2;

(ii) none of the viruses involved has a window period of at most 7 time units;
(iii) the remaining m — k items are good.

The probability that among ki1 + k12 + k21 bad items as in (i) none has a
window period of at most r time units is equal to

(ATBT>k11 Ak’uBkm7
and we obtain (3.5).

Finally, W; = 0 means that in the group under consideration either (a) each
item is good or (b) for some k € {1,...,m} and some nonnegative integers
k11, k12, ko1 summing to k the group contains m — k good items, ki1 items
carry both viruses, k1o items carry only virus 1, ko; items carry only virus
2, and at least one of the viruses present has a window period of at most r.
Writing this decomposition in terms of probabilities yields (3.6). [

Remark. As can be seen in the proof, the assumption of independent
window periods for the viruses in the same item is not necessary; we can
easily write down the probabilities in the second lines of (3.3) and (3.5) in
the case of dependent window periods as well.

Using Theorem 3 we can again express all probabilities and expected values
in the cost function (2.14) in terms of the system parameters and the deci-

11



sion variables and find its minimum and the minimizing values of m and r
numerically.

4 Numerical examples

We present a few numerical examples for the minimization of the cost func-
tion in the one-virus case studied in Section 2.

Example 1. We fix the model parameters introduced in Section 2.1 as
follows:

N =100, p = 0.01, a, = (0.95)70.05, c(m) = 0.07 m'/2.

Note that A, = (0.95)"*1. The cost parameters in Section 2.3 are selected
as follows:
p(r)=r/10,7 =1,b =10,y = 0.01.

Figure 1 shows a plot of the cost R(m,r) as a function of r for fixed values
of m (divisors of 100). The lowest curve belongs to m = 4, the highest to
m=>50. We put the constraint P(IW = 0) > 0.99. Then the waiting period
has to exceed a certain threshold (depending on the group size) to give an
admissible procedure. The admissible points are displayed in bold face (at
the right side of the graphs). The optimal admissible solution is m = 25
and r = 85. It is seen that the cost function r +— R(m,r) for m = 25 is
considerably larger than for smaller group sizes in the inadmissible regions,
but beats the other cost functions slightly in the admissible region.

Example 2. Take N = 10,000, v = 0.09 and the other parameters as in
Example 1. The solution for the unconstrained problem is m = 125,r = 39,
while the constrained minimum is attained for m = 250, = 87. Hence, to
obtain the constrained minimum one has to double the group size and more
than double the waiting period.

Example 3. Now we take
N =10,000,p = 0.01, a; = (0.95)"0.05, c(m) = 0.2 m>/?

p(r)=r/10,m =1,b= 10

and consider the minimization problem under the constraint E(W) < w.
The results are illustrated by three-dimensional plots.

(i) E(W) < 6: Figure 2 displays the objective function R(m,r), where only
values of m dividing N are considered. The solution of the unconstrained

12
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Figure 1: Objective function against r for fixed values of m

minimization problem is m = 125,r = 39. Since this pair is admissible, it is
also optimal for the constrained problem.

(ii) E(W) < 1: Figure 3 shows the objective function on the admissible
region. The unconstrained optimum is of course m = 125, = 39 as in (i)
but this pair is now, under the sharper constraint E(W) < 1, no longer
admissible. The solution under this constraint is m = 200,r = 53. It is
interesting that a sharper constraint can lead to a larger optimal group size.
The increase in the length of the waiting period from 39 to 53 seems intuitive
as one wants to avoid misclassifications of bad items more forcefully.

Example 4. Let
N =10,000,p = 0.01,7 = 1,b = 10, a;, = (0.95)70.05, v = 0.09, c(m) = 0.04m>.

The global minimum of the cost function is attained at m = 1, = 35, while
over the admissible region the values m = 25,r = 64 are optimal. In this
example the cost of a group test grows quadratically in the group size so
that without a constraint it is optimal to choose m = 1, i.e., not to form
groups at all. However, when the constraint P(W = 0) > 0.91 is introduced,
the waiting period has to be extended drastically (from 35 to 64) and the
group size 25 becomes optimal.

Remarks. (1) There are several choices possible for the window period
distribution. However, since the minimization has to be carried out numer-
ically, it seems difficult to get insight into the effect of the shape of this

13



Flat of the objective function in the admissilble region.

Figure 2: Objective function in admissible area for E(W) < 6

Flot of the ohjective function in the admissible region.

Figure 3: Objective function in admissible area for E(W) <1
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distribution. The model is based on truncating after r time units; there-
fore we conjecture that even for distributions with infinite mean the results
would not be much different than for those having finite mean. We intend
to pursue this point further.

(2) It may seem surprising that a sharper constraint can lead to a larger
optimal group size (as in Example 4). It should be noted, though, that
P(W = 0) does not always increase when the group size m decreases. As
a simple example, take N = 2 and compare P(W = 0) = (1 — pA,)? (for
m = 1) with P(W = 0) =1 — (¢ + pA,)? + ¢* (for m = 2). It is easily seen
that the latter probability is larger. Anyway, we cannot just consider one
variable (m) in our constrained optimization problem. Both the constraint
P(W = 0) > 1—+ and the cost function R(m,r) (representing various trade-
offs with respect to m and r) depend on both m and r in a rather intricate
way. In Example 4 the constraint is indeed violated for (m,r) = (1, 35), so
we must change m and/or r. If we just change r to satisfy the constraint,
it affects R(m,r), leading also to a different m. We finally end up with a
quite different optimal (m,r): (25,64) instead of (1,35). Intuitively, if we
have to increase the window size to achieve the desired reliability, we may
thereafter have some freedom in choosing the group size without violating
the constraint, and we then take m so as to obtain a small expected cost of
testing, i.e., as large as it is admissible.

Acknowledgements. We are very grateful to Christoph Wiesmeyr for
carrying out the numerical computations and to the anonymous referee for
his or her constructive comments that led to several clarifications.
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