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D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG

Abstract. A general price process represented by a two-component Markov
process is considered. Its first component is interpreted as a price process and
the second one as an index process modulating the price component. American
type options with pay-off functions, which admit power type upper bounds, are
studied. Both the transition characteristics of the price processes and the pay-
off functions are assumed to depend on a perturbation parameter δ ≥ 0 and to
converge to the corresponding limit characteristics as δ → 0. In the first part of
the paper, asymptotically uniform skeleton approximations connecting reward
functionals for continuous and discrete time models are given. In the second
part of the paper, these skeleton approximations are used for getting results
about the convergence of reward functionals for American type options for
perturbed price processes in discrete and continuous time. Examples related
to modulated exponential price processes with independent increments are
given.

1. Introduction

This paper is devoted to studies of conditions for convergence of reward func-
tionals for American type options under Markov type price processes modulated by
stochastic indices.

The idea behind these models is that the stochasticity of these models depends
on the global market environment through some indicators or indices. One exam-
ple would be a model where the price process depends on the level of a market
index reflecting a bullish, bearish, or stable market behaviour. Another example
is a model where the overall market volatility is indicating high, moderate, or low
volatility environment.

The main objective of the present paper is to study the continuous time optimal
stopping problem originating from American option pricing under these processes
and to derive approximations of the reward functionals for the continuous time
models by imbedded discrete time models and the convergence of these reward
functionals.

Markov type price processes modulated by stochastic indices and option pricing
for such processes have been studied in [1, 4, 5, 10, 11, 16, 21, 22, 23, 24, 25, 30,
33, 34, 35, 40, 42, 46, 56, 59, 60, 61].
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We also would like to refer the books [42, 44, 46, 47, 48] for an account of various
models of stochastic price processes and optimal stopping problems for options. The
books [31, 50] contain descriptions of a variety of models of stochastic processes with
semi-Markov modulation (switchings).

We consider the variant of price processes modulated by stochastic indices as
was introduced in [33, 34, 35]. The object of our study is a two-component pro-
cess Z(δ)(t) = (Y (δ)(t), X(δ)(t)), where the first component Y (δ)(t) is a real-valued
càdlàg process and the second component X(δ)(t) is a measurable process with a
general metric phase space. The first component is interpreted as a log-price pro-
cess while the second component is interpreted as a stochastic index modulating
the price process.

As was mentioned above, the process X(δ)(t) can be a global price index “mod-
ulating” market prices, or a jump process representing some market regime index.
The stochastic index can indicate, for example, growing, declining, or stable mar-
ket situation, or high, moderate, or low level of volatility, or describe credit rating
dynamics modulating the price process Y (δ)(t).

The log-price process Y (δ)(t) as well as the corresponding price process S(δ)(t) =
eY (δ)(t) are themselves not assumed to be Markov processes but the two-component
process Z(δ)(t) is assumed to be a continuous time inhomogeneous two-component
Markov process. Thus, the component X(δ)(t) represents information which in
addition to the information represented by the log-price process Y (δ)(t) makes the
two-component process (Y (δ)(t), X(δ)(t)) a Markov process.

In the literature, the values of options in discrete time markets have been used to
approximate the value of the corresponding option in continuous time. Convergence
of European option values for the Binomial tree model to the Black-Scholes value
for geometrical Brownian motion was shown in the seminal paper [8].

Further results on convergence of the values of European and American options
can be found in [2, 3, 7, 9, 15, 27, 36, 39, 41, 43, 56, 59]. In particular, conditions
for convergence of the values for American options in a discrete-time model to the
value of the option in a continuous-time model, under the assumption that the
sequence of processes describing the value of the underlying asset converge weakly
to a diffusion is given in [2]. There are also results presented for the case when the
limiting process is a diffusion with discrete jumps at fixed dates. Recent results
on weak convergence in financial markets based on martingale methods, for both
European and American type options, are presented in [43]. We would also like to
mention the papers [12, 13, 14, 17, 18, 19, 37, 38], where convergence in optimal
stopping problems are studied for general Markov processes.

It is well known that there does not exist explicit formulas for optimal rewards
for American type options even for standard payoff functions and simple price pro-
cesses. The methods used in this case are based on approximations of price processes
by simpler ones, for example Binomial tree price processes. Models with complex
non-standard payoff functions may also require to approximate these payoffs by
simpler ones, for example by piece-wise linear payoff functions. Results concerning
convergence of rewards for perturbed price processes play here a crucial role and
serve as a substantiation for the corresponding approximation algorithms.

Our results differ from the results in the aforementioned papers by generality of
models for price processes and non-standard pay-off functions as well as conditions
of convergence.
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We consider very general models of càdlàg Markov type price processes modu-
lated by stochastic indices. So far, conditions of convergence for rewards were not
investigated for such general models.

We consider so called triangular array models, in which the processes under
consideration depend on a small perturbation parameter δ ≥ 0. It is assumed that
the transition probabilities of the perturbed processes Z(δ)(t) converge in some sense
to the corresponding transition probabilities of the limiting process Z(0)(t) as δ → 0.
That is, the processes Z(δ)(t) can be considered to be a perturbed modification of
the corresponding limit process Z(0)(t). An example is the Binomial tree model
converging to the corresponding geometrical Brownian motion.

We do not involve directly the condition of finite-dimensional weak convergence
for the corresponding processes, which is characteristic for general limit theorems
for Markov type processes. Our conditions also do not use any assumptions about
convergence of auxiliary processes in probability which is characteristic for martin-
gale based methods. The latter type of conditions usually do involve some special
imbedding constructions replacing perturbed and limiting processes on one proba-
bility space that may be difficult to realise for complex models of price processes.

Instead of the conditions mentioned above, we introduce new general conditions
of local uniform convergence for the corresponding transition probabilities. These
conditions do imply finite-dimensional weak convergence for the price processes and
can be effectively used in applications. We also use effective conditions of exponen-
tial moment compactness for the increments of the log-price processes, which are
natural for applications to Markov type processes.

We also consider American type options with non-standard payoff functions
g(δ)(t, s), which are assumed to be non-negative functions with not more than
polynomial growth. The pay-off functions are also assumed to be perturbed and
converge to the corresponding limit pay-off functions g(0)(t, s) as δ → 0. This is an
useful assumption. For example, it has been shown in [33] how one can approxi-
mate reward functions for options with general convex payoff functions by reward
functions for options with more simple piece-wise linear payoff functions.

As is well known, the optimal stopping moment for the exercise of an American
option has the form of the first hitting time into the optimal price-time stopping
domain. It is worth to note that, under the general assumptions on the payoff
functions listed above, the structure of the reward functions and the corresponding
optimal stopping domain can be rather complicated. For example, as shown in
[26, 28, 29, 33, 34, 35] the optimal stopping domains can possess a multi-threshold
structure.

Despite of this complexity, we can prove convergence of the reward functionals
which represent the optimal expected rewards in the class of all Markov stopping
moments.

Our approach is based on the use of skeleton approximations for price processes
given in [34], where continuous time reward functionals have been approximated
by their analogues for imbedded skeleton type discrete time models. In this paper,
skeleton approximations were given in the form suitable for applications to continu-
ous price processes. We improve these approximations to the form that let us apply
them to càdlàg price processes and, moreover, give them in the form asymptotically
uniform as the perturbation parameter δ → 0. Another important element of our
approach is a recursive method for asymptotic analysis of reward functionals for
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discrete time models developed in [27]. Key examples of price processes modulated
by semi-Markov indices and corresponding convergence results are also given in
[56, 59].

The outline of the paper is as follows. In Section 2, we introduce Markov type
price processes modulated by stochastic indices and American type options with
general payoff functions. Section 3 contains results about asymptotically uniform
skeleton approximations. These results have their own value and let one approxi-
mate reward functionals for continuous time price processes by similar functionals
for simpler imbedded discrete time models. In Section 4, results concerning con-
ditions for convergence of reward functionals in discrete time models are given.
Section 5 presents general results on convergence of reward functionals for Ameri-
can type options. In Sections 6 and 7, we illustrate our general convergence results
by applying them to exponential price processes with independent increments and
exponential Lévy price processes modulated by semi-Markov stochastic indices, and
some other models.

This paper is an improved and extended version of the report [54]. The main
results are also presented in a short paper [55].

2. American type options under price processes
modulated by stochastic indices

Let Z(δ)(t) = (Y (δ)(t), X(δ)(t)), t ≥ 0 be, for every δ ≥ 0, a Markov process with
the phase space space Z = R1×X, where R1 is the real line and X is a Polish space
(a separable, complete metric space), transition probabilities P (δ)(t, z, t+u,A) and
an initial distribution P (δ)(A).

It is useful to note that Z is also a Polish space with the metrics dZ(z′, z′′)
= (|y′−y′′|2 +dX(x′, x′′)2)

1
2 , where z′ = (y′, x′), z′′ = (y′′, x′′), and dX(x′, x′′) is the

metrics in the space X. The Borel σ–field BZ = σ(B1 × BX), where B1 and BX are
Borel σ–fields in R1 and X, respectively, and the transition probabilities and the
initial distribution are probability measures on BZ.

The process Z(δ)(t), t ≥ 0 is defined on a probability space (Ω(δ),F (δ),P(δ)).
Note that these spaces can be different for different δ, i.e., we consider a triangular
array model.

We assume that the process Z(δ)(t), t ≥ 0 is a measurable process, i.e., Z(δ)(t, ω)
is a measurable function in (t, ω) ∈ [0,∞) × Ω(δ). Also, we assume that the first
component Y (δ)(t), t ≥ 0 is a càdlàg process, i.e., a process that is almost surely
continuous from the right and has limits from the left at all points t ≥ 0.

We interpret the component Y (δ)(t) as a log-price process and the component
X(δ)(t) as a stochastic index modulating the log-price process Y (δ)(t).

Let us define the price process,

(1) S(δ)(t) = exp{Y (δ)(t)}, t ≥ 0,

and consider the two-component process V (δ)(t) = (S(δ)(t), X(δ)(t)), t ≥ 0. Due to
the one-to-one mapping and continuity properties of exponential function, V (δ)(t)
is also a measurable Markov process, with the phase space V = (0,∞) × X and
its first component S(δ)(t), t ≥ 0 is a càdlàg process. The process V (δ)(t) has the
transition probabilities Q(δ)(t, v, t + u,A) = P (δ)(t, z, t + u, ln A), and the initial
distribution Q(δ)(A) = P (δ)(ln A), where v = (s, x) ∈ V, z = (ln s, x) ∈ Z, and
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ln A = {z = (y, x) : y = ln s, (s, x) ∈ A}, A ∈ BV = σ(B+ × BX), where B+ is the
Borel σ-algebra of subsets of (0,∞).

Let g(δ)(t, s), (t, s) ∈ [0,∞)× (0,∞) be, for every δ ≥ 0, a pay-off function. We
assume that g(δ)(t, s) is a nonnegative measurable (Borel) function.

The typical example of pay-off function is

(2) g(δ)(t, s) = e−R
(δ)
t a

(δ)
t [s−K

(δ)
t ]+,

where a
(δ)
t , t ≥ 0 and K

(δ)
t , t ≥ 0 are two nonnegative measurable functions, and

R
(δ)
t , t ≥ 0 is a nondecreasing function with R

(δ)
0 = 0.

Here, R
(δ)
t is accumulated continuously compounded riskless interest rate. Typ-

ically, R
(δ)
t =

∫ t

0
r(δ)(s)ds, where r(δ)(s) ≥ 0 is a nonnegative measurable function

representing an instant riskless interest rate at moment s.
As far as functions a

(δ)
t , t ≥ 0 and K

(δ)
t , t ≥ 0 are concerned, these are parameters

of an option contract. The case, where a
(δ)
t = a(δ) and K

(δ)
t = K(δ) do not depend

on t, corresponds to the standard American call option.
Let F (δ)

t , t ≥ 0 be a natural filtration of σ-fields, associated with the process
Z(δ)(t), t ≥ 0. We shall consider Markov moments τ (δ) with respect to the filtration
F (δ)

t , t ≥ 0. It means that τ (δ) is a random variable which takes values in [0,∞]
and with the property {ω : τ (δ)(ω) ≤ t} ∈ F (δ)

t , t ≥ 0.
It is useful to note that F (δ)

t , t ≥ 0 is also a natural filtration of σ-fields, associated
with process V (δ)(t), t ≥ 0.

Let us denote M(δ)
max,T , the class of all Markov moments τ (δ) ≤ T , where T > 0,

and consider a class of Markov moments M(δ)
T ⊆M(δ)

max,T .
Our goal is to maximize an expected pay-off for a given stopping moment over

a class M(δ)
T ,

(3) Φ(M(δ)
T ) = sup

τ(δ)∈M(δ)
T

Eg(δ)(τ (δ), S(δ)(τ (δ))).

The reward functional Φ(M(δ)
T ) can take the value +∞. However, we shall im-

pose below conditions on price processes and pay-off functions which will guarantee
that, for all δ small enough, Φ(M(δ)

max,T ) < ∞.
Note that we do not impose on the pay-off functions g(δ)(t, s) any monotonicity

conditions. However, it is worth noting that the cases where the pay-off function
g(δ)(t, s) is non-decreasing or non-increasing in argument s correspond to call and
put American type options, respectively.

The first condition assumes the absolute continuity of pay-off functions and im-
poses power type upper bounds on their partial derivatives:

A1: There exist δ0 > 0 such that for every 0 ≤ δ ≤ δ0: (a) function g(δ)(t, s)
is absolutely continuous in t with respect to the Lebesgue measure for
every fixed s ∈ (0,∞) and in s with respect to the Lebesgue measure
for every fixed t ∈ [0, T ]; (b) for every s ∈ (0,∞), the partial derivative
|∂g(δ)(t,s)

∂t | ≤ K1+K2s
γ1 for almost all t ∈ [0, T ] with respect to the Lebesgue

measure, where 0 ≤ K1,K2 < ∞ and γ1 ≥ 0; (c) for every t ∈ [0, T ], the
partial derivative |∂g(δ)(t,s)

∂s | ≤ K3 + K4s
γ2 for almost all s ∈ (0,∞) with

respect to the Lebesgue measure, where 0 ≤ K3,K4 < ∞ and γ2 ≥ 0; (d)
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for every t ∈ [0, T ], the function g(δ)(t, 0) = lims→0g
(δ)(t, s) ≤ K5, where

0 ≤ K5 < ∞.
Note that condition A1 (a) admits the case where the corresponding partial

derivatives exist in points from [0, T ] or (0,∞), respectively, except some subsets
with zero Lebesgue measures, while conditions A1 (b) and (c) admit the case
where the corresponding upper bounds hold in points from the sets where the cor-
responding derivatives exist except some subsets (of these sets) with zero Lebesgue
measures.

It is useful to note that condition A1 implies that function g(δ)(t, s) is jointly
continuous in arguments t ∈ [0, T ] and s ∈ (0,∞).

For example, condition A1 holds for the pay-off function given in (2) if functions
R

(δ)
t , a

(δ)
t and K

(δ)
t have bounded first derivatives in the interval [0, T ]. In this case

γ1 = 1 and γ2 = 0.
Taking into account formula S(δ)(t) = eY (δ)(t) connecting the price process

S(δ)(t) and the log-price process Y (δ)(t), condition A1 can be re-written in the
equivalent form in terms of function g(δ)(t, ey), (t, y) ∈ [0, T ]× R1.

Let us denote g
(δ)
1 (t, s) = ∂g(δ)(t,s)

∂t and g
(δ)
2 (t, s) = ∂g(δ)(t,s)

∂s . Then ∂g(δ)(t,ey)
∂t

= g
(δ)
1 (t, ey) and ∂g(δ)(t,ey)

∂y = g
(δ)
2 (t, ey)ey, and the equivalent variant of condition

A1 takes the following form:
A′

1: There exist δ0 > 0 such that for every 0 ≤ δ ≤ δ0: (a) function g(δ)(t, ey)
is absolutely continuous upon t with respect to the Lebesgue measure for
every fixed y ∈ R1 and in y with respect to the Lebesgue measure for every
fixed t ∈ [0, T ]; (b) for every y ∈ R1, the partial derivative |∂g(δ)(t,ey)

∂t | ≤
K1 +K2e

γ1y for almost all t ∈ [0, T ] with respect to the Lebesgue measure,
where 0 ≤ K1, K2 < ∞ and γ1 ≥ 0; (c) for every t ∈ [0, T ], the partial
derivative |∂g(δ)(t,ey)

∂y | ≤ (K3 +K4e
γ2y)ey for almost all y ∈ R1 with respect

to the Lebesgue measure, where 0 ≤ K3,K4 < ∞ and γ2 ≥ 0; (d) for every
t ∈ [0, T ], the function g(δ)(t,−∞) = limy→−∞g(δ)(t, ey) ≤ K5, where
0 ≤ K5 < ∞.

As usual we use notations Ez,t and Pz,t for expectations and probabilities calcu-
lated under condition that Z(δ)(t) = z.

Let us define, for β, c, T > 0, an exponential moment modulus of compactness
for the càdlàg process Y (δ)(t), t ≥ 0,

∆β(Y (δ)(·), c, T ) = sup
0≤t≤t+u≤t+c≤T

sup
z∈Z

Ez,t(eβ|Y (δ)(t+u)−Y (δ)(t)| − 1).

We need also the following conditions of exponential moment compactness for
log-price processes:

C1: limc→0 limδ→0∆β(Y (δ)(·), c, T ) = 0 for some β > γ = max(γ1, γ2+1), where
γ1 and γ2 are the parameters introduced in condition A1,

and
C2: limδ→0Eeβ|Y (δ)(0)| < ∞, where β is the parameter introduced in condition

C1.
Let us get asymptotically uniform upper bounds for moments of the maximums

of log-price and price processes. Explicit expressions for the constants are given in
the proofs of the corresponding lemmas.
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Lemma 1. Let conditions C1 and C2 hold. Then, there exist 0 < δ1 ≤ δ0 and
a constant L1 < ∞ such that for every δ ≤ δ1,

(4) E exp{β sup
0≤u≤T

|Y (δ)(u)|} ≤ L1.

Lemma 2. Let conditions A1, C1, and C2 hold. Then, there exists a constant
L2 < ∞ such that for every δ ≤ δ1,

(5) E( sup
0≤u≤T

g(δ)(u, S(δ)(u)))
β
γ ≤ L2.

Proof of Lemma 1. Let us define the random variables

S
(δ)
β (t) = exp{β sup

0≤u≤t
|Y (δ)(u)|}.

Note that

(6) S
(δ)
β (t) =





exp{β|Y (δ)(0)|}, if t = 0,

sup0≤u≤t exp{β|Y (δ)(u)|}, if 0 < t ≤ T.

Let us also introduce random variables

W
(δ)
β [t′, t′′] = sup

t′≤t≤t′′
exp{β|Y (δ)(t)− Y (δ)(t′)|}, 0 ≤ t′ ≤ t′′ ≤ T.

Let us use a partition Π̃m = {0 = v0,m < · · · < vm,m = T} of interval [0, T ]
by points vn,m = nT/m, n = 0, . . . ,m. Using equality (6) we can get the following
inequalities n = 1, . . . m,

S
(δ)
β (vn,m) ≤ S

(δ)
β (vn−1,m) + sup

vn−1,m≤u≤vn,m

exp{β|Y (δ)(u)|}

≤ S
(δ)
β (vn−1,m) + exp{β|Y (δ)(vn−1,m)|}W (δ)

β [vn−1,m, vn,m]

≤ S
(δ)
β (vn−1,m)(W (δ)

β [vn−1,m, vn,m] + 1).(7)

Condition C1 implies that for any constant e−β < L5 < 1 one can choose
c = c(L5) > 0 and then δ1 = δ1(c) ≤ δ0 such that for δ ≤ δ1,

(8)
∆β(Y (δ)(·), c, T ) + 1

eβ
≤ L5.

Also condition C2 implies that δ1 can be chosen in such a way that, for some
constant L6 = L6(δ1) < ∞, the following inequality holds for δ ≤ δ1,

(9) E exp{β|Y (δ)(0)|} ≤ L6.

The process Y (δ)(t) is not a Markov process. Despite this, an analogue of the
Kolmogorov inequality can be obtained by a slight modification of its standard
proof for Markov processes (See, for example, [20]). Let us formulate it in the form
of a lemma. Note that we do assume in this lemma that the two-component process
Z(δ)(t) is a Markov process.

Lemma 3. Let a, b > 0 and for the process Y (δ)(t) the following condition holds
supz∈Z Pz,t{|Y (δ)(t′′) − Y (δ)(t)| ≥ a} ≤ L < 1, t′ ≤ t ≤ t′′. Then, for any point
z0 ∈ Z,
(10)

Pz0,t′{ sup
t′≤t≤t′′

|Y (δ)(t)− Y (δ)(t′)| ≥ a + b} ≤ 1
1− L

Pz0,t′{|Y (δ)(t′′)− Y (δ)(t′)| ≥ b}.
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We refer to the report [49], where one can find the corresponding proof.
Let us use Lemma 3 to show that the following inequality holds for δ ≤ δ1,

(11) sup
0≤t′≤t′′≤t′+c≤T

sup
z∈Z

Ez,t′W
(δ)
β [t′, t′′] ≤ L7,

where

(12) L7 =
eβ(eβ − 1)L5

1− L5
< ∞.

Relation (8) implies that for every δ ≤ δ1,

sup
0≤t′≤t≤t′′≤t′+c≤T

sup
z∈Z

Pz,t{|Y (δ)(t′′)− Y (δ)(t)| ≥ 1}

≤ sup
0≤t′≤t≤t′′≤t′+c≤T

sup
z∈Z

Ez,t exp{β|Y (δ)(t′′)− Y (δ)(t)|}
eβ

≤ ∆β(Y (δ)(·), c, T ) + 1
eβ

≤ L5 < 1.(13)

By applying Lemma 3, we get for every δ ≤ δ1, 0 ≤ t′ ≤ t′′ ≤ t′ + c ≤ T , z ∈ Z,
and b > 0,
(14)

Pz,t′{ sup
t′≤t≤t′′

|Y (δ)(t)− Y (δ)(t′)| ≥ 1 + b} ≤ 1
1− L5

Pz,t′{|Y (δ)(t′′)− Y (δ)(t′)| ≥ b}.

To shorten notations let us denote the random variable W = |Y (δ)(t′′)−Y (δ)(t′)|
and W+ = supt′≤t≤t′′ |Y (δ)(t)− Y (δ)(t′)|. Note that eβW+

= W
(δ)
β [t′, t′′].

Relations (8) and (14) imply that for every δ ≤ δ1, 0 ≤ t′ ≤ t′′ ≤ t′ + c ≤ T ,
z ∈ Z,

Ez,t′e
βW+

= 1 + β

∫ ∞

0

eβbPz,t′{W+ ≥ b}db

≤ 1 + β

∫ 1

0

eβbdb + β

∫ ∞

1

eβbPz,t′{W+ ≥ b}db

= eβ + β

∫ ∞

0

eβ(1+b)Pz,t′{W+ ≥ 1 + b}db

≤ eβ +
βeβ

1− L5

∫ ∞

0

eβbPz,t′{W ≥ b}db

= eβ +
βeβ

1− L5

Ez,t′e
βW − 1
β

=
eβ

1− L5
(Ez,t′e

βW − L5)

≤ eβ

1− L5
(∆β(Y (δ)(·), c, T ) + 1− L5) ≤ eβ(eβ − 1)L5

1− L5
= L7.(15)

Since inequality (15) holds for every δ ≤ δ1 and 0 ≤ t′ ≤ t′′ ≤ t′ + c ≤ T , z ∈ Z,
it imply relation (11).

Now we can complete the proof of Lemma 1. Using condition C2, relations
(7), (9) – (12), and the Markov property of the process Z(δ)(t) we get, for δ ≤ δ1

and m = [T/c] + 1, where [x] denotes integer part of x (in this case T/m ≤ c),
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n = 1, . . . ,m,

ES
(δ)
β (vn,m) ≤ E{S(δ)

β (vn−1,m)E{(W (δ)
β [vn−1,m, vn,m] + 1)/Z(δ)(vn−1,m)}}

≤ ES
(δ)
β (vn−1,m)(L7 + 1) ≤ · · · ≤ ES

(δ)
β (0)(L7 + 1)n ≤ L6(L7 + 1)n.(16)

Finally, we get, for δ ≤ δ1,

(17) E exp{β sup
0≤u≤T

|Y (δ)(u)|} = ES
(δ)
β (vm,m) ≤ L6(L7 + 1)m.

Relation (17) obviously implies that inequality (4) given in Lemma 1 holds, for
δ ≤ δ1, with the constant,

(18) L1 = L6(L7 + 1)m.

The proof of Lemma 1 is complete.
Proof of Lemma 2. According condition A1 (c) and (d) and since γ2 + 1 ≤ γ, the
following inequality holds, for δ ≤ δ0,

g(δ)(u, S(δ)(u)) ≤
∫ S(δ)(u)

0

|∂g(δ)(u, s)
∂s

|ds + g(δ)(u, 0)

≤ K3S
(δ)(u) +

K4

γ2 + 1
S(δ)(u)γ2+1 + K5 ≤ L8e

γ|Y (δ)(u)|,(19)

where

(20) L8 = K3 +
K4

γ2 + 1
+ K5 < ∞.

Relation (6) and inequality (19) implies that

(21) ( sup
0≤u≤T

g(δ)(u, S(δ)(u)))
β
γ ≤ (L8)

β
γ exp{β sup

0≤u≤T
|Y (δ)(u))|}.

Inequalities (4) and (21) obviously imply that inequality (5) holds, for δ ≤ δ1,
with the constant,

(22) L2 = L1(L8)
β
γ < ∞.

The proof of Lemma 2 is complete. ¦
Relation (5) given in Lemma 2 implies that for δ ≤ δ1,

(23) Φ(M(δ)
max,T ) ≤ E sup

0≤u≤T
g(δ)(u, S(δ)(u)) ≤ (L2)

γ
β < ∞.

Therefore, functional Φ(M(δ)
max,T ) is well defined for δ ≤ δ1. In what follows we

take δ ≤ δ1.

3. Skeleton Approximations

In this section we derive skeleton approximations for the reward functional
Φ(M(δ)

max,T ) by a similar functional for an imbedded discrete time model.
Let Π = {0 = t0 < t1 < . . . tN = T} be a partition of the interval [0, T ]. We

consider the class M̂(δ)
Π,T of all Markov moments from M(δ)

max,T , which only take the

values t0, t1, . . . tN , and the class M(δ)
Π,T of all Markov moments τ (δ) from M̂(δ)

Π,T
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such that event {ω : τ (δ)(ω) = tk} ∈ σ[Z(δ)(t0), . . . , Z(δ)(tk)] for k = 0, . . . N . By
definition,

(24) M(δ)
Π,T ⊆ M̂(δ)

Π,T ⊆M(δ)
max,T .

Relations (23) and (24) imply that, under conditions of Lemma 2,

(25) Φ(M(δ)
Π,T ) ≤ Φ(M̂(δ)

Π,T ) ≤ Φ(M(δ)
max,T ) < ∞.

The reward functionals Φ(M(δ)
max,T ), Φ(M̂(δ)

Π,T ), and Φ(M(δ)
Π,T ) correspond to

the models of American type option in continuous time, Bermudan type option in
continuous time, and American type option in discrete time, respectively.

In the first two cases, the underlying price process is a continuous time Markov
type price process modulated by a stochastic index while in the third case the
corresponding price process is a discrete time Markov type process modulated by
a stochastic index.

Indeed, the random variables Z(δ)(t0), Z(δ)(t1), . . . , Z(δ)(tN ) are connected in a
discrete time inhomogeneous Markov chain with the phase space Z, the transition
probabilities P (δ)(tn, z, tn+1, A), and the initial distribution P (δ)(A).

Note that we have slightly modified the standard definition for a discrete time
Markov chain by counting moments t0, . . . , tN as the moments of jumps for the
Markov chain Z(δ)(tn) instead of the moments 0, . . . , N . This is done in order to
synchronize the discrete and continuous time models.

Thus, the optimisation problem (3) for the class M(δ)
Π,T is really a problem of

optimal expected reward for American type options in discrete time.
Now we are ready to formulate the first main result of the paper concerning

skeleton approximations of the reward functional in the continuous time model
by the corresponding reward functional in the corresponding discrete time model.
Note that skeleton approximations have asymptotically uniform with respect to
perturbation parameter form. This is very essential for using these approximations
in convergence results given in the second part of the paper.

We use the method developed in [34]. However, we essentially improve the
skeleton approximation obtained in this paper, where the difference Φ(M(δ)

max,T )−
Φ(M(δ)

Π,T ) have been estimated from above via the modulus of compactness for
the uniform topology for the price processes. This estimate could only be used
for continuous price processes. In the present paper, we get alternative estimates
based on the exponential moment modulus of compactness ∆β(Y (δ)(·), c, T ). These
estimates can be effectively used for càdlàg price processes.

The following theorem presents this result. The explicit expression for the con-
stants in the corresponding estimate will be given in the proof of the theorem.

Theorem 1. Let conditions A1, C1, and C2 hold, and let also δ ≤ δ1 and
d(Π) ≤ c where c and δ1 are defined in relations (8) and (9). Then there exist
constants L3, L4 < ∞ such that the following skeleton approximation inequality
holds,

(26) Φ(M(δ)
max,T )− Φ(M(δ)

Π,T ) ≤ L3d(Π) + L4(∆β(Y (δ)(·), d(Π), T ))
β−γ

β .

Proof of Theorem 1. Let us begin from the following important fact which plays an
important role in the proof of Theorem 1.
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Lemma 4. For any partition Π = {0 = t0 < t1 < . . . < tN = T} of interval
[0, T ],

(27) Φ(M(δ)
Π,T ) = Φ(M̂(δ)

Π,T ).

Proof of Lemma 4. A similar result was given in [33, 35] and we shortly present
the modified version of the corresponding proof.

The optimisation problem (3) for the class M̂(δ)
Π,T can be considered as a problem

of optimal expected reward for American type options with discrete time. To
see this let us add to the random variables Ztn

additional components Z̄
(δ)
n =

{Z(δ)(t), tn−1 < t ≤ tn} with the corresponding phase space Z̄ endowed by the
corresponding cylindrical σ-field. As Z̄

(δ)
0 we can take an arbitrary point in Z̄.

Consider the extended Markov chain Z̃
(δ)
n = (Z(δ)(tn), Z̄(δ)

n ) with the phase space
Z̃ = Z×Z̄. As above, we slightly modify the standard definition and count moments
t0, . . . , tN as moments of jumps for the this Markov chain instead of moments
0, . . . , N . This is done in order to synchronize the discrete and continuous time
models.

Let us denote by M̃(δ)
Π,T the class of all Markov moments τ (δ) ≤ tN for discrete

time Markov chain Z̃
(δ)
n and let us also consider the reward functional,

(28) Φ(M̃(δ)
Π,T ) = sup

τ(δ)∈M̃(δ)
Π,T

Eg(δ)(τ (δ), S(δ)(τ (δ))).

It is readily seen that the optimisation problem (3) for the class M̂(δ)
Π,T is equiv-

alent to the optimisation problem (28), i.e.,

(29) Φ(M̂(δ)
Π,T ) = Φ(M̃(δ)

Π,T ).

As is known, (See, for example, [45]) the optimal stopping moment τ (δ) exists in
any discrete time Markov model, and the optimal decision {τ (δ) = tn} depends only
on the value Z̃

(δ)
n . Moreover the optimal Markov moment has the first hitting time

structure, i.e., it has the form τ (δ) = min(tn : Z̃
(δ)
n ∈ D̃(δ)

n ), where D̃(δ)
n , n = 0, . . . , N

are some measurable subsets of the phase space Z̃. The optimal stopping domains
are determined by the transition probabilities of the extended Markov chain Z̃

(δ)
n .

However, the extended Markov chain Z̃
(δ)
n has transition probabilities depending

only on values of the first component Z(δ)(tn). As was shown in [35], the optimal
Markov moment has in this case the first hitting time structure of the form τ (δ) =
min(tn : Z(δ)(tn) ∈ D(δ)

n ), where D(δ)
n , n = 0, . . . , N are some measurable subsets of

the phase space of the first component Z.
Therefore, for the optimal stopping moment τ (δ) the decision {τ (δ) = tn} depends

only on the value Z(δ)(tn), and τ (δ) ∈M(δ)
Π,T . Hence,

(30) Φ(MΠ,T ) ≥ Eg(δ)(τ (δ), S(δ)(τ (δ))) = Φ(M̂(δ)
Π,T ).

Inequalities (25) and (30) imply the equality (27). ¦
For any Markov moment τ (δ) ∈ M(δ)

max,T and a partition Π = {0 = t0 < t1 <

. . . < tN = T} one can define the discretisation of this moment,

τ (δ)[Π] =
{

0, if τ (δ) = 0,
tk, if tk−1 < τ (δ) ≤ tk, k = 1, . . . N.
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Let τ
(δ)
ε be ε-optimal Markov moment in the class M(δ)

max,T , i.e.,

(31) Eg(δ)(τ (δ)
ε , S(δ)(τ (δ)

ε )) ≥ Φ(M(δ)
max,T )− ε.

Such ε-optimal Markov moment always exists for any ε > 0, by definition of the
reward functional Φ(M(δ)

max,T ).

By definition, the Markov moment τ
(δ)
ε [Π] ∈ M̂(δ)

Π,T . This fact and relation (27)
given in Lemma 4 implies that

(32) Eg(δ)(τ (δ)
ε [Π], S(δ)(τ (δ)

ε [Π])) ≤ Φ(M̂(δ)
Π,T ) = Φ(M(δ)

Π,T ) ≤ Φ(M(δ)
max,T ).

Let us denote

d(Π) = max{tk − tk−1, k = 1, . . . N}.
Obviously,

(33) τ (δ)
ε ≤ τ (δ)

ε [Π] ≤ τ (δ)
ε + d(Π).

Now inequalities (31) and (32) imply the following skeleton approximation in-
equality,

0 ≤ Φ(M(δ)
max,T )− Φ(M(δ)

Π,T )

≤ ε + Eg(δ)(τ (δ)
ε , S(δ)(τ (δ)

ε ))− Eg(δ)(τ (δ)
ε [Π], S(δ)(τ (δ)

ε [Π]))

≤ ε + E
∣∣∣g(δ)(τ (δ)

ε , S(δ)(τ (δ)
ε ))− g(δ)(τ (δ)

ε [Π], S(δ)(τ (δ)
ε [Π]))

∣∣∣ .(34)

To shorten notations let us denote, for the moment, the random variables τ ′ =
τ

(δ)
ε , τ ′′ = τ

(δ)
ε [Π], and Y ′ = Y (δ)(τ ′), Y ′′ = Y (δ)(τ ′′). Let also denote Y + =

Y ′ ∨ Y ′′, Y − = Y ′ ∧ Y ′′. By the definition, 0 ≤ τ ′ ≤ τ ′′ ≤ T and Y − ≤ Y +.
Using these notations and condition A′

1 we get the following inequalities,

|g(δ)(τ ′, eY ′)− g(δ)(τ ′′, eY ′′)|
≤ |g(δ)(τ ′, eY ′)− g(δ)(τ ′′, eY ′)|+ |g(δ)(τ ′′, eY ′)− g(δ)(τ ′′, eY ′′)|

≤
∫ τ ′′

τ ′
|g(δ)

1 (t, eY ′)|dt +
∫ Y +

Y −
|g(δ)

2 (τ ′′, ey)ey|dy

≤
∫ τ ′′

τ ′
(K1 + K2e

γ1Y ′)dt +
∫ Y +

Y −
(K3e

y + K4e
(γ2+1)y)dy

≤ (K1 + K2e
γ1|Y ′|)(τ ′′ − τ ′) + (K3e

|Y +| + K4e
(γ2+1)|Y +|)(Y + − Y −)

≤ (K1 + K2) exp{γ1 sup
0≤u≤T

|Y (δ)(u)|}(τ ′′ − τ ′)

+ (K3 + K4) exp{(γ2 + 1) sup
0≤u≤T

|Y (δ)(u)|}|Y ′ − Y ′′|.(35)

Recall that 0 ≤ τ ′′−τ ′ ≤ d(Π) and γ1∨(γ2+1) = γ < β. Now, applying Hölder’s
inequality (with parameters p = β/γ and q = β/(β − γ)) to the corresponding
products of random variables on the right hand side in (35), and using inequality
(4) given in Lemma 1, we can write down the following estimate for the expectation
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on the right hand side in (34), for δ ≤ δ1,

E|g(δ)(τ (δ)
ε , S(δ)(τ (δ)

ε ))− g(δ)(τ (δ)
ε [Π], S(δ)(τ (δ)

ε [Π]))|
= E|g(δ)(τ ′, eY ′)− g(δ)(τ ′′, eY ′′)|
≤ (K1 + K2)E exp{γ sup

0≤u≤T
|Y (δ)(u)|}d(Π)

+ (K3 + K4)E exp{γ sup
0≤u≤T

|Y (δ)(u)|}|Y ′ − Y ′′|

≤ (K1 + K2)[L1]
γ
β d(Π) + (K3 + K4)[L1]

γ
β (E|Y ′ − Y ′′| β

β−γ )
β−γ

β .(36)

The next step in the proof is to show that, for δ ≤ δ1,

E|Y ′ − Y ′′| β
β−γ = E|Y (δ)(τ (δ)

ε ))− Y (δ)(τ (δ)
ε [Π])| β

β−γ

≤ L9∆β(Y (δ)(·), d(Π), T ),(37)

where

(38) L9 = sup
y≥0

y
β

β−γ

eβy − 1
< ∞.

In order get inequality (37), we employ the method for estimation of moments
for increments of stochastic processes stopped at Markov type moments, from [47].

By the definition τ ′′ = τ ′ + fΠ(τ ′) where function fΠ(t) = t − tk for tk ≤ t <
tk+1, k = 0, . . . , N − 1 and 0 for t = tN . Obviously function fΠ(t) is continuous
from the right on the interval [0, T ] and 0 ≤ fΠ(t) ≤ d(Π).

Let us now use again the partition Π̃m of interval [0, T ] by points vn,m = nT/m,
n = 0, . . . ,m. Consider random variables,

τ ′[Π̃m] =
{

0, if τ ′ = 0,
vk,m, if vk−1,m < τ ′ ≤ vk,m, k = 1, . . . N.

Obviously τ ′ ≤ τ ′[Π̃m] ≤ τ ′ + T/m. Thus random variables τ ′[Π̃m] a.s.−→ τ ′ as
m → ∞ (a.s. is an abbreviation for almost surely). Since the Y (δ)(t) is a càdlàg
process, we get also the following relation,

Q(δ)
m = |Y (δ)(τ ′[Π̃m])− Y (δ)(τ ′[Π̃m] + fΠ(τ ′[Π̃m]))| β

β−γ

a.s.−→ Q(δ) = |Y (δ)(τ ′)− Y (δ)(τ ′ + fΠ(τ ′))| β
β−γ as m →∞.(39)

Note also that Q
(δ)
m are non-negative random variables and the following estimate

holds for any m = 1, . . .,

Q(δ)
m ≤ (|Y (δ)(τ ′[Π̃m])|+ |Y (δ)(τ ′[Π̃m] + fΠ(τ ′[Π̃m]))|) β

β−γ

≤ 2
β

β−γ−1(|Y (δ)(τ ′[Π̃m])| β
β−γ + |Y (δ)(τ ′[Π̃m] + fΠ(τ ′[Π̃m]))| β

β−γ )

≤ 2
β

β−γ ( sup
0≤u≤T

|Y (δ)(u)|) β
β−γ ≤ 2

β
β−γ L9 exp{β sup

0≤u≤T
|Y (δ)(u)|}.(40)

Taken into account inequality (4) given in Lemma 1, which implies that the
random variable on the right hand side in (40) has a finite expectation, and relations
(39) and (40), we get by Lebesgue theorem that, for δ ≤ δ1,

(41) EQ(δ)
m → EQ(δ) as m →∞.
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Let us now estimate EQ
(δ)
m . To reduce notation let us denote for the moment

Y ′
n+1 = Y (δ)(vn+1,m) and Y ′′

n+1 = Y (δ)(vn+1,m + fΠ(vn+1,m)). Recall that τ ′ is a
Markov moment for the Markov process Z(δ)(t). Thus, random variables χ(vn,m <

τ ′ ≤ vn+1,m) and |Y ′
n+1 − Y ′′

n+1|
β

β−γ are conditionally independent with respect to
random variable Z(δ)(vn+1,m). Using this fact and inequality fΠ(vn+1,m) ≤ d(Π),
we get, for δ ≤ δ1,

EQ(δ)
m = E|Y (δ)(τ ′[Π̃m])− Y (δ)(τ ′[Π̃m] + fΠ(τ ′[Π̃m]))| β

β−γ

=
m−1∑
n=0

E|Y ′
n+1 − Y ′′

n+1|
β

β−γ χ(vn,m < τ ′ ≤ vn+1,m)

=
m−1∑
n=0

E{χ(vn,m < τ ′ ≤ vn+1,m)E{|Y ′
n+1, − Y ′′

n+1|
β

β−γ /Z(δ)(vn+1,m)}}

≤
m−1∑
n=0

sup
z∈Z

Ez,vn+1,m
|Y ′

n+1, − Y ′′
n+1|

β
β−γ P{vn,m < τ ′ ≤ vn+1,m}

≤
m−1∑
n=0

L9 sup
z∈Z

Ez,vn+1,m exp{β|Y ′
n+1, − Y ′′

n+1|}P{vn,m < τ ′ ≤ vn+1,m}

≤
m−1∑
n=0

L9∆β(Y (δ)(·), d(Π), T )P{vn,m < τ ′ ≤ vn+1,m}

≤ L9∆β(Y (δ)(·), d(Π), T ).(42)

Relations (41) and (42) imply that, for δ ≤ δ1,

EQ(δ) = E|Y (δ)(τ ′)− Y (δ)(τ ′ + fΠ(τ ′))| β
β−γ

≤ L9∆β(Y (δ)(·), d(Π), T ).(43)

This inequality is equivalent to inequality (37) since, by introduced notations,
|Y (δ)(τ ′) −Y (δ)(τ ′ + fΠ(τ ′))| = |Y (δ)(τ (δ)

ε )− Y (δ)(τ (δ)
ε [Π])|.

If (37) is proved then the estimate (36) can be continued and transformed, for
δ ≤ δ1, to the following form,

E|g(δ)(τ (δ)
ε , S(δ)(τ (δ)

ε ))− g(δ)(τ (δ)
ε [Π], S(δ)(τ (δ)

ε [Π]))|
≤ L3d(ΠN ) + L4(∆β(Y (δ)(·), d(Π), T ))

β−γ
β ,(44)

where

(45) L3 = (K1 + K2)[L1]
γ
β , L4 = (K3 + K4)(L1)

γ
β (L9)

β−γ
β .

Note that the quantity on the right hand side in (44) does not depend on ε.
Thus, we can substitute it in (34) and then to pass ε to zero in this relation that
will result inequality (26) given in Theorem 1.

The proof of Theorem 1 is complete. ¦
In conclusion, we would like to note that the skeleton approximations given in

Theorem 1 have their own value beyond their use in convergence theorems that will
presented in the second part of the present paper.

Indeed, one of the main approaches used to evaluate reward functional for Amer-
ican type options is based on the use of Monte Carlo algorithms, which obviously
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require that the corresponding continuous time price processes to be replaced by
their more simple discrete time models usually constructed on the base of the cor-
responding skeleton approximations. Theorem 1 gives explicit estimates for the
accuracy of the corresponding approximations of reward functionals for continu-
ous time price processes by the corresponding reward functionals for skeleton type
discrete time price processes.

4. Convergence of rewards for discrete time options

In this section we give conditions of convergence for discrete time reward func-
tionals Φ(M(δ)

Π,T ) for a given partition Π = {0 = t0 < t1 · · · < tN = T} of interval
[0, T ].

In this case, it is natural to use conditions based on the transition probabilities
between the sequential moments of this partition and values of the pay-off functions
at the moments of this partition.

In the continuous time case, the derivatives of the pay-off functions were involved
in condition A1. The corresponding assumptions implied continuity of the pay-off
functions. These assumptions played an essential role in the proof of Theorem 1,
where skeleton approximations were obtained.

In the discrete time case, the derivatives of the pay-off functions are not involved.
In this case, the pay-off functions can be discontinuous.

We replace condition A1 by a simpler condition:
A2: There exist δ0 > 0 such that, for every 0 ≤ δ ≤ δ0, function g(δ)(tn, s) ≤

K6 + K7s
γ , for n = 0, . . . , N and s ∈ (0,∞) for some γ ≥ 1 and constants

K6,K7 < ∞.
We need also an assumption about convergence of payoff functions. We require

locally uniform convergence for pay-off functions on some sets, which later will be
assumed to have the value 1 for the corresponding limit transition probabilities and
the limit initial distribution:

A3: There exists a measurable set Stn ⊆ (0,∞) for every n = 0, . . . , N , such that
g(δ)(tn, sδ) → g(0)(tn, s) as δ → 0 for any sδ → s ∈ Stn and n = 0, . . . , N .

Let us also denote as Vtn = Stn × X.
Obviously, condition A3 can be re-written in terms of function g(δ)(t, ey), (t, y) ∈

[0,∞)× R1:
A′

3: There exists a measurable set Y′tn
⊆ R1 for every n = 0, . . . , N , such that

g(δ)(tn, eyδ ) → g(0)(tn, ey) as δ → 0 for any yδ → y ∈ Y′tn
and n = 0, . . . , N .

It is obvious that the sets Stn and Y′tn
are connected by the relations Y′tn

=
lnStn = {y = ln s, s ∈ Stn}, n = 0, . . . , N .

Let us also denote Z′tn
= Y′tn

× X.
The typical examples are where the sets Ȳ′tn

= ∅ or where Ȳ′tn
are finite or

countable sets. For example, if pay-off functions g(δ)(t, ey) are monotonic functions
in y, the point-wise convergence g(δ)(t, ey) → g(0)(t, ey) as δ → 0, y ∈ Y∗tn

, for every
n = 0, . . . , N , where Y∗tn

are some countable dense sets in R1, implies the locally
uniform convergence required in condition A′

3 for sets Y′tn
, which are the sets of

continuity points for the limit functions g(0)(tn, ey), as functions in y, for every
n = 0, . . . , N . Due to monotonicity of these functions, Ȳ′tn

are at most countable
sets.
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Symbol ⇒ is used below to denote weak convergence of probability measures,
i.e. convergence of their values for sets of continuity for the corresponding limit
measure or to denote weak convergence for the corresponding random variables.

We need also conditions on convergence of transition probabilities of price pro-
cesses between sequential moments of a time partition Π = {0 = t0 < t1 · · · < tN =
T}:

B1: There exist measurable sets Ztn ⊆ Z, n = 0, . . . , N such that (a) P (δ)(tn, zδ,
tn+1, ·) ⇒ P (0)(tn, z, tn+1, ·) as δ → 0, for any zδ → z ∈ Ztn as δ → 0 and
n = 0, . . . , N − 1; (b) P (0)(tn, z, tn+1,Z′tn+1

∩ Ztn+1) = 1 for every z ∈ Ztn

and n = 0, . . . , N −1, where Z′tn+1
are the sets introduced in condition A′

3.

The typical example is where the sets Z̄′tn
∪ Z̄tn

= ∅. In this case, condition
B1 (b) automatically holds. Another typical example is where Z′tn

= Y′tn
×X and

Ztn
= Ytn

×X, where the sets Ȳ′tn
and Ȳtn

are at most finite or countable sets. In
this case, the assumption that the measures P (0)(t, z, t + u,A×X), A ∈ B1 have no
atoms implies that condition B1 (b) holds.

As far as condition of convergence for initial distributions is concerned, we shall
require weak convergence for the initial distributions to some distribution that is
assumed to be concentrated on the intersections of the sets of convergence for the
corresponding transition probabilities and pay-off functions:

B2: (a) P (δ)(·) ⇒ P (0)(·) as δ → 0; (b) P (0)(Z′t0 ∩Zt0) = 1, where Z′t0 and Zt0

are the sets introduced in conditions A′
2 and B1.

The typical example is where the sets Z̄′t0 ∪ Z̄t0 = ∅. In this case, condition
B2 (b) automatically holds. Another typical example is where Z′t0 = Y′t0 × X and
Zt0 = Yt0 × X, where the sets Ȳ′t0 and Ȳt0 are at most finite or countable sets.
In this case, the assumption that the measure P (0)(A × X), A ∈ B1 has no atoms
implies that condition B2 (b) holds.

Condition B2 holds, for example, if the initial distributions P (δ)(A) = χA(z0)
are concentrated in a point z0 ∈ Z′t0 ∩ Zt0 , for all δ ≥ 0. This condition also holds
if the initial distributions P (δ)(A) = χA(zδ) for δ ≥ 0, where zδ → z0 as δ → 0 and
z0 ∈ Z′t0 ∩ Zt0 .

We also weaken condition C1 by replacing it by a simpler condition:

C3: limδ→0 supz∈Z Ez,tn(eβ|Y (δ)(tn+1)−Y (δ)(tn)| − 1) < ∞, n = 0, . . . , N − 1, for
some β > γ, where γ is the parameter introduced in condition A2.

Condition C2 does not change and takes the following form:

C4: limδ→0Eeβ|Y (δ)(t0)| < ∞, where β is the parameter introduced in condition
C3.

The following theorem is the second main result of the present paper.
Theorem 2. Let conditions A2, A3, B1, B2, C3, and C4 hold. Then, the

following asymptotic relation holds for the partition Π = {0 = t0 < t1 · · · < tN = T}
of interval [0, T ],

(46) Φ(M(δ)
Π,T ) → Φ(M(0)

Π,T ) as δ → 0.

Proof. We improve the method based on recursive asymptotic analysis of reward
functions used in [27].
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The reward functions are defined by the following recursive relations,

w(δ)(tN , z) = g(δ)(tN , ey), z = (y, x) ∈ Z,

and, for n = 0, . . . , N − 1,

w(δ)(tn, z) = max(g(δ)(tn, ey), Ez,tn
w(δ)(tn+1, Z

(δ)(tn+1)), z = (y, x) ∈ Z.

As follows from general results on optimal stopping for discrete time Markov
processes ([6] and [45]), the reward functional,

(47) Φ(M(δ)
Π,T ) = Ew(δ)(t0, Z(δ)(0)).

Note that, by definition, the reward functions w(δ)(tn, z) ≥ 0, z ∈ Z, n =
0, . . . , N .

Condition C3 implies that there exists a constant L10 < ∞ and δ2 ≤ δ0 such
that for n = 0, . . . , N − 1 and δ ≤ δ2,

(48) sup
z∈Z

Ez,tn
(eβ|Y (δ)(tn+1)−Y (δ)(tn)| − 1) ≤ L10.

Also condition C4 implies that δ2 can be chosen in such a way that, for some
constant L11 < ∞, the following inequality holds for δ ≤ δ2,

(49) Eeβ|Y (δ)(0)| ≤ L11.

Condition A2 directly implies that the following power upper bound for the
reward function w(δ)(tN , z) holds, for δ ≤ δ2,

(50) w(δ)(tN , z) ≤ L1,N + L2,Neγ|y|, z = (y, x) ∈ Z,

where

(51) L1,N = K6, L2,N = K7 < ∞.

Also, according to condition A′
3, for an arbitrary zδ → z0 as δ → 0, where

z0 ∈ Z′tN
∩ ZtN ,

(52) w(δ)(tN , zδ) → w(0)(tN , z0) as δ → 0.

Let us prove that relations similar with (50), (51), and (52) hold for the reward
functions w(δ)(tN−1, z).

We get, using relation (50), for z = (y, x) ∈ Z and δ ≤ δ2,

Ez,tN−1g
(δ)(tN , eY (δ)(tN )) ≤ L1,N + L2,NEz,tN−1e

γ|Y (δ)(tN )|

≤ L1,N + L2,NEz,tN−1e
γ|y|eγ|Y (δ)(tN )−y|

≤ L1,N + L2,Neγ|y|Ez,tN−1e
γ|Y (δ)(tN )−Y (δ)(tN−1)|

≤ L1,N + L2,N (L10 + 1)eγ|y|.(53)

Relation (53) implies that, for z = (y, x) ∈ Z and δ ≤ δ2,

w(δ)(tN−1, z) = max(g(δ)(tN−1, e
y), Ez,tw

(δ)(tN , Z(δ)(tN ))

≤ K6 + K7e
γ|y| + L1,N + L2,N (L10 + 1)eγ|y|

≤ L1,N−1 + L2,N−1e
γ|y|,(54)

where

(55) L1,N−1 = K6 + L1,N , L2,N−1 = K7 + L2,N (L10 + 1) < ∞.
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Let us introduce, for every n = 0, . . . , N−1 and z ∈ Z random variables Z
(δ)
n (z) =

(Y (δ)
n (z), X(δ)

n (z)) such that P{Z(δ)
n (z) ∈ A} = P (δ)(tn, z, tn+1, A), A ∈ BZ.

Let us prove that, for any zδ → z0 ∈ Z′tN−1
∩ ZtN−1 as δ → 0, the following

relation takes place,

(56) w(δ)(tN , Z
(δ)
N−1(zδ)) ⇒ w(0)(tN , Z

(0)
N−1(z0)) as δ → 0.

Relation (56) follows from general results on weak convergence for compositions
of random functions given in [51]. However, the external functions w(δ)(tN , ·) in
the composition on the right hand side in (56) is non-random. This let us give a
simpler proof of this relation.

Let us take an arbitrary sequence δk → δ0 = 0 as k →∞. According to condition
B1, (a) the random variables Z

(δk)
N−1(zδk

) ⇒ Z
(δ0)
N−1(zδ0) as k →∞, for an arbitrary

zδk
→ zδ0 ∈ Z′tN−1

∩ZtN−1 as k →∞, and (b) P{Z(δ0)
N−1(zδ0) ∈ Z′tN

∩ZtN } = 1. Now,
according the representation theorem by Skorokhod [57], one can construct random
variables Z̃

(δk)
N−1(zδk

), k = 0, 1, . . . on some probability space (Ω,F ,P) such that (c)
P{Z̃(δk)

N−1(zδk
) ∈ A} = P{Z(δk)

N−1(zδk
) ∈ A}, A ∈ BZ, for every k = 0, 1, . . ., and (d)

Z̃
(δk)
N−1(zδk

) a.s.−→ Z̃
(δ0)
N−1(zδ0) as k → ∞. Let AN−1 = {ω ∈ Ω : Z̃

(δk)
N−1(zδk

, ω) →
Z̃

(δ0)
N−1(zδ0 , ω) as k → ∞} and BN−1 = {ω ∈ Ω : Z̃

(δ0)
N−1(zδ0 , ω) ∈ Z′tN

∩ ZtN
}. Rela-

tion (d) implies that P(AN−1) = 1. Relations (b) and (c) imply that P(BN−1) = 1.
These two relations imply that P(AN−1 ∩ BN−1) = 1. By relation (52) and
the definition of the sets AN−1 and BN−1, functions w(δk)(tN , Z̃

(δk)
N−1(zδk

, ω)) →
w(δ0)(tN , Z̃

(δ0)
N−1(zδ0 , ω)) as k → ∞, for ω ∈ AN−1 ∩ BN−1. Thus, (e) the random

variables w(δk)(tN , Z̃
(δk)
N−1(zδk

)) a.s.−→ w(δ0)(tN , Z̃
(δ0)
N−1(zδ0)) as k → ∞. Relation (c)

implies that (f) P{w(δk)(tN , Z̃
(δk)
N−1(zδk

)) ∈ A} = P{w(δk)(tN , Z
(δk)
N−1(zδk

)) ∈ A}, A ∈
BZ, for every k = 0, 1, . . .. Relations (e) and (f) imply that (g) the random variables
w(δk)(tN , Z

(δk)
N−1(zδk

)) ⇒ w(δ0)(tN , Z
(δ0)
N−1(zδ0)) as k → ∞. Because of the arbitrary

choice of the sequence δk → δ0, relation (g) implies relation (56).
Using inequality (54) and condition C3 we get for any sequence zδ = (yδ, xδ) →

z0 = (y0, x0) ∈ Z′tN−1
∩ ZtN−1 as δ → 0, and for δ ≤ δ2,

E(w(δ)(tN , Z
(δ)
N−1(zδ)))

β
γ = Ezδ,tN−1(w

(δ)(tN , Z(δ)(tN )))
β
γ

≤ Ezδ,tN−1(L1,N + L2,Neγ|Y (δ)(tN )|)
β
γ

≤ 2
β
γ−1([L1,N ]

β
γ + [L2,N ]

β
γ Ezδ,tN−1e

β|yδ|eβ|Y (δ)(tN )−yδ|)

≤ 2
β
γ−1([L1,N ]

β
γ + [L2,N ]

β
γ (L10 + 1)eβ|yδ|)(57)

and, therefore,

(58) limδ→0E(w(δ)(tN , Z
(δ)
N−1(zδ)))

β
γ < ∞.

Relations (56) and (58) imply that for any sequence zδ → z0 ∈ Z′tN−1
∩ZtN−1 as

δ → 0,

(59) Ezδ,tN−1w
(δ)(tN , Z(δ)(tN )) → Ez0,tN−1w

(0)(tN , Z(0)(tN )) as δ → 0.
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Relation (59) and condition A′
3 imply that for any sequence zδ = (yδ, xδ) →

z0 = (y0, x0) ∈ Z′tN−1
∩ ZtN−1 as δ → 0,

w(δ)(tN−1, zδ) = g(δ)(tN−1, e
yδ ) ∨ Ezδ,tN−1w

(δ)(tN , Z(δ)(tN ))

→ w(0)(tN−1, z0)

= g(0)(tN−1, e
y0) ∨ Ez0,tN−1w

(0)(tN , Z(0)(tN )) as δ → 0.(60)

Relations (54), (55), and (60) are analogues of relations (50), (51), and (52).
By repeating, the recursive procedure described above we finally get that for every
n = 0, 1, . . . , N , and for δ ≤ δ2,

(61) w(δ)(tn, z) ≤ L1,n + L2,neγ|y|, z = (y, x) ∈ Z,

for some constants,

(62) L1,n, L2,n < ∞,

and that, for an arbitrary zδ,n → z0,n as δ → 0, where z0,n ∈ Z′tn
∩ Ztn , and for

every n = 0, 1, . . . , N ,

(63) w(δ)(tn, zδ,n) → w(0)(tn, z0,n) as δ → 0.

Let us take an arbitrary sequence δk → δ0 = 0 as k →∞. According to condition
B2, the random variables (h) Z(δk)(0) ⇒ Z(δ0)(0) as k → ∞ and (i) P{Z(δ0)(0) ∈
Z′t0∩Zt0} = 1. According to Skorokhod Representation Theorem, one can construct
random variables Z̃(δk)(0), k = 0, 1, . . . on some probability space (Ω,F , P) such
that (j) P{Z̃(δk)(0) ∈ A} = P{Z(δk)(0) ∈ A}, A ∈ BZ, for every k = 0, 1, . . ., and
(k) Z̃(δk)(0) a.s.−→ Z̃(δ0)(0) as k → ∞. Let us denote A = {ω ∈ Ω : Z̃(δk)(0, ω) →
Z̃(δ0)(0, ω) as k → ∞} and B = {ω ∈ Ω : Z̃(δ0)(0, ω) ∈ Z′t0 ∩ Zt0}. Relation
(k) implies that P(A) = 1. Relations (i) and (j) imply that P(B) = 1. These
two relations imply that P(A ∩ B) = 1. By condition B2, relation (63), and the
definition of sets A and B, functions w(δk)(t0, Z̃(δk)(0, ω)) → w(δ0)(t0, Z̃(δ0)(0, ω))
as k → ∞, for ω ∈ A ∩B. Thus, (l) the random variables w(δk)(t0, Z̃(δk)(0)) a.s.−→
w(δ0)(t0, Z̃(δ0)(0)) as k →∞. Relation (j) implies that (m) P{w(δk)(t0, Z̃(δk)(0)) ∈
A} = P{w(δk)(t0, Z(δk)(0)) ∈ A}, A ∈ BZ, for every k = 0, 1, . . .. Relations (l) and
(m) imply that (n) the random variables w(δk)(tN , Z(δk)(0)) ⇒ w(δ0)(tN , Z(δ0)(0))
as k →∞. Because the sequence δk → δ0 was arbitrary, relation (n) implies that,

(64) w(δ)(t0, Z(δ)(0)) ⇒ w(0)(t0, Z(0)(0)) as δ → 0.

Using inequality (61) and condition C4, we get for δ ≤ δ3,

E(w(δ)(t0, Z(δ)(0)))
β
γ ≤ E(L1,0 + L2,0e

γ|Y (δ)(0)|)
β
γ

≤ 2
β
γ−1((L1,0)

β
γ + (L2,0)

β
γ Eeβ|Y (δ)(0)|)

≤ 2
β
γ−1((L1,0)

β
γ + (L2,0)

β
γ L11),(65)

and, therefore,

(66) limδ→0E(w(δ)(t0, Z(δ)(0)))
β
γ < ∞.

Relations (64) and (66) imply that,

(67) Ew(δ)(t0, Z(δ)(0)) → Ew(0)(t0, Z(0)(0)) as δ → 0.

Formula (47) and relation (67) imply relation (46) given in Theorem 2.
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The proof of Theorem 2 is complete. ¦
In order to provide convergence of the reward functionals Φ(M(δ)

ΠN ,T ) for any
partition ΠN of the interval [0, T ], one can require the conditions of Theorem 3 to
hold for any partition of this interval. Note that these conditions also would not
involve the derivatives of the pay-off functions. In this case, the pre-limit and the
limit pay-off functions can be discontinuous.

5. Convergence of rewards for continuous time price processes

As was mentioned above, in the discrete time case, the pay-off functions can be
discontinuous. In the continuous time case, the derivatives of the pay-off functions
are involved in condition A1. The corresponding assumptions imply continuity of
the pay-off functions.

This give us possibility to weaken the assumption concerning the convergence of
the pay-off functions and just to require their pointwise convergence:

A4: g(δ)(t, s) → g(0)(t, s) as δ → 0, for every (t, s) ∈ [0, T ]× (0,∞).

Obviously, condition A4 can be re-written in terms of function g(δ)(t, ey), (t, y) ∈
[0,∞)× R1:

A′
4: g(δ)(t, ey) → g(0)(t, ey) as δ → 0, for every (t, y) ∈ [0, T ]× R1.

Let us now formulate conditions assumed for the transition probabilities and the
initial distributions of process Z(δ)(t).

The first condition assumes weak convergence of the transition probabilities that
should be locally uniform with respect to initial states from some sets, and also that
the corresponding limit measures are concentrated on these sets:

B3: There exist measurable sets Zt ⊆ Z, t ∈ [0, T ] such that: (a) P (δ)(t, zδ,
t + u, ·) ⇒ P (0)(t, z, t + u, ·) as δ → 0, for any zδ → z ∈ Zt as δ → 0 and
0 ≤ t < t + u ≤ T ; (b) P (0)(t, z, t + u,Zt+u) = 1 for every z ∈ Zt and
0 ≤ t < t + u ≤ T .

The typical example is where the sets Z̄t = ∅. In this case, condition B3 (b)
automatically holds. Another typical example is where Zt = Yt × X, where the
sets Ȳt are at most finite or countable sets. In this case, the assumption that the
measures P (0)(t, z, t + u,A×X), A ∈ B1 have no atoms implies that conditions B3

(b) holds.
The second condition assumes weak convergence of the initial distributions to

some distribution that is assumed to be concentrated on the sets of convergence for
the corresponding transition probabilities:

B4: (a) P (δ)(·) ⇒ P (0)(·) as δ → 0; (b) P (0)(Z0) = 1, where Z0 is the set
introduced in condition B3.

The typical example is again when the set Z̄0 is empty. In this case condition
B4 (b) holds automatically. Also in the case, where Z0 = Y0×X and Ȳ0 is at most
a finite or countable set, the assumption that measure P (0)(A×X), A ∈ B1 has no
atoms implies that conditions B4 (b) holds.

Condition B4 holds, for example, if the initial distributions P (δ)(A) = χA(z0)
are concentrated in a point z0 ∈ Z0, for all δ ≥ 0. This condition also holds, if
the initial distributions P (δ)(A) = χA(zδ) for δ ≥ 0, where zδ → z0 as δ → 0 and
z0 ∈ Z0.
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The following theorem, presenting conditions for convergence of reward func-
tionals Φ(M(δ)

max,T ), is the third main result of the present paper.
Theorem 3. Let conditions A1, A4, B3, B4, C1, and C2 hold. Then,

(68) Φ(M(δ)
max,T ) → Φ(M(0)

max,T ) < ∞ as δ → 0.

Proof of Theorem 3. Let ΠN = {0 = t0,N < t1,N < . . . tN,N = T} be a sequence of
partitions such that d(ΠN ) → 0 as N →∞.

Lemma 5. Let conditions A1, C1, and C2, the following relation holds for any
sequence of partitions ΠN such that d(ΠN ) → 0 as N →∞,

(69) lim
N→∞

limδ→0(Φ(M(δ)
max,T )− Φ(M(δ)

ΠN ,T )) = 0.

Proof of Lemma 5. This lemma is a direct corollary of Theorem 1, which implies
that, under conditions A1, C1, and C2, there exist constants L3, L4 < ∞ such that
the following skeleton approximation inequality holds for δ ≤ δ1 and N such that
d(ΠN ) ≤ c (δ1 and c were defined in Theorem 1),

(70) Φ(M(δ)
max,T )− Φ(M(δ)

ΠN ,T ) ≤ L3d(ΠN ) + L4(∆β(Y (δ)(·), d(ΠN ), T ))
β−γ

β .

This estimate directly implies relation (69). ¦
The following lemma show that conditions of Theorem 3 do imply that conditions

of Theorem 2 hold for any partition ΠN of the interval [0, T ].
Lemma 6. Let conditions A1, A4, B3, B4, C1, and C2 hold. Then, conditions

of Theorem 2 hold for any partition ΠN = {0 = t0 < t1 · · · < tN = T} of interval
[0, T ], and therefore the following asymptotic relation holds,

(71) Φ(M(δ)
ΠN ,T ) → Φ(M(0)

ΠN ,T ) as δ → 0.

Proof. Conditions A1 (c) and (d) imply that (t) for any t ∈ [0, T ], 0 < s < ∞,
and δ ≤ δ0,

g(δ)(t, s) ≤
∫ s

0

|∂g(δ)(t, u)
∂u

|du + g(δ)(t, 0)

≤
∫ s

0

(K3 + K4u
γ2)du + K5

= K3s +
K4

γ2 + 1
sγ2+1 + K5 ≤ K6 + K7s

γ ,(72)

where K6 = K3 + K4 + K5 and K7 = (K3 + K4).
Thus condition A2 holds for any partition ΠN of the interval [0, T ].
Condition A1 (c) imply also that, for any t ∈ [0, T ], 0 < s′ < s′′ < ∞, and

δ ≤ δ0,

|g(δ)(t, s′′)− g(δ)(t, s′′)| ≤
∫ s′′

s′
|∂g(δ)(t, u)

∂u
|du

≤
∫ s′′

s′
(K3 + K4u

γ2)du ≤ (K3 + K4(s′′)γ)(s′′ − s′).(73)

Thus, for any t ∈ [0, T ], 0 < s− < s+ < ∞, and δ ≤ δ0, the following inequality
holds for the modula of compactness in uniform topology for payoff functions,

(74) sup
s−≤s′≤s′′≤s′+c≤s+

|g(δ)(t, s′)− g(δ)(t, s′′)| ≤ (K3 + K4(s+)γ)c.
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Relation (74) and condition A4 imply that the conditions of the Ascoli-Arzelá
Theorem holds for pay-off functions g(δ)(t, s), s ∈ [s−, s+], for every t ∈ [0, T ] and
0 < s− < s+ < ∞. Thus, for every t ∈ [0, T ], these functions converge uniformly,
i.e.,

(75) sup
s−≤s≤s+

|g(δ)(t, s)− g(0)(t, s)| → 0 as δ → 0.

Relation (75) implies, in an obvious way, that the condition of locally uniform
convergence A3 holds for any partition ΠN of the interval [0, T ] with the corre-
sponding sets Stn

= (0,∞). Note that in this case sets Ytn
= lnStn

= R1 and
therefore the sets Z′tn

= Z.
If Z′tn

= Z for any tn ∈ [0, T ] then condition B3 implies that condition B1 holds
with the sets Ztn

from condition B3 for any partition ΠN of the interval [0, T ],
and condition B4 implies that condition B2 holds with the sets Z′tn

= Z for any
partition ΠN of the interval [0, T ].

It remain to show that condition C1 implies that condition C3 holds. Condition
C1 implies that for any constant L12 < ∞ one can choose c = c(L12) > 0 and then
δ3 = δ3(c) < δ0 such that for δ ≤ δ3,

(76) ∆β(Y (δ)(·), c, T ) ≤ L12.

Take an arbitrary integer 0 ≤ n < N and consider the uniform partition tn =
u0,m < · · · < um,m = tn+1 of the interval [tn, tn+1] by points uk,m = (tn+1−tn)k

m .
Using relation (76) and the Markov property of the process Z(δ)(t) we get, for
δ ≤ δ3, m = [ (tn+1−tn)

c ] + 1 (in this case (tn+1−tn)
m ≤ c), z ∈ Z, and k = 1, . . . , m,

Ez,tn(eβ|Y (δ)(uk,m)−Y (δ)(u0,m)| − 1)

≤ Ez,tneβ|Y (δ)(uk−1,m)−Y (δ)(u0,m)|eβ|Y (δ)(uk,m)−Y (δ)(uk−1,m)| − 1

= Ez,tn((eβ|Y (δ)(uk−1,m)−Y (δ)(u0,m)| − 1)eβ|Y (δ)(uk,m)−Y (δ)(uk−1,m)|

+ eβ|Y (δ)(uk,m)−Y (δ)(uk−1,m)| − 1)

= Ez,tn{(eβ|Y (δ)(uk−1,m)−Y (δ)(u0,m)| − 1)

× E{(eβ|Y (δ)(uk,m)−Y (δ)(uk−1,m)| − 1 + 1)/Z(δ)(uk−1,m)}}
+ Ez,tn{E{(eβ|Y (δ)(uk,m)−Y (δ)(uk−1,m)| − 1)/Z(δ)(uk−1,m)}}

≤ Ez,tn(eβ|Y (δ)(uk−1,m)−Y (δ)(u0,m)| − 1)(L12 + 1) + L12.(77)

Finally, we get, for δ ≤ δ3 and z ∈ Z,

Ez,tn(eβ|Y (δ)(tn+1)−Y (δ)(tn)| − 1)

= Ez,tn(eβ|Y (δ)(um,m)−Y (δ)(u0,m)| − 1)

≤ (L12 + 1)m + L12

m−1∑

k=0

(L12 + 1)k = 2(L12 + 1)m − 1 < ∞.(78)

Thus condition C3 holds. Finally, condition C2 is equivalent to condition C4.
The proof is complete. ¦

Lemmas 5 and 6 let us make the final fifth step in the proof of Theorem 3. We
employ the following obvious inequality that can be written down for any partition
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ΠN ,

|Φ(M(δ)
max,T )− Φ(M(0)

max,T )| ≤ |Φ(M(δ)
max,T )− Φ(M(δ)

ΠN ,T )|
+ |Φ(M(0)

max,T )− Φ(M(0)
ΠN ,T )|+ |Φ(M(δ)

ΠN ,T )− Φ(M(0)
ΠN ,T )|.(79)

Using this inequality and relation (71) given in Lemma 6 we get for any partition
ΠN ,

limδ→0|Φ(M(δ)
max,T )− Φ(M(0)

max,T )|
≤ limδ→0|Φ(M(δ)

max,T )− Φ(M(δ)
ΠN ,T )|+ |Φ(M(0)

max,T )− Φ(M(0)
ΠN ,T )|.(80)

Finally, relation (69) given in Lemma 5 implies (note that relation δ → 0 admit
also the case where δ = 0) that the expression on the right hand side in (80) can
be forced to take a value less then any ε > 0 by choosing the partition ΠN with
the diameter d(ΠN ) small enough.

This proves the asymptotic relation (68) and completes the proof of Theorem 3.
¦

6. Compactness conditions for log-price processes

Let us make several useful remarks concerning the evaluation of the exponential
modulus of compactness ∆β(Y (δ)(·), c, T ).

The following representation formula takes place for the exponential modulus of
compactness ∆β(Y (δ)(·), c, T ),

∆β(Y (δ)(·), c, T ) = sup
0≤t≤t+u≤t+c≤T

sup
z∈Z

(Ez,te
β|Y (δ)(t+u)−Y (δ)(t)| − 1)

= sup
0≤t≤t+u≤t+c≤T

sup
z∈Z

β

∫ ∞

0

eβyPz,t{|Y (δ)(t + u)− Y (δ)(t)| > y}dy.

This representation shows that the compactness condition C1 can be effectively
used if the tail probabilities for increments |Y (δ)(t+u)−Y (δ)(t)| are given explicitly
or can be effectively estimated.

The condition of exponential moment compactness C1 can also be connected
with the traditional condition of compactness in J-topology for Markov type càdlàg
processes. Let us introduce the modulus of J-compactness,

∆(Y (δ)(·), h, c, T ) = sup
0≤t≤t+u≤t+c≤T

sup
z∈Z

Pz,t{|Y (δ)(t + u)− Y (δ)(t)| ≥ h}.

The following condition of J-compactness plays the key role in functional limit
theorems for Markov type càdlàg processes:

C5: limc→0 limδ→0∆(Y (δ)(·), h, c, T ) = 0, h > 0.
Let also introduce the quantity, which represents the maximum of the moment

generating functions for increments of the log-price process Y (δ)(t):

Ξβ(Y (δ)(·), T ) = sup
0≤t≤t+u≤T

sup
z∈Z

Ez,te
β(Y (δ)(t+u)−Y (δ)(t)).

The following condition, formulated in terms of these moment generating func-
tions, can be effectively verified in many cases:

C6: limδ→0Ξ±β′(Y (δ)(·), T ) < ∞, for some β′ > β, where β is the parameter in
condition C1.
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Lemma 7. Conditions C5 and C6 imply condition C1 to hold.
Proof of Lemma 7. Using Hölder’s inequality we get the following estimates, for
every 0 ≤ t ≤ t + u ≤ T and z ∈ Z,

Ez,te
β|Y (δ)(t+u)−Y (δ)(t)| − 1

≤ (eβh − 1) + Ez,te
β|Y (δ)(t+u)−Y (δ)(t)|χ(|Y (δ)(t + u)− Y (δ)(t)| ≥ h)

≤ (eβh − 1) + (Ez,te
β′|Y (δ)(t+u)−Y (δ)(t)|)

β
β′ Pz,t{|Y (δ)(t + u)− Y (δ)(t)| ≥ h}.

(81)

The following inequality, which connect the exponential moment modulus of
compactness with the modulus of J-compactness, follows readily from (81),

∆β(Y (δ)(·), c, T ) ≤ (eβh − 1)

+ (∆β′(Y (δ)(·), c, T ) + 1)
β
β′ ∆(Y (δ)(·), h, c, T ).(82)

Also, the following estimate takes place, for every 0 ≤ t ≤ t + u ≤ T and z ∈ Z,

Ez,te
β′|Y (δ)(t+u)−Y (δ)(t)| = Ez,te

β′(Y (δ)(t+u)−Y (δ)(t))χ(Y (δ)(t + u) ≥ Y (δ)(t))

+ Ez,te
−β′(Y (δ)(t+u)−Y (δ)(t))χ(Y (δ)(t + u) < Y (δ)(t))

≤ Ez,te
β′(Y (δ)(t+u)−Y (δ)(t)) + Ez,te

−β′(Y (δ)(t+u)−Y (δ)(t)).(83)

This estimate implies the following inequality,

(84) ∆β′(Y (δ)(·), c, T ) + 1 ≤ Ξβ′(Y (δ)(·), T ) + Ξ−β′(Y (δ)(·), T ).

Relations (88) and (89) imply the statement of Lemma 7. ¦

7. Examples

In this section, we illustrate the theoretical results given in Theorems 1–3 by
several examples.

Let us consider the model without modulation that is where the phase space
X = {x0} degenerates to an one-point set while the log-price process Y (δ)(t), t ≥ 0
is a càdlàg processes with independent increments.

We also assume for simplicity that the initial state of this process yδ = Y (δ)(0)
is a constant.

The process Y (δ)(t) is a càdlàg Markov process with transition probabilities
which are connected with the distributions of increments for this process P (δ)(t, t+
u,A) by the following relation,

P (δ)(t, y, t + u,A) = P (δ)(t, t + u,A− y)

= P{y + Y (δ)(t + u)− Y (δ)(t) ∈ A}.(85)

Let us assume the following standard condition of weak convergence for distri-
butions of increments for log-price processes:

D1: P (δ)(t, t + u, ·) ⇒ P (0)(t, t + u, ·) as δ → 0, 0 ≤ t ≤ t + u ≤ T .
Representation (85) implies in an obvious way that condition B3 holds with the

sets Yt = R1, t ∈ [0, T ], i.e., distributions of increments for the processes Y (δ)(t)
locally uniformly weakly converge, if condition D1 holds. Thus, in the case of
processes with independent increments, condition B3 with the sets Yt = R1 is, in
fact, equivalent to the standard condition of weak convergence for such processes.



CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES 25

In this case the J-compactness modulus ∆(Y (δ)(·), h, c, T ) take the following
form,

∆(Y (δ)(·), h, c, T ) = sup
0≤t≤t+u≤t+c≤T

P{|Y (δ)(t + u)− Y (δ)(t)| ≥ h}.

Thus, condition C5 is reduced to the standard J-compactness condition for the
log-price processes:

D2: limc→0 limδ→0 ∆(Y (δ)(t), h, c, T ) = 0, h > 0,

Note that conditions D1 and D2 imply J-convergence of processes Y (δ)(t), t ∈
[0, T ] to process Y (0)(t), t ∈ [0, T ] as δ → 0 and stochastic continuity of the limit
process.

Also, in this case, the quantity Ξβ(Y (δ)(·), T ) takes the simplified form,

Ξβ(Y (δ)(·), T ) = sup
0≤t≤t+u≤T

Eeβ(Y (δ)(t+u)−Y (δ)(t)).

Therefore, condition C6 take the following form:

D3: limδ→0Ξ±β′(Y (δ)(·), T ) < ∞, for some β′ > β, where β is the parameter
penetrating condition C1.

According to Lemma 7, conditions D1 and D2 imply condition C1 to hold.
Condition B4 is reduced in this case to the following condition:

D4: limδ→0 yδ = y0.

Note that y0 can be any real number since the set Y0 = R1.
Obviously, condition D4 implies also condition C4 to hold.
Summarising the remarks above, one can conclude that the conditions and, there-

fore, the statement of Theorem 3 hold for the exponential price processes with in-
dependent increments S(δ)(t) = eY (δ)(t), if conditions A1, A4, and D1 – D4 hold.

The skeleton approximations Y (δ)(t) = Y (0)([t/δ]), t ≥ 0 for a stochastically
continuous càdlàg log-prise process Y (0)(t), t ≥ 0 with independent increments give
an example of the model introduced above.

In this case, conditions D1 and D2 automatically hold.
As far as condition D3 is concerned it is implied by the following condition:

D5: Ξ±β′(Y (0)(·), T ) < ∞, for some β′ > β, where β is the parameter penetrat-
ing condition C1.

Thus, the statement of Theorem 3 hold for the exponential price processes
S(δ)(t) = eY (0)([t/δ]), t ∈ [0, T ], if conditions A1, A4, and D5 hold.

It is not out of the picture to note that, in this case, Theorem 1, given in the
first part of this paper, yields a stronger result in the form of explicit estimates for
accuracy of skeleton approximations for reward functions.

Note also that the optimal expected rewards for the skeleton price processes
S(δ)(t) = eY (0)([t/δ]) can be estimated with the use of Monte Carlo method. The
corresponding algorithms are described, for example, in [27, 28, 29, 34, 35, 52, 53].

Combination of these Monte Carlo based estimates with the skeleton approx-
imations described above yields the effective approximation methods for optimal
expected rewards for American type options with non-standard payoffs.

Now, let us consider the model, where the log-price process Y (δ)(t), t ≥ 0 is, for
every δ ≥ 0, a càdlàg Lévy process, which Lévy–Khintchine representation has the
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following form,

ϕ
(δ)
t (v) = E exp{iv(Y (δ)(t)− yδ)}

= exp{itaδv − 1
2
tb2

δv
2 + t

∫

R1

(eivs − 1− ivs

1 + s2
)Πδ(ds)}, v ∈ R1, t ≥ 0,(86)

where (a) aδ ∈ R1; (b) bδ ≥ 0; (c) Πδ(A) is a measure on R1 satisfying the integral
condition

∫
|s|≤1

s2Πδ(ds) < ∞; (d) yδ = Y (δ)(0) is an initial state of this process,
assumed for simplicity to be a constant.

Let us assume the following standard condition that is necessary and sufficient
condition for weak convergence of increments of the processes Y (δ)(t):

E1: (a) limδ→0 aδ = a0; (b) limε→0 limδ→0 |b2
0 − b2

δ −
∫
|s|≤ε

s2Πδ(ds)| = 0;
(c) limδ→0

∫
R1

f(s)Πδ(ds) =
∫
R1

f(s)Π0(ds) for any continuous bounded
function f(s) vanishing to 0 in some neighbourhood of zero.

As is well known (see, for example, [58]) condition E1 implies, in this case, both
conditions D1 and D2 to hold.

Also, as known, the moment generating function E exp{wY (δ)(t)} = ψ
(δ)
t (w)

exists for given w ∈ R1 if and only if
∫
|s|>1

ewsΠδ(ds) < ∞. Moreover, it is

connected with the corresponding characteristic function by the formula ψ
(δ)
t (w) =

ϕ(δ)(w/i).
It readily follows from these facts that condition D3 is implied, under condition

D5, by the following condition:
E2: limδ→0

∫
|s|>1

eβ′|s|Πδ(ds) < ∞, where β′ is the parameter given in condition
C6.

Summarising the remarks above, one can conclude that the conditions and, there-
fore, the statement of Theorem 3 hold for the exponential Lévy prise processes
introduced above, if conditions A1, A4, D4, and E1 – E2 hold.

As far as the case with skeleton approximations S(δ)(t) = eY (0)([t/δ]) is concerned,
let just note that condition D5 is implied, in this case, by the following condition:

E3:
∫
|s|>1

eβ′|s|Π0(ds) < ∞, where β′ is the parameter given in condition C6.

Thus, the statement of Theorem 3 hold for the exponential price processes
S(δ)(t) = eY (0)([t/δ]), if conditions A1, A4, and E3 hold.

The result formulated above can be readily generalised to the model of non-
homogeneous in time stochastically continuous càdlàg exponential prise processes
with independent increments.

Let us now consider a price process S(δ)(t) = eY (δ)(t) which can be referred as
an exponential process with independent increments modulated by semi-Markov
stochastic index process. In this model, the log-price process Y (δ)(t) is given in the
form,

Y (δ)(t) = yδ +
N(δ)(t)−1∑

n=0

Y
(δ)

n,X
(δ)
n

(T (δ)
n+1 − T (δ)

n )

+ Y
(δ)

N(δ)(t),X(δ)(t)
(T (δ)(t)), t ≥ 0,(87)

where (e) X(δ)(t), t ≥ 0 is a continuous from the right semi-Markov process with a
finite set of states X = {1, . . . , m} and transition probabilities Q

(δ)
ij (t), t ≥ 0, i, j ∈ X;
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(f) N (δ)(t) is the number of jumps for the semi-Markov process X(δ)(u) in interval
[0, t]; (g) X

(δ)
n , n = 0, 1, . . . are the states of the semi-Markov process X(δ)(t) at

sequential moments of jumps; (h) T
(δ)
n , n = 0, 1, . . . are the sequential moments of

jumps of the semi-Markov process X(δ)(t), (t) T (δ)(t) = t − T
(δ)

N(δ)(t)
is the time

between moment t and the moment of the last jump of process X(δ)(u) before t;
(i) Y

(δ)
n,i (t), t ≥ 0 is, for every n = 0, 1, . . . and i ∈ X, a real-valued càdlàg process

with independent increments with an initial state Y
(δ)
n,i (0) = 0 and distributions of

increments P
(δ)
i (t, t + s,A) = P{Y (δ)

n,i (t + s) −Y
(δ)
n,i (t) ∈ A} which do not depend on

n = 0, 1, . . .; (j) the processes Y
(δ)
n,i (t), t ≥ 0 for n = 0, 1, . . . , i ∈ X and the process

X(δ)(t), t ≥ 0 are mutually independent.
We assume for simplicity that (k) the initial state of the log-price process Y (δ)(0) =

y0 ∈ R1 and the semi-Markov index X(δ)(0) = i0 ∈ X are a constants, and also
that (l) the semi-Markov index has no instant transition, i.e., Q

(δ)
ij (0) = 0, i, j ∈ X.

In this case, the two-component process (Y (δ)(t), X(δ)(t)) is not a Markov pro-
cess, but the process X̃(δ)(t) = (X(δ)(t), T (δ)(t)) is a homogeneous Markov pro-
cess with the phase space X̃ = {1, . . . , m} × [0,∞). This process should be inter-
preted as a stochastic index modulating the log-price process Y (δ)(t). The phase
space of this process is a Polish space with the standard metric ρ((i, s), (j, t)) =√

χ(i 6= j) + |s− t|2.
The process Z̃(δ)(t) = (Y (δ)(t), X̃(δ)(t)), t ≥ 0 is a homogeneous Markov process.

Note that it is so even if the processes Y
(δ)
n,i (t), t ≥ 0 are non-homogeneous in time

processes with independent increments.
The results formulated above for exponential processes with independent incre-

ments can be generalised to the model introduced here.
The transition probabilities of the semi-Markov process X(δ)(t) can always be

represented in the form Q
(δ)
ij (t) = p

(δ)
ij F

(δ)
ij (t), t ≥ 0, i, j ∈ X, where p

(δ)
ij are transi-

tion probabilities of the imbedded Markov chain X
(δ)
n while F

(δ)
ij (t) are the distri-

butions of inter-jump times for this process conditioned on the states before and
after jumps.

In this case, one should first assume the following condition of weak convergence
for transition probabilities for the stochastic semi-Markov indices:

F1: (a) p
(δ)
ij → p

(0)
ij as δ → 0, i, j ∈ X; (b) F

(δ)
ij (·) ⇒ F

(0)
ij (·) as δ → 0, i, j ∈ X,

where the limit distribution functions are continuous for every i, j ∈ X.

As far as log-price processes Y
(δ)
n,i (t) are concerned the following conditions should

be imposed:

F2: Conditions D1 – D3 hold for processes Y
(δ)
0,i (t), t ∈ [0, T ] for every i ∈ X.

Introduce the distribution of sojourn times F
(δ)
i (t) =

∑
j∈X p

(δ)
ij F

(δ)
ij (t) and in-

troduce the set Ỹ = {(i, t) : F
(0)
i (t) < 1, i ∈ X}.

Conditions F1 and F2 imply that, for the processes Z̃(δ)(t), t ∈ [0, T ], condition
B1 holds, with the sets Zt = R1 × Ỹ, 0 ≤ t ≤ T , as well as that conditions C5 –
C6 hold.

We refer to the work in [59], where one can find the related proofs based on
estimates for the corresponding quantities related to log-price processes under fixed
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trajectories of the semi-Markov index; integration of these estimates with respect
to the measure generated by the semi-Markov index in the space of its trajectories;
and estimates for the number of jumps of this index in the finite interval [0, T ].

For example, let us shortly present a sketch of the corresponding proof related
to condition D3.

The assumption that condition D3 holds for every processes Y
(δ)
0,i (t), t ∈ [0, T ]

for every i ∈ X implies that there exists δ4 > 0 such that

(88) Ξ±β′(T ) = sup
δ≤δ4

max
i∈X

Ξ±β′(Y
(δ)
0,i (·), T ) < ∞.

Also, condition F1 implies that for any α > 0 there exist δ5 = δ5(α) > 0 such
that

(89) Υ(α, T ) = sup
δ≤δ5

EeαN(δ)(T ) < ∞.

Due to assumptions (e) - (j), the log-price process Y (δ)(t) is a process with in-
dependent increments conditionally independent with respect to the modulating
stochastic semi-Markov index X(δ)(t). This let us get, using (88) - (89), the follow-
ing estimate, for δ ≤ δ6 = δ4 ∧ δ5(lnΞ±β′(T )), and 0 ≤ t ≤ t + u ≤ T ,

Ee±β′(Y (δ)(t+u)−Y (δ)(t))

= E
∞∑

n=0

∑

i1,...,in∈X

∫

0<t1<···<tn≤T

E{e±β′(Y (δ)(t+u)−Y (δ)(t))/X
(δ)
k = ik,

T
(δ)
k ∈ dtk, k = 1, . . . , n,N (δ)(T ) = n}P{X(δ)

k = ik,

T
(δ)
k ∈ dtk, k = 1, . . . , n,N (δ)(T ) = n}

≤
∞∑

n=0

Ξ±β′(T )n+1P{N (δ)(T ) = n}

= Ξ±β′(T )Υ(ln(Ξ±β′(T )), T ) < ∞.(90)

Relation (90) obviously implies that condition D3 holds for processes Y (δ)(t).
Note also that assumption (k) automatically implies that condition B4 and C4

holds for any initial states y0 and i0.
Summarising the remarks above, one can conclude that the conditions and, there-

fore, the statement of Theorem 3 hold for the exponential price processes with in-
dependent increments modulated by the semi-Markov stochastic indices introduced
above, if conditions A1, A4, and F1 – F2 hold.

In particular, the statement of Theorem 3 hold for the exponential Lévy price
processes modulated by semi-Markov stochastic indices introduced above, if condi-
tions A1, A4, F1, and also conditions E1 – E2 hold for Lévy processes Y

(δ)
0,i (t), t ∈

[0, T ] for every i ∈ X.
In conclusion, let us consider the case where the log-price processes Y

(δ)
n,i (t) are

of trinomial type, i.e., have, for δ > 0 the following form,

(91) Y
(δ)
n,i (t) =

∑

1≤k≤[t/δ]

Y
(δ)
n,i,k, t ≥ 0,
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where Y
(δ)
n,i,k, k = 1, 2, . . . , i ∈ X, n = 0, 1, . . . are independent random variables

which take three values u
(δ)
i > 0, 0, and −u

(δ)
i with probability p

(δ)
i , r

(δ)
i and q

(δ)
i ,

respectively, where p
(δ)
i + r

(δ)
i + q

(δ)
i = 1.

As far as the limiting log-price processes Y
(0)
n,i (t) are concerned, they have the

following form,

(92) Y
(δ)
n,i (t) = µit + σiWn,i(t), t ≥ 0,

where Wn,i(t), t ≥ 0 are standard Wiener processes mutually independent for i ∈
X, n = 0, 1, . . ..

In this case, S(0)(t) = exp{Y (0)(t)} is a geometric Brownian motion modulated
by a semi-Markov stochastic index X(0)(t).

It is also naturally to assume that the stochastic index X(δ)(t) can jump only at
the moments δ, 2δ, . . . that is provided by the assumption that (m) the transition
probabilities Q

(δ)
ij (t), i, j ∈ X, as functions of t, may possess jumps only at moments

δ, 2δ, . . ..
Let us choose σ > maxi∈X σi. In this case, p

(δ)
i and q

(δ)
i defined below in condition

G1 are positive numbers and their sum is less than 1 for all i ∈ X and 0 < δ <

δ0 = mini∈X
(σ2−σ2

i )∧σ2
i

µ2
i +1

. The condition mentioned above is:

G1: u
(δ)
i = σ

√
δ, p

(δ)
i = σ2

i

2σ2 + µi

2σ

√
δ + µ2

i

2σ2 δ, q
(δ)
i = σ2

i

2σ2 − µi

2σ

√
δ + µ2

i

2σ2 δ, i ∈ X.

Condition G1 implies that EY
(δ)
0,i,1 = µiδ, VarY

(δ)
0,i,1 = σ2

i δ; provide J-convergence

of the processes Y
(δ)
0,i (t), t ∈ [0, T ] to the processes Y

(0)
0,i (t), t ∈ [0, T ] as δ → 0, for

every i ∈ X; and that conditions D1 and D2 hold, for every i ∈ X.
Also, the moment generation function E exp{βY

(δ)
0,i (t)} exist for any β ∈ R1 and

has an explicit form, namely,

(93) E exp{βY
(δ)
0,i (t)} =

{
(eβσ

√
δp

(δ)
i + r

(δ)
i + e−βσ

√
δq

(δ)
i )[t/δ], if δ > 0,

eβµit+
β2σ2

i t

2 , if δ = 0.

This makes it easy to check that condition D3 holds for these processes for any
β′ > β and for every i ∈ X. Thus, condition F2 holds.

Let assume that the semi-Markov stochastic index is a Markov chain and has
transition probabilities that satisfy the relation Q

(δ)
ij (t) = p

(δ)
ij Q

(δ)
i (t), where Q

(δ)
i (t)

are geometric distributions of random sojourn times which take values nδ with
probabilities Q

(δ)
i (1−Q

(δ)
i )n−1, n = 1, 2, . . ..

In this case, condition F1 is implied by the following condition:

F3: (a) p
(δ)
ij → p

(0)
ij as δ → 0, i, j ∈ X; (b) Q

(δ)
i /δ → λi > 0 as δ → 0, i ∈ X.

The limiting transition probabilities takes the form,

(94) Q
(0)
ij (t) = p

(0)
ij (1− e−λit), t ≥ 0, i, j ∈ X.

Summarising the remarks above, one can conclude that conditions A1, A4, F1

and G1 imply that the conditions and, therefore, the statement of Theorem 3
hold, i.e., Φ(M(δ)

max,T ) → Φ(M(0)
max,T ) as δ → 0, for the exponential trinomial price

processes S(δ)(t) = eY (δ)(t) introduced above in (87) and (91) – (92).
Let assume for simplicity that δ = T/N and consider the partition Πδ =< t0 =

0 < t1 = δ < · · · < tN−1 = (N − 1)δ < tN = T > of interval [0, T ].
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In this case, the Markov chain (n, Y (δ)(nδ), X(δ)(nδ)), n = 0, 1, . . . is a trinomial
tree model with the initial node (0, y0, i0) and (2n+1)m nodes of the form (n, yδ±
kσ
√

δ, i), k = 0, 1, . . . , n, i = 1, . . . , m after n ≥ 1 steps.
The standard backward procedure can be applied in order to find optimal ex-

pected reward at moment 0 for the for the discrete time exponential trinomial
price process with Markov modulation (S(δ)(nδ), X(δ)(nδ)). This optimal expected
reward coincides, in this case, with the reward functional Φ(M(δ)

Πδ,T ) for the ex-

ponential trinomial price processes S(δ)(t) = eY (δ)(t) introduced above in (87) and
(91) – (92).

To estimate the deference Φ(M(δ)
max,T ) − Φ(M(δ)

Πδ,T ) we can use Theorem 1. In

this case, d(Πδ) = δ and ∆β(Y (δ)(·), δ, T ) = maxi∈X(Eeβ|Y (δ)
1,i,1| − 1) ≤ eβσ

√
δ − 1.

Theorem 1 yields in this case the following estimate

(95) Φ(M(δ)
max,T )− Φ(M(δ)

Πδ,T ) ≤ L3δ + L4(eβσ
√

δ − 1)
β−γ

β → 0 as δ → 0.

Thus, Theorem 3 guarantees that the optimal expected reward Φ(M(δ)
Πδ,T ) con-

verge, under conditions A1, A4, F3, and G1, to the reward functional Φ(M(0)
max,T )

for the geometric Brownian motion defined in (87) and (92) modulated by the
continuous time homogeneous Markov chain with transition probabilities given in
(94).

Note that we use the trinomial model instead of the standard binomial one in
order to be able to fit the corresponding values for expectations and variances for
price jumps Y

(δ)
0,i,1 by choosing (n) the specified values of probabilities p

(δ)
i and q

(δ)
i ,

for every i ∈ X, and, at the same time, (o) the same values of jumps u
(δ)
i = σ

√
δ,

for all i ∈ X. The latter property (o) provides automatically necessary recombining
properties for the corresponding trinomial tree model, which makes it possible to
construct the tree model for the modulated log-price processes with the number of
nodes which has a linear rate of growth as a function of the number of steps.

In the case of approximation of the continuous type option with maturity T by
the corresponding discrete time model with time step δ = T/N the corresponding
tree has N steps, and therefore (2N + 1)m nodes after the last N -th step, (2(N −
1) + 1)m after (N − 1)-th step, etc.

The above backward algorithm can be also generalised to the general case of
trinomial tree model with semi-Markov index X(δ)(t) making jumps only at the
moments δ, 2δ, . . .. In this case, one should consider the Markov chain

(n, Y (δ)(nδ), X(δ)(nδ), T (δ)(nδ)), n = 0, 1, . . .

as a tree model with the initial node (0, y0, i0, 0) and (2n+1)mn nodes of the form
(n, y0 ± kσ

√
δ, i, l), k = 0, 1, . . . , n, i = 1, . . . ,m, l = 0, 1, . . . , n after n ≥ 1 steps.

In the case, the corresponding tree with number of notes which has a quadratic
rate of growth as a function of the number of steps. In the case of approximation
of the continuous type option with maturity T by the corresponding discrete time
model with time step δ = 1/N the corresponding tree has N steps, and therefore
(2N +1)mN notes after the last N -th step, (2(N−1)+1)m(N−1) after (N−1)-th
step, etc.
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Theorem 3 guarantees that these optimal expected reward at time 0 for the
described above trinomial tree model with semi-Markov modulation converge, un-
der conditions A1, A4, F1, and G1, to the corresponding optimal expected re-
ward functional Φ(M(0)

max,T ) for the geometrical Brownian motion (defined in (87)
and (92)) modulated by the semi-Markov index with the transition probabilities
Q

(0)
ij (t) = p

(0)
ij F

(0)
ij (t) given in condition F1.

Numerical algorithms for approximation of optimal reward values for exponential
price processes modulated by stochastic market indices shortly described above do
require a more detailed consideration. The corresponding results will be presented
in a separate paper.

In conclusion, we would like also to note that similar examples for multivariate
exponential price processes with independent increments are also considered in [32].

References

[1] D. D. Aingworth, S. R. Das, R. Motwani, A simple approach for pricing equity options
with Markov switching state variables, Quant. Finance 6 (2006), no. 2, 95–105.

[2] K. Amin, A. Khanna, Convergence of American option values from discrete- to
continuous-time financial models, Math. Finance, 4 (1994), no. 4, 289–304.

[3] G. Barone-Adesi, R. Whaley, Efficient analytical approximation of American option
values, J. Finance, 42 (1987), 301–310.

[4] N. Bollen, Valuing options in regime-switching models, J. Derivat., 6 (1998), 38–49.
[5] J. Buffington, R. J. Elliot, American options with regime switching, Inter. J. Theor.

Appl. Finance, 5 (2002), no. 5, 497–514.
[6] Y. S. Chow, H. Robbins, D. Siegmund, The Theory of Optimal Stopping, Houghton

Mifflin Comp., Boston, 1971 and Dover, New York, 1991.
[7] F. Coquet, S. Toldo, Convergence of values in optimal stopping and convergence of

optimal stopping times, Electr. J. Probab., 12 (2007), 207–228.
[8] J. Cox, S. Ross, M. Rubinstein, Option price: A simplified approach, J. Finanic.

Econom., 7 (1979), 229–263.
[9] N. J. Cutland, P. E. Kopp, W. Willinger, M. C. Wyman, Convergence of Snell envelopes

and critical prices in the American put, In: Mathematics of Derivative Securities (M.
A. H. Dempster, et al., eds), Publ. Newton Inst. Cambridge Univ. Press, 1997, 126–140.

[10] G. Di Graziano, L. C. G. Rogers, Barier option stopping for assets with Markov-
modulated dividends, J. Comput. Finance, 9 (2006), no. 4.

[11] G. B. Di Masi, Y. M. Kabanov, W. J. Runggaldier, Mean-variance hedging of op-
tions on stocks with Markov volatilities, Teor. Veroyatn. Primenen., 39 (1994), 211–222
(English translation in Theory Probab. Appl., 39, 172–182).

[12] V. M. Dochviri, On optimal stopping with incomplete data, In: Probability Theory
and Mathematical Statistics, Kyoto, 1986, Lecture Notes in Mathematics, 1299 (1988),
Springer, Berlin, 64–68.

[13] V. M. Dochviri, Optimal stopping of a homogeneous nonterminating standard Markov
process on a finite time interval, Trudy Mat. Inst. Steklov., 202 (1993), 120–131 (Eng-
lish translation in Proc. Steklov Inst. Math., 202, no. 4, 97–106).

[14] V. Dochviri, M. Shashiashvili, On the optimal stopping of a homogeneous Markov
process on a finite time interval, Math. Nachr., 156 (1992), 269–281.

[15] P. Dupuis, H. Wang, On the convergence from discrete time to continuous time in an
optimal stopping problem, Ann. Appl. Probab., 15 (2005), 1339–1366.

[16] R. J. Elliot, L. Chan, T. K. Su, Option pricing and Esscher transformation under
regime switching, Ann. Finance, 1 (2005), no. 4, 423–432.



32 D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG
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