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Abstract

The Price of Anarchy (PoA) is the ratio of optimal and equilibrium
social welfare. We consider the most fundamental queueing model in-
volving customers’ decisions, as studied by Naor (1969). We show that
the PoA has an odd behavior as a function of the system’s congestion.
In particular, when the ratio of the potential arriving rate and the ser-
vice rate is at most 0.98, PoA < 1.5. As the arrival rate comes close to
the service rate, the bound on the PoA increases to 2, and when the
ratio of the potential arriving rate and the service rate exceeds 1, PoA
is unbounded.

1 Introduction

Congested systems in general, and queueing systems in particular, may in-
volve decision making by individuals that affect not only the welfare of those
who act but also the welfare of other individuals in the system. Individu-
als are motivated then to act strategically in order to maximize their own
welfare given the strategies adopted by others. The most common solution
concept in such models is the Nash equilibrium. The equilibrium solution is
often different from the solution which maximizes overall social welfare. A
common measure to this inefficiency is the Price of Anarchy (PoA), i.e., the
ratio between the social welfare under optimum and the social welfare under
equilibrium1. The PoA has been studied in many settings, see for example
[1, 7, 9].

This paper is the first to investigate the PoA in the most fundamental
queueing model that involves customers’ decision making. The equilibrium
and socially optimal behavior in this model were analyzed in the seminal
paper of Naor [6]. The model assumes a First-Come First-Served queue,
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observable by the decision maker, with a single server, Poisson arrivals, ex-
ponential service times, linear waiting costs and fixed rewards from obtaining
service. Balking is associated with zero reward. The equilibrium solution in
this model is very simple since there exists a dominant pure threshold strat-
egy. Namely, for some integer n, an arriving customer joins the queue if and
only if the observed queue length upon arrival is shorter than n, and this
strategy maximizes the individual’s expected welfare no matter what strate-
gies are adopted by the others. The optimal behavior is also characterized
by a threshold strategy. Moreover Naor observed that its threshold param-
eter is in general smaller than that of the equilibrium strategy. This result
is robust in the sense that it also holds for more general queuing models ,
[4], [5] and [8].

Following Naor’s notation (see also [2]), we denote the arrival rate by
λ , and the service rate by µ . There is a reward of value R the customer
obtains upon completing service, and a cost of C per unit of time spent
waiting or in service. The system’s utilization factor is ρ = λ

µ , and we use

νs = Rµ
C to denote the value of service in terms of expected waiting cost

during a service duration.2

The model’s parameters can be normalized so that the only relevant
parameters are ρ and νs. Note that the model doesn’t need to assume ρ < 1
for stability, and in fact this number is of no significance in Naor’s results.
It comes therefore as a surprise that if we impose no restrictions on νs then
PoA is bounded if and only if ρ ≤ 1. The behavior of PoA as a function
of the utilization factor ρ can be roughly separated into three regions. As
mentioned, for ρ > 1 PoA is unbounded. We derive the exact value of PoA
for ρ < 0.9818, and show that everywhere in this range PoA < 1.48635. The
most interesting behavior of PoA is observed in the range 0.9818 < ρ < 1,
where it sharply increases but remains bounded by 2.

One can summarize therefore, that since in most real situations ρ < 0.98,
the price of anarchy in the single server queue is relatively small, compared
with other models discussed in the literature.

Finally, we mention that the only paper that deals with PoA in a queuing
system is a study by Haviv and Roughgarden [3], who consider a multi-
server queueing system with exponential service times, and show that the
PoA is bounded from above by the number of servers used under social
optimization.

2 PoA general behavior

The equilibrium and optimal thresholds, ne and n∗ respectively, and their
associated social welfare, have been studied by Naor [6]. It is straightforward

2To avoid triviality, νs ≥ 1. Otherwise, an arriving customer would balk even if the
system is empty.
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that

ne =
⌊
Rµ

C

⌋
= bνsc.

Define

g(ν) =
ν(1− ρ)− ρ(1− ρν)

(1− ρ)2
,

then n∗ = bν∗c, where ν∗ is the unique solution to

g(ν) = νs. (1)

Naor showed that n∗ ≤ ne. Moreover, n∗ = ne if and only if ne = 1.

The social welfare associated with a threshold n is

Sn = Rλ
1− ρn

1− ρn+1
− C

[
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

]
.

PoA is defined as the ratio of Sn∗ and Sne , i.e.,

PoA(ρ, νs) =
1−ρn∗

1−ρn∗+1 − 1
νs

[
1

1−ρ −
(n∗+1)ρn

∗

1−ρn∗+1

]
1−ρbνsc

1−ρbνsc+1 − 1
νs

[
1

1−ρ −
(bνsc+1)ρbνsc

1−ρbνsc+1

] (2)

=
pjoin(n∗)− 1

νs
q(n∗)

pjoin(ne)− 1
νs
q(ne)

, (3)

where q(n) is the expected queue length under a threshold n, and pjoin(n)
is the probability that an arriving customer joins the queue.

PoA(ρ, νs) is shown in Figures 1 and 2. In the following subsections, we
take a closer look at these graphs.
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Figure 1: PoA Vs. ρ and νs

Figure 2: PoA Vs. ρ and νs - zoom in
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3 PoA as a function of νs

For ρ < 1, we observe two local maxima, one of them when νs = 2. It is
demonstrated in Figure 3 for three different values of ρ. In the next section
we’ll show that, except for a small range of ρ values near but below 1, the
global maximum is achieved when νs = 2.

Figure 3: PoA(νs) for various values of ρ

For ρ ≥ 1 the PoA is monotone increasing when νs → ∞. The asymp-
totic behavior is described by the following lemmas:

Lemma 3.1. limνs→∞ PoA(1, νs) = 2.

Proof. For ρ = 1, the queue length distribution is uniform on 0, 1, . . . , n and
in particular, q(n) = n/2 and pjoin = n/(n+ 1).
Consider the function

h(x) =
x

x+ 1
− x

2νs
.

A continuous (with respect to x) analysis of this expression yields that it is
maximized by x =

√
2νs − 1. Thus, Sn∗ = h(n∗) ≤ h(

√
2νs − 1).

Also, by n∗ < νs and concavity of h(x), Sne = h(bνsc) ≥ h(νs).
Therefore,

PoA(1, νs) ≤

√
2νs−1√
2νs
−
√

2νs−1
2νs

νs
νs+1 −

1
2

, (4)

which tends to 2 when νs →∞.

Lemma 3.2. ∀ρ > 1,PoA(ρ, νs)→∞ for νs →∞.
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Proof. When ρ > 1 and when νs →∞, by (1)

n∗ = logρ νs + o(logρ νs)

By (2)

PoA(ρ, νs) ∼

1−ρlogρ νs
1−ρlogρ νs+1 − 1

νs

[
1

1−ρ −
(logρ νs+1)ρlogρ νs

1−ρlogρ νs+1

]
1−ρbνsc

1−ρbνsc+1 − 1
νs

[
1

1−ρ −
(bνsc+1)ρbνsc

1−ρbνsc+1

] .

Since

1−ρlogρ νs
1−ρlogρ νs+1 − 1

νs

[
1

1−ρ −
(logρ νs+1)ρlogρ νs

1−ρlogρ νs+1

]
= 1−νs

1−ρνs −
1
νs

[
1

1−ρ −
(logρ νs+1)νs

1−ρνs

]
∼

1
ρ −

1
νs

[
1

1−ρ + logρ νs
ρ

]
= νs(1−ρ)−ρ−(1−ρ) logρ νs

νs(1−ρ)ρ ∼ 1
ρ

and

1−ρbνsc
1−ρbνsc+1 − 1

νs

[
1

1−ρ −
(bνsc+1)ρbνsc

1−ρbνsc+1

]
∼ 1

ρ −
1
νs

[
1

1−ρ + bνsc
ρ

]
= νs(1−ρ)−ρ−(1−ρ)bνsc

νs(1−ρ)ρ = (νs−bνsc)(1−ρ)−ρ
νs(1−ρ)ρ < 1−2ρ

νs(1−ρ)ρ −−−−→νs→∞
0,

we conclude that

PoA(ρ, νs) −−−−→
νs→∞

∞

In contrast, ∀ρ < 1, the PoA is monotone decreasing to 1 when νs →∞.

Lemma 3.3. ∀ρ < 1, limνs→∞ PoA(ρ, νs) = 1.

Proof. When ρ ≤ 1, the solution of Equation (1) satisfies

lim
νs→∞

n∗

νs
= 1− ρ.

Substituting this relation into (2) gives:

lim
νs→∞

PoA(ρ, νs) =

1−ρνs(1−ρ)
1−ρνs(1−ρ)+1 − 1

r

[
1

1−ρ −
(νs(1−ρ)+1)ρνs(1−ρ)

1−ρνs(1−ρ)+1

]
1−ρbνsc

1−ρbνsc+1 − 1
νs

[
1

1−ρ −
(bνsc+1)ρbνsc

1−ρbνsc+1

] −−−−→
νs→∞

1
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4 PoA as a function of ρ

In this section we consider the upper envelope of the function PoA(ρ, νs) for
νs ≥ 1:

PoA(ρ) = sup
νs≥1

PoA(ρ, νs).

Lemma 4.1. For any ρ > 1, PoA(ρ) is unbounded.

Proof. By Lemma 3.2.

Remark. Under the limit case, when ρ → ∞, given any threshold n,
the number of customers in the system is always n. This is because at
any departure instant, an arrival occurs, due to the infinite arrival rate.
The social welfare per unit of time is then Rµ − nC. Thus, n∗ = 1. An
explanation to the latter is that in general, under optimization, customers
are allowed to wait to prevent idleness of the server in the future. When the
arrival rate is infinite, idleness never occurs. On the other hand, for fixed
µ,C and R, ne does not depend on λ and ne remains the same. The PoA is

Rµ− C
Rµ− Cne

=
1− 1

νs

1− bνscνs
=

νs − 1
νs − bνsc

νs→∞−−−−→∞

Lemma 4.2. PoA(1) = 2.

Proof. By (4)

PoA(1, νs) ≤

√
2νs−1√
2νs
−
√

2νs−1
2νs

νs
νs+1 −

1
2

≤ (
√

2νs − 1)2(νs + 1)
νs(νs − 1)

. (5)

For νs = 1, 2, 3, the righthand side is less than 1.5, and for νs > 2 +
√

3 its
derivative is positive. Therefore, PoA(1, νs) is bounded by the limit when
νs goes to infinity, which is 2.

The following Lemmas will be used in the proof of Theorem 4.5.

Lemma 4.3. For any ρ < 1, if PoA(ρ, νs) is maximized at νs then νs is an
integer.

Proof. We show that PoA is strictly monotone decreasing with νs in the
range where ne is fixed, i.e. νs ∈ [n, n + 1). This range is divided to a
finite number of intervals, such that in each interval n∗ is also fixed. The
PoA is continuous where n∗ changes because at these values Sn∗ = Sn∗+1.
Therefore it is sufficient to show that PoA is strictly monotone decreasing
with νs in each of the intervals, where both n∗ and ne are fixed.
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Consider two values ν1
s < ν2

s in such interval. The derivative of (3) with
respect to νs is

PoA′(ρ, νs) =
q(n∗)pjoin(ne)− q(ne)pjoin(n∗)

ν2
s

[
pjoin(ne)− 1

νs
q(ne)

]2
which is negative when

q(n∗)pjoin(ne) < q(ne)pjoin(n∗)

or(
1

1− ρ
− (n∗ + 1)ρn

∗

1− ρn∗+1

)(
1− ρne

1− ρne+1

)
<

(
1

1− ρ
− (ne + 1)ρne

1− ρne+1

)(
1− ρn∗

1− ρn∗+1

)
This inequality holds when

(1− ρne)(1− ρn∗+1)− (n∗ + 1)ρn
∗
(1− ρne)(1− ρ)−

(1− ρn∗)(1− ρne+1) + (ne + 1)ρne (1− ρn∗)(1− ρ) < 0

Simplifying the last expression, it is left to show that

neρ
ne(1− ρn∗)− n∗ρn∗(1− ρne ) < 0

or

ρ−n
∗
(1− ρn∗)
n∗

− ρ−ne(1− ρne)
ne

< 0

which is true since n∗ < ne and ρ−n(1−ρn)
n is increasing with n when ρ < 1.

We conclude that PoA(ρ, νs) is strictly decreasing with νs ∈ [n, n + 1]. In
particular this means that the maximum value of PoA in this range is ob-
tained at νs = n.

Lemma 4.4. For ρ < 1, 1+(n+1)ρn−ρn+1(n+2)
1−ρn+1 is a monotone decreasing func-

tion of n.

Proof. Note that

1 + (n+ 1)ρn − ρn+1(n+ 2)
1− ρn+1

= 1+
(n+ 1)(1− ρ)ρn

1− ρn+1
= 1+

n+ 1
n∑
i=0

ρi−n
= 1+

n+ 1
n∑
i=0

ρ−i
.

Since ρ < 1,

n∑
i=0

ρ−i

n+1 is an average of an increasing sequence, and hence it is
increasing with n. Thus, its inverse is decreasing with n.
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Theorem 4.5. ∀ρ < 1, PoA(ρ) < 2.

Proof. By (2) , we need to prove that ∀ ρ < 1 and r ≥ 1:

1− ρn∗

1− ρn∗+1
− 1
νs

(
1

1− ρ
− (n∗ + 1)

ρn
∗

1− ρn∗+1

)
≤

2

[
1− ρbνsc

1− ρbνsc+1
− 1
νs

(
1

1− ρ
− (bνsc+ 1)

ρbνsc

1− ρbνsc+1

)]
.

By Lemma 4.3 it is sufficient to consider νs = bνsc. Since νs is an integer
and n∗ < νs, it would be sufficient to prove that for any two integers n < m:

1− ρn

1− ρn+1
− 1
m

(
1

1− ρ
− (n+ 1)

ρn

1− ρn+1

)
≤

2
[

1− ρm

1− ρm+1
− 1
m

(
1

1− ρ
− (m+ 1)

ρm

1− ρm+1

)]
.

Since 1−ρn
1−ρn+1 is monotone increasing in n, it is sufficient to prove

1
m

1
1− ρ

+
1
m

(n+ 1)
ρn

1− ρn+1
≤ 1− ρm

1− ρm+1
+

2
m

(m+ 1)
ρm

1− ρm+1
.

Multiplying by m(1− ρ), it is sufficient to prove

1 + (n+ 1)ρn − ρn+1(n+ 2)
1− ρn+1

≤ m+ ρm(m+ 2)
1− ρm+1

(1− ρ).

By Lemma 4.4, the left-hand side is monotone decreasing with n. Therefore
it is sufficient to show that the inequality holds for n = 1:

1 + 2ρ− 3ρ2

1− ρ2
<
m+ ρm(m+ 2)(1− ρ)

1− ρm+1
,

or

0 < 2 + (m− 3)(1 + ρ) + (m+ 1)ρm + ρm(1 + ρ)− (m− 1)ρm+2,

which is true by
(m+ 1)ρm > (m− 1)ρm+2.

The behavior of PoA(ρ) in the range ρ < 1 is as shown in Figure 4. One
sees that except for a small range near ρ = 1, PoA(ρ) is bounded by 1.5.
This bound is smaller than the bound in Theorem 4.5. However, when ρ
becomes close to 1 the bound sharply increases to 2. To understand this
oddness, we examine the behavior of the PoA for various values of νs.

Figure 5 demonstrates that when ρ < 0.98175, PoA(ρ) = PoA(ρ, 2). In
contrast, when ρ ∈ [0.98175, 1], PoA(ρ) is not equal to a single function
PoA(ρ, νs). Instead, there is an infinite number of functions which define
the upper envelope of the PoA in this range.
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Figure 4: PoA Vs. ρ

Figure 5: PoA(ρ) for various values of νs

Observation 4.6. If ρ ∈ [0, 0.98175], PoA(ρ, νs) ≤ 1+ρ+ρ2

1+ρ < 1.48635

Proof. We observe that PoA(ρ) = PoA(ρ, 2) when ρ < 0.98175. Substituting
νs = 2 in (2) we have

PoA(ρ, νs) ≤ 1+ρ+ρ2

1+ρ . We also have that PoA is uniformly bounded by

the maximum of 1+ρ+ρ2

1+ρ over [0, 0.98175] which is 1.48635.
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