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Abstract

In this paper we consider a single-server polling system with switch-over times. We introduce
a new service discipline, mixed gated/exhaustive service, that can be used for queues with two
types of customers: high and low priority customers. At the beginning of a visit of the server
to such a queue, a gate is set behind all customers. High priority customers receive priority
in the sense that they are always served before any low priority customers. But high priority
customers have a second advantage over low priority customers. Low priority customers are
served according to the gated service discipline, i.e. only customers standing in front of the gate
are served during this visit. In contrast, high priority customers arriving during the visit period of
the queue are allowed to pass the gate and all low priority customers before the gate.

We study the cycle time distribution, the waiting time distributions for each customer type, the
joint queue length distribution of all priority classes at all queues at polling epochs, and the steady-
state marginal queue length distributions for each customer type. Through numerical examples
we illustrate that the mixed gated/exhaustive service discipline can significantly decrease waiting
times of high priority jobs. In many cases there is a minimal negative impact on the waiting times
of low priority customers but, remarkably, it turns out that in polling systems with larger switch-
over times there can be even a positive impact on the waiting times of low priority customers.

Keywords: Polling, priority levels, queue lengths, waiting times, mixed gated/exhaustive

1 Introduction

There are three ways in which one can introduce prioritisation into a polling model. The first type
of priority is by changing the server routing such that certain queues are visited more frequently than
other queues [6, 18]. This type of prioritisation is quite common in wireless network protocols. A
second type of prioritisation is through differentiation of the number of customers that are served
during each visit to a queue. The third way of introducing priorities is by changing the order in
which customers are served within a queue, which is a popular technique to improve performance of
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production systems, cf. [2, 21]. The present paper introduces a new service discipline, referred to as
mixed gated/exhaustive service, that combines the last two types of prioritisation.

In the polling model considered in the present paper a single server visits N queues in a fixed, cyclic
order. Some, or even all, of the queues contain two types of customers: high and low priority cus-
tomers. For these queues we introduce a new service discipline, called mixed gated/exhaustive service
based on the priority level of the customer. A polling system with high and low priority customers in a
queue with purely gated or exhaustive service has been studied in [1, 2]. The mixed gated/exhaustive
service discipline can be considered as a mixture of these two service disciplines where low priority
customers receive gated service and high priority customers receive exhaustive service. A more de-
tailed description is given in Section 2. Since the number of customers served during one visit in a
queue with gated service is different from the number served during a visit with exhaustive service,
the mixed gated/exhaustive service discipline introduced in the present paper combines the second
and the third type of prioritisation.

Polling models have been studied for many years and because of their practical relevance many pa-
pers on polling systems have been written in a mixture of application areas. The survey of Takagi
[20] on polling systems and their applications from 1991 is still very valuable, although the last cou-
ple of years interest in polling models has revived, partly triggered by many new applications. The
motivation for the present paper is to present a service discipline that combines the benefits of the
gated and exhaustive service disciplines for priority polling models. The specific application that
attracted our attention is in the field of logistics. Consider a make-to-order production system with
a single production capacity for multiple products. In many firms encountering this situation, the
products are produced according to a fixed production sequence. The production capacity, where the
production orders queue up, can be represented as a polling model by identifying each product with a
queue and the demand process of a product with the arrival process at the corresponding queue. For
a more detailed description of fixed-sequence strategies in the context of make-to-stock production
situations, see [22]. In the context of this production setting, the situation with two or more priority
levels - as studied in detail in the present paper - is oftentimes encountered in practice, where produc-
tion departments have to supply both internal as external customers, the latter of which is commonly
given a preferential treatment. A different application stems from production scheduling in flexible
manufacturing systems where part types are often grouped with other types sharing (almost) similar
characteristics (see, e.g., [16]). Such a manufacturing system can again be analysed by means of the
introduced polling model in order to differentiate between different parts grouped within one queue.
These two applications make the practical relevance of the inclusion of multiple priority levels in the
studied polling model evident. Finally, we should keep in the back of our mind that the results of the
present paper are certainly not limited to these production settings, but may be used in many other
fields where polling models arise, such as communication, transportation and health care (e.g., surgery
procedures where an urgency parameter is assigned to each patient).

The present paper is structured as follows: first we discuss the model in more detail and we determine
the generating functions (GFs) of the joint queue length distribution of all customers at visit begin-
nings and completions of each queue. In Section 4 we determine the Laplace-Stieltjes Transforms
(LSTs) of the distributions of the cycle time, visit times and intervisit times. These distributions are
used to determine the marginal queue length distributions and waiting time distributions of high and
low priority customers in all queues. The LST of the waiting time distribution is used to compute the
mean waiting time of each customer type. A pseudo-conservation law for these mean waiting times is
presented in Section 7. Furthermore, we introduce some numerical examples to illustrate typical fea-
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tures of a polling model with mixed gated/exhaustive service. Finally we discuss possible extensions
and future research on the topic.

2 Notation and model description

The model considered in the present paper is a polling model which consists of N queues, labelled
Q1, . . . , QN . Throughout the whole paper all indices are modulo N , so QN+1 stands for Q1. The
queues are visited by one server in a fixed, cyclic order: 1, 2, . . . , N , 1, 2, . . . . The switch-over time
of the server from Qi to Qi+1 is denoted by Si with LST σi (·). We assume that all switch-over times
are independent and at least one switch-over time is strictly greater than zero. Each queue contains two
customer types: high and low priority customers, although the analysis allows any number (greater
than zero) of customer types per queue. High priority customers in Qi are called type i H customers
and low priority customers in Qi are called i L customers, i = 1, . . . , N . Type i H customers arrive at
Qi according to a Poisson process with intensity λi H , and type i L customers arrive at Qi according
to a Poisson process with intensity λi L . The service times of type i H and i L customers are denoted
by Bi H and Bi L , with LSTs βi H (·) and βi L(·). All service times are assumed to be independent. We
introduce the notation ρi H = λi H E(Bi H ) and similarly ρi L = λi L E(Bi L). The total occupation rate
of the system is ρ =

∑N
i=1 ρi , where ρi = ρi H + ρi L is the fraction of time that the server visits

Qi . Service of the customers is gated for low priority customers and exhaustive for high priority
customers. In more detail: each queue actually contains two lines of waiting customers: one for
the low priority customers and one for the high priority customers. At the beginning of a visit to
Qi , a gate is set behind the low priority customers to mark them eligible for service. High priority
customers are always served exhaustively until no high priority customer is present. When no high
priority customers are present in the queue, the low priority customers standing in front of the gate are
served in order of arrival, but whenever a high priority customer enters the queue, he is served before
any waiting low priority customers. Service is non-preemptive though, implying that service of a type
i L customer is not interrupted by an arriving type i H customer. The visit to Qi ends when all type i L
customers present at the beginning of this visit are served and no high priority customers are present
in the queue. Notice that if the arrival intensity λi H equals 0, then Qi is served completely according
to the gated service discipline. Similarly we can set λi L = 0 to obtain a purely exhaustively served
queue. Both the gated and the exhaustive service discipline fall into the category of branching-type
service disciplines. These are service disciplines that satisfy the following property, introduced by
Resing [15] and Fuhrmann [10].

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of the
server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function hi (z1, . . . , zN ), which can be any N -dimensional
probability generating function.

If Qi receives gated service, we have hi (z1, . . . , zN ) = βi

(∑N
j=1 λ j (1− z j )

)
, where βi (·) denotes

the service time LST of an arbitrary customer in Qi , and λi denotes his arrival rate. For exhaustive
service hi (z1, . . . , zN ) = πi

(∑
j 6=i λ j (1− z j )

)
, where πi (·) is the LST of a busy period distribution

in an M/G/1 system with only type i customers, so it is the root in (0, 1] of the equation πi (ω) =

βi (ω + λi (1− πi (ω))), ω ≥ 0 (cf. [7], p. 250).
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Property 2.1 is not satisfied if Qi receives mixed gated/exhaustive service, because the random pop-
ulation that replaces each of the customers depends on the priority level. In the next section we cir-
cumvent this problem by splitting each queue into two virtual queues, each of which has a branching-
type service discipline. This equivalent polling system satisfies Property 2.1, so we can still use the
methodology described in [15] to find, e.g., the joint queue length distribution at visit beginnings and
completions. All other probability distributions that are derived in the present paper can be expressed
in terms of (one of) these joint queue length distributions.

3 Joint queue length distribution at polling epochs

In the present section we analyse a polling system with all queues having two priority levels and
receiving mixed gated/exhaustive service, but in fact each queue would be allowed to have any
branching-type service discipline. Denote the GF of the joint queue length distribution of type
1H, 1L , . . . , N H, N L customers at the beginning and the completion of a visit to Qi by respectively
Vbi (z1H , z1L , . . . , zN H , zN L) and Vci (z1H , z1L , . . . , zN H , zN L). As discussed in the previous section,
the polling model under consideration does not satisfy Property 2.1, which often means that an ex-
act analysis is difficult or even impossible. For this reason we introduce a different polling system
that does satisfy Property 2.1 and has the same joint queue length distribution at visit beginnings and
endings. The equivalent system contains 2N queues, denoted by Q1H∗, Q1L∗, . . . , QN H∗, QN L∗ . The
switch-over times Si , i = 1, . . . , N , are incurred when the server switches from Qi L∗ to Q(i+1)H∗ ;
there are no switch-over times between Qi H∗ and Qi L∗ . Customers in this system are so-called “smart
customers”, introduced in [4], meaning that the arrival rate of each customer type depends on the
location of the server. Type i H ∗ customers arrive in Qi H∗ according to arrival rate λi H unless the
server is serving Qi L∗ . When the server is serving Qi L∗ , the arrival rate of type i H ∗ customers is 0.
The reason for this is that we incorporate the service times of all type i H customers that would have
arrived during the service of a type i L customer, in the original polling model, into the service time of
a type i L∗ customer. In our alternative system, type i L∗ customers arrive with intensity λi L and have
service requirement B∗i L with LST β∗i L(·). There is a simple relation between Bi L and B∗i L , expressed
in terms of the LST:

β∗i L(ω) = βi L(ω + λi H (1− πi H (ω))).

B∗i L is often called completion time in the literature, cf. [19], with mean E(B∗i L) =
E(Bi L )
1−ρi H

. Service is
exhaustive for Q1H∗, Q2H∗, . . . , QN H∗ and synchronised gated for Q1L∗, Q2L∗, . . . , QN L∗ , the gate of
Qi L∗ being set at the visit beginning of Qi H∗ . The synchronised gated service discipline is introduced
in [14] and does not strictly satisfy Property 2.1. However, it does satisfy a slightly modified version
of Property 2.1 that still allows for straightforward analysis; see [3] for more details. During a visit
to Qi L∗ only those type i L∗ customers are served that were present at the previous visit beginning to
Qi H∗ . The joint queue length distribution at a visit beginning of Qi H∗ in this system is the same as
the joint queue length distribution at a visit beginning of Qi in the original polling system. Similarly,
the joint queue length distribution at a visit completion of Qi L∗ is the same as the joint queue length
distribution at a visit completion of Qi in the original polling system. In terms of the GFs:

Vbi (z) = Vbi H∗ (z),
Vci (z) = Vci L∗ (z),

4



where z is a shorthand notation for the vector (z1H , z1L , . . . , zN H , zN L). The GFs of the joint queue
length distributions at a visit beginning and completion of Qi H∗ are related in the following manner:

Vci H∗ (z) = Vbi H∗

(
z1H , z1L , . . . , hi H (z), zi L , . . . , zN H , zN L

)
,

with hi H (z) = πi H

(
λi L(1− zi L)+

∑
j 6=i (λ j H (1− z j H )+ λ j L(1− z j L))

)
. Similarly:

Vci L∗ (z) = Vbi H∗

(
z1H , z1L , . . . , hi H (z), hi L(z), . . . , zN H , zN L

)
,

where hi L(z) = β∗i L

(
λi L(1− zi L)+

∑
j 6=i (λ j H (1− z j H )+ λ j L(1− z j L))

)
. Note that Vci H∗ (·) =

Vbi L∗ (·) since there is no switch-over time between Qi H∗ and Qi L∗ . There is a switch-over time
between Qi L∗ and Q(i+1)H∗ though:

Vb(i+1)H∗ (z) = Vci H∗ (z)σi

 N∑
j=1

(λ j H (1− z j H )+ λ j L(1− z j L))

 .
Now that we can relate Vb(i+1)H∗ (·) to Vbi H∗ (·), we can repeat these steps N times to obtain a recursive
expression for Vbi H∗ (·). This recursive expression is sufficient to compute all moments of the joint
queue length distribution at a visit beginning to Qi H∗ by differentiation, but the expression can also be
written as an infinite product which converges if and only if ρ < 1. We refer to [15] for more details.

4 Cycle time, visit time and intervisit time

We define the cycle time Ci as the time between two successive visit beginnings to Qi , i = 1, . . . , N .
The LST of the distribution of Ci , denoted by γi (·), can be expressed in terms of Vbi (·) because the
type i L customers that are present at the beginning of a visit to Qi are those type i L customers that
have arrived during the previous cycle. It is convenient to introduce the notation Ṽbi (zi H , zi L) =

Vbi (1, . . . , 1, zi H , zi L , 1, . . . , 1), where zi H and zi L are the arguments that correspond respectively to
type i H and i L customers. Using this notation we can write: Ṽbi (1, z) = γi (λi L(1− z)). Hence, the
LST of the cycle time distribution is:

γi (ω) = Ṽbi (1, 1−
ω

λi L
). (4.1)

Note that E(Ci ) =
E(S1)+···+E(SN )

1−ρ , which does not depend on i . Higher moments of the cycle time
distribution do depend on the cycle starting point.

We define the intervisit time Ii as the time between a visit completion of Qi and the next visit begin-
ning of Qi . The type i H customers present at the beginning of a visit to Qi are exactly those type
i H customers that arrived during the previous intervisit time Ii . Hence, Ṽbi (z, 1) = Ĩi (λi H (1 − z)),
where Ĩ (·) is the LST of the distribution of Ii . This leads to the following expression for the LST of
the intervisit time distribution of Qi :

Ĩi (ω) = Ṽbi (1−
ω

λi H
, 1). (4.2)

It is intuitively clear that E(Ii ) = (1− ρi )E(C).
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The LSTs of the distributions of the cycle time and intervisit time are needed later in this paper. For
the visit time of Qi , Vi , we mention the LST here for completeness but it will not be used later:

E(e−ωVi ) = Ṽbi (πi H (ω), β
∗

i L(ω)).

It is easy to verify that E(Vi ) = ρi E(C).

5 Waiting times and marginal queue lengths

5.1 High priority customers

Since high priority customers are served exhaustively, we can use the concept of delay-cycles, some-
times called T -cycles (cf. [20]), introduced by Kella and Yechiali [13] for vacation models to find
the waiting time LST of a type i H customer. When it comes to computing waiting times in a polling
system with priorities, one can use delay-cycles for any queue that is served exhaustively, cf. [1, 2]. A
delay-cycle for a type i H customer is a cycle that starts with a certain initial delay at the moment that
the last type i H customer in the system has been served. In our model this initial delay is either the
service of a type i L customer, Bi L , or (if no type i L customer is present) an intervisit period Ii . The
delay cycle ends at the first moment after the initial delay when no type i H customer is present in the
system again. This is the moment that all type i H customers that have arrived during the delay, and
all of their type i H descendants, have been served. In [1] delay-cycles have been applied to a polling
system with two priority levels in an exhaustively served queue. For a type i H customer in the polling
model in the present paper, the same arguments can be used to compute the LST of the waiting time
distribution. The fraction of time that the system is in a delay-cycle that starts with the service time
Bi L of a type i L customer is ρi L

1−ρi H
, and the fraction of time that the system is in a delay-cycle that

starts with an intervisit period Ii , is 1− ρi L
1−ρi H

=
1−ρi

1−ρi H
. We can use the Fuhrmann-Cooper decompo-

sition [11] to obtain the LST of the waiting time distribution of a type i H customer, because from his
perspective the system is an M/G/1 queue with server vacations. The vacation is the service time Bi L

of a type i L customer with probability ρi L
1−ρi H

, and an intervisit time Ii with probability 1−ρi
1−ρi H

. This
leads to the following expression for the LST of the waiting time distribution of a type i H customer:

E[e−ωWi H ] =
(1− ρi H )ω

ω − λi H (1− βi H (ω))
·

[
ρi L

1− ρi H
·

1− βi L(ω)

ωE(Bi L)
+

1− ρi

1− ρi H
·

1− Ĩi (ω)

ωE(Ii )

]
. (5.1)

Equation (5.1) is similar to the equation found in [1] for high priority customers in an exhaustive
queue. Note that the intervisit time Ii is different though, with LST Ĩi (·) as defined in Equation (4.2).

The GF of the marginal queue length distribution of type i H customers can be found by applying the
distributional form of Little’s Law [12] to the sojourn time distribution:

E
(
zNi H

)
= E

(
e−λi H (1−z)(Wi H+Bi H )

)
.

This leads to the following expression:

E[zNi H ] =
(1− ρi H )(1− z)βi H (λi H (1− z))

βi H (λi H (1− z))− z

·

[
ρi L

1− ρi H
·

1− βi L(λi H (1− z))
(1− z)λi H E(Bi L)

+
1− ρi

1− ρi H
·

1− Ĩi (λi H (1− z))
(1− z)λi H E(Ii )

]
. (5.2)
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5.2 Low priority customers

In this subsection we determine the GF of the marginal queue length distribution of type i L customers,
and the LST of the waiting time distribution of type i L customers. In order to obtain these functions,
we regard the alternative system with 2N queues as defined in Section 3. The number of type i L
customers in the original polling system and their waiting time (excluding the service time) have the
same distribution as the number of type i L∗ customers and their waiting time (again excluding the
service time, which is different) in the alternative system. From the viewpoint of a type i L∗ customer,
the system is an ordinary polling system with synchronised gated service in Qi L∗ .

We apply the Fuhrmann-Cooper decomposition to the alternative polling model with 2N queues and
type i L∗ customers having completion time B∗i L . Using arguments similar as in Borst [3], we find the
general form of the GF of the marginal queue length distribution:

E[zNi L ] =
(1− ρ∗i L)(1− z)β∗i L(λi L(1− z))

β∗i L(λi L(1− z))− z

·
Vci L (1, . . . , 1, z, 1, . . . , 1)− Vbi L (1, . . . , 1, z, 1, . . . , 1)

(1− z)(E(N ∗i L|Iend
)− E(N ∗i L|Ibegin

))
, (5.3)

where ρ∗i L =
ρi L

1−ρi H
and β∗i L(ω) = βi L(ω + λi H (1− πi H (ω))). Furthermore, N ∗i L|Iend

and N ∗i L|Ibegin
are

the number of type i L∗ customers at respectively the visit beginning and visit completion of Qi L∗ . The
visit beginning corresponds to the end of the intervisit period Ii L , and the visit completion corresponds
to the beginning of the intervisit period. Substitution into (5.3) leads to the following expression:

E[zNi L ] =
(1− ρi L

1−ρi H
)(1− z)βi L(λi L(1− z)+ λi H (1− πi H (λi L(1− z))))

βi L(λi L(1− z)+ λi H (1− πi H (λi L(1− z))))− z

·
Ṽbi

(
πi H (λi L(1− z)), βi L(λi L(1− z)+ λi H (1− πi H (λi L(1− z))))

)
− Ṽbi

(
πi H (λi L(1− z)), z

)
(1− z)λi L(1− ρi L

1−ρi H
)E(C)

,

where we use that E(N ∗i L|Iend
) − E(N ∗i L|Ibegin

) = λi L(1 − ρ∗i L)E(C) = λi L(1 − ρi L
1−ρi H

)E(C), because
this is the mean number of type i L∗ customers that arrive during the intervisit time of Qi L∗ .

Using the distributional form of Little’s Law, we find the LST of the waiting time distribution of a
type i L customer:

E[e−ωWi L ] =
(1− ρi L

1−ρi H
)ω

ω − λi L(1− βi L(ω + λi H (1− πi H (ω))))

·
Ṽbi

(
πi H (ω), βi L(ω + λi H (1− πi H (ω)))

)
− Ṽbi

(
πi H (ω), 1− ω

λi L

)
ω(1− ρi L

1−ρi H
)E(C)

. (5.4)

6 Moments

Differentiation of the waiting time LSTs derived in the previous section leads to the following mean
waiting times:
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E(Wi H ) =
ρi H E(Bi H,res)+ ρi L E(Bi L ,res)

1− ρi H
+

1− ρi

1− ρi H
E(Ii,res), (6.1)

E(Wi L) =

(
1+

ρi L

1− ρi H

)
E(Ci,res)+

ρi H

1− ρi H

E(X i H X i L)

λi Lλi H E(C)
, (6.2)

where Bi H,res denotes a residual service time of a type i H customer, with E(Bi H,res) =
E(B2

i H )

2E(Bi H )
. We

use a similar notation for the residual service time of a type i L customer, the residual intervisit time,
and residual cycle time. Furthermore, X i H and X i L are the number of type i H , respectively type i L ,
customers at the beginning of a visit to Qi , so E(X i H X i L) is obtained by differentiating Ṽbi (zi H , zi L)

with respect to zi H and zi L (and then setting zi H = zi L = 1).

We now present an alternative, direct way to obtain the mean waiting time for a type i L customer by
conditioning on the event that an arrival takes place in a visit period, or in an intervisit period.

E(Wi L) =
E(Vi )

E(C)

[
E(Vi,res)+

E(Vi Ii )

E(Vi )
+

ρi H

1− ρi H

E(Vi Ii )

E(Vi )
+

ρi L

1− ρi H
E(Vi,past)

]
+

E(Ii )

E(C)

[
E(Ii,res)+

ρi H

1− ρi H

(
E(Ii,past)+ E(Ii,res)

)
+

ρi L

1− ρi H

(
E(Vi Ii )

E(Ii )
+ E(Ii,past)

)]
=

1
E(C)

[
1
2

E
(
(Vi + Ii )

2)
+

ρi L

1− ρi H
E
(
(Vi + Ii )

2)
+

ρi H

1− ρi H

(
E(I 2

i )+ E(Vi Ii )
)]

=

(
1+

ρi L

1− ρi H

)
E(Ci

2)

2E(C)
+

ρi H

1− ρi H

(
E(Ii )

E(C)

[
2

E(I 2
i )

2E(Ii )

]
+

E(Vi )

E(C)
E(Ii Vi )

E(Vi )

)
. (6.3)

In the above derivation, we use that both the past and residual intervisit time have expectation E(I 2
i )

2E(Ii )
,

and that if a type i L customer arrives during the visit time (with probability E(Vi )
E(C) ), the mean length

of the following intervisit time equals E(Ii Vi )
E(Vi )

. The interpretation of (6.3) is that a type i L customer
always has to wait for the residual cycle time, for the completion times of all type i L customers that
have arrived during the past cycle time, and for the busy periods of all type i H customers that have
arrived during the intervisit time of the cycle in which the type i L customer has arrived.

To show that (6.2) and (6.3) are equal, we can rewrite the last term in (6.2):

E(X i H X i L) = E[(Ni L(Vi )+ Ni L(Ii ))Ni H (Ii )]

= E
(
E[(Ni L(Vi )+ Ni L(Ii ))Ni H (Ii )] | Ii , Vi

)
= E[(λi L Vi + λi L Ii )λi H Ii ]

= λi Lλi H E(Ii Vi )+ λi Lλi H E(I 2
i ),

where N j (T ) denotes the number of type j customers that have arrived during time T ( j = i H, i L),
and Vi denotes the length of a visit of the server to Qi . Hence,

E(X i H X i L)

λi Lλi H E(C)
=

E(Ii Vi )+ E(I 2
i )

E(C)

=
E(Ii )

E(C)

[
2

E(I 2
i )

2E(Ii )

]
+

E(Vi )

E(C)
E(Ii Vi )

E(Vi )
,

which coincides with the last term in (6.3).
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7 Pseudo-conservation law for priority polling systems

Boxma and Groenendijk [5] have shown that a so-called pseudo-conservation law holds for nonpri-
ority polling systems. We do not discuss this law in detail in the present paper, but we mention that
a generalised version of this law (cf. [17, 9]) holds for systems with multiple priority levels in each
queue:

N∑
i=1

Ki∑
k=1

ρik E(Wik) =
ρ

1− ρ

N∑
i=1

Ki∑
k=1

ρik
E(B2

ik)

2E(Bik)

+ ρ
E(S2)

2E(S)
+

[
ρ2
−

N∑
i=1

ρ2
i

]
E(S)

2(1− ρ)
+

N∑
i=1

E(Z i i ),

(7.1)

where S =
∑N

i=1 Si , and Ki is the number of priority levels in Qi . In this expression Z i i is the
amount of work at Qi when the server leaves this queue and depends on the service discipline. It
is well-known that for gated service, E(Z i i ) = ρ2

i E(C) and for exhaustive service, E(Z i i ) = 0.
The pseudo-conservation law also holds for polling systems with mixed gated/exhaustive service in
some or all of the queues. If Qi receives mixed gated/exhaustive service, we have Ki = 2, and
E(Z i i ) = ρi Lρi E(C).

8 Numerical results

Example 1

In order to illustrate the effect of using a mixed gated/exhaustive service discipline in a polling system
with priorities, we compare it to the commonly used gated and exhaustive service disciplines. In this
example we use a polling system which consists of two queues, Q1 and Q2. Customers in Q1 are
divided into high priority customers, arriving with arrival rate λ1H =

2
10 , and low priority customers,

with arrival rate λ1L =
4
10 . Customers in Q2 all have the same priority level and arrive with arrival rate

λ2 =
2

10 . All service times are exponentially distributed with mean 1. The switch-over times S1 and
S2 are also exponentially distributed with mean 1, which results in a mean cycle time of E(C) = 10.
The service discipline in Q2 is gated, the service discipline in Q1 is varied: gated, exhaustive and
mixed gated/exhaustive. Results for a queue with two priority levels and purely gated or exhaustive
service are obtained in [1].

Table 1 displays the mean and the variance of the waiting times of the three customer types under the
three service disciplines. We conclude that the mixed gated/exhaustive service is a major improvement
for the high priority customers in Q1, whereas the mean waiting times of the low priority customers
in Q1 and the customers in Q2 hardly deteriorate. Of course in systems where ρ1H is quite high, the
negative impact can be bigger and one has to decide exactly how far one wants to go in giving extra ad-
vantages to customers that already receive high priority. When comparing the mixed gated/exhaustive
strategy to a system with purely exhaustive service in Q1, we conclude that the improvement is not
so much in the mean waiting time for high priority customers, but mostly in the mean and variance of
the waiting time for customers in Q2.

It is noteworthy that the mixed gated/exhaustive service discipline does not always have a negative ef-
fect on the mean waiting time of low priority customers in Q1, E(W1L), compared to the gated service
discipline. If, for example, the switch-over times are taken to be deterministic with value 10, the mean
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Gated Exhaustive Mixed G/E
E(W1H ) 9.578 2.520 2.338
E(W1L) 14.366 6.300 14.575
E(W2) 9.690 14.880 10.513
Var(W1H ) 56.739 9.290 6.496
Var(W1L) 101.616 32.812 118.217
Var(W2) 58.513 231.256 76.371

Table 1: Numerical results for Example 1. The switch-over times S1 and S2 are exponentially dis-
tributed with mean 1. The mixed gated/exhaustive service discipline is compared to gated and ex-
haustive service.

Gated Exhaustive Mixed G/E
E(W1H ) 63.187 11.333 11.167
E(W1L) 94.781 28.333 90.417
E(W2) 63.251 68.000 64.000
Var(W1H ) 847.377 195.508 183.907
Var(W1L) 894.173 315.823 850.199
Var(W2) 853.777 1386.100 928.914

Table 2: Numerical results for Example 1. Switch-over times are deterministic: S1 = S2 = 10.

waiting time for low priority customers is significantly less for the mixed gated/exhaustive service
than for gated service, as can be seen in Table 2. Compared to gated service, type 1H customers ben-
efit strongly from the mixed gated/exhaustive service discipline, and even type 1L customers benefit
from it. The mean waiting time for customers in Q2 has increased, but only marginally.

In order to get more understanding of this surprising behaviour of the waiting time of low priority
customers as function of the arrival intensities λ1H and λ1L , we use a simplified model which leads
to more insightful expressions, but displays the same characteristics as the model that was analysed
in the previous paragraph. Instead of analysing a polling model, we analyse an M/G/1 queue with
multiple server vacations. The queue, denoted by Q1 to use familiar notation, contains high (type
1H ) and low (type 1L) priority customers. Also here high priority customers are served before low
priority customers. The service times of both customers types are exponentially distributed with mean
1. This is for notational reasons only, for this example we actually only require that both service times
are identically distributed. One server vacation has a fixed length S. If the server does not find any
customers waiting upon arrival from a vacation, he takes another vacation of length S and so on. In
order to stay consistent with the notation used earlier, we denote the occupation rate of high and low
priority customers by respectively ρ1H and ρ1L . The total occupation rate is ρ = ρ1 = ρ1H + ρ1L .
Note that in this example λ1H = ρ1H and λ1L = ρ1L . We now compare the mean waiting times of
type 1L customers in the system with purely gated service and the system with mixed gated/exhaustive
service. For this simplified model, we can write down explicit expressions that have been obtained by
differentiating the LSTs and solving the resulting equations. These expressions could also have been
obtained by using Mean Value Analysis (MVA) for polling systems [21, 23].
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Gated service: E(W1L) = (1+ ρ + ρ1H )

(
S

2(1− ρ)
+

ρ

1− ρ2

)
, (8.1)

Mixed G/E service: E(W1L) =
ρ

(1− ρ)(1− ρ1H )
+

S(1+ ρ(1− 2ρ1H ))

2(1− ρ)(1− ρ1H )
. (8.2)

Now we analyse the behaviour of these waiting times as we vary λ1H between 0 and ρ, while keeping
λ1H + λ1L = ρ constant. Substitution of λ1H = 0 shows that the mean waiting times in the gated and
mixed gated/exhaustive system are equal:

E(W1L |ρ1H = 0) =
S(1+ ρ)
2(1− ρ)

+
ρ

1− ρ
.

Letting λ1H → ρ leads to the following expressions:

Gated service: E(W1L |ρ1H → ρ) =
ρ(1+ 2ρ)

1− ρ2
+

S(1+ 2ρ)
2(1− ρ)

,

Mixed G/E service: E(W1L |ρ1H → ρ) =
ρ

(1− ρ)2
+

S(1+ 2ρ)
2(1− ρ)

.

Two interesting things can be concluded from these two equations for the case λ1H → ρ:

• for fixed ρ, E(W1L) in a gated system is always less than E(W1L) in a mixed gated/exhaustive
system,

• the difference between E(W1L) in a gated system and E(W1L) in a mixed gated/exhaustive
system does not depend on S.

Focussing on the mean waiting time of type 1L customers only, we conclude that a gated system
performs the same as a mixed gated/exhaustive system as ρ1L = ρ, and that a gated system always
performs better when ρ1L → 0. For 0 < ρ1L < ρ the vacation time S determines which system
performs better. By taking derivatives of (8.1) and (8.2) with respect to ρ1H and letting ρ1H → 0,
one finds that the mean waiting time of a type 1L customer in a mixed gated/exhaustive system is less
than in a purely gated system when ρ1H → 0, if and only if S > 2ρ

1+ρ . Since a gated system always
outperforms a mixed gated/exhaustive system when λ1H → ρ, for S > 2ρ

1+ρ there must be (at least)
one value of λ1H for which the two systems perform the same. Further inspection of the derivatives
gives the insight that in a gated system the relation between E(W1L) and λ1H is a straight line, which
can also be seen immediately from Equation (8.1). In a mixed gated/exhaustive system, the relation
between E(W1L) and λ1H is not a straight line, both the first and second derivative with respect to λ1H

are strictly positive. This means that for S ≤ 2ρ
1+ρ the gated system always performs better than the

mixed gated/exhaustive system for any value of λ1H > 0, and for S > 2ρ
1+ρ the mixed gated/exhaustive

system performs better than the gated system for 0 < λ1H < λ∗1H . The value of λ∗1H can be determined
analytically:

λ∗1H = ρ
S − 2ρ

1+ρ

S + 2ρ
1+ρ

.

From this expression we conclude that limS→∞ λ
∗

1H = ρ. Although we have studied only the vaca-
tion model, the conclusions are also valid for more general settings, like polling models with non-
deterministic switch-over times, but the expressions are by far not as appealing.
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We visualise the findings of the present section in Figure 1, where we show three plots of the mean
waiting time of type 1L customers against λ1H . The model considered is the same as in the beginning
of the present section (two queues, gated service in Q2) except for the switch-over times S1 and S2,
which are now deterministic. We compare gated service in Q1 to mixed gated/exhaustive service for
three different switch-over times (notice that the scales of the three plots in Figure 1 are different).

0.1 0.2 0.3 0.4 0.5 0.6

6

6

6
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Mixed G�E

0.1 0.2 0.3 0.4 0.5 0.6
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b) S = 10
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c) S = 106

Figure 1: Mean waiting time of type 1L customers in the polling model discussed in Example 1. For
gated and mixed gated/exhaustive service E(W1L) is plotted against λ1H while keeping λ1L + λ1H

constant. The switch-over times S1 = S2 = S/2 are deterministic.

Example 2

In the previous example we showed that the mixed gated/exhaustive service discipline does not nec-
essarily have a negative impact on the mean waiting times of low priority customers. In this ex-
ample we aim at giving a better comparison of the performance of the gated, exhaustive and mixed
gated/exhaustive service disciplines in a polling system with priorities. The polling system considered
consists of two queues, each having high and low priority customers. The switch-over times S1 and
S2 are exponentially distributed with mean 10. Service times of all customer types are exponentially
distributed with mean 1. The arrival rates of the various customer types are: λ1H = λ1L =

1
10 , and

λ2H = λ2L =
7

20 . The total occupation rate of this polling system is ρ = 9
10 , and we deliberately

choose a system where the occupation rates of the two queues are very different, and the switch-over
times are relatively high compared to the service times. The reason is that we envision production
systems as the main application for the present paper (see also Section 1). In these applications large
setup times are very common (see, e.g., [22]).

Table 3 shows the mean and variance of the waiting times of all customer types of this polling system
for all combinations of gated, exhaustive and mixed gated/exhaustive service. We leave it up to the
reader to pick his favourite combination of service disciplines, but our preference goes out to the
system with exhaustive service in Q1 and mixed gated/exhaustive service in Q2 because in our opinion
the best combination of low mean waiting times and moderate variances is obtained in this system.
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Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gated 141.81 119.99 5166.03 4660.09
2 gated 222.95 146.82 5917.70 3560.67

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gated 165.49 140.03 11087.40 9411.43
2 exhaustive 59.45 17.83 1862.57 651.03

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gated 147.38 124.71 6406.11 5658.44
2 gatedexhaustive 209.86 16.98 6213.92 555.67

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 exhaustive 97.63 78.10 4252.19 3784.99
2 gated 224.00 147.51 6186.88 3690.81

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 exhaustive 119.80 95.84 9516.58 7952.09
2 exhaustive 61.62 18.49 2136.19 728.97

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 exhaustive 102.18 81.75 5193.21 4533.58
2 gatedexhaustive 211.90 17.27 6722.53 586.84

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gatedexhaustive 140.95 77.96 5140.20 3756.12
2 gated 223.45 147.15 6045.55 3622.49

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gatedexhaustive 166.85 94.38 11655.90 7574.67
2 exhaustive 60.39 18.12 1978.87 684.25

Queue Service discipline E(Wi L) E(Wi H ) Var(Wi L) Var(Wi H )

1 gatedexhaustive 146.87 81.41 6452.48 4462.04
2 gatedexhaustive 210.82 17.10 6451.10 569.08

Table 3: Expectation and variance of the waiting times of the polling model discussed in Section 8,
Example 2.

9 Possible extensions and variations

Many extensions or variations of the model discussed in the present paper can be thought of. In this
section we discuss some of them.
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A globally gated system. The globally gated service discipline has received quite some attention in
polling systems. Instead of setting the gates at the beginning of a visit to a certain queue, the globally
gated service discipline states that all gates are set at the beginning of a cycle, which is the start of
a visit to an arbitrarily chosen queue. The model under consideration can be analysed using similar
techniques if high priority customers are served exhaustively, but low priority customers are served
according to the globally gated service discipline. One would first have to build a similar model that
contains 2N queues and determine the joint queue length distribution at visit beginnings and endings.
The cycle time, starting at the moment that all gates are set, can be expressed in terms of the GF of
the number of customers at the beginning of that cycle. Waiting times for high priority customers can
be obtained using delay-cycles again, and waiting times for low priority customers can be obtained
using the Fuhrmann-Cooper decomposition. The LST of the waiting time distribution of low priority
customers gets more complicated as the queue gets served later in the cycle.

More than two priority levels. It is possible to analyse a similar model as the one of Section 2, but
with more than two, say Ki , priority levels in Qi . These Ki priority levels still have to be divided into
two categories: high priority levels 1, . . . , ki that receive exhaustive service, and low priority levels
ki + 1, . . . , Ki that receive gated service. The methodology from Section 5 can be used, combined
with the techniques that are used to analyse a polling model with multiple priority levels, cf. [2].

A mixture of gated and exhaustive without priorities. One could think of a system where each
queue contains two customer classes having respectively the exhaustive and gated service discipline,
but service is First-Come-First-Served (FCFS). The model is similar to the model discussed in this
paper, with the exception that no “overtaking” takes place. Customers that are served exhaustively
will not be served before any “gated customers” standing in front of this gate, but they are allowed
to pass the gate. The joint queue length distributions at polling epochs and the cycle times are the
same as for the system considered in the present paper. Since no overtaking takes place, the waiting
times can be found without the use of delay cycles. Nevertheless, analysis of the waiting times is
quite tedious because a visit of a server to Qi consists of three parts. The third part is the service
of exhaustive customers behind the gate, the first part is the service of the gated customers that have
arrived during the “previous third part” and the second part is the FCFS service of both gated and
exhaustive customers that have arrived during the previous intervisit time of Qi . A combination of
this non-priority mixture of gated and exhaustive, and the service discipline discussed in the present
paper is discussed by Fiems et al. [8]. They introduce, albeit in the different setting of a vacation
queue modelled in discrete time, a service discipline where high priority customers in front of the
gate are served before low priority customers waiting in front of the gate. The difference with the
model discussed in the present paper, is that high priority customers entering the queue while it is
being visited can pass the gate, but are not allowed to overtake low priority customers standing in
front of the gate.
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