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Abstract

We consider a G/M/1 queue with restricted accessibility in the sense that the
maximal workload is bounded by 1. If the current workload V; of the queue plus the
service time of an arriving customer exceeds 1, only 1—V; of the service requirement
is accepted. We are interested in the distribution of the idle period, which can be
interpreted as the deficit at ruin for a risk reserve process R; in the compound
Poisson risk model. For this risk process a special dividend strategy applies, where
the insurance company pays out all the income whenever R; reaches level 1. In
the queueing context we further introduce a set-up time a € [0,1]. After every idle
period, when the queue is empty, an arriving customer has to wait for a time units
until the server is ready to serve the customer.

1 Introduction

Queues with workload restrictions have been studied extensively and appear under var-
ious settings and synonyms in the mathematical literature: ”queues with restricted
accessibility”, ”finite-buffer queues”, ”uniformly bounded virtual waiting time”, ”lim-
ited queueing waiting time”, ”finite dam”, etc. Fundamental results can be found in
[4, 8, 10, 11, 14, 17, 18, 19, 20, 21, 23, 27]. The current paper can be seen as a continu-
ation of [1], with the extra feature that the sojourn times might be truncated.

We investigate a G/M/1 queue with restricted accessibility in the sense that the
maximal workload is bounded by 1. If the current workload V; of the queue plus the
service time of an arriving customer exceeds 1, only 1 — V; of the service requirement is
accepted. The paper focusses on the study of I, the idle period of the finite queue.

We present two methods to derive relations for the Laplace transform and probability
distribution function of I. For the case with no setup time we utilize the fact that
a second G/M/1 queue, constructed from the original queue by means of collecting
successive overshoots over the level 1, has the same idle periods as the original one.



For the case with setup-time the proposed method is based on a duality argument,
representing the idle period as the overshoot in a finite M/G/1 queue.

Let V; be the workload process (virtual waiting time process) of the queue with
restricted accessibility at level 1. As shown in Figure 1 the quantity I can be interpreted
as the deficit at ruin of a modified risk reserve process R; in the compound Poisson regime
with a constant barrier strategy (see Figure 1). When the risk reserve process reaches
level 1, dividends are paid out with constant rate equal to 1, so that R; is constant until
the next claim occurs. Such strategies have been studied for instance in [2] and [13].
More references and expressions for the moments of I can be found in [16].

V.,
1

\J

Zl L

Figure 1: The workload process V; and the associated risk reserve process R;

The workload process of the finite queue can also be interpreted as the content of
a finite dam, which is instantaneously filled up with a random level of water until the
critical amount 1 is reached. As long as the content is larger than 1 no further water is
fed into the dam. The water is released continuously until the dam is empty.

Let 51,59, ... denote the i.i.d. interarrival times and Fg the distribution function of
S1, with 1/u = ES; being the mean of S;. Let Z1, Zs, ... denote the exponential service
times with mean 1/A. We let p = A\/u. Since we are concerned with the finite queue,
one can ignore all stability issues and investigate both p > 1, when the unrestricted
G/M/1 queue is stable, and p < 1, when the dual M/G/1 queue is stable. Here the
so called dual queue is obtained by interchanging the inter-arrival and service times, so
that the exponentially distributed random variables Zy, Zs, ... denote the inter-arrival
times and the variables S1,Ss,... become the successive service times of a Markovian
M/G/1 queue.

It is instructive to first review the standard G/M/1 queue and introduce some known



relevant results for the unrestricted case with no setup-time (the case a = 0). Let Vi
denote the workload process of the standard G/M/1 queue and let I} denote the first
idle period. The Laplace transform of I; is then given by

z— ¢s(s)

p7(s) = A s—A1—2) (1)

where z is the smallest positive root of z = ¢g(A(1—2)) (see [22], p.35, and [1]) and ¢g is
the Laplace-Stieltjes transform of S. An inversion is possible for p > 1, when Lagrange’s
theorem yields (see [25])

O =1 Xz jpi*
Z:ZT ; e M dFY (o),

j=1

where Fé* is the j-fold convolution of Fg with itself. In case that p < 1 we have z =1,
so that (1) reduces to
1 — ¢s(s)
¢i(s) =X ———. (2)

S

The distribution function of I is given by

Fo(z) = )\/Ox (1—Gw) du,

(c.f. equation (4) in [12] for the risk process context). Note that %i(s) is the Laplace
transform of the asymptotic residual lifetime in a renewal process with epochs having
distribution Fg and that ibf(s) is a transform of a defective probability distribution
function; in particular, P(I < oo) = ¢7(0) = p.

When p < 1 the dual M/G/1 queue is stable and its workload process W has a
stationary distribution F with Laplace transform

1—p
Pp(s) = wa (3)

which is the transform version of the Pollaczek-Khintchine formula.

Next, let 7w be the probability that 1% up-crosses level 1 during a busy period and let
1 be the probability that starting in 1, the process hits level 0 before it returns to 1. It

has also been shown (see [1, 7, 10, 18, 24, 26]) that if p < 1

and




where f(z) is the density of F/(z) for z > 0 and the second step of (4) follows from the
Pollaczek-Khintchine formula. For p > 1 the probability = is given in Theorem 4 of [1].

More results and references about the standard G/M/1 queue can be found in [1, 3,
10, 15].

2 Conditional idle period

We derive a formula for the conditional distribution of the idle period, given the event
that the workload process exceeds level 1 during a busy period, or equivalently: we
present an expression for the distribution of the deficit at ruin of the risk reserve process
Ry, given that a dividend is paid out.

Theorem 1. Let V be the mazimum of V; during the first busy cycle. The conditional
distribution H of the idle period Iy, given the event {V > 1}, is equal to the residual
lifetime distribution at time t = 1 of a renewal process with renewal epochs having the

same distribution as the idle period fl

Proof. By tracing figure 2 for a typical sample path of ‘A/t, let T* and 17 denote the last
up- and down-crossing times of level 1 before the idle period starts. 77 is the endpoint of
an excess period of ‘A/t over level 1. The time X; from 77 to the next arrival has the same
distribution as that of the G/M/1 idle period, since the epoch 77 —T™ can be seen as the
busy period of a G/M/1 queue (indicated by a grey area). At time T} + X7 another busy
period of a G/M/1 queue starts; it ends at time T5. Again, the distribution of X5 is the
same as that of an idle period and we see that this property also holds for X3, Xy, .. ..
Thus, the sequence X1, Xo, ... forms a renewal process. Since J; = X1+ Xo+...+X,,—1
where k = inf{k|X1 +...4 Xj, > 1}, I; can be seen as its residual lifetime at time ¢ = 1
of the renewal process. ]

Expressions for the distribution of the residual lifetime of a renewal process can be
found in [5] and [10]. We note that H is a solution of the renewal equation ([3], p.143)

H(z) = (Fj(1 + ) — Fy(1)) + Fy  H(a).

3 The idle period without setup-time

In this section we let the setup time a = 0. We are interested in the Laplace transform
of the idle period. To derive it we make use of a sample path analysis, based on the
comparison of the idle periods of two related queues.

Theorem 2. The Laplace transform of I is given by

_ br(s)
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Figure 2: Visualization of the proof of Theorem 1
with
20 — (Zo—1+i>¢H(8) p>1
bils) = S *’7 ©)
- Tn(bH(s) P < 1
where zq is the smallest positive root of zg = ¢r.(An(1 — 29)) and
Tp*(s
ous) = #ls) @

1—¢7(s) + mo*(s)
Here ¢*(s) = [~ e™*" dH (u) is the conditional Laplace transform of H.

Before we prove Theorem 2, we note that the Laplace transform ¢7 is given in (1)
and Theorem 1. For p > 1 equation (6) is implicit in the sense that ¢r(s) is given in
terms of the root zg, which itself can be determined only when ¢, is known.

Proof. Let Ky be the number of overshoots Ui 1,U2,...,Us K, of level 1 during the
first busy period R; of the restricted queue, see figure 3. Note that 7 = P(K; > 0) and
n=P(K; =1/K; >0).

The dashed line in Figure 3(a) shows the standard G/M/1 workload process and
the solid line shows the restricted queue. We construct a modified queueing process by
collecting all time intervals with V; = 0 from the original G/M/1 workload process (see
shaded areas in Figure 3(a)). Let Ly, Ay and Hj, denote the interarrival times, service
times and idle periods of this new queue, as shown in 3(b). Note that all three variables
can be represented as geometric sums. Indeed, we have

M
Ly =) I (8)
i=1
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Figure 3: Construction used in the proof of Theorem 2.

where M is a geometrically distributed random variable with support M > 1 and P(M =
1) = m, representing the number of idle periods of the finite queue during a cycle of the
unrestricted queue. Hi is the sum of the idle periods of the restricted queue,
Hy =1+ Z Iita, (9)
i=1
where we separated fl from the sum because it has a different distribution than the
other. Finally A; consists of the cumulated overshoots during the first busy period,

K
A = Z Ut (10)
i=1

where the variable K denotes the number of overshoots of level 1 during a cycle of the
finite queue. It is also geometric with K > 1 and P(K = 1) = 7. From (8) and the fact
that

whr(s)
1—(1-m¢i(s)’

or(s) = 3 dr(s)im(l— )it =
i=1

the relation (5) follows immediately .
Since the U; are exponential with Laplace transform ¢y (s) = A/(A + s) we obtain
A U _

TAtsl— (- st

Pa(s)

so that the A; are exponentially distributed with rate An. The new queue is thus again
a G/M/1 queue with service rate An and we can apply (1) for the law of its idle period.
Hence, replacing A by An, z by zp and ¢g by ¢r, in (1), we obtain

B 20 — ¢1(s)

¢](S) = A7 s — )\77(1 _ 20)7
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and (6) follows.

According to Theorem 1, J; and Z are stochastically equal and Js, J3, ... are i.i.d.
with Laplace transform ¢y (the conditional transform of the idle period given K; = 0).
Hence

T
1—(1—-mepy(s)

Finally (7) follows by applying the law of total probability, ¢7(s) = (1 — m)dy(s) +

TP*(s). O

As an example we verify the above theorem by applying the M/M/1 special case,

¢r(s) = ¢*(s)

where the interarrival distribution is exponential with mean 1/u and we assume that
p <1l
Then ¢g(s) = u/(1n+ s) and the smallest positive root of z = ¢g(A(1 — 2)) is simply
z = 1. Consequently we have
l—9s(s) p

d7(s) = A s i

According to (3), the Laplace transform of the stationary distribution of W is given by

_l=p  1-p
¢ﬁ(8)_1_¢f(8)_1_puis

which is the transform of F(z) = 1 — %e_(“_)‘)x. Hence it follows that the taboo proba-
bilities n and 7 are given by

—A (=)

B A —me N and 7= =ne .

- H
" pre=A) — ) p— e (H=A)

To find the transform ¢* of Z, the residual lifetime from Theorem 1, let £ be the number
of finite renewals in a renewal process X1, Xo, ... with defective interarrival distribution
F; and let S = Zle X;. The random variable ¢ has a geometric distribution with
P(¢ =0) =1— p, so that S is the sum of ¢ exponential random variables with rate p
and thus exponentially distributed with rate pu(1 — p) = p — A. Tt follows that

P(Z<z) = PS>1,S-1<z(>0=P(S>1,X<uz/>0)
where X is exponential with mean 1/u, independent of S. Hence
P(Z<z) = pP(S>1/0>0)(1—e ") = pe N (1 — e r7)

with transform ¢*(s) = e‘““”ﬁ. It follows from (7) that

T¢*(s) An

T 1= i(s) + 1 (s)  s+pm

o (s)

7



Equation (5) yields

s s
oL(s) AN o1 (s) pum + s
After applying (5) we obtain
or(s) o

d)I(S)W + (1 —7m)pr(s) s+pu’

so that I is exponentially distributed, as expected by the lack of memory property.

4 Idle period with setup-time

Now assume that we have a setup-time a € (0,1], i.e. each busy period starts with
Vi = Z1 4+ a. The upper left diagram in Figure 4 shows the workload process V; of
the restricted G/M/1 queue with setup-time a, together with the first cycle C; of that
queue.

From V; we construct a new process Ry, representing the time elapsed since the
arrival of the customer being served. R; is obtained from the risk reserve process Ry
(Figure 1) by removing the time intervals where R; = 1.

Next we define the process Wy = 1 — U; by flipping the process R; vertically.

By construction, the idle-periods of the restricted G/M/1 queue are identical with
the overflows of the dual M/G/1 queue, i.e. the overshoots of the workload process W,
over level 1. Since the overflows occur only once in a cycle, it follows that the I; are i.i.d.
with common distribution function Fj.

Before we proceed with determining the distribution of 1/'\, we show that the stationary
density f fulfills a certain integral equation.

Lemma 3. The density function of the stationary distribution of Wy is given by

ch(z)+p h* f(x), 0<z<l-a
flz) = qeh(x)—d+phx*f(z), l—a<z<1 (11)
ch(z) +p fy hie —y)f(y) dy, = =>1,

where ¢ = @, d = ch(l) + pfol h(1 —y)f(y) dy and h(z) = p(l — Fs(z)) is the

equilibrium density of the service time distribution.

Proof. Let D;(C) and U,(C) denote the number of down- and upcrossings of level z by
W, during the first cycle C. By level crossing theory ([9, 18, 6]) the long-run average
number of downcrossings is given by E(D,(C))/E(C) = f(x), for all z > 0. By a similar
reasoning as in [18] we find, that for z < 1 — a the average number of upcrossings is
given by
e = 50 0= Fsta) +2 [ (1= Fs(a =) f(w) du = ch(a) + p i« 1 (@)
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Figure 4: Construction of the processes R and W

and equating the two averages leads to the first line in (11).

For x > 1 the number of up- and downcrossings is again equal and the average
number of upcrossings is f(0) (1 — Fs(x))+ A fol (1 — Fs(z —u)) f(u) du, since there are
no jumps from above level 1.

If x € [1 —a,l) then D, (C) = Uy(C) — 1, since after crossing level 1 the process
never returns to [0, z) during the cycle. Hence

ED.(C) _ E(U:(0)) 1

E() B B0
— O Fs(e) A [ (= Pl w) S0 du -

Now, since W, crosses level 1 exactly once every cycle, we have f(1+) = % But
f(1+4) = d and hence the second equation in (11) follows. O



Solving for the renewal equation f(x) = ch(z)+ p h(x) * f in [0,1 — a) we obtain
f@) = chxHw)

where H(z) =Y >° , p"h*"(x) and h*" is the n-fold convolution of h with itself. Similarly
for [1 — a,1), we have the renewal equation f(x) = (ch(x) —d) + ph * f(x). Letting
d(z) = dlz>1y we get

f@) = (ch—d)*H(x) = chxH(x) —d/;u{x_uzl} dH (u)
= chxH(zx)—dH((x —1)-). (12)

Finally for the interval [1, c0) we have

1
f@) = ch(z)+p /0 Wz — ) f(y) dy,

where f(y) is already known for y € [0,1). To find the two constants ¢ and d note that
from d = ch(1l) + ph * f(1—) and (11) it follows that f(1—) = 0. By using (12) we
obtain ch x H(1) = d H(0) and since H(0) = 1,

—=hxH(1).

® = heH()
Now the constants can then be determined from the normalizing condition

/Ooof(u) du=1.

We now prove a result, that relates the distribution of the idle period T to the
stationary density f.

Theorem 4. The distribution of I1 is given by

fl+z)
fay
where f and F denote the equilibrium density and distribution of W, = limy_.oc Wy (the

Fr(z) = 1- (13)

latter limit is defined in terms of weak convergence).

Proof. The conditional density fy;, of W, — 1, given that Wy, > 1 is given by

fl+x)

C —

By looking at the renewal process I1, I, ... we conclude that fy;, is also the density of the
(equilibrium) forward recurrence times of that process. Hence ffj,(z) = (1—-F(x))/E1,
and

Fi(z)=1-EL- fiy(x) =1- f(1+z)/ (1‘;;51)) .

By Lemma 3 f(1) = 1/E(C) and by renewal theory 1— F(1) = EI; /E(C). Consequently
1_El;§1) = f(1) and thus (13) follows. ¥
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