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Abstract

We present a group testing model for items characterized by marker
random variables. An item is defined to be good (bad) if its marker is
below (above) a given threshold. The items can be tested in groups;
the goal is to obtain a prespecified number of good items by testing
them in optimally sized groups. Besides this group size, the controller
has to select a threshold value for the group marker sums, and the
target number of groups which by the tests are classified to consist
only of good items. These decision variables have to be chosen so as to
minimize a cost function, which is a linear combination of the expected
number of group tests and an expected penalty for missing the desired
number of good items, subject to constraints on the probabilities of
misclassifications. We study two models of this kind: the first one is
based on an infinite population size, while the second one is a two-stage
model for a finite number of available items. All cost functionals are
derived in closed form and bounds and approximations are also given.
In several examples the dependence of the cost function on the decision
variables is studied.
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1 Introduction

Group testing, i.e., the use of procedures based on pooled samples, is often
a cost-efficient technique, provided the screening can be designed so as to
provide test results with sufficiently high accuracy, sensitivity and specificity.
The objective is to classify the items of some finite population according to
certain categories, one of which may be called ’good’ or ’clean’ and one
or more others are 'defective’ or ’contaminated’. The basic idea of group
testing is to conduct the tests using pooled samples. While good groups are
considered to consist only of clean samples, those classified differently either
have to be subject to further screening or have to be scrapped. Employing
suitably designed procedures of this kind leads to a significant reduction of
the number of required tests and thus of screening cost, under controlled
probabilities of misclassifications.

In [5] it was proposed to classify group testing models according to the fol-
lowing five dichotomies: (i) probabilistic versus combinatorial; (ii) complete
versus incomplete identification; (iii) reliable versus unreliable testing; (iv)
binomial versus multinomial; (v) time constraints versus arbitrary process-
ing times. As these features can be combined freely, this leads to 32 possible
types of basic group testing models. Let us in particular discuss (ii).

The objective of complete identification is a correct classification of the whole
population into good or defective items via repeated group testing; the main
goal is to find optimal pooling policies in order to minimize the expected
number of required group tests. However, for reasonably large population
sizes no optimal policies have been found; only suboptimal policies have been
suggested. For a thorough survey of group testing models with complete
identification the reader is referred to the monograph [8] (and the references
cited therein).

Incomplete identification means that the population is not necessarily ex-
haustively examined until all defective items are identified. Often the testing
process serves the goal of meeting some prespecified demand requirement for
good items so that testing is terminated once this objective has been reached.
Accordingly, groups which have been declared to be clean are aggregated for
meeting the demand requirement, while contaminated groups are set aside
(but perhaps recorded for other possible uses). These models lead to optimal
stopping rules and optimization problems under constraints; see [3, 4, 5, 6]
where some of the combinations of the features mentioned above are dealt
with.

The question of how to proceed with groups that are found contaminated
depends on various aspects. In many medical applications retesting of all
items in contaminated groups is called for because the aim is to establish



a diagnosis for all patients involved. However, in many industrial applica-
tions as well as in blood screening in blood banks, the further processing of
contaminated groups heavily depends on various retesting costs. There may
also be a residual economic value, however reduced, to items belonging to
contaminated groups. Accordingly, group testing procedures for incomplete
identification are called for when the objective is purely economic (profit-
raising or cost-decreasing); then they have to reflect the underlying profit
and cost functionals.

In this paper we add one more dichotomy to the ones listed above, namely:
(vi) quantitative versus qualitative. Many tests (in medical as well as in
industrial applications) provide not only a qualitative result (i.e., whether
a sample is contaminated or not) but also give a quantitative value, for ex-
ample the continuous measurement of some marker. An item is classified as
high (positive) or low (negative) risk according to whether the corresponding
marker value is greater or less than a certain threshold (cut-off value). As-
sociated with a threshold is then the probability of a true positive (i.e., the
sensitivity) and the probability of a true negative (i.e., the specificity). The
effectiveness of continuous diagnostic markers in distinguishing between low
and high risk populations is well studied in the biostatistical and medical
literature (e.g. [9, 10]).

To think of a concrete example, consider samples of well-water which are
collected in small, sterile bottles and taken to a laboratory to be tested for
bacterial contamination. Small amounts of the water are pooled and then
cultivated in a special dish; after a predetermined cultivation period the
number of bacteria colonies is counted. If this number exceeds a prespecified
acceptance level, the pooled water sample is denoted as ’contaminated’.

In our model we make the simplifying assumption that any single item can
be classified as being good or deficient with complete certainty by measuring
its marker, so that an item is good if and only if its marker does not exceed
the given threshold. However, for pooled samples a new threshold has to
be determined, depending on the group size, such that the probabilities of
misclassifications are sufficiently small.

In Section 2 we present the above model in detail, describe its relevant
features and assumptions, formulate the objective functions together with
the associated constraints, and derive explicit analytic formulas as well as
bounds and approximations for the functionals. The analysis leads to an
optimization problem under constraints. In Section 3 we consider the anal-
ogous model with a finite population size. We propose a two-stage policy in
which the groups accepted in the first stage are supplemented by the ’best’
groups among those that have not been selected before. Again the objective
function can be determined in closed form. Section 4 is devoted to sev-



eral examples; we use simulation to study the dependence of the objective
function on the decision variables involved. Further possible extensions are
discussed in Section 5.

2 Grouping in a quantitative model

We first describe the model in detail. We formulate an expected cost min-
imization problem subject to probabilistic constraints. Three decision vari-
ables (group size, threshold value for group tests and the parameter of the
natural family of stopping rules) have to be determined so as to minimize
the expected cost.

2.1 Model description

We are given a virtually infinite population whose members (called items)
can be classified into two categories: good or defective. Each item is as-
sumed to contain a random number of certain particles (e.g., antibodies)
and there exists an accepted threshold ¢ such that an item is classified as
‘good’ if the number of particles it contains does not exceed ¢, and ’defective’
otherwise. We also assume that items are independent of each other. Let X
be a generic random variable (called marker) which denotes the number of
particles in an item; its distribution is assumed to be known (as is the case
in most biostatistical and medical studies). Let p = P(X > t) be the known
proportion of defective items and set ¢ =1 — p.

We assume that a prespecified demand for d good items has to be satisfied.
The aggregation of good items is conducted successively via grouping of the
population in groups of size m, our first decision variable. We only consider
group sizes that divide d. A group which is found good is kept and recorded
for meeting the demand requirement while a contaminated group is put aside
but may be recorded for other possible uses.

We denote by X; the marker random variable counting the number of par-
ticles in item i. By the meaning of the threshold ¢, an individual item ¢
is defined to be ’good’ if X; < t. Of course, if Y ", X; < mt, there is no
guarantee that X; < t for each of the items i = 1,...,m. It seems much
more reasonable to take a smaller threshold s = t(m) depending on m,
where t(m) < mt for m > 2. The choice of t(m) is not simple and one can
use various criteria. For example, one may employ the Youden index (cf.
[11]) which maximizes (sensitivity+specificity-1) over all threshold values.
Our objective is to choose the decision variable s in a cost-minimizing way
subject to certain constraints. When group testing m items, there are two
possibilities of undesired classifications:



- At least one of the items in the considered group has a marker greater than
t but the group is declared to be good; this has conditional probability

pi(m,s) =P <‘max Xi>t| ZXi < s> . (2.1)

1,....m ‘
=1

- None of the items has a marker greater than ¢ but the group is declared
to be contaminated; this has conditional probability

m
p2(m,s) =P (Z:r?aXle <t] ;XZ- > S> . (2.2)
1=
We want these probabilities to be small: pi(m,s) < e and pa(m,s) < ey

for certain prespecified ¢; € (0,1).

2.2 The stopping time and the cost functionals

Now assume that independent groups of size m are tested successively and
s is the selected threshold value. Define

1, if the ith group is found clean
Y, = .
0, otherwise.

Then Y; ~ B(1, p), where

p=p(m,s) =P (Z X; < s) . (2.3)
i=1

In order to compute p we let A; denote the event that exactly j of the m
items are good, j =0,...,m. Then P (4;) = (T) ¢’p™ =7 and, by symmetry,

m m
]P(ZX1§8|A]) :P<2Xi§s|X1...,Xj§tande+1,...,Xm>t>,
i=1

i=1
(2.4)
so that we get

p=) P (ZXz <s| Aj) <m>qum‘j
. X J
7=0 i=1

m m

- <",L)P< X; <s, X1...,XjStande+1,...,Xm>t>.
. J

7=0 1

1=



We want to obtain d good items, so that the number of group tests we have
to conduct is at least inf{n | }3i_, Y; = d/m}. We propose to consider the
stopping rules

T(m,s,c) = inf{n | ZY] =c}, c=d/m,d/m+1,...
j=1

Our model thus contains three decision variables m, s, ¢, where

- m is the group size, a divisor of d;

- s is the threshold value for the sum of the markers in each tested group;
- ¢ is the number of groups classified as good after which testing is stopped.

Costs are incurred due to the conducted number of group tests and a penalty
in the case that the goal of obtaining d good items is missed. Let Z(m, s, ¢)
be the (random!) number of good items among the ones classified as good
and let a > 0 be the penalty per missing item. Then the cost function is
composed of the following ingredients:

- E(T(m,s,c)), the expected number of group tests;
- E(a(d — Z(m, s,c))"), the expected total penalty.
Thus, we deal with the following optimization problem:

Minimize E[T(m,s,c)] + aE[(d — Z(m,s,¢c))T] (2.6)
subject to pi(m,s) <e1, p2(m,s) < eq.
The distribution of T'(m, s, c) is negative binomial and the associated pa-

rameter p has been computed in (2.5) so this distribution and its expected
value are available in closed form:

P(T(m,s,c) =c+k) = <c+ Z B 1)(1 — )k, k=0,1,2,... (2.8)
E[T(m, s,c)] = 2. (2.9)

To compute E((d — Z(m, s,c))T), let W; be the number of good items in the
ith group if it has been classified as good; otherwise set W; = 0. Then

P(Z(m,s)=1) =Y P(I(m,s,c)=c+k)
k=0

c+k
X P (ZWi = 1| T(m,s,c) :c+k> . (2.10)

=1



Let pim,s = Py, yom | x,<s be the conditional distribution of Wi, given that
the first group has been accepted. We have

i 1<i<y j<i<m

fim,s(j) = <m)P<maxX <t, min X; >tyZX <s). (2.11)

The condition T'(m, s, ¢) = c¢+k means that there are exactly ¢ groups among
the first ¢ + k ones that are classified as good. Therefore P(Zc+k W, =
I'| T(m,s,c)) = c+ k) is equal to (1), where pye o denotes the cfold
convolution of y,, , with itself. Note that this probability is independent of
k. Tt thus follows from (2.10) that

B(Z(m, s) = 1) = us (D). (2.12)

Eq. (2.12) yields the second cost functional:

U
—

E[(d — Z(m,s,¢))"] =) (d— D o(1)- (2.13)

N
Il
o

The convolution probabilities in (2.13) have to be computed from (2.11).

The constraint probabilities p1(m, s) and pa(m, s) are defined in (2.1)—(2.2)
in terms of the underlying distribution of the X; and thus also known.

2.3 Integral expressions

Analytic formulas are available for all quantities in the optimization prob-
lem. Let F be the distribution function of X and let

I j(s,t) = // dF (z1) . ..dF (zm),
0<z1,...;x;<t, t<Tjt1,0,Zm <SS, T1t...+Tm<s
7=0,....m
Note that in our model ¢ is fixed and that

I o(s,0) = F*™(s).



Then we have

Iym(s,t)

pi(m,s) =1— T, o(5.0)" (2.14)
pa(m, s) = F(?:n ;m’lgrégé?t) (2.15)
=3 (j. )Im,j<s,t>7 (2.16)

0=, 2 ()0

0<1,-.,Je<l, Jit+...+je=l
X I gy (8,t) o I g (5, 1), (2.17)

- j;:(d—l)m > (Z) (T)

0<j1,..sJe <L j1+...+jc=l
X Ijy (8,t) . I j (s, 1), (2.18)

Since E(T'(m, s,c)) = ¢/p, all functionals in our optimization problem can

be written in terms of the integrals I, j(s,t) by means of (2.14)-(2.18).

2.4 Bounds and approximations

We now derive bounds and approximations for some of the quantities re-
quired in the optimization problem. We first establish bounds for the prob-
abilities p; and ps of (2.1) and (2.2). Define the two functions

f(LITl,LUQ,...,.’Em) = :H.{Z[,UZSS}
=1

g(w17$27"'7xm) = H{Z:IPlnme St}

Since f and g are non-increasing, it follows that the random variables
f(X1,...,Xn) and g(X;,. .., X,,) are positively correlated (see for instance
[12]) so that

E[f(le <. 7Xm)g(X17 oo 7Xm)] > E[f(Xh . . -;Xm)]E[g(Xh oo ,Xm)]

Consequently, after division by E[f(X1,...,X;)] =P, zi < s),

P( max Xi§t|ZXi§s)ZP(._I§1ax X; <t).

i=1,... ‘
=1



Similarly, since 1 — f and 1 — g are non-decreasing,

m
P( max X; > t\ZXZ' > s) > P( max X; >t).
i=1,...m i

i=1,....m
i=1
Thus we have proved the two inequalities

p1<1—=F(@)", p2 < F(t)™. (2.19)

It follows for example that with F'(¢) = 0.6 and m > 9, we already achieve
p2 < 0.01, so that the constraint ps < g9 is fulfilled in most cases discussed
here.

Next we derive an approximation for the expected number E[T'(m, s, c)] of
group tests. Recall that

C

POIL Xi<s)

E[T(m,s,c)] =

Hence, assuming that m is large enough to imply that (ov/m)~1 Y7 (X; —
) is approximately normally distributed, we arrive at

E[T(m,s,c)] ~ C/(I) <Sa_\/l:7&m> ’

where @ is the standard normal distribution function. To find a bound for
®(x), let a € (0,2) and define for < a the function

SR X )

Gy = e 2 - L),

Note that 1—x(a—2z) > 0 since a € (0,2). Hence G}, (x) — —oco as x T a and
Gl (x) 10 as  — —oo. The equation G/, (z) = 0 has exactly one solution if

2 ) B
(\/;—1);/ +ya—1=0,

has exactly one solution, where y = a — x. This is the case if a = kK =

24/1—+/2/7 =~ 0.899, and thus G’ (z) stays non-positive for all z < .
Hence G4 () is non-increasing and since lim,_, o G, (x) = 0, it follows that
Gg(z) < 0 for all z < k, which yields

T O (z e~ /2
P(z) < \/g Plw) _ : (2.20)

k—x 2(k—ux)

Then




We note that for values z € (—7/2,0) this bound is better than the classical
estimate ®(z) < —®'(x)/z for z < 0.

It follows that

E[T(m,s,c)] =~ C/(I) (SU_JI%H)

> 2c<n—sa_\/‘%n) exp{; (80_\/’;%”)2}. (2.21)

For the penalty term E[(d — Z(m, s,c))*] we argue as follows. Let Z(m, c)
denote the number of good items found in ¢ group tests (regardless of their
classification). Clearly Z(m,c) = iy W;, where W; denotes the number
of good items in the ith group (cf. (2.12)). By a correlation argument as
above,

PW; <k|> X;<s)=P(W; <k|) X;<s) <P(W;<k).
i=1 =1

It follows that

E[(d - Z(m,s,0))"] < E[(d—- Z(m.c))"].

Since W; has a binomial distribution with parameters m and F(t) = P(X; <
t), Z(m,c) has a binomial distribution with parameters mc and F'(t). Writ-
ing fi = emF(t) for its mean and & = \/mcF(t)(1 — F(t)) for its standard

deviation, we obtain the approximation

d
E[(d— Z(m, C))+] _ Z (WZC> (d— k)F(t)k(l . F(t))mcfk
k=0
d ~
~ [ -y a2t
= (d—ﬂ)-fb(d;ﬁw L o5t

For d > p this yields the intuitive approximation

E[(d— Z(m,c)) ]~ (d—p)" = (d — emF(t))*. (2.22)

3 A policy in the case of finite population size

The model presented above assumes an infinite population of items. Under
this assumption it is possible to achieve or exceed the required number of

10



good items with probability arbitrarily close to 1 by using a stopping rule
T(m, s,c) with sufficiently large c¢. This is not the case if the population
size is finite consisting of, say, N items available for grouping and testing.
In the following we only consider values of m that are divisors of N. As-
sume that for a given group size m and threshold s satisfying (2.1)-(2.2) the
total number of accepted items, ijV:/T Y;, after the population has been
completely tested in groups has not reached the desired level mec. Then it
may be worthwhile to add to these items a few of the groups not accepted
so far (because for them the threshold s was surpassed), in order to reach
the target value. It is reasonable to take those groups for which (a) the sum
of the markers is maximal and (b) the probability of containing a bad item
is sufficiently small. This idea leads to the following two-stage policy. After
fixing the decision variables m and s satisfying (2.1)-(2.2) choose ¢ and use
the stopping rule min[T'(m, s, c), N/m]. (Note that N/m is the maximum
available number of groups of size m.) Next choose a (small) § > ;1 as the
maximal probability permissible for a group in the second stage to contain
a bad item.

If T(m,s,c) < N/m, the procedure is finished. If T'(m,s,c) > N/m, con-
sider the K groups not selected so far and denote their marker sums by
S1,89,...,Sk (in the order in which the groups were tested). Note that
K is a random variable. Now select in addition successively those groups
whose marker sums S; satisfy f,,(S;) > 6, where fp,,(u), u > 0, denotes the
probability that a group with marker sum w contains a bad item, i.e.,

fn(u) =P (ir%%?fm X >t 2 X; = u) : (3.1)

It is intuitively obvious that the functions f,,, are nondecreasing. Indeed, this
assertion can be proved by induction on m by conditioning on X, yielding

fm(u) = /fm_l(u —v) P(X; € dv),
0

so that the monotonicity of f,,—1 implies that of f,,. Moreover,

pl(ma u) < fm(u)a

because

u

p1(m,u) = /fm(v) P (2:XZ € dv | ZXi < u) < fm(uw).
i=1 i=1

0

In particular there exists a constant K > s such that f,,(S;) > § is equiv-
alent either to S; < K or to S; < K. Note that K = K(m,¢) is not an

11



independent decision variable but a function of the decision variable m and
the prespecified 9.

Summarizing, under the proposed policy one accepts as many groups as
possible with marker sum less than s according to the truncated stopping
rule min[T'(m, s, c), N/m] and then supplements the set of accepted items
by the groups having a marker sum in the interval [s, K'). (Alternatively, we
could consider the closed interval [s, K].) Note that also under this policy it
is possible that there will not be enough selected groups to reach the desired
number d of good items. The decision variables have to be chosen so as to
keep the error probabilities as small as is specified by the error probability
constraints specified by €1, €2 and §.

The corresponding objective function (2.8) can be given in closed, albeit
intricate form. By (2.10), the expected number of group tests is

(N/m)—c—1
Bfwin{T(n, 5., N/l = S° (“TET ek - o)
k=0
S (T Nasa e
k=(N/m)—c

where p is given by (2.3). To determine the total expected penalty, we have
to compute E[(d — Z(m, s,c))"], where we again denote by Z(m,s,c) the
number of good items among the accepted ones. If n groups are accepted

in the first stage, let Uy,...,U, be the successive numbers of good items
in these groups, let Vi,..., V(n/m)—, be the numbers of good items in the
groups not accepted in stage one, and let Si,. .., S(n/m)—n be their marker

sums. Using conditioning and similar arguments as in Section 2.2 we have

P(Z(m,s) =1)
(N/m)—1
Y B(Tms0) = e+ Bt
k=0
c—1 N/m

+T§P(;Yj:n>P(U1+...+Un

N/m
+ Vilgs <y + 0 Vingm)-nl{my o<xr =11 Y Yi = ")
j=1
(3.3)

Conditional on Z;V:qn Y; = n, the random variables
Uty oo Uns Vilgg ey -0 Vivy/m) —n 1{S (o) —n <K}

12



are independent, Uy, ..., U, have the common distribution

Hm,s = Pyr s xi<s:

which is given by (2.13), and Vilgg, <k, - - - VN /m)=n (S x jmy—n <k} @1l have
the distribution v, s k' given by

N/m
Vim,s,k (J) = P<V11{51<K} =il V= ")
i=1
m m m
- L < i ) . >
(j)P (fg?ngXz < t’jglgnsz > t,;XZ < K| ;Xz > s) ,

j=0,...,m.
It now follows from (3.3) that

P(Z(m,s) = 1) = P(T(m,s,¢) < e+ (N/m) — 1) (1)

c—1
O G R R Y

n K
n=0

(3.4)

(3.4) and (3.2) provide explicit formulas for the two terms of the objective
function (2.6).

4 Numerical analysis and simulation

The representations (2.14)-(2.18) show that in order to determine the ob-
jective function and the constraint probabilities p; and ps, one needs to
calculate the m-dimensional integrals

I j(s,1) =// dF (z1) . ..dF (zm).
0<z1,..;x;<t, t<Tjt150,Zm <8, T1t..+Tm <s

Moreover, for each triple m, s, c a large sum of products of these integrals
I, ; has to be computed to arrive at the expected number of group tests
E[T(m, s, c)] and the expected penalty E[(d — Z(m, s,c))"], which give the
objective function

Q(m, s,c) = E[T(m, s,c)] + aE[(d — Z(m, s,c))*].

Solving the optimization problem thus requires a considerable numerical
effort. Therefore it is advisable to simulate the model with a sufficiently large

13



number of samples, rather than implementing the exact formulas (2.14)-
(2.18). In what follows we present results of Monte Carlo simulations of the
group test model studied in Section 2.

We assume that d = 1000 items are demanded and that the marker variables
X; have a lognormal distribution with mean 100 and standard deviation 30,
ie.,

I —(log(u) — p)?
P(X; < z) = - 08 TR g,
(Xi < ) o 271'/(; uexp{ 202 } b

where = 4.562 and o = 0.293 are the mean and standard deviation of the
associated normal random variable log(X). Without going into details we
mention that the classical Box-Muller algorithm (see [7]) to generate normal
variates and a subsequent exponentiation is well-suited for our purposes, and
no extra effort has been made to shorten the duration of the simulations.

For the data presented here 10,000 sequences of group tests were carried out
for each choice of the decision variables. We take ¢t = 103.178, so that the
probability of having more than ¢ particles in one item is given by 1— F'(t) =
0.4, which is not an unrealistic assumption for the intended applications.

4.1 Dependence on the threshold value s

For the data shown in Figure 1 we chose ¢ = 60, m = 20 and let the thresh-
old value s vary from 1800 to mt = 2063. The two solid graphs show the
expected number of group tests, E[T'(m, s, )], in black and the approxima-
tion given by (2.21) in grey, for different values of s. The dashed curves
in Figure 1 show the expected penalty E[(d — Z(m, s,c))™] (black) and its
approximation (d — ecmF(t))" (grey), as given in (2.22). The dotted grey
line in Figure 1 shows the corresponding values of the constraint proba-
bility p1 = P(max;—1,.mX; >t | >.i"1 X; < s). The probability p, was
indistinguishable from 0 throughout this simulation (from (2.19) we have
p2 < F(t)™ =3.6-107%).

14
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Fig. 1: E[T(m,s,c)|, E[(d — Z(m, s,c))"] and their approzimate values and p; .

According to Figure 1,

E[T(m, s, c)] decreases with s;

e E[(d— Z(m,s,c))T] increases with s;

the approximation (2.21) for E[T'(m, s,c)] is surprisingly close, even
for smaller values of s;

the approximation for E[(d — Z(m, s,¢))"] is not too close, but it still
provides a good upper bound for the penalty;

e s+ pi(m,s) is increasing.
In Figure 2 the objective function Q(m,s,c) = E[T(m,s,c)] + aE[(d —

Z(m, s, c))"] is displayed for different values of a. It is seen to have a proper
minimum, which is actually achieved for some s < mt.
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Fig. 2: The objective function for different values of a.

4.1.1 Dependence on ¢
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Fig. 3: E[T(m,s,c)|, E[(d — Z(m, s,c))"] and their approzimate values and p; .

The next plots shows the same quantities as Figure 1, namely E[T'(m, s, ¢)]
(solid) and E[(d — Z(m, s,¢))*] (dashed), but now for varying ¢ (with s =
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2450 and m = 25).

Figure 3 suggests that

e c— E[T(m,s,c)] is increasing;

e ¢ — E[(d— Z(m,s,c))"] is decreasing until it hits zero, and is zero
thereafter;

e The approximation for the expected number of group tests is very close
again;

e The bound for the penalty E[(d—Z(m, s, c¢))™] is not sharp but roughly
shows the almost linear dependence on c.

Note that p; is independent of ¢ by definition. The objective function for
different values of a is drawn in Figure 4 and shows a minimum close to
c = 60.

T00-

600~

500+
i(m,s.c)

Fig. 4: The objective function for different values of a.

4.1.2 Dependence on the group size m

It turns out that for values of m larger than about 110% of s/t the term
E[T (m, s, ¢)] becomes very large. Since always m > s/t, there are only a few
values of m left that produce reasonable results, too few, in fact, to draw
significant diagrams. We therefore introduce the variable

§=E(smt) = — € (0,1]
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and study the behavior of the objective function for fixed £ = 0.95, ¢ = 60
and varying m (so that s varies implicitly). The resulting Figure 5 looks
similar to the previously discussed Figure 3 and suggests that
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N
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0 ‘\______ e ]
20 25 30
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Fig. 5: E[T(m,s,c)], E[(d — Z(m,s,c))T| and their approzimate values and p;.

m +— E[T'(m, s, c)] is slightly increasing;

m +— E[(d — Z(m, s, c))"] is decreasing until it hits zero, and is zero
thereafter;

The approximation for E[T'(m, s, )] is almost exact;

The bound for E[(d — Z(m, s, c))"] shows roughly the linear decrease
of the penalty;

e m +— p1(m,s) is decreasing.

Again, different values for a are chosen in Figure 6, all leading to a minimum
of the objective function near m = 25.
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Fig. 6: The objective function for different values of a.

4.2 Three-dimensional plots

To gain more insight into the joint influence of the decision variables m, s
and c on the objective function, we now fix one of the variables and let the
other two vary. The simulation output is presented in three-dimensional
diagrams. As before we assume that the demand is given by d = 1000 and
the probability that the marker is larger than ¢ is 1 — F'(t) = 0.4. Moreover
we set @ = 2. Recall that £ = s/(mt).

4.2.1 Dependence on m,§

First we fix ¢ = 60 and consider the objective function for varying m and
€. Figure 7 displays the Q(m, s, ¢) surface. Darker areas belong to smaller
values of py. For example, the darkest area corresponds to values of (m, £, Q)
meeting the constraint p; < 0.1. (The jagged shape of the equiprobability
lines p; = const. in the figure is due to the grid size in the simulation.)
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Fig. 7: The objective function.

The plot reflects the behavior already discussed for the Figures 1 and 5:

e { — Q(m,s,c) is decreasing (it is however increasing for different
choices of a > 2);

m — Q(m,s,c) has a minimal value located near m ~ 25 (almost
independent of &);

Given the constraint p; < €1, the global minimum of the objective
function is attained on the curve p; = &1 in the (m,&)-plane, parallel
to the c-axis;

Given that p; = e1, the objective function is decreasing in m, but 2 is
almost constant if m is large (Figure 8 below shows this behavior for
p1 ~ 0.2 and varying m, §).
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Fig. 8: Q(s,m,c) for values of m and & fulfilling p1(m,s) = 0.2.

4.2.2 Dependence on m,c

Next we fix £ = 0.93 and plot the objective function for varying ¢ and m in
Figure 9. Note that mc > d = 1000. Figure 9 shows the following;:

e m +— Q(m,s,c) and ¢ — Q(m, s, c) have minima, located near mc =
1500 (compare with the dashed line, marking points (m,c, ) with
me = 1500 and ©Q = 730). The minimal value is decreasing for m
increasing or ¢ decreasing (see Figure 10).

e For mec > 1500 (right of the dashed curve) the Q-surface is close to a
plane, here E[(d — Z(m, s, c))"] dominates E[T(m, s, c)].

e For me < 1500 (left of the dashed line) Q(m, s, c) is increasing very
fast, due to a domination of the E[T'(m, s, c)] term.

e Given the constraint p; < €1, the minimal value of the objective func-
tion is attained on the curve p; = ¢ in the (m, &)-plane.
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Fig. 9: The objective function for different values of ¢ and m; the dashed line
indicates (m, ¢, Q) with me = 1500, 2 = 730 .
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Fig. 10: The objective function, different angle.
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4.2.3 Dependence on c,§

Figure 11 shows Q(m, s, ¢) for fixed m = 25 and varying ¢ and . We find
that

e £ — Q(m,s,c) is decreasing;

e c— Q(m,s,c) has a minimum near ¢ ~ 60.

Note that p; does not depend on c.

Fig. 11: The objective function for different values of ¢ and &.

4.3 Dependence on the probability F'(t)

A final simulation was carried out to reveal the dependence of the previous
results on the choice of the probability 1 — F'(t) = P(X > t). For Figure 12
we have chosen ¢ = 60 and £ = 0.93 and let m and ¢ vary.
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Fig. 12: Objective function for different values of m and 1 — F(t).

e In general Q2 increases with 1 — F'(t), the increase being steep for large
values of 1 — F'(t);

e The influence of the penalty term in Q(m, s, ¢) becomes less important
for higher values of 1 — F'(¢).

5 Possible extensions

The models studied in this paper can be extended in several directions. Let
us briefly mention two possibilities.

1. Inconclusive testing. There are situations in which marker values in
a certain intermediate interval are considered to be ‘inconclusive’. An item
is declared positive if its marker is above some threshold ts9, negative if it is
less than some ¢; < t2, and inconclusive if it lies in the interval [t1,t2]. For
group tests of m items we may consider thresholds ¢;(m) and ¢2(m) so that a
group of size m passes or fails the inspection if its marker sum is below ¢1(m)
or above to(m), respectively, and declared to be inconclusive otherwise. One
may then again consider the problem of aggregrating sufficiently many items
to meet a certain prespecified demand. In the minimization problem for the
cost function one now has to take into account new constraints, for example
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those on the probability of a misclassification of inconclusive groups. If
the demand requirement is not met by group testing all available items,
one may think of getting back to the groups that have been classsified as
inconclusive. For example, one could put them into one pool and start
testing new groups of size m from this pool, use the same procedure with
the same two thresholds t1(m) and t2(m) to classify groups according to
the three categories (clean, inconclusive or contaminated) and stop testing
if the residal demand is met or no groups are left in the pool.

2. Unreliable results. In this paper it was assumed that each test is
fully reliable, i.e., the marker values (or their sums) are measured with total
precision. In practice all kinds of measurement errors can and will occur and
should be incorporated in the stochastic modeling. In such more realistic
models one has to take into account the probabilities of misclassifications
due to error variables perturbing the measurements of the markers or their
sums. Such an approach will lead to various new constraints in the cost
optimization problem to ensure the quality of the selected items and avoid
misclassifications of good ones.
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