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Abstract
We continue our study of intermittency for the parabolic Anderson model ∂u/∂t =

κ∆u + ξu in a space-time random medium ξ, where κ is a positive di�usion constant, ∆
is the lattice Laplacian on Zd, d ≥ 1, and ξ is a simple symmetric exclusion process on
Zd in Bernoulli equilibrium. This model describes the evolution of a reactant u under the
in�uence of a catalyst ξ.

In [3] we investigated the behavior of the annealed Lyapunov exponents, i.e., the ex-
ponential growth rates as t → ∞ of the successive moments of the solution u. This led
to an almost complete picture of intermittency as a function of d and κ. In the present
paper we �nish our study by focussing on the asymptotics of the Lyaponov exponents as
κ → ∞ in the critical dimension d = 3, which was left open in [3] and which is the most
challenging. We show that, interestingly, this asymptotics is characterized not only by a
Green term, as in d ≥ 4, but also by a polaron term. The presence of the latter implies
intermittency of all orders above a �nite threshold for κ.
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1 Introduction and main result

1.1 Model

In this paper we consider the parabolic Anderson model (PAM) on Zd, d ≥ 1,




∂u

∂t
= κ∆u + ξu on Zd × [0,∞),

u(·, 0) = 1 on Zd,
(1.1)

where κ is a positive di�usion constant, ∆ is the lattice Laplacian acting on u as

∆u(x, t) =
∑

y∈Zd

‖y−x‖=1

[u(y, t)− u(x, t)] (1.2)

(‖ · ‖ is the Euclidian norm), and

ξ = (ξt)t≥0, ξt = {ξt(x) : x ∈ Zd}, (1.3)

is a space-time random �eld that drives the evolution. If ξ is given by an in�nite particle
system dynamics, then the solution u of the PAM may be interpreted as the concentration of
a di�using reactant under the in�uence of a catalyst performing such a dynamics.

In Gärtner, den Hollander and Maillard [3] we studied the PAM for ξ Symmetric Exclusion
(SE), and developed an almost complete qualitative picture. In the present paper we �nish
our study by focussing on the limiting behavior as κ → ∞ in the critical dimension d = 3,
which was left open in [3] and which is the most challenging. We restrict to Simple Symmetric
Exclusion (SSE), i.e., (ξt)t≥0 is the Markov dynamics on Ω = {0, 1}Z3 (0 = vacancy, 1 =
particle) with generator L acting on cylinder functions f : Ω → R as

(Lf)(η) =
1
6

∑

{a,b}

[
f
(
ηa,b

)− f(η)
]
, η ∈ Ω, (1.4)

where the sum is taken over all unoriented nearest-neighbor bonds {a, b} of Z3, and ηa,b denotes
the con�guration obtained from η by interchanging the states at a and b:

ηa,b(a) = η(b), ηa,b(b) = η(a), ηa,b(x) = η(x) for x /∈ {a, b}. (1.5)

(See Liggett [7], Chapter VIII.) Let Pη and Eη denote probability and expectation for ξ given
ξ0 = η ∈ Ω. Let ξ0 be drawn according to the Bernoulli product measure νρ on Ω with density
ρ ∈ (0, 1). The probability measures νρ, ρ ∈ (0, 1), are the only extremal equilibria of the SSE
dynamics. (See Liggett [7], Chapter VIII, Theorem 1.44.) We write Pνρ =

∫
Ω νρ(dη)Pη and

E νρ =
∫
Ω νρ(dη)E η.

1.2 Lyapunov exponents

For p ∈ N, de�ne the p-th annealed Lyapunov exponent of the PAM by

λp(κ, ρ) = lim
t→∞

1
pt

logE νρ ([u(0, t)]p) . (1.6)
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We are interested in the asymptotic behavior of λp(κ, ρ) as κ →∞ for �xed ρ and p. To this
end, let G denote the value at 0 of the Green function of simple random walk on Z3 with jump
rate 1 (i.e., the Markov process with generator 1

6∆), and let P3 be the value of the polaron
variational problem

P3 = sup
f∈H1(R3)
‖f‖2=1

[ ∥∥∥(−∆R3)−1/2 f2
∥∥∥

2

2
− ‖∇R3f‖2

2

]
, (1.7)

where ∇R3 and ∆R3 are the continuous gradient and Laplacian, ‖ · ‖2 is the L2(R3)-norm,
H1(R3) = {f ∈ L2(R3) : ∇R3f ∈ L2(R3)}, and

∥∥∥(−∆R3)−1/2 f2
∥∥∥

2

2
=

∫

R3

dx f2(x)
∫

R3

dy f2(y)
1

4π‖x− y‖ . (1.8)

(See Donsker and Varadhan [1] for background on how P3 arises in the context of a self-
attracting Brownian motion referred to as the polaron model. See also Gärtner and den
Hollander [2], Section 1.5.)

We are now ready to formulate our main result (which was already announced in Gärtner,
den Hollander and Maillard [4]).

Theorem 1.1 Let d = 3, ρ ∈ (0, 1) and p ∈ N. Then

lim
κ→∞κ[λp(κ, ρ)− ρ] =

1
6

ρ(1− ρ)G + [6ρ(1− ρ)p]2P3. (1.9)

Note that the expression in the r.h.s. of (1.9) is the sum of a Green term and a polaron
term. The existence, continuity, monotonicity and convexity of κ 7→ λp(κ, ρ) were proved in
[3] for all d ≥ 1 for all exclusion processes with an irreducible and symmetric random walk
transition kernel. It was further proved that λp(κ, ρ) = 1 when the random walk is recurrent
and ρ < λp(κ, ρ) < 1 when the random walk is transient. Moreover, it was shown that for
simple random walk in d ≥ 4 the asymptotics as κ → ∞ of λp(κ, ρ) is similar to (1.9), but
without the polaron term. In fact, the subtlety in d = 3 is caused by the appearance of this
extra term which, as we will see in Section 5, is related to the large deviation behavior of the
occupation time measure of a rescaled random walk that lies deeply hidden in the problem.
For the heuristics behind Theorem 1.1 we refer the reader to [3], Section 1.5.

1.3 Intermittency

The presence of the polaron term in Theorem 1.1 implies that, for each ρ ∈ (0, 1), there exists
a κ0(ρ) > 0 such that the strict inequality

λp(κ, ρ) > λp−1(κ, ρ) ∀κ > κ0(ρ) (1.10)

holds for p = 2 and, consequently, for all p ≥ 2 by the convexity of p 7→ p λp(κ, ρ). This means
that all moments of the solution u are intermittent for κ > κ0(ρ), i.e., for large t the random
�eld u(·, t) develops sparse high spatial peaks dominating the moments in such a way that
each moment is dominated by its own collection of peaks (see Gärtner and König [5], Section
1.3, and den Hollander [6], Chapter 8, for more explanation).
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In [3] it was shown that for all d ≥ 3 the PAM is intermittent for small κ. We conjecture
that in d = 3 it is in fact intermittent for all κ. Unfortunately, our analysis does not allow us
to treat intermediate values of κ (see the �gure).

0

ρ

1
r
r
r

p = 3
p = 2
p = 1

?

κ

λp(κ)

Qualitative picture of κ 7→ λp(κ) for p = 1, 2, 3.

The formulation of Theorem 1.1 coincides with the corresponding result in Gärtner and den
Hollander [2], where the random potential ξ is given by independent simple random walks in a
Poisson equilibrium in the so-called weakly catalytic regime. However, as we already pointed
out in [3], the approach in [2] cannot be adapted to the exclusion process, since it relies on
an explicit Feynman-Kac representation for the moments that is available only in the case of
independent particle motion. We must therefore proceed in a totally di�erent way. Only at
the end of Section 5 will we be able to use some of the ideas in [2].

1.4 Outline

Each of Sections 2�5 is devoted to a major step in the proof of Theorem 1.1 for p = 1. The
extension to p ≥ 2 will be indicated in Section 6.

In Section 2 we start with the Feynman-Kac representation for the �rst moment of the
solution u, which involves a random walk sampling the exclusion process. After rescaling
time, we transform the representation w.r.t. the old measure to a representation w.r.t. a new
measure via an appropriate absolutely continuous transformation. This allows us to separate
the parts responsible for, respectively, the Green term and the polaron term in the r.h.s. of
(1.9). Since the Green term has already been handled in [3], we need only concentrate on the
polaron term. In Section 3 we show that, in the limit as κ → ∞, the new measure may be
replaced by the old measure. The resulting representation is used in Section 4 to prove the
lower bound for the polaron term. This is done analytically with the help of a Rayleigh-Ritz
formula. In Section 5, which is technical and takes up almost half of the paper, we prove the
corresponding upper bound. This is done by freezing and defreezing the exclusion process over
long time intervals, allowing us to approximate the representation in terms of the occupation
time measures of the random walk over these time intervals. After applying spectral estimates
and using a large deviation principle for these occupation time measures, we arrive at the
polaron variational formula.
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2 Separation of the Green term and the polaron term
In Section 2.1 we formulate the Feynman-Kac representation for the �rst moment of u and
show how to split this into two parts after an appropriate change of measure. In Section 2.2 we
formulate two propositions for the asymptotics of these two parts, which lead to, respectively,
the Green term and the polaron term in (1.9). These two propositions will be proved in
Sections 3�5. In Section 2.3 we state and prove three elementary lemmas that will be needed
along the way.

2.1 Key objects

The solution u of the PAM in (1.1) admits the Feynman-Kac representation

u(x, t) = EX
x

(
exp

[∫ t

0
ds ξt−s (Xκs)

])
, (2.1)

where X is simple random walk on Z3 with step rate 6 (i.e., with generator ∆) and PX
x and

EX
x denote probability and expectation with respect to X given X0 = x. Since ξ is reversible

w.r.t νρ, we may reverse time in (2.1) to obtain

E νρ

(
u(0, t)

)
= E νρ,0

(
exp

[ ∫ t

0
ds ξs

(
Xκs

)])
, (2.2)

where E νρ,0 is expectation w.r.t. Pνρ,0 = Pνρ ⊗ PX
0 .

As in [2] and [3], we rescale time and write

e−ρ(t/κ)E νρ

(
u(0, t/κ)

)
= E νρ,0

(
exp

[
1
κ

∫ t

0
ds φ(Zs)

])
(2.3)

with
φ(η, x) = η(x)− ρ (2.4)

and
Zt =

(
ξt/κ, Xt

)
. (2.5)

From (2.3) it is obvious that (1.9) in Theorem 1.1 (for p = 1) reduces to

lim
κ→∞κ2λ∗(κ) =

1
6

ρ(1− ρ)G + [6ρ(1− ρ)]2P3, (2.6)

where
λ∗(κ) = lim

t→∞
1
t

logE νρ,0

(
exp

[
1
κ

∫ t

0
ds φ(Zs)

])
. (2.7)

Here and in the rest of the paper we suppress the dependence on ρ ∈ (0, 1) from the notation.
Under Pη,x = Pη ⊗ PX

x , (Zt)t≥0 is a Markov process with state space Ω× Z3 and generator

A =
1
κ

L + ∆ (2.8)

(acting on the Banach space of bounded continuous functions on Ω × Z3, equipped with the
supremum norm). Let (St)t≥0 denote the semigroup generated by A.
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Our aim is to make an absolutely continuous transformation of the measure Pη,x with the
help of an exponential martingale, in such a way that, under the new measure Pnew

η,x , (Zt)t≥0

is a Markov process with generator Anew of the form

Anewf = e−
1
κ

ψA
(
e

1
κ

ψf
)
−

(
e−

1
κ

ψAe
1
κ

ψ
)

f. (2.9)

This transformation leads to an interaction between the exclusion process part and the random
walk part of (Zt)t≥0, controlled by ψ : Ω× Z3 → R. As explained in [3], Section 4.2, it will be
expedient to choose ψ as

ψ =
∫ T

0
ds

(Ssφ
)

(2.10)

with T a large constant (suppressed from the notation), implying that

−Aψ = φ− ST φ. (2.11)

It was shown in [3], Lemma 4.3.1, that

Nt = exp
[

1
κ

[
ψ(Zt)− ψ(Z0)

]−
∫ t

0
ds

(
e−

1
κ

ψAe
1
κ

ψ
)

(Zs)
]

(2.12)

is an exponential Pη,x-martingale for all (η, x) ∈ Ω× Z3. Moreover, if we de�ne Pnew
η,x in such

a way that
Pnew

η,x (A) = E η,x

(
Nt 11A

)
(2.13)

for all events A in the σ-algebra generated by (Zs)s∈[0,t], then under Pnew
η,x indeed (Zs)s≥0 is a

Markov process with generator Anew. Using (2.11�2.13) and Enew
νρ,0 =

∫
Ω νρ(dη)Enew

η,0 , it then
follows that the expectation in (2.7) can be written in the form

E νρ,0

(
exp

[
1
κ

∫ t

0
ds φ(Zs)

])

= Enew
νρ,0

(
exp

[
1
κ

[
ψ(Z0)− ψ(Zt)

]
+

∫ t

0
ds

[(
e−

1
κ

ψAe
1
κ

ψ
)
−A

(
1
κ

ψ

)]
(Zs)

+
1
κ

∫ t

0
ds

(ST φ
)
(Zs)

])
.

(2.14)

The �rst term in the exponent in the r.h.s. of (2.14) stays bounded as t →∞ and can therefore
be discarded when computing λ∗(κ) via (2.7). We will see later that the second term and the
third term lead to the Green term and the polaron term in (2.6), respectively. These terms may
be separated from each other with the help of Hölder's inequality, as stated in Proposition 2.1
below.

2.2 Key propositions

Proposition 2.1 For any κ > 0,

λ∗(κ)
≤
≥ Iq

1(κ) + Ir
2(κ) (2.15)
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with

Iq
1(κ) =

1
q

lim
t→∞

1
t

logEnew
νρ,0

(
exp

[
q

∫ t

0
ds

[(
e−

1
κ

ψAe
1
κ

ψ
)
−A

(
1
κ

ψ

)]
(Zs)

])
,

Ir
2(κ) =

1
r

lim
t→∞

1
t

logEnew
νρ,0

(
exp

[
r

κ

∫ t

0
ds

(ST φ
)
(Zs)

])
,

(2.16)

where 1/q + 1/r = 1, with q > 0, r > 1 in the �rst inequality and q < 0, 0 < r < 1 in the
second inequality.

Proof. See [3], Proposition 4.4.1. The existence and �niteness of the limits in (2.16) follow
from Lemma 3.1 below.

By choosing r arbitrarily close to 1, we see that the proof of our main statement in (2.6)
reduces to the following two propositions, where we abbreviate

lim sup
t,κ,T→∞

= lim sup
T→∞

lim sup
κ→∞

lim sup
t→∞

and lim
t,κ,T→∞

= lim
T→∞

lim
κ→∞ lim

t→∞ . (2.17)

In the next proposition we write ψT instead of ψ to indicate the dependence on the parameter T .

Proposition 2.2 For any α ∈ R,

lim sup
t,κ,T→∞

κ2

t
logEnew

νρ,0

(
exp

[
α

∫ t

0
ds

[(
e−

1
κ

ψTAe
1
κ

ψT

)
−A

(1
κ

ψT

)]
(Zs)

])
≤ α

6
ρ(1− ρ)G.

(2.18)

Proposition 2.3 For any α > 0,

lim
t,κ,T→∞

κ2

t
logEnew

νρ,0

(
exp

[
α

κ

∫ t

0
ds

(ST φ
)
(Zs)

])
= [6α2ρ(1− ρ)]2P3. (2.19)

These propositions will be proved in Sections 3�5.

2.3 Preparatory lemmas
This section contains three elementary lemmas that will be used frequently in Sections 3�5.

Let p
(1)
t (x, y) and pt(x, y) = p

(3)
t (x, y) be the transition kernels of simple random walk in

d = 1 and d = 3, respectively, with step rate 1.

Lemma 2.4 There exists C > 0 such that, for all t ≥ 0 and x, y, e ∈ Z3 with ‖e‖ = 1,

p
(1)
t (x, y) ≤ C

(1 + t)
1
2

, pt(x, y) ≤ C

(1 + t)
3
2

,
∣∣pt(x + e, y)− pt(x, y)

∣∣ ≤ C

(1 + t)2
. (2.20)

Proof. Standard.

(In the sequel we will frequently write pt(x− y) instead of pt(x, y).)
From the graphical representation for SSE (Liggett [7], Chapter VIII, Theorem 1.1) it is

immediate that
E η

(
ξt(x)

)
=

∑

y∈Zd

pt(x, y) η(y). (2.21)
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Recalling (2.4�2.5) and (2.10), we therefore have

Ssφ(η, x) = E η,x

(
φ(Zs)

)
= E η

( ∑

y∈Z3

p6s(x, y)
[
ξs/κ(y)− ρ

]
)

=
∑

z∈Z3

p6s1[κ](x, z)
[
η(z)− ρ

] (2.22)

and
ψ(η, x) =

∫ T

0
ds

∑

z∈Z3

p6s1[κ](x, z)
[
η(z)− ρ

]
, (2.23)

where we abbreviate
1[κ] = 1 +

1
6κ

. (2.24)

Lemma 2.5 For all κ, T > 0, η ∈ Ω, a, b ∈ Z3 with ‖a− b‖ = 1 and x ∈ Z3,

|ψ(η, b)− ψ(η, a)| ≤ 2C
√

T for T ≥ 1, (2.25)
∣∣∣ψ

(
ηa,b, x

)− ψ(η, x)
∣∣∣ ≤ 2G, (2.26)

∑

{a,b}

(
ψ

(
ηa,b, x

)− ψ(η, x)
)2
≤ 1

6
G, (2.27)

where C > 0 is the same constant as in Lemma 2.4, and G is the value at 0 of the Green
function of simple random walk on Z3.

Proof. For a proof of (2.26�2.27), see [3], Lemma 4.5.1. To prove (2.25), we may without loss
of generality consider b = a + e1 with e1 = (1, 0, 0). Then, by (2.23), we have

|ψ(η, b)− ψ(η, a)| ≤
∫ T

0
ds

∑

z∈Z3

∣∣p6s1[κ](z + e1)− p6s1[κ](z)
∣∣

=
∫ T

0
ds

∑

z∈Z3

∣∣∣p(1)
6s1[κ](z1 + e1)− p

(1)
6s1[κ](z1)

∣∣∣ p
(1)
6s1[κ](z2) p

(1)
6s1[κ](z3)

=
∫ T

0
ds

∑

z1∈Z

∣∣∣p(1)
6s1[κ](z1 + e1)− p

(1)
6s1[κ](z1)

∣∣∣

= 2
∫ T

0
ds p

(1)
6s1[κ](0) ≤ 2C

√
T .

(2.28)

In the last line we have used the �rst inequality in (2.20).

Let G be the Green operator acting on functions V : Z3 → [0,∞) as

GV (x) =
∑

y∈Z3

G(x− y)V (y), x ∈ Z3, (2.29)

with G(z) =
∫∞
0 dt pt(z). Let ‖ · ‖∞ denote the supremum norm.
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Lemma 2.6 For all V : Z3 → [0,∞) and x ∈ Z3,

EX
x

(
exp

[ ∫ ∞

0
dt V (Xt)

])
≤

(
1− ‖GV ‖∞

)−1
≤ exp

(
‖GV ‖∞

1− ‖GV ‖∞

)
, (2.30)

provided that
‖GV ‖∞ < 1. (2.31)

Proof. See [2], Lemma 8.1.

3 Reduction to the original measure
In this section we show that the expectations in Propositions 2.2�2.3 w.r.t. the new measure
Pnew

νρ,0 are asymptotically the same as the expectations w.r.t. the old measure Pνρ,0. In Sec-
tion 3.1 we state a Rayleigh-Ritz formula from which we draw the desired comparison. In
Section 3.2 we state the analogues of Propositions 2.2�2.3 whose proof will be the subject of
Sections 4�5.

3.1 Rayleigh-Ritz formula

Recall the de�nition of ψ in (2.10). Let m denote the counting measure on Z3. It is easily
checked that both µρ = νρ ⊗m and µnew

ρ given by

dµnew
ρ = e

2
κ

ψ dµρ (3.1)

are reversible invariant measures of the Markov processes with generators A de�ned in (2.8),
respectively, Anew de�ned in (2.9). In particular, A and Anew are self-adjoint operators in
L2(µρ) and L2(µnew

ρ ). Let D(A) and D(Anew) denote their domains.

Lemma 3.1 For all bounded measurable V : Ω× Z3 → R,

lim
t→∞

1
t

logEnew
νρ,0

(
exp

[ ∫ t

0
ds V (Zs)

])
= sup

F∈D(Anew)
‖F‖

L2(µnew
ρ )

=1

∫∫

Ω×Z3

dµnew
ρ

(
V F 2 + F AnewF

)
.

(3.2)
The same is true when Enew

νρ,0, µnew
ρ , Anew are replaced by E νρ,0, µρ, A, respectively.

Proof. The limit in the l.h.s. of (3.2) coincides with the upper boundary of the spectrum of
the operator Anew + V on L2(µnew

ρ ), which may be represented by the Rayleigh-Ritz formula.
The latter coincides with the expression in the r.h.s. of (3.2). The details are similar to [3],
Section 2.2.

Lemma 3.1 can be used to express the limits as t → ∞ in Propositions 2.2�2.3 as varia-
tional expressions involving the new measure. Lemma 3.2 below says that, for large κ, these
variational expressions are close to the corresponding variational expressions for the old mea-
sure. Using Lemma 3.1 for the original measure, we may therefore arrive at the corresponding
limit for the old measure.
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For later use, in the statement of Lemma 3.2 we do not assume that ψ is given by (2.10).
Instead, we only suppose that η 7→ ψ(η) is bounded and measurable and that there is a
constant K > 0 such that for all η ∈ Ω, a, b ∈ Z3 with ‖a− b‖ = 1 and x ∈ Z3,

|ψ(η, b)− ψ(η, a)| ≤ K and
∣∣∣ψ

(
ηa,b, x

)− ψ(η, x)
∣∣∣ ≤ K, (3.3)

but retain that Anew and µnew
ρ are given by (2.9) and (3.1), respectively.

Lemma 3.2 Assume (3.3). Then, for all bounded measurable V : Ω× Z3 → R,

sup
F∈D(Anew)

‖F‖
L2(µnew

ρ )
=1

∫∫

Ω×Z3

dµnew
ρ

(
V F 2 + F AnewF

)

≤
≥ e∓

K
κ sup

F∈D(A)
‖F‖

L2(µρ)
=1

∫∫

Ω×Z3

dµρ

(
e±

K
κ V F 2 + F AF

)
,

(3.4)

where ± means + in the �rst inequality and − in the second inequality, and ∓ means the
reverse.

Proof. Combining (1.2), (1.4) and (2.8�2.9), we have for all (η, x) ∈ Ω×Z3 and all F ∈ D(Anew),
(
V F 2 + F AnewF

)
(η, x) = V (η, x) F 2(η, x)

+
1
6κ

∑

{a,b}
F (η, x) e

1
κ
[ψ(ηa,b,x)−ψ(η,x)]

[
F (ηa,b, x)− F (η, x)

]

+
∑

y : ‖y−x‖=1

F (η, x) e
1
κ
[ψ(η,y)−ψ(η,x)]

[
F (η, y)− F (η, x)

]
.

(3.5)

Therefore, taking into account (2.9), (3.1) and the exchangeability of νρ, we �nd that
∫∫

Ω×Z3

dµnew
ρ

(
V F 2 + F AnewF

)
=

∫∫

Ω×Z3

dµnew
ρ (η, x)

(
V (η, x) F 2(η, x)

− 1
12κ

∑

{a,b}
e

1
κ
[ψ(ηa,b,x)−ψ(η,x)]

[
F (ηa,b, x)− F (η, x)

]2

− 1
2

∑

y : ‖y−x‖=1

e
1
κ
[ψ(η,y)−ψ(η,x)]

[
F (η, y)− F (η, x)

]2

)
.

(3.6)
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Let F̃ = eψ/κF . Then, by (3.1) and (3.3),

(3.6)
≤
≥

∫∫

Ω×Z3

dµnew
ρ (η, x)

(
V (η, x) F 2(η, x)

− e∓
K
κ

12κ

∑

{a,b}

[
F (ηa,b, x)− F (η, x)

]2
− e∓

K
κ

2

∑

y : ‖y−x‖=1

[
F (η, y)− F (η, x)

]2

)

=
∫∫

Ω×Z3

dµρ(η, x)

(
V (η, x) F̃ 2(η, x)

− e∓
K
κ

12κ

∑

{a,b}

[
F̃ (ηa,b, x)− F̃ (η, x)

]2
− e∓

K
κ

2

∑

y : ‖y−x‖=1

[
F̃ (η, y)− F̃ (η, x)

]2
)

= e∓
K
κ

∫∫

Ω×Z3

dµρ

(
e±

K
κ V F̃ 2 + F̃ AF̃

)
.

(3.7)

Taking further into account that
∥∥∥F̃

∥∥∥
2

L2(µρ)
= ‖F‖2

L2(µnew
ρ ) , (3.8)

and that F̃ ∈ D(A) if and only if F ∈ D(Anew), we get the claim.

3.2 Reduced key propositions
At this point we may combine the assertions in Lemmas 3.1�3.2 for the potentials

V = α

[(
e−

1
κ

ψAe
1
κ

ψ
)
−A

(1
κ

ψ
)]

(3.9)

and
V =

α

κ

(ST φ
)

(3.10)

with ψ given by (2.10). Because of (2.25�2.26), the constant K in (3.3) may be chosen to be
the maximum of 2G and 2C

√
T , resulting in K/κ → 0 as κ →∞. Moreover, from (2.27) and

a Taylor expansion of the r.h.s. of (3.9) we see that the potential in (3.9) is bounded for each
κ and T , and the same is obviously true for the potential in (3.10) because of (2.4). In this
way, using a moment inequality to replace the factor e±K/κα by a slightly larger, respectively,
smaller factor α′ independent of T and κ, we see that the limits in Propositions 2.2�2.3 do not
change when we replace Enew

νρ,0 by E νρ,0. Hence it will be enough to prove the following two
propositions.

Proposition 3.3 For all α ∈ R,

lim sup
t,κ,T→∞

κ2

t
logE νρ,0

(
exp

[
α

∫ t

0
ds

[(
e−

1
κ

ψAe
1
κ

ψ
)
−A

(1
κ

ψ
)]

(Zs)
])

≤ α

6
ρ(1−ρ)G. (3.11)

Proposition 3.4 For all α > 0,

lim
t,κ,T→∞

κ2

t
logE νρ,0

(
exp

[
α

κ

∫ t

0
ds

(ST φ
)
(Zs)

])
=

[
6α2ρ(1− ρ)

]2P3. (3.12)

Proposition 3.3 has already been proven in [3], Proposition 4.4.2. Sections 4�5 are dedicated
to the proof of the lower, respectively, upper bound in Proposition 3.4.
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4 Proof of Proposition 3.4: lower bound
In this section we derive the lower bound in Proposition 3.4. We �x α, κ, T > 0 and use Lemma
3.1, to obtain

lim
t→∞

1
t

logE νρ,0

(
exp

[
α

κ

∫ t

0
ds

(ST φ
)
(Zs)

])
= sup

F∈D(A)
‖F‖

L2(µρ)
=1

∫∫

Ω×Z3

dµρ

(α

κ

(ST φ
)
F 2 + FAF

)
.

(4.1)
In Section 4.1 we choose a test function. In Section 4.2 we compute and estimate the resulting
expression. In Section 4.3 we take the limit κ, T → ∞ and show that this gives the desired
lower bound.

4.1 Choice of test function

To get the desired lower bound, we use test functions F of the form

F (η, x) = F1(η)F2(x). (4.2)

Before specifying F1 and F2, we introduce some further notation. In addition to the counting
measure m on Z3, consider the discrete Lebesgue measure mκ on Z3

κ = κ−1Z3 giving weight
κ−3 to each site in Z3

κ. Let l2(Z3) and l2(Z3
κ) denote the corresponding l2-spaces. Let ∆κ

denote the lattice Laplacian on Z3
κ de�ned by

(
∆κf

)
(x) = κ2

∑

y∈Z3κ
‖y−x‖=κ−1

[
f(y)− f(x)

]
. (4.3)

Choose f ∈ C∞c (R3) with ‖f‖L2(R3) = 1 arbitrarily, where C∞c (R3) is the set of in�nitely
di�erentiable functions on R3 with compact support. De�ne

fκ(x) = κ−3/2f
(
κ−1x

)
, x ∈ Z3, (4.4)

and note that
‖fκ‖l2(Z3) = ‖f‖l2(Z3

κ) → 1 as κ →∞. (4.5)

For F2 choose
F2 = ‖fκ‖−1

l2(Z3)
fκ. (4.6)

To choose F1, introduce the function

φ̃(η) =
α

‖fκ‖2
l2(Z3)

∑

x∈Z3

(ST φ
)
(η, x) f2

κ(x). (4.7)

Given K > 0, abbreviate
S = 6T1[κ] and U = 6Kκ21[κ] (4.8)

(recall (2.24)). For κ >
√

T/K, de�ne ψ̃ : Ω → R by

ψ̃ =
∫ U−S

0
ds Tsφ̃, (4.9)
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where (Tt)t≥0 is the semigroup generated by the operator L in (1.4). Note that the construction
of ψ̃ from φ̃ in (4.9) is similar to the construction of ψ from φ in (2.10). In particular,

−Lψ̃ = φ̃− TU−Sφ̃. (4.10)

Combining the probabilistic representations of the semigroups (St)t≥0 (generated byA in (2.8))
and (Tt)t≥0 (generated by L in (1.4)) with the graphical representation formulas (2.21�2.22),
and using (4.4�4.5), we �nd that

φ̃(η) =
α

‖f‖2
l2(Z3

κ)

∫

Z3
κ

mκ(dx) f2(x)
∑

z∈Z3

pS(κx, z)[η(z)− ρ] (4.11)

and
ψ̃(η) =

∑

z∈Z3

h(z)[η(z)− ρ] (4.12)

with
h(z) =

α

‖f‖2
l2(Z3

κ)

∫

Z3
κ

mκ(dx) f2(x)
∫ U

S
ds ps(κx, z). (4.13)

Using the second inequality in (2.20), we have

0 ≤ h(z) ≤ Cα√
T

, z ∈ Z3. (4.14)

Now choose F1 as
F1 =

∥∥e
eψ∥∥−1

L2(νρ)
e
eψ. (4.15)

For the above choice of F1 and F2, we have ‖F1‖L2(νρ) = ‖F2‖l2(Z3) = 1 and, consequently,
‖F‖L2(µρ) = 1. With F1, F2 and φ̃ as above, and A as in (2.8), after scaling space by κ we
arrive at the following lemma.

Lemma 4.1 For F as in (4.2), (4.6) and (4.15), all α, T, K > 0 and κ >
√

T/K,

κ2

∫∫

Ω×Z3

dµρ

(α

κ

(ST φ
)
F 2 + FAF

)

=
1

‖f‖2
l2(Z3

κ)

∫

Z3
κ

dmκ f∆κf +
κ

‖e eψ‖2
L2(νρ)

∫

Ω
dνρ

(
φ̃e2 eψ + e

eψLe
eψ
)
,

(4.16)

where φ̃ and ψ̃ are as in (4.7) and (4.9).

4.2 Computation of the r.h.s. of (4.16)

Clearly, as κ →∞ the �rst summand in the r.h.s. of (4.16) converges to
∫

R3

dx f(x)∆f(x) = −∥∥∇R3f
∥∥2

L2(R3)
. (4.17)

The computation of the second summand in the r.h.s. of (4.16) is more delicate:
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Lemma 4.2 For all α > 0 and 0 < ε < K,

lim inf
κ,T→∞

κ

‖e eψ‖2
L2(νρ)

∫

Ω
dνρ

(
φ̃e2 eψ + e

eψLe
eψ
)

≥ 6α2ρ(1− ρ)
∫

R3

dx f2(x)
∫

R3

dy f2(y)

(∫ 6K

6ε
dt p

(G)
t (x, y)−

∫ 12K

6K
dt p

(G)
t (x, y)

)
,

(4.18)
where

p
(G)
t (x, y) = (4πt)−3/2 exp[−‖x− y‖2/4t] (4.19)

denotes the Gaussian transition kernel associated with ∆R3, the continuous Laplacian on R3.

Proof. Using the probability measure

dνnew
ρ =

∥∥e
eψ∥∥−2

L2(νρ)
e2 eψ dνρ (4.20)

in combination with (4.10), we may write the term under the lim inf in (4.18) in the form

κ

∫

Ω
dνnew

ρ

(
e− eψLe

eψ − Lψ̃ + TU−Sφ̃
)
. (4.21)

This expression can be handled by making a Taylor expansion of the L-terms and showing
that the TU−S-term is nonnegative. Indeed, by the de�nition of L in (1.4), we have

(
e− eψLe

eψ − Lψ̃
)
(η) =

1
6

∑

{a,b}

(
e[ eψ(ηa,b)− eψ(η)] − 1−

[
ψ̃

(
ηa,b

)− ψ̃(η)
])

. (4.22)

Recalling the expressions for ψ̃ in (4.12�4.13) and using (4.14), we get for a, b ∈ Z3 with
‖a− b‖ = 1,

∣∣ψ̃(
ηa,b

)− ψ̃(η)
∣∣ = |h(a)− h(b)| |η(b)− η(a)| ≤ Cα√

T
. (4.23)

Hence, a Taylor expansion of the exponent in the r.h.s. of (4.22) gives
∫

Ω
dνnew

ρ

(
e− eψ Le

eψ − Lψ̃
)
≥ e−Cα/

√
T

12

∫

Ω
dνnew

ρ

∑

{a,b}

[
ψ̃

(
ηa,b

)− ψ̃(η)
]2

. (4.24)

Using (4.12), we obtain
∫

Ω
νnew

ρ (dη)
∑

{a,b}

[
ψ̃

(
ηa,b

)− ψ̃(η)
]2

=
∑

{a,b}

[
h(a)− h(b)

]2
∫

Ω
νnew

ρ (dη)
[
η(b)− η(a)

]2
. (4.25)

Using (4.20), we have (after cancellation of factors not depending on a or b)

∫

Ω
νnew

ρ (dη)
[
η(b)− η(a)

]2 =

∫

Ω
νρ(dη) e2χa,b(η)

[
η(b)− η(a)

]2

∫

Ω
νρ(dη) e2χa,b(η)

(4.26)

with
χa,b(η) = h(a)η(a) + h(b)η(b). (4.27)
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Using (4.14), we obtain that
∫

Ω
νnew

ρ (dη)
[
η(b)− η(a)

]2 ≥ e−4Cα/
√

T

∫

Ω
νρ(dη)

[
η(b)− η(a)

]2 = e−4Cα/
√

T 2ρ(1− ρ). (4.28)

On the other hand, by (4.13),

∑

{a,b}

[
h(a)− h(b)

]2 =
α2

‖f‖4
l2(Z3

κ)

∫ U

S
dt

∫ U

S
ds

∫

Z3
κ

mκ(dx) f2(x)
∫

Z3
κ

mκ(dy) f2(y)

×
∑

{a,b}

[
pt(κx, a)− pt(κx, b)

][
ps(κy, a)− ps(κy, b)

] (4.29)

with
∑

{a,b}

[
pt(κx, a)− pt(κx, b)

][
ps(κy, a)− ps(κy, b)

]
= −

∑

a∈Z3

pt(κx, a)∆ps(κx, a)

= −6
∑

a∈Z3

pt(κx, a)
(

∂

∂s
ps(κy, a)

)
,

(4.30)

where ∆ acts on the �rst spatial variable of ps(· , ·) and ∆ps = 6(∂ps/∂s). Therefore,

(4.29) = 6
∫ U

S
dt

∫

Z3
κ

mκ(dx) f2(x)
∫

Z3
κ

mκ(dy) f2(y)
∑

a∈Z3

pt(κx, a)
[
pS(κy, a)− pU (κy, a)

]

= 6
∫

Z3
κ

mκ(dx) f2(x)
∫

Z3
κ

mκ(dy) f2(y)

( ∫ S+U

2S
dt pt(κx, κy)−

∫ 2U

U+S
dt pt(κx, κy)

)
.

(4.31)
Combining (4.24�4.25) and (4.28�4.29) and (4.31), we arrive at

∫

Ω
dνnew

ρ

(
e− eψLe

eψ − Lψ̃
)
≥ e−5Cα/

√
T α2

‖f‖4
l2(Z3

κ)

ρ(1− ρ)
∫

Z3
κ

mκ(dx) f2(x)
∫

Z3
κ

mκ(dy) f2(y)

×
(∫ S+U

2S
dt pt(κx, κy)−

∫ 2U

U+S
dt pt(κx, κy)

)
.

(4.32)

After replacing 2S in the �rst integral by 6εκ21[κ], using a Gaussian approximation of the
transition kernel pt(x, y) and recalling the de�nitions of S and U in (4.8), we get that, for any
ε > 0,

lim inf
κ,T→∞

κ

∫

Ω
dνnew

ρ

(
e− eψLe

eψ − Lψ̃
)

≥ 6α2ρ(1− ρ)
∫

R3

dx f2(x)
∫

R3

dy f2(y)

( ∫ 6K

6ε
dt p

(G)
t (x, y)−

∫ 12K

6K
dt p

(G)
t (x, y)

)
.

(4.33)
At this point it only remains to check that the TU−S-term in (4.21) is nonnegative. By

(4.11) and the probabilistic representation of the semigroup (Tt)t≥0, we have
∫

Ω
dνnew

ρ TU−Sφ̃ =
α

‖f‖2
l2(Z3

κ)

∫

Z3
κ

mκ(dx) f2(x)
∑

z∈Z3

pU (κx, z)
∫

Ω
νnew

ρ (dη)[η(z)− ρ] (4.34)
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and, by (4.20),
∫

Ω
νnew

ρ (dη)[η(z)− ρ] = −ρ +
ρe2h(z)

ρe2h(z) + 1− ρ
= −ρ +

ρ

1− (1− ρ)
(
1− e−2h(z)

)

≥ −ρ + ρ
[
1 + (1− ρ)

(
1− e−2h(z)

)]
= ρ(1− ρ)

(
1− e−2h(z)

)
,

(4.35)

which proves the claim.

4.3 Proof of the lower bound in Proposition 3.4
We �nish by using Lemma 4.2 to prove the lower bound in Proposition 3.4.
Proof. Combining (4.16�4.18), we get

lim inf
κ,T→∞

κ2

∫∫

Ω×Z3

dµρ

(α

κ

(ST φ
)
F 2 − FAF

)

≥ 6α2ρ(1− ρ)
∫

R3

dx f2(x)
∫

R3

dy f2(y)

(∫ 6K

6ε
dt p

(G)
t (x, y)−

∫ 12K

6K
dt p

(G)
t (x, y)

)

− ∥∥∇R3f
∥∥2

L2(R3)
.

(4.36)
Letting ε ↓ 0, K →∞, replacing f(x) by γ3/2f(γx) with γ = 6α2ρ(1−ρ), taking the supremum
over all f ∈ C∞

c (R3) such that ‖f‖L2(R3) = 1 and recalling (4.1), we arrive at

lim inf
t,κ,T→∞

κ2

t
logE νρ,0

(
exp

[
α

κ

∫ t

0
ds

(ST φ
)
(Zs)

])
≥ [

6α2ρ(1− ρ)
]2P3, (4.37)

which is the desired inequality.

5 Proof of Proposition 3.4: upper bound
In this section we prove the upper bound in Proposition 3.4. The proof is long and technical.
In Sections 5.1 we �freeze� and �defreeze� the exclusion dynamics on long time intervals. This
allows us to approximate the relevant functionals of the random walk in terms of its occupation
time measures on those intervals. In Section 5.2 we use a spectral bound to reduce the study
of the long-time asymptotics for the resulting time-dependent potentials to the investigation
of time-independent potentials. In Section 5.3 we make a cut-o� for small times, showing
that these times are negligible in the limit as κ → ∞, perform a space-time scaling and
compacti�cation of the underlying random walk, and apply a large deviation principle for the
occupation time measures, culminating in the appearance of the variational expression for the
polaron term P3.

5.1 Freezing, defreezing and reduction to two key lemmas
5.1.1 Freezing

We begin by deriving a preliminary upper bound for the expectation in Proposition 3.4 given
by

E νρ,0

(
exp

[ ∫ t

0
ds V (Zs)

])
(5.1)
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with
V (η, x) =

α

κ

(ST φ
)
(η, x) =

α

κ

∑

y∈Z3

p6T1[κ](x, y)(η(y)− ρ), (5.2)

where, as before, T is a large constant. To this end, we divide the time interval [0, t] into
bt/Rκc intervals of length

Rκ = Rκ2 (5.3)
with R a large constant, and �freeze� the exclusion dynamics (ξt/κ)t≥0 on each of these intervals.
As will become clear later on, this procedure allows us to express the dependence of (5.1) on the
random walk X in terms of objects that are close to integrals over occupation time measures
of X on time intervals of length Rκ. We will see that the resulting expression can be estimated
from above by �defreezing� the exclusion dynamics. We will subsequently see that, after we
have taken the limits t → ∞, κ → ∞ and T → ∞, the resulting estimate can be handled by
applying a large deviation principle for the space-time rescaled occupation time measures in
the limit as R →∞. The latter will lead us to the polaron term.

Ignoring the negligible �nal time interval [bt/RκcRκ, t], using Hölder's inequality with
p, q > 1 and 1/p+1/q = 1, and inserting (5.2), we see that (5.1) may be estimated from above
as

E νρ,0

(
exp

[ ∫ bt/RκcRκ

0
ds V (Zs)

])

= E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

p6T1[κ](Xs, y)
(
ξs/κ(y)− ρ

)
])

≤
(
E(1)

R,αq(t)
)1/q(

E(2)
R,αp(t)

)1/p

(5.4)

with

E(1)
R,α(t) = E(1)

R,α(κ, T ; t) = E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

(
p6T1[κ](Xs, y) ξ s

κ
(y)

− p
6T1[κ]+

s−(k−1)Rκ
κ

(Xs, y) ξ (k−1)Rκ
κ

(y)
)]) (5.5)

and

E(2)
R,α(t) = E(2)

R,α(κ, T ; t)

= E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

ds
∑

y∈Z3

p
6T1[κ]+

s−(k−1)Rκ
κ

(Xs, y)
(
ξ (k−1)Rκ

κ

(y)− ρ
)])

.

(5.6)
Therefore, by choosing p close to 1, the proof of the upper bound in Proposition 3.4 reduces
to the proof of the following two lemmas.

Lemma 5.1 For all R, α > 0,

lim sup
t,κ,T→∞

κ2

t
log E(1)

R,α(κ, T ; t) ≤ 0. (5.7)
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Lemma 5.2 For all α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

t
log E(2)

R,α(κ, T ; t) ≤ [
6α2ρ(1− ρ)

]2P3. (5.8)

Lemma 5.1 will be proved in Section 5.1.2, Lemma 5.2 in Sections 5.1.3�5.3.3.

5.1.2 Proof of Lemma 5.1

Proof. Fix R, α > 0 arbitrarily. Given a path X, an initial con�guration η ∈ Ω and k ∈ N, we
�rst derive an upper bound for

E η

(
exp

[
α

κ

∫ Rκ

0
ds

∑

y∈Z3

(
p6T1[κ]

(
X(k,κ)

s , y
)
ξ s

κ
(y)− p6T1[κ]+ s

κ

(
X(k,κ)

s , y
)
η(y)

)])
, (5.9)

where
X(k,κ)

s = X(k−1)Rκ+s. (5.10)

To this end, we use the independent random walk approximation ξ̃ of ξ (cf. [3], Proposition
1.2.1), to obtain

(5.9) ≤
∏

y∈Aη

EY
0

(
exp

[
α

κ

∫ Rκ

0
ds

(
p6T1[κ]

(
X(k,κ)

s , y+Y s
κ

)
−p6T1[κ]+ s

κ

(
X(k,κ)

s , y
))])

, (5.11)

where Y is simple random walk on Z3 with jump rate 1 (i.e., with generator 1
6∆), EY

0 is
expectation w.r.t. Y starting from 0, and

Aη = {x ∈ Z3 : η(x) = 1}. (5.12)

Observe that the expectation w.r.t. Y of the expression in the exponent is zero. Therefore, a
Taylor expansion of the exponential function yields the bound

EY
0

(
exp

[
α

κ

∫ Rκ

0
ds

(
p6T1[κ]

(
X(k,κ)

s , y + Y s
κ

)
− p6T1[κ]+ s

κ

(
X(k,κ)

s , y
))])

≤ 1 +
∞∑

n=2

n∏

l=1

(
α

κ

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
[
p6T1[κ]

(
X(k,κ)

sl
, y + yl

)
+ p6T1[κ]+

sl
κ

(
X(k,κ)

sl
, y

)])
,

(5.13)

where s0 = 0, y0 = 0, and the product has to be understood in a noncommutative way. Using
the Chapman-Kolmogorov equation and the inequality pt(z) ≤ pt(0), z ∈ Z3, we �nd that

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)
[
p6T1[κ]

(
X(k,κ)

sl
, y + yl

)
+ p6T1[κ]+

sl
κ

(
X(k,κ)

sl
, y

)])

≤ 2
∫ ∞

0
ds pT+ s

κ
(0) = 2κGT (0)

(5.14)
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with
GT (0) =

∫ ∞

T
ds ps(0) (5.15)

the cut-o� Green function of simple random walk at 0 at time T . Substituting this into the
above bound for l = n, n − 1, · · · , 3, computing the resulting geometric series, and using the
inequality 1 + x ≤ ex, we obtain

(5.13) ≤ exp

[
CT α2

κ2

2∏

l=1

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
(

p6T1[κ]

(
X(k,κ)

sl
, y + yl

)
+ p6T1[κ]+

sl
κ

(
X(k,κ)

sl
, y

))] (5.16)

with
CT =

1
1− 2αGT (0)

, (5.17)

provided that 2αGT (0) < 1, which is true for T large enough. Note that CT → 1 as T →∞.
Substituting (5.16) into (5.11), we �nd that

(5.9) ≤ exp

[
CT α2

κ2

∑

y∈Z3

2∏

l=1

∫ Rκ

sl−1

dsl

∑

yl∈Z3

p sl−sl−1
κ

(yl−1, yl)

×
(

p6T1[κ]

(
X(k,κ)

sl
, y + yl

)
+ p6T1[κ]+

sl
κ

(
X(k,κ)

sl
, y

))]
.

(5.18)

Using once more the Chapman-Kolmogorov equation and pt(x, y) = pt(x−y), we may compute
the sums in the exponent, to arrive at

(5.9) ≤ exp

[
CT α2

κ2

∫ Rκ

0
ds1

∫ Rκ

s1

ds2

(
p
12T1[κ]+

s2−s1
κ

(
X(k,κ)

s2
−X(k,κ)

s1

)

+ 3p
12T1[κ]+

s2+s1
κ

(
X(k,κ)

s2
−X(k,κ)

s1

))]
.

(5.19)

Note that this bound does not depend on the initial con�guration η and depends on the process
X only via its increments on the time interval [(k−1)Rκ, kRκ]. By (5.10), the increments over
the time intervals labelled k = 1, 2, · · · , bt/Rκc are independent and identically distributed.
Using Eνρ,0 =

∫
νρ(dη)EX

0 Eη, we can therefore apply the Markov property of the exclusion
dynamics (ξt/κ)t≥0 at times Rκ, 2Rκ, · · · , (bt/Rκc − 1)Rκ to the expectation in the r.h.s. of
(5.5), insert the bound (5.19) and afterwards use that (Xt)t≥0 has independent increments, to
arrive at

log E(1)
R,α(t) ≤ t

Rκ
log EX

0

(
exp

[
CT α2

κ2

∫ Rκ

0
ds1

∫ Rκ

s1

ds2

(
p
12T1[κ]+

s2−s1
κ

(
Xs2 −Xs1

)

+ 3p
12T1[κ]+

s2+s1
κ

(
Xs2 −Xs1

))
])

.

(5.20)
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Hence, recalling the de�nition of Rκ in (5.3), we obtain

lim sup
t→∞

κ2

t
log E(1)

R,α(t)

≤ 1
R

log EX
0

(
exp

[
CT α2R

Rκ

∫ Rκ

0
ds1

∫ Rκ

s1

ds2

(
p
12T1[κ]+

s2−s1
κ

(
Xs2 −Xs1

)

+ 3p
12T1[κ]+

s2+s1
κ

(
Xs2 −Xs1

))
])

.

(5.21)

Let
X̂t = Xt + Yt/κ, (5.22)

and let E bX
0 = EX

0 EY
0 be the expectation w.r.t. X̂ starting at 0. Observe that

pt+s/κ(z) = EY
0

(
pt

(
z + Ys/κ

))
. (5.23)

We next apply Jensen's inequality w.r.t. the �rst integral in the r.h.s. of (5.21), substitute
s2 = s1 + s, take into account that X has independent increments, and afterwards apply
Jensen's inequality w.r.t. EY

0 , to arrive at the following upper bound for the expectation in
(5.21):

EX
0

(
exp

[
CT α2R

Rκ

∫ Rκ

0
ds1

∫ Rκ

s1

ds2

(
p
12T1[κ]+

s2−s1
κ

(
Xs2 −Xs1

)

+ 3p
12T1[κ]+

s2+s1
κ

(
Xs2 −Xs1

))
]

≤ 1
Rκ

∫ Rκ

0
ds1 EX

0

(
exp

[
CT α2R

∫ ∞

0
ds EY

0

(
p12T1[κ]

(
Xs + Y s

κ

)

+ 3p
12T1[κ]+

2s1
κ

(
Xs + Y s

κ

))])

≤ 1
Rκ

∫ Rκ

0
ds1 E bX

0

(
exp

[
CT α2R

∫ ∞

0
ds

(
p12T1[κ]

(
X̂s

)
+ 3p

12T1[κ]+
2s1
κ

(
X̂s

))
])

.

(5.24)

Applying Lemma 2.6, we can bound the last expression from above by

exp

[
4CT α2RĜ2T (0)

1− 4CT α2RĜ2T (0)

]
, (5.25)

where Ĝ2T (0) is the cut-o� at time 2T of the Green function Ĝ at 0 for X̂ (which has generator
1[κ]∆). Since Ĝ2T (0) → 1

6G12T (0) as κ →∞, and since the latter converges to zero as T →∞,
a combination of the above estimates with (5.21) gives the claim.

5.1.3 Defreezing

To prove Lemma 5.2, we next �defreeze� the exclusion dynamics in E(2)
R,α(t). This can be done

in a similar way as the �freezing� we did in Section 5.1.1, by taking into account the following
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remarks. In (5.6), each single summand is asymptotically negligible as t →∞. Hence, we can
safely remove a summand at the beginning and add a summand at the end. After that we can
bound the resulting expression from above with the help of Hölder's inequality with weights
p, q > 1, 1/p + 1/q = 1, namely,

E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−kRκ
κ

(Xs, y)
(
ξ kRκ

κ
(y)− ρ

)])

≤
(
E(3)

R,αq(t)
)1/q(

E(4)
R,αp(t)

)1/p

(5.26)

with
E(3)

R,α(t) = E(3)
R,α(κ, T ; t)

= E νρ,0

(
exp

[
α

κRκ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

du

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

(
p6T1[κ]+ s−kRκ

κ
(Xs, y) ξ kRκ

κ
(y)

− p6T1[κ]+ s−u
κ

(Xs, y) ξu
κ
(y)

)])

(5.27)
and
E(4)

R,α(t) = E(4)
R,α(κ, T ; t)

= E νρ,0

(
exp

[
α

κRκ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

du

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u
κ

(Xs, y)
(
ξu

κ
(y)− ρ

)])
.

(5.28)
In this way, choosing p close to 1, we see that the proof of Lemma 5.2 reduces to the proof of
the following two lemmas.

Lemma 5.3 For all R, α > 0,

lim sup
t,κ,T→∞

κ2

t
log E(3)

R,α(κ, T ; t) ≤ 0. (5.29)

Lemma 5.4 For all α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

t
log E(4)

R,α(κ, T ; t) ≤ [
6α2ρ(1− ρ)

]2P3. (5.30)

In the remaining sections we prove Lemmas 5.3�5.4 and thereby complete the proof of the
upper bound in Proposition 3.4.

5.1.4 Proof of Lemma 5.3

Proof. The proof goes along the same lines as the proof of Lemma 5.1. Instead of (5.9), we
consider

E η

(
exp

[
α

κRκ

∫ Rκ

0
du

∫ 2Rκ

Rκ

ds
∑

y∈Z3

(
p6T1[κ]+ s−Rκ

κ

(
X(k,κ)

s , y
)
ξRκ

κ
(y)

− p6T1[κ]+ s−u
κ

(
X(k,κ)

s , y
)
ξu

κ
(y)

)])
.

(5.31)
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Applying Jensen's inequality w.r.t. the �rst integral and the Markov property of the exclusion
dynamics (ξt/κ)t≥0 at time u/κ, we see that it is enough to derive an appropriate upper bound
for

E ζ

(
exp

[
α

κ

∫ 2Rκ

Rκ

ds
∑

y∈Z3

(
p6T1[κ]+ s−Rκ

κ

(
X(k,κ)

s , y
)
ξRκ−u

κ
(y)

− p6T1[κ]+ s−u
κ

(
X(k,κ)

s , y
)
ζ(y)

)]) (5.32)

uniformly in ζ ∈ Ω and u ∈ [0, Rκ]. The main steps are the same as in the proof of Lemma
5.1. Instead of (5.19), we obtain

(5.32) ≤ exp

[
CT α2

κ2

∫ 2Rκ

Rκ

ds1

∫ 2Rκ

s1

ds2

(
p
12T1[κ]+

s2−s1
κ

+
2(s1−Rκ)

κ

(
X(k,κ)

s2
−X(k,κ)

s1

)

+ 3p
12T1[κ]+

s2−s1
κ

+
2(s1−u)

κ

(
X(k,κ)

s2
−X(k,κ)

s1

))]
,

(5.33)

and this expression may be bounded from above by (5.25).

5.2 Spectral bound

The advantage of Lemma 5.4 compared to the original upper bound in Proposition 3.4 is that,
modulo a small time correction of the form (s−u)/κ, the expression under the expectation in
(5.28) depends on X only via its occupation time measures on the time intervals [kRκ, (k +
1)Rκ], k = 1, 2, · · · , bt/Rκc. This will allow us in Section 5.3 to use a large deviation principle
for these occupation time measures. The present section consists of �ve steps, organized in
Sections 5.2.1�5.2.5, leading up to a �nal lemma that will be proved in Section 5.3.

We abbreviate

Vk,u(η) = V κ,X
k,u (η) =

1
Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u
κ

(
Xs, y

)
(η(y)− ρ) (5.34)

and rewrite the expression for E(4)
R,α(t) in (5.28) in the form

E(4)
R,α(t) = E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

duVk,u

(
ξu/κ

)
])

. (5.35)

In (5.34) and subsequent expressions we suppress the dependence on T and R.

5.2.1 Reduction to a spectral bound

Let B(Ω) denote the Banach space of bounded measurable functions on Ω equipped with the
supremum norm ‖ · ‖∞. Given V ∈ B(Ω), let

λ(V ) = lim
t→∞

1
t

logE νρ

(
exp

[ ∫ t

0
V (ξs) ds

])
(5.36)
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denote the associated Lyapunov exponent. The limit in (5.36) exists and coincides with the
upper boundary of the spectrum of the self-adjoint operator L + V on L2(νρ), written

λ(V ) = sup Sp(L + V ). (5.37)

Lemma 5.5 For all t > 0 and all bounded and piecewise continuous V : [0, t] → B(Ω),

E νρ

(
exp

[ ∫ t

0
Vu(ξu) du

])
≤ exp

[ ∫ t

0
λ(Vs) ds

]
. (5.38)

Proof. In the proof we will assume that s 7→ Vs is continuous. The extension to piecewise
continuous s 7→ Vs will be straightforward. Let 0 = t0 < t1 < · · · < tr = t be a partition of
the interval [0, t]. Then

∫ t

0
Vu(ξu) du ≤

r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds +

r∑

k=1

max
s∈[tk−1,tk]

‖Vs − Vtk−1
‖∞

(
tk − tk−1

)

≤
r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds + t max

k=1,··· ,r
max

s∈[tk−1,tk]
‖Vs − Vtk−1

‖∞.

(5.39)

Let (SV
t )t≥0 denote the semigroup generated by L+V on L2(νρ) with inner product (· , ·) and

norm ‖ · ‖. Then ∥∥SV
t

∥∥ = etλ(V ). (5.40)
Using the Markov property, we �nd that

E νρ

(
exp

[
r∑

k=1

∫ tk

tk−1

Vtk−1
(ξs) ds

])
=

(
SVt0

t1
SVt1

t2−t1
· · · SVtr−1

tr−tr−1
11, 11

)

≤
∥∥SVt0

t1

∥∥ ∥∥SVt1
t2−t1

∥∥ · · ·
∥∥SVtr−1

tr−tr−1

∥∥

= exp

[
r∑

k=1

λ
(
Vtk−1

)
(tk − tk−1)

]
.

(5.41)

Combining (5.39) and (5.41), we arrive at

logE νρ

(∫ t

0
Vs(ξs) ds

)
≤

r∑

k=1

λ
(
Vtk−1

)
(tk − tk−1) + t max

k=1,··· ,r
max

s∈[tk−1,tk]

∥∥Vs − Vtk−1

∥∥
∞. (5.42)

Since the map V 7→ λ(V ) from B(Ω) to R is continuous (which can be seen e.g. from (5.40) and
the Feynman-Kac representation of SV

t ), the claim follows by letting the mesh of the partition
tend to zero.

Lemma 5.6 For all α, T, R, t, κ > 0,

E νρ,0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

duVk,u

(
ξu/κ

)
])

≤ EX
0

(
exp

[ bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

duλk,u

])
(5.43)

with
λk,u = λκ,X

k,u = lim
t→∞

1
t

logE νρ

(
exp

[
α

κ

∫ t

0
ds V κ,X

k,u

(
ξs/κ

)])
, (5.44)

where u ∈ [(k − 1)Rκ, kRκ], k = 1, 2, · · · , bt/Rκc.
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Proof. Apply Lemma 5.5 to the potential Vu(η) = (α/κ)Vk,u(η) for u ∈ [(k − 1)Rκ, kRκ] with
(ξu)u≥0 replaced by (ξu/κ)u≥0, and take the expectation w.r.t. EX

0 .

The spectral bound in Lemma 5.6 enables us to estimate the expression in (5.35) from
above by �nding upper bounds for the expectation in (5.44) with a time-independent potential
Vk,u. This goes as follows. Fix κ, X, k and u, and abbreviate

φ̂ = αV κ,X
k,u . (5.45)

Let (Qt)t≥0 be the semigroup generated by (1/κ)L, and de�ne

ψ̂ =
∫ M

0
dr

(Qrφ̂
)

(5.46)

with
M = 3K1[κ]κ3 (5.47)

for a large constant K > 0. Then

−1
κ

Lψ̂ = φ̂−QM φ̂ (5.48)

with
(Qrφ̂

)
(η) =

α

Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

p6T1[κ]+ s−u+r
κ

(Xs, y)
[
η(y)− ρ

]

= α
∑

y∈Z3

Ξr(y)[η(y)− ρ]
(5.49)

and
Ξr(x) = Ξκ,X

k,u,r(x) =
1

Rκ

∫ (k+1)Rκ

kRκ

ds p6T1[κ]+ s−u+r
κ

(Xs, x). (5.50)

As in Section 2, we introduce new probability measures Pnew
η by an absolute continuous trans-

formation of the probability measures Pη, in the same way as in (2.12�2.13) with ψ and A
replaced by ψ̂ and (1/κ)L, respectively. Under Pnew

η , (ξt/κ)t≥0 is a Markov process with gen-
erator

1
κ

Lnewf = e−
1
κ
bψ 1
κ

L

(
e

1
κ
bψf

)
−

(
e−

1
κ
bψ 1
κ

Le
1
κ
bψ
)

f. (5.51)

Since η 7→ ψ̂(η) is bounded, we have, similarly as in Proposition 2.1 with q = r = 2,

λκ,X
k,u ≤ lim sup

t→∞
1
2t

log
(
E(5)

k,u(t)
)

+ lim sup
t→∞

1
2t

log
(
E(6)

k,u(t)
)

(5.52)

with

E(5)
k,u(t) = E(5)

k,u(κ,X; t) = Enew
νρ

(
exp

[
2
κ

∫ t

0
dr

[(
e−

1
κ
bψLe

1
κ
bψ
)
− L

(
1
κ

ψ̂

)](
ξr/κ

)])
(5.53)

and
E(6)

k,u(t) = E(6)
k,u(κ,X; t) = Enew

νρ

(
exp

[
2
κ

∫ t

0
dr

(QM φ̂
)(

ξr/κ

)])
, (5.54)

where Enew
νρ

=
∫
Ω νρ(dη)Enew

η , and we suppress the dependence on the constants T , K, R.

24



5.2.2 Two further lemmas

For a, b ∈ Z3 with ‖a− b‖ = 1, de�ne

Kk,u(a, b) = Kκ,X
k,u (a, b) = e2Cα/T α2

3κ3

∫ M

0
dr

∫ M

r
dr̃

[
Ξr(a)− Ξr(b)

][
Ξer(a)− Ξer(b)

]

(5.55)
with Ξr given by (5.50) and C the constant from Lemma 2.4. Abbreviate

∥∥Kk,u

∥∥
1

=
∑

{a,b}
Kκ,X

k,u (a, b). (5.56)

Lemma 5.7 For all α, T, K,R, κ, t > 0, u ∈ [(k − 1)Rκ, kRκ], k = 1, 2, · · · , bt/Rκc, and all
paths X,

E(5)
k,u(t) ≤ E νρ

(
exp

[
κ
∥∥Kk,u

∥∥
1

∫ t/κ

0
dr

[
ξr(e1)− ξr(0)

]2

])
(5.57)

with

∥∥Kk,u

∥∥
1
≤ e2Cα/T 2α2

κ2R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

ds̃

∫ M

0
dr p12T1[κ]+ s+es−2u+2r

κ

(
Xes −Xs

)
. (5.58)

Lemma 5.8 There exists κ0 > 0 such that for all κ > κ0, K > 1, α, T, R, κ, t > 0, u ∈
[(k − 1)Rκ, kRκ], k = 1, 2, · · · , bt/Rκc, and all paths X,

E(6)
k,u(t) ≤ exp

(
Dα,T,K

κ2
ρt

)
, (5.59)

where the constant Dα,T,K does not depend on R, t, κ, u or k and satis�es

lim
K→∞

Dα,T,K = 0, uniformly in T ≥ 1. (5.60)

5.2.3 Proof of Lemma 5.7

Proof. We want to replace Enew
νρ

by Eνρ in formula (5.53) by applying the analogues of Lemmas
3.1 and 3.2. To this end, we need to compute the constant K in (3.3) for ψ replaced by ψ̂.
Recalling (5.46) and (5.49), we have, for η ∈ Ω and a, b ∈ Z3 with ‖a− b‖ = 1,

ψ̂(ηa,b)− ψ̂(η) = α

∫ M

0
dr

[
Ξr(a)− Ξr(b)

]
[η(b)− η(a)]. (5.61)

Hence,
∣∣∣ψ̂

(
ηa,b

)− ψ̂(η)
∣∣∣ ≤ α

∫ M

0
dr

∣∣Ξr(a)− Ξr(b)
∣∣ ≤ Cα

∫ ∞

0
dr

(
1 + 6T +

r

κ

)−2

≤ Cα

T
κ. (5.62)

Here we have used (5.50) and the right-most inequality in (2.20). This yields

E(5)
k,u(t) ≤ E νρ

(
exp

[
2
κ

eCα/T

∫ t

0
dr

[(
e−

1
κ
bψLe

1
κ
bψ
)
− L

(
1
κ

ψ̂

)](
ξr/κ

)])
. (5.63)
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By (1.4), we have

1
κ

[
e−

1
κ
bψLe

1
κ
bψ − L

(1
κ

ψ̂
)]

(η) =
1
6κ

∑

{a,b}

(
e

1
κ
[ bψ(ηa,b)− bψ(η)] − 1− 1

κ

[
ψ̂(ηa,b)− ψ̂(η)

])
. (5.64)

In view of (5.62), a Taylor expansion of the r.h.s. of (5.64) gives

1
κ

[
e−

1
κ
bψLe

1
κ
bψ − L

(1
κ

ψ̂
)]

(η) ≤ eCα/T

12κ3

∑

{a,b}

(
ψ̂(ηa,b)− ψ̂(η)

)2
. (5.65)

Hence, recalling (5.55) and (5.61), we get

E νρ

(
exp

[
2
κ

eCα/T

∫ t

0
dr

[(
e−

1
κ
bψLe

1
κ
bψ
)
− L

(1
κ

ψ̂
)](

ξr/κ

)])

≤ E νρ

(
exp

[ ∫ t

0
dr

∑

{a,b}
Kk,u(a, b)

[
ξ r

κ
(b)− ξ r

κ
(a)

]2
])

.
(5.66)

Using Jensen's inequality w.r.t. the probability kernel Kk,u/‖Kk,u‖1, together with the transla-
tion invariance of ξ under Pνρ , we arrive at (5.57). To derive (5.58), observe that for arbitrary
h, h̃, r, r̃ > 0 and x, y ∈ Zd,

∑

{a,b}

[
ph+ r

κ
(x, a)− ph+ r

κ
(x, b)

][
peh+ er

κ
(y, a)− peh+ er

κ
(y, b)

]

= −
∑

a∈Z3

ph+ r
κ
(x, a)∆peh+ er

κ
(y, a) = −6κ

∑

a∈Z3

ph+ r
κ
(x, a)

∂

∂r̃
peh+ er

κ
(y, a),

(5.67)

where ∆ acts on the �rst spatial variable of pt(·, ·) and 1
6∆pt/κ = κ(∂/∂t)pt/κ. Recalling (5.50),

it follows that
∑

{a,b}

[
Ξr(a)− Ξr(b)

][
Ξer(a)− Ξer(b)

]
= −6κ

∑

a∈Z3

Ξr(a)
∂

∂r̃
Ξer(a) (5.68)

and, consequently,

∥∥Kk,u

∥∥
1

= e2Cα/T 2α2

κ2

∫ M

0
dr

∑

a∈Z3

Ξr(a)
[
Ξr(a)− ΞM (a)

]

≤ e2Cα/T 2α2

κ2

∫ M

0
dr

∑

a∈Z3

Ξr(a)2.
(5.69)

Hence, taking into account (5.50), we arrive at (5.58).

5.2.4 Proof of Lemma 5.8

Proof. Using the same arguments as in (5.62�5.63), we can replace Enew
νρ

by Eνρ in formula
(5.54), to obtain

E(6)
k,u(t) ≤ E νρ

(
exp

[
2
κ

eCα/T

∫ t

0
dr

(QM φ̂
)(

ξr/κ

)])
. (5.70)
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Because of (5.49), this yields

exp
[
2α

κ
eCα/T ρt

]
E(6)

k,u(t) ≤ E νρ

(
exp

[
2α

κ
eCα/T

∫ t

0
dr

∑

y∈Z3

ΞM (y)ξr/κ(y)
])

. (5.71)

Now, using the independent random walk approximation ξ̃ of ξ (see [3], Proposition 1.2.1), we
�nd that

E νρ

(
exp

[
2α

κ
eCα/T

∫ t

0
dr

∑

y∈Z3

ΞM (y)ξr/κ(y)
])

≤
∫

νρ(dη)
∏

x∈Aη

EY
x

(
exp

[
2α

κ
eCα/T

∫ t

0
dr ΞM

(
Yr/κ

)])
,

(5.72)

where Aη is given by (5.12) and Y is simple random walk with step rate 1. De�ne

v(x, t) = EY
x

(
exp

[
2α

κ
eCα/T

∫ t

0
dr ΞM

(
Yr/κ

)])
, (x, t) ∈ Z3 × [0,∞), (5.73)

and write
w(x, t) = v(x, t)− 1. (5.74)

Then we may bound (5.71) from above as follows:

r.h.s. (5.71) ≤
∫

νρ(dη)
∏

x∈Z3

[
1 + η(x)w(x, t)

]

=
∏

x∈Z3

[
1 + ρw(x, t)

]

≤ exp
(

ρ
∑

x∈Z3

w(x, t)
)

.

(5.75)

By the Feynman-Kac formula, w is the solution of the Cauchy problem

∂

∂t
w(x, t) =

1
6κ

∆w(x, t) +
2α

κ
eCα/T ΞM (x)

[
1 + w(x, t)

]
, w(·, 0) ≡ 0. (5.76)

Therefore
∂

∂r

∑

x∈Z3

w(x, r) =
2α

κ
eCα/T

∑

x∈Z3

ΞM (x)
[
1 + w(x, r)

]
. (5.77)

Integrating (5.77) w.r.t. r over the time interval [0, t] and substituting the resulting expression
into (5.75), we get

r.h.s. (5.71) ≤ exp

[
2α

κ
eCα/T ρ

∫ t

0
dr

∑

x∈Z3

ΞM (x)
(
1 + w(x, r)

)
]
. (5.78)

Since
∑

x∈Z3 ΞM (x) = 1, this leads to

E(6)
k,u(t) ≤ exp

[
2α

κ
eCα/T ρ

∫ t

0
dr

∑

x∈Z3

ΞM (x)w(x, r)

]
. (5.79)
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An application of Lemma 2.6 to the expectation in the r.h.s. of (5.73) gives

v(x, t) ≤
(
1− 2αeCα/T

∥∥GΞM

∥∥
∞

)−1
. (5.80)

Next, using (5.47) and (5.50), we �nd that
∥∥GΞM

∥∥
∞ ≤ G6T+M/κ(0) ≤ G3Kκ2(0), (5.81)

where the r.h.s. tends to zero as κ →∞. Thus, if K > 1 and κ > κ0 with κ0 large enough (not
depending on the other parameters), then v(x, t) ≤ 2, and hence w(x, t) ≤ 1, for all x ∈ Z3

and t ≥ 0, so that (5.76) implies that w ≤ ŵ, where ŵ solves

∂

∂t
ŵ(x, t) =

1
6κ

∆ŵ(x, t) +
4α

κ
eCα/T ΞM (x), ŵ(·, 0) ≡ 0. (5.82)

The solution of this Cauchy problem has the representation

ŵ(x, t) =
4α

κ
eCα/T

∫ t

0
dr

∑

y∈Z3

p r
κ
(x, y)ΞM (y) =

4α

κ
eCα/T

∫ t

0
dr ΞM+r(x). (5.83)

Hence
∑

x∈Z3

ΞM (x)w(x, r) ≤ 4α

κ
eCα/T

∫ r

0
dr̃

∑

x∈Z3

ΞM (x)ΞM+er(x)

≤ 4α

κ
eCα/T 1

R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

ds̃

∫ r

0
dr̃ p12T1[κ]+ s+es−2u+2M+er

κ
(0)

≤ 4α

κ
eCα/T

∫ ∞

0
dr̃ p 2M+er

κ
(0)

≤ 4Cα√
Kκ

eCα/T ,

(5.84)
where we again use the second inequality of Lemma 2.4. Substituting (5.84) into (5.79), we
arrive at the claim with Dα,T,K = 8α2Ce2Cα/T /

√
K.

5.2.5 Further reduction of Lemma 5.4

To further estimate the expectation in Lemma 5.7 from above, we use the following two lemmas.

Lemma 5.9 Let

Γ(β) = lim sup
t→∞

1
t

logE νρ

(
exp

[
β

∫ t

0
du

[
ξu(e1)− ξu(0)

]2
])

. (5.85)

Then
lim
β→0

Γ(β)
β

= 2ρ(1− ρ). (5.86)

Proof. The proof is a straightforward adaptation of what is done in Gärtner, den Hollander
and Maillard [3], Lemmas 4.6.8 and 4.6.10.
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Lemma 5.10 For all α, T,K, R, κ > 0, u ∈ [(k − 1)Rκ, kRκ], k = 1, 2, · · · , bt/Rκc, and all
paths X,

lim sup
t→∞

1
2t

log E(5)
k,u(t) ≤ ϑα,T ρ(1− ρ)

∥∥Kk,u

∥∥
1
, (5.87)

where ϑα,T does not depend on K,R, κ, u, k or X, and ϑα,T → 1 as T →∞.

Proof. Using the bound in (5.58) for ‖Kk,u‖1, we �nd that

κ
∥∥Kk,u

∥∥
1
≤ e2Cα/T 2α2

∫ ∞

0
dr p12T+2r(0) ≤ Cα2e2Cα/T

√
T

, (5.88)

which tends to zero as T →∞. Hence, we may apply Lemma 5.9 to (5.57) to get the claim.

At this point we may combine Lemmas 5.10 and 5.8 with (5.52), to get

λκ,X
k,u ≤ ϑα,T ρ(1− ρ)

∥∥Kk,u

∥∥
1
+

Dα,T,K

2κ2
ρ. (5.89)

Note that the upper bound in (5.58) for ‖Kk,u‖1 depends on X only via its increments on the
times interval [(k − 1)Rκ, kRκ] and that these increments are i.i.d. for k = 1, 2, · · · , bt/Rκc.
Hence, combining (5.35) and Lemma 5.6 with (5.89) and splitting the resulting expectation
w.r.t. EX

0 into bt/Rκc equal factors with the help of the Markov property at times kRκ,
k = 1, 2, · · · , bt/Rκc, we obtain, after also substituting (5.58),

lim sup
t→∞

κ2

t
log E(4)

R,α(t) ≤ 1
R

log E(7)
R,α(κ) +

Dα,T,K

2
ρ (5.90)

with

E(7)
R,α(κ) = E(7)

R,α(T, K;κ)

= EX
0

(
exp

[
Θα,T,ρ

κ2

1
R2

κ

∫ Rκ

0
ds

∫ Rκ

s
ds̃

∫ 0

−Rκ

du

∫ M

0
dr p12T1[κ]+ s+es−2u+2r

κ

(
Xes −Xs

)
])

,

(5.91)
where

Θα,T,ρ = 4ϑα,T α2e2Cα/T ρ(1− ρ) → 4α2ρ(1− ρ) as T →∞. (5.92)
Because of (5.60), we therefore conclude that the proof of Lemma 5.4 reduces to the following
lemma.

Lemma 5.11 For all α, K > 0,

lim sup
κ,T,R→∞

1
R

log E(7)
R,α(T,K; κ) ≤ [

6α2ρ(1− ρ)
]2P3. (5.93)

5.3 Small-time cut out, scaling and large deviations

5.3.1 Small-time cut out

The proof of Lemma 5.11 will be reduced to two further lemmas in which we cut out small
times. These lemmas will be proved in Sections 5.3.2�5.3.3.
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For ε > 0 small, let
m = 3εκ31[κ] (5.94)

and de�ne

E(8)
R,α(κ) = E(8)

R,α(T, ε;κ)

= EX
0

(
exp

[
Θα,T,ρ

κ2R2
κ

∫ Rκ

0
ds

∫ Rκ

s
ds̃

∫ 0

−Rκ

du

∫ m

0
dr p12T1[κ]+ s+es−2u+2r

κ

(
Xes −Xs

)
])

(5.95)

and

E(9)
R,α(κ) = E(9)

R,α(T, ε,K;κ)

= EX
0

(
exp

[
Θα,T,ρ

κ2R2
κ

∫ Rκ

0
ds

∫ Rκ

s
ds̃

∫ 0

−Rκ

du

∫ M

m
dr p12T1[κ]+ s+es−2u+2r

κ

(
Xes −Xs

)
])

.
(5.96)

By Hölder's inequality with weights p, q > 1, 1/p + 1/q = 1, we have

E(7)
R,α(κ) =

(
E(8)

R,
√

qα(κ)
)1/q(

E(9)
R,
√

pα(κ)
)1/p

. (5.97)

Hence, by choosing p close to 1, we see that the proof of Lemma 5.11 reduces to the following
lemmas.

Lemma 5.12 For all α > 0 and ε > 0 small enough,

lim sup
κ,T,R→∞

1
R

log E(8)
R,α(T, ε; κ) = 0. (5.98)

Lemma 5.13 For all α, ε, K > 0 with 0 < ε < K,

lim sup
κ,T,R→∞

1
R

log E(9)
R,α(T, ε,K;κ) ≤ [

6α2ρ(1− ρ)
]2P3. (5.99)

Note that in E(8)
R,α(κ) we integrate the transition kernel over �small� times r ∈ [0, m]. What

Lemma 5.12 shows is that the integral is asymptotically negligible.

5.3.2 Proof of Lemma 5.12

Proof. We need only prove the upper bound in (5.98). An application of Jensen's inequality
yields

E(8)
R,α(κ) ≤ 1

Rκ

∫ Rκ

0
ds EX

0

(
exp

[
Θα,T,ρ

κ2Rκ

∫ ∞

0
ds̃

∫ 0

−Rκ

du

∫ m

0
dr p12T1[κ]+2 s−u+r

κ
+ es

κ

(
Xes

)
])

.

(5.100)
Observe that

p12T1[κ]+2 s−u+r
κ

+ es
κ

(
Xes

)
= EY

0

(
p12T1[κ]+2 s−u+r

κ

(
Xes + Yes/κ

))
. (5.101)
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As in (5.22), let X̂t = Xt + Yt/κ and let E bX
0 denote expectation w.r.t. X̂ starting at 0. Then,

using Jensen's inequality w.r.t. EY
0 , we �nd that

E(8)
R,α(κ) ≤ 1

Rκ

∫ Rκ

0
ds E bX

0

(
exp

[
Θα,T,ρ

κ2Rκ

∫ ∞

0
ds̃

∫ 0

−Rκ

du

∫ m

0
dr p12T1[κ]+2 s−u+r

κ

(
X̂es

)])
.

(5.102)
For the potential

V κ
s (x) =

1
κ2Rκ

∫ 0

−Rκ

du

∫ m

0
dr p12T1[κ]+2 s−u+r

κ
(x), (5.103)

we obtain
∥∥∥ĜV κ

s

∥∥∥
∞
≤ 1

κ2

∫ m

0
dr Ĝ2T+ r

3κ1[κ]
(0) ≤ 3

κ
1[κ]

∫ εκ2

0
dr Ĝr(0) ≤ C

√
ε, (5.104)

where Ĝ and Ĝ are the Green operator, respectively, the Green function corresponding to
1[κ]∆. Hence, an application of Lemma 2.6 to (5.102) yields

E(8)
R,α(κ) ≤ (

1− CΘα,T,ρ

√
ε
)−1

, (5.105)

which, together with (5.92), leads to the claim for 0 < ε < (4Cρ(1− ρ)α2)−2.

For further comments on Lemma 5.12, see the remark at the end of Section 5.3.3.

5.3.3 Scaling, compacti�cation and large deviations

In this section we prove Lemma 5.13 with the help of scaling, compacti�cation and large
deviations.
Proof. Recalling the de�nition of m in (5.94) and M in (5.47), we obtain from (5.96), after
appropriate time scaling (s → κ2s, s̃ → κ2s̃, u → κ2u and r → 3κ31[κ]r),

E(9)
R,α(κ)

= EX
0

(
exp

[
3Θα,T,ρ1[κ]

1
R2

∫ R

0
ds

∫ R

s
ds̃

∫ 0

−R
du

∫ K

ε
dr p

(κ)
2T1[κ]

κ2 + s+es−2u
6κ

+1[κ]r

(
X(κ)

s , X
(κ)
es

)])

(5.106)
with the rescaled transition kernel

p
(κ)
t (x, y) = κ3p6κ2t(κx, κy), x, y ∈ Z3

κ =
1
κ
Z3, (5.107)

and the rescaled random walk

X
(κ)
t = κ−1Xκ2t, t ∈ [0,∞). (5.108)

Let Q be a large centered cube in R3, viewed as a torus, and let Q(κ) = Q ∩ Z3
κ. Let l(Q),

l(Q(κ)) denote the side lengths of Q and Q(κ), respectively. De�ne the periodized objects

p
(κ,Q)
t (x, y) =

∑

k∈Z3

p
(κ)
t

(
x, y +

k

κ
l
(
Q(κ)

))
(5.109)
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and
X

(κ,Q)
t = X

(κ)
t mod

(
Q(κ)

)
. (5.110)

Clearly,
p
(κ)
t

(
X(κ)

s , X
(κ)
es

)
≤ p

(κ,Q)
t

(
X(κ,Q)

s , X
(κ,Q)
es

)
. (5.111)

Let β = (βt)t≥0 be Brownian motion on the torus Q with generator ∆R3 and transition kernel

p
(G,Q)
t (x, y) =

∑

k∈Z3

p
(G)
t

(
x, y + k l(Q)

)
(5.112)

obtained by periodization of the Gaussian kernel p
(G)
t (x, y) de�ned in (4.19). Fix θ > 1

(arbitrarily close to 1). Then there exists κ0 = κ0(θ; ε,K, Q) > 0 such that

p
(κ,Q)
t (x, y) ≤ θp

(G,Q)
t (x, y), for all κ > κ0 and (t, x, y) ∈ [ε/2, 2K]×Q×Q. (5.113)

Hence, it follows from (5.106) that there exists κ1 = κ1(θ; T, ε,K, R,Q) > 0 such that

E(9)
R,α(κ) ≤ EX

0

(
exp

[
3
2
θ2Θα,T,ρ

1
R

∫ R

0
ds

∫ R

0
ds̃

∫ K

ε
dr p(G,Q)

r

(
X(κ,Q)

s , X
(κ,Q)
es

)])
. (5.114)

Applying Donsker's invariance principle and recalling (5.92), we �nd that

lim sup
κ,T→∞

1
R

log E(9)
R,α(κ)

≤ 1
R

log Eβ
0

(
exp

[
6θ2α2ρ(1− ρ)

1
R

∫ R

0
ds

∫ R

0
ds̃

∫ K

ε
dr p(G,Q)

r

(
βs, βes

)
])

.

(5.115)

Applying the large deviation principle for the occupation time measures of β, we get

lim sup
κ,T,R→∞

1
R

log E(9)
R,α(T, ε; κ) ≤ P(Q)

3 (θ; ε,K), (5.116)

where

P(Q)
3 (θ; ε,K) = sup

ν∈M1(Q)

[
6θ2α2ρ(1− ρ)

∫

Q
ν(dx)

∫

Q
ν(dy)

∫ K

ε
dr p(G,Q)

r (x, y)− SQ(ν)

]

(5.117)
with large deviation rate function SQ : M1(Q) → [0,∞] de�ned by

SQ(µ) =

{
‖∇R3f‖2

2 if µ ¿ dx and
√

dµ
dx = f(x) with f ∈ H1

per(Q),

∞ otherwise,
(5.118)

where M1(Q) is the space of probability measures on Q, and H1
per(Q) denotes the space of

functions in H1(Q) with periodic boundary conditions. By [2], Lemma 7.4, we have

lim sup
Q↑R3

P(Q)
3 (θ; ε,K) ≤ P3(θ; ε,K) (5.119)
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with

P3(θ; ε, K)

= sup
f∈H1(R3)
‖f‖2=1

[
6 θ2α2ρ(1− ρ)

∫

R3

dx f2(x)
∫

R3

dy f2(y)
∫ K

ε
dr p(G)

r (x, y)− ∥∥∇R3f
∥∥2

L2(R3)

]

≤ sup
f∈H1(R3)
‖f‖2=1

[
6 θ2α2ρ(1− ρ)

∫

R3

dx f2(x)
∫

R3

dy f2(y)
∫ ∞

0
dr p(G)

r (x, y)− ∥∥∇R3f
∥∥2

L2(R3)

]

=
[
6 θ2α2ρ(1− ρ)

]2P3.
(5.120)

Combining (5.116) and (5.120), and letting θ ↓ 1, we arrive at the claim of Lemma 5.13.

This, after a long struggle by the authors and considerable patience on the side of the
reader, completes the proof of the upper bound in Proposition 3.4.
Remark. The reader might be surprised that the expression in the l.h.s. of (5.98) does not only
vanish in the limit as ε ↓ 0 but vanishes for all ε > 0 su�ciently small. This fact is closely
related to the observation that

P3

(
π3

)
= 0 whereas P3(∞) = P3 > 0 (5.121)

with

P3(ε) = sup
f∈H1(R3)
‖f‖2=1

[∫

R3

dx f2(x)
∫

R3

dy f2(y)
∫ ε

0
dr p(G)

r (x− y)− ∥∥∇R3f
∥∥2

2

]
. (5.122)

Indeed, given a potential V ≥ 0 with ‖GR3V ‖∞ < 1/2, where GR3 denotes the Green operator
associated with ∆R3 , the method used in the proof of Lemma 5.12 leads to

lim
R→∞

1
R

log Eβ
0

(
exp

[
1
R

∫ R

0
ds

∫ R

0
ds̃ V (βes − βs)

])
= 0. (5.123)

On the other hand, the large deviation principle for the occupation time measures of β shows
that this limit coincides with

sup
f∈H1(R3)
‖f‖2=1

[∫

R3

dx f2(x)
∫

R3

dy f2(y) V (x− y)− ∥∥∇R3f
∥∥2

2

]
. (5.124)

But, for 0 < ε < π3 the potential

Vε(x) =
∫ ε

0
dr p(G)

r (x) (5.125)

satis�es the assumption ‖GR3Vε‖∞ < 1/2, implying P3(π3) = 0.

6 Higher moments
In this last section we explain how to extend the proof of Theorem 1.1 to higher moments
p ≥ 2. Sections 6.1�6.3 parallel Sections 2.1, 3.2, 4 and 5.
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6.1 Two key propositions

Our starting point is the Feynman-Kac representation for the p-th moment,

E νρ

(
u(0, t)p

)
= E(p)

νρ;0

(
exp

[∫ t

0
ds

p∑

j=1

ξs

(
Xj

κs

)
])

, (6.1)

where X1, · · · , Xp are independent simple random walks on Z3 starting at 0 and E(p)
νρ;x denotes

expectation w.r.t. P(p)
νρ;x = P νρ ⊗ PX1

x1
⊗ · · · ⊗ PXp

xp
, x = (x1, · · · , xp) ∈ (Z3)p.

The arguments in Sections 2 and 3 easily extend to this more general case by replacing Z,
A, (St)t≥0, φ and ψ by their p-dimensional analogues Z(p), A(p), (S(p)

t )t≥0, φ(p) and ψ(p). To
be precise, consider the Markov process

Z
(p)
t =

(
ξt/κ, X1

t , · · · , Xp
t

)
on Ω× (Z3)p (6.2)

with generator

A(p) =
1
κ

L +
p∑

j=1

∆j , (6.3)

where the lattice Laplacian ∆j acts on the j-th spatial variable. Denote by (S(p)
t )t≥0 the

associated semigroup. We de�ne

φ(p)(η;x1, · · · , xp) =
p∑

j=1

φ(η, xj) =
p∑

j=1

(η(xj)− ρ) (6.4)

and
ψ(p) =

∫ T

0
dsS(p)

s φ(p). (6.5)

Then
ψ(p)(η;x1, · · · , xp) =

p∑

j=1

ψ(η, xj). (6.6)

In this way the proof of Theorem 1.1 for p ≥ 2 reduces to the proof of the following extension
of Propositions 3.3 and 3.4.

Proposition 6.1 For all p ∈ N and α ∈ R,

lim sup
t,κ,T→∞

κ2

pt
logE(p)

νρ;0

(
exp

[
α

∫ t

0
ds

[(
e−

1
κ

ψ(p)A(p)e
1
κ

ψ(p)
)
−A(p)

(1
κ

ψ(p)
)](

Z(p)
s

)
])

≤ α

6
ρ(1− ρ)G.

(6.7)

Proposition 6.2 For all p ∈ N and α > 0,

lim
t,κ,T→∞

κ2

pt
logE(p)

νρ;0

(
exp

[
α

κ

∫ t

0
ds

(
S(p)

T φ(p)
)(

Z(p)
s

)
])

=
[
6α2ρ(1− ρ)p

]2P3. (6.8)

Proposition 6.1 has already been proven for all p ∈ N in [3], Proposition 4.4.2 and Section 4.8.
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6.2 Lower bound in Proposition 6.2

We use the following analogue of the variational representation (4.1)

lim
t→∞

1
t

logE(p)
νρ;0

(
exp

[
α

κ

∫ t

0
ds

(
S(p)

T φ(p)
)(

Z(p)
s

)
])

= sup
F (p)∈D(A(p))

‖F (p)‖
L2(µ

p
ρ)

=1

∫∫

Ω×(Z3)p

dµp
ρ

[
α

κ

(
S(p)

T φ(p)
)(

F (p)
)2 + F (p)A(p)F (p)

]
.

(6.9)

To obtain the appropriate lower bound, we use test functions F (p) of the form

F (p)(η; x1, · · · , xp) = F1(η)F2(x1) · · ·F2(xp), (6.10)

where F1, F2 and F = F (1) are the same as in (4.15), (4.6) and (4.2), respectively. One easily
checks that

κ2

p

∫∫

Ω×(Z3)p

dµp
ρ

[
α

κ

(
S(p)

T φ(p)
)(

F (p)
)2 + F (p)A(p)F (p)

]

=
(pκ)2

p2

∫∫

Ω×Z3

dµρ

[
pα

pκ

(
ST φ

)
F 2 + F

(
1
pκ

L + ∆
)

F

]
.

(6.11)

But this is 1/p2 times the expression in Lemma 4.1 with α and κ replaced by pα and pκ,
respectively. Hence, we may use the lower bounds for this expression in Section 4 to arrive at
the lower bound in Proposition 6.2.

6.3 Upper bound in Proposition 6.2

1. Freezing and defreezing can be done in the same way as in Section 5.1, but with V (η, x) in
(5.2) replaced by

V (p)(η, x) =
α

κ

∑

y∈Z3

(
p∑

j=1

p6T1[κ]

(
xj , y

)
)

(
η(y)− ρ

)
. (6.12)

This leads to the analogues of Lemmas 5.1 and 5.3 along the lines of Sections 5.1.2 and 5.1.4.
2. Considering

V
(p)
k,u (η) =

1
Rκ

∫ (k+1)Rκ

kRκ

ds
∑

y∈Z3

(
p∑

j=1

p6T1[κ]+ s−u
κ

(
Xj

s , y
)
)

(
η(y)− ρ

)
(6.13)

and

E(4,p)
R,α (t) = E νρ;0

(
exp

[
α

κ

bt/Rκc∑

k=1

∫ kRκ

(k−1)Rκ

duV
(p)
k,u

(
ξu/κ

)
])

(6.14)

instead of (5.34�5.35), the proof reduces to the following analogue of Lemma 5.4.

Lemma 6.3 For each α > 0,

lim sup
R→∞

lim sup
t,κ,T→∞

κ2

pt
log E(4,p)

R,α (t) ≤ [
6α2ρ(1− ρ)p

]2P3. (6.15)
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3. The proof of Lemma 6.3 follows the lines of Sections 5.2�5.3. The spectral bound is
essentially the same as in Section 5.2.1. In Lemma 5.6 we have to replace Vk,u by V

(p)
k,u and

λk,u by

λ
(p)
k,u = lim

t→∞
1
t

logE νρ

(
exp

[
α

κ

∫ t

0
ds V

(p)
k,u

(
ξs/κ

)
])

. (6.16)

Subsequently, we replace Vk,u by V
(p)
k,u in (5.45), to obtain functions φ̂(p), ψ̂(p) replacing (5.45�

5.46), and

Ξ(p)
r (x) =

1
Rκ

∫ (k+1)Rκ

kRκ

ds

p∑

j=1

p6T1[κ]+ s−u+r
κ

(
Xj

s , x
)

(6.17)

replacing (5.50). Then, in the analogue of Lemma 5.7, instead of (5.58) we get the bound

∥∥K(p)
k,u

∥∥
1
≤ e2Cα/T 2α2

κ2R2
κ

∫ (k+1)Rκ

kRκ

ds

∫ (k+1)Rκ

kRκ

ds̃

∫ M

0
dr

p∑

i,j=1

p12T1[κ]+ s+es−2u+2r
κ

(
Xj
es −Xi

s

)

(6.18)
along the line of Section 5.2.3. Similarly, the proof of the analogue of Lemma 5.8 follows the
argument in Section 5.2.4, leading to a reduction of Lemma 6.3 to the analogue of Lemma
5.11, as in Section 5.2.5.
4. To make the small-time cut-o�, instead of (5.95) we consider

E(8,p)
R,α (κ)

= EX
0

(
exp

[
Θα,T,ρ

κ2R2
κ

∫ Rκ

0
ds

∫ Rκ

s
ds̃

∫ 0

−Rκ

du

∫ m

0
dr

p∑

i,j=1

p12T1[κ]+ s+es−2u+2r
κ

(
Xj
es −Xi

s

)
])

.

(6.19)
Using the Chapman-Kolmogorov equation, we see that

∫ Rκ

0
ds

∫ Rκ

0
ds̃

p∑

i,j=1

p12T1[κ]+ s+es−2u+2r
κ

(
Xj
es −Xi

s

)

=
∑

z∈Z3

(
p∑

i=1

∫ Rκ

0
ds p6T1[κ]+ s−u+r

κ

(
Xi

s, z
)
)2

≤ p
∑

z∈Z3

p∑

i=1

( ∫ Rκ

0
ds p6T1[κ]+ s−u+r

κ

(
Xi

s, z
)
)2

= p

p∑

i=1

∫ Rκ

0
ds

∫ Rκ

0
ds̃ p12T1[κ]+ s+es−2u+2r

κ

(
Xi
es −Xi

s

)
.

(6.20)

Substituting this into the r.h.s. of (6.19) and applying Hölder's inequality for the p exponential
factors, we reduce the problem to the consideration of a single random walk and can proceed
as in Section 5.3, leading to the analogues of Lemmas 5.12�5.13.
5. The proof of the analogue of Lemma 5.12 runs along the line of Section 5.3.2. To prove the
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analogue of Lemma 5.13, instead of (5.96) we consider

E(9,p)
R,α (κ)

= EX
0

(
exp

[
Θα,T,ρ

κ2R2
κ

∫ Rκ

0
ds

∫ Rκ

s
ds̃

∫ 0

−Rκ

du

∫ M

m
dr

p∑

i,j=1

p12T1[κ]+ s+es−2u+2r
κ

(
Xj
es −Xi

s

)
])

.

(6.21)
As in Section 5.3.3, this leads to

lim sup
κ,T,R→∞

1
pR

log E(9,p)
R,α (κ)

≤ 1
p

sup
νi∈M1(Q)

1≤i≤p

[
6θ2α2ρ(1− ρ)

p∑

i,j=1

∫

Q
νi(dx)

∫

Q
νj(dy)

∫ K

ε
dr p(G,Q)

r (x, y)−
p∑

i=1

SQ(νi)

]

(6.22)
instead of (5.116�5.117). Now we can proceed similarly as in [2], Lemma 7.3. Consider the
Fourier transforms ν̂i of the measures νi ∈M1(Q) de�ned by

ν̂j(k) =
∫

Q
e−i(2π/l(Q))k·xνj(dx), k ∈ Z3, j = 1, · · · , p. (6.23)

The transition kernel p(G,Q) admits the Fourier representation

p(G,Q)
r (x) =

1
l(Q)3

∑

k∈Z3

e−(2π/l(Q))2|k|2re−i(2π/l(Q))k·x, (x, t) ∈ Q× (0,∞). (6.24)

Therefore we may write∫

Q
νi(dx)

∫

Q
νj(dy) p(G,Q)

r (x, y) =
1

l(Q)3
∑

k∈Z3

e−(2π/l(Q))2|k|2rν̂i(k)ν̂j(k). (6.25)

Using that
Re

(
ν̂i(k)ν̂j(k)

)
≤ 1

2

∣∣ν̂i(k)
∣∣2 +

1
2

∣∣ν̂j(k)
∣∣2, (6.26)

we obtain∫

Q
νi(dx)

∫

Q
νj(dy) p(G,Q)

r (x, y)

≤ 1
2

∫

Q
νi(dx)

∫

Q
νi(dy) p(G,Q)

r (x, y) +
1
2

∫

Q
νj(dx)

∫

Q
νj(dy) p(G,Q)

r (x, y).
(6.27)

Therefore the term inside the square brackets in the r.h.s. of (6.22) does not exceed
p∑

i=1

[
6θ2α2ρ(1− ρ)p

∫

Q
νi(dx)

∫

Q
νi(dy)

∫ K

ε
dr p(G,Q)

r (x, y)− SQ(νi)

]
, (6.28)

and we arrive at
lim sup
κ,T,R→∞

p

R
log E(9,p)

R,α (κ) ≤ P(Q,p)
3 (θ; ε,K) (6.29)

with

P(Q,p)
3 (θ; ε, K) = sup

ν∈M1(Q)

[
6θ2α2ρ(1− ρ)p

∫

Q
ν(dx)

∫

Q
ν(dy)

∫ K

ε
dr p(G,Q)

r (x, y)− SQ(ν)

]
,

(6.30)
which is the analogue of (5.116�5.117) for p ≥ 2. The rest of the proof can be easily obtained
from the analogues of (5.119�5.120).
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