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Abstract

We consider a growth collapse model in a random environment
where the input rates may depend on the state of an underlying irre-
ducible Markov chain and at state change epochs there is a possible
downward jump to a level which is a random fraction of the level
just before the jump. The distributions of these jumps are allowed
to depend on both the originating and target states. Under a very
weak assumption we develop an explicit formula for the conditional
moments (of all orders) of the time stationary distribution. We then
consider special cases and show how to use this result to study a
growth collapse process in which the times between collapses have a
phase type distribution.
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1 Introduction

In this paper we consider a Markov modulated growth collapse model,
represented by a continuous time Markov process {(Wt, Jt)}t≥0. Here J =
{Jt| t ≥ 0} is a right continuous irreducible continuous time Markov chain
with state space {1, . . . , K}, rate transition matrix Q = (qij) with qi = −qii

and stationary distribution π = (πi). As long as J is in state i, the right
continuous process W (t) increases at a linear rate ri ≥ 0. Whenever there is
a state change from, say, i to j, the process is reduced to a fraction of what
it was before the jump. This fraction is independent of the history and is
distributed like some random variable Xij satisfying P[0 ≤ Xij ≤ 1] = 1.
Namely, if at time t there is a state change from i to j then Wt−/Wt is
distributed like Xij .

Our primary concern is the derivation of formulas for the moments as-
sociated with (Wt, Jt) and its stationary version (W∗, J∗). The present pa-
per is divided as follows. In the second section we first give general (nec-
essary and sufficient) conditions that ensure convergence of the process
(Wt, Jt) to a stationary limit. In section three we show how the moments
of W∗ can be calculated, after which we apply similar ideas to the deriva-
tion of the transient moments E(W n

t ) in the fourth section. Finally we
describe the special case, where the time between the jumps has a phase
type distribution and the jumps are all of the same type.

The monograph [4] provides an overview and a toolbox for studying
piecewise deterministic Markov processes (PDMPs), a class of stochastic
models to which our process belongs. In [2] some results for a general
type of a Markovian growth collapse model are given, including a Markov
modulated case different from the one investigated here. More general
processes are considered in [6]. In [9] formulas for the non-modulated
case are given, including results also for non-integer and transient mo-
ments. Further results, mainly focussing on the stationary case, can also
be found in [1, 5, 7] and [10]. The latter articles use growth collapse pro-
cesses with multiplicative jumps to describe the window size process for
congestion avoidance in the TCP data transmission protocol. Instead of
looking at the continuous time process Wt one may also study the behav-
ior of the embedded processes just before and immediately after a jump.
Related to this approach are stochastic relations that have been investi-
gated by [11, 3]. In the recent paper [8] criteria for stability and formulas
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for moments for stationary growth collapse models in a more general set-
ting are developed.

2 Some preliminaries

Consider the following.

Condition 1 ∃i, j such that qij > 0 and P[Xij = 1] < 1.

Theorem 1 Under Condition 1 the process (Wt, Jt) has a well defined time sta-
tionary distribution which is also the limiting distribution, independent of initial
conditions.

Proof: According to Condition 1 there are i and j, such that qij > 0 and
P[Xij = 1] < 1. Consider a growth collapse process (W t, Jt)t≥0 with the fol-
lowing properties. For t = 0 we have W 0 = W0 and the process increases
with rate r = max{r1, . . . , rK}. The process jumps at times (T n)n=1,2,...,
when Jt moves from state i to state j. At such a jump time t = T n the
process jumps from W t− to W t = Xn ·W t−, where Xn = Wt−/Wt.

The sequence (Yn)n=1,2,..., defined by Yn = W T n− − W T n−1
= r(T n −

T n−1), is a sequence of i.i.d. random variables independent of (Xn)n=1,2,...,
in fact having a phase type distribution. It follows that (Xn, Yn)n=1,2,... is
i.i.d. and hence stationary and ergodic and we may apply Corollary 1 in
[8] to deduce the existence of a stationary/limiting distribution for W t.

Since Wt ≤ W t, it follows that the (Markov) process {(Wt, Jt)| t ≥ 0} is
tight. It is easy to check that the difference between a process that starts
with W0 = 0 and that of a process that starts with W0 = x converges
almost surely to zero as t →∞, since it is less than or equal to x

∏Nij(t)
n=1 Xn

where Nij(t) is the number of (i, j) transitions that occurred by time t.
Also, it is clear that any set of the form [0, ε] is accessible by W t and thus
any set of the form [0, ε] × {j} is accessible by (Wt, Jt) and thus a unique
stationary/limiting distribution for the process {(Wt, Jt)| t ≥ 0} exists.

Note that Condition 1 is the weakest possible, in the sense that as soon
as it is not fulfilled (and ri > 0 at least for one i), Wt will not jump at all
and hence Wt →∞.
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The extended generator (in the sense of [4]) of the Markov process
(W, J) is of the form

Af(x, i) = rif
′(x, i) +

K∑
j=1
j 6=i

qij(Ef(xXij, j)− f(x, i))

with the convention that Xii ≡ 1 and assuming that f(·, ·) is in the domain
of A. Bearing in mind that

∑K
j=1 qij = 0, we can write this as

Af(x, i) = rif
′(x, i) +

K∑
j=1

qijEf(xXij, j).

Theorem 2 For every a ≥ 0 the function f(x, i) = cix
α is in the domain of A

and thus, with aij(α) = EXα
ij , we have that

Af(x, i) = αricix
α−1 + xα

K∑
j=1

qijaij(α)cj (1)

If we let A(α) = aij(α) and A ◦ B = (aijbij) for any two matrices A, B and
Dr = diag(r1, . . . , rK) as well as c = (ci), then we can write the generator
in vector form as

Af(x) = αxα−1Drc + xαQ ◦ A(α)c, (2)

where f(x) = (f(x, 1), . . . , f(x, K))T and A acts componentwise.

Proof: Following the general theory of PDMPs (see [4]) a measurable func-
tion f : [0,∞) × K := {1, . . . , K} → R belongs to the domain of A if
t 7→ f(x + rit, i) is absolutely continuous for all x ≥ 0 and i ∈ K, and the
integrability condition

E
[ Nt∑

k=1

∣∣f(WTk−, JTk−)− f(WTk
, JTk

)
∣∣∣∣∣W0 = w, J0 = j

]
< ∞ (3)

holds for all w,j and all t ≥ 0, where Nt denotes the number of jumps until
time t and the Ti are the successive jump times.
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The function t 7→ ci(x + rit)
α is clearly absolutely continuous. Given

that W0 = x we have Wt ≤ x + rt, with r = max{r1, . . . , rK}. Let z(x, t)
denote the left side of (3), then

z(x, t) ≤ 2cE
[ Nt∑

k=1

W α
Tk−

∣∣∣W0 = w, J0 = j
]
≤ 2c(x + rt)αE

[
Nt

]
,

where c = max{c1, . . . , cK}. The last term is certainly finite for all x ≥ 0
and all t ≥ 0.

3 Moments

We define the vector of moments ξn = (ξn
1 , ξn

2 , . . . , ξn
K) by ξn

i = E[W n
∗ 1{J∗=i}].

Recall that the matrix A is given by aij(α) = EXα
ij .

Lemma 1 Let Dq = diag(q1, . . . , qK). Under Condition 1 the matrix Q ◦ A(α)
is nonsingular for every positive α and (−Q ◦ A(α))−1 ≥ D−1

q .

Proof: Denoting pij = qij/qi for i 6= j, pii = 0, then Q = Dq(P − I) where
I is the identity matrix. Also, Q ◦ A(α) = Dq(P ◦ A(α) − I), as aii(α) = 1
and pii = 0. For a fixed α, let us define a new Markovian transition matrix
with the extra absorbing state σ as follows.

p̃ij =



pijaij(α) 1 ≤ i, j ≤ K

1−
∑K

j=1 pijaij(α) 1 ≤ i ≤ K, j = σ

0 i = σ, 1 ≤ j ≤ K

1 i = j = σ

(4)

If we show that for the discrete Markov chain with transition matrix P̃ =
(p̃ij) the states 1, . . . , K are all transient, then if we denote the i, jth co-
ordinate of P̃ k by p̃k

ij , then for every (i, j) 6= (σ, σ) we have that p̃k
ij → 0

as k → ∞. Since the states 1, . . . , K cannot be reached from σ it readily
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follows that for 1 ≤ i, j ≤ K we have that (P ◦ A(α))k = (p̃k
ij) and thus

(P ◦ A(α))k → 0 as k →∞. Therefore I − P ◦ A(α) is nonsingular with

(I − P ◦ A(α))−1 =
∞∑

k=0

(P ◦ A(α))k ≥ I (5)

and thus −Q ◦ A(α) is also nonsingular with

(−Q ◦ A(α))−1 = (I − P ◦ A(α))−1D−1
q ≥ D−1

q . (6)

To argue that indeed the states 1, . . . , K are transient in the chain with
transition matrix P̃ we observe that since p̃ij ≤ pij for 1 ≤ i, j ≤ K, and
since the chain with transition matrix P is irreducible, the submatrix of P̃
associate with any strict subset of 1, . . . , K cannot be stochastic, since this
would imply that there are states that cannot be reached in the original
chain which contradicts irreducibility. Since there exists a pair 1 ≤ i, j ≤ K
for which qij > 0, hence pij > 0, for which P [Xij = 1] < 1, it follows that
for all α > 0, aij(α) = EXα

ij < 1 and thus p̃ij < pij . Thus, P ◦ A(α) which is
the submatrix of P̃ associate with the states 1, . . . , K cannot be stochastic
either. This means that for P̃ every state other than σ must belong to an
open class and is thus transient.

Theorem 3 If Condition 1 is fulfilled, then

(ξn)T = n!πT

n∏
k=1

Dr(−Q ◦ A(k))−1 , n ≥ 1. (7)

Proof: If we denote by (W∗, J∗) a random pair having the stationary dis-
tribution, then it is well known that for every f in the domain of A we
have that E[Af(W ∗, J∗)] = 0. Since ξ0

i = πi it immediately follows from
Theorem 2 and (2), that for f(x, i) = cix

n where n is a nonnegative integer
and ci are arbitrary, that

0 = E[Af(W∗, J∗)] = n(ξn−1)T Drc + (ξn)T Q ◦ A(n)c . (8)

Thus, if we take any square matrix C, then clearly the following system of
equations is also valid

n(ξn−1)T DrC + (ξn)T Q ◦ A(n)C = 0 . (9)
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Since, by Lemma 1, Q◦A(n) is nonsingular, it follows by taking C = (−Q◦
A(n))−1 that the following recursion is valid.

(ξn)T = n(ξn−1)T Dr(−Q ◦ A(n))−1 (10)

from which (7) immediately follows.

Remark 1 We note that one could generalize the setup in a way that allows a
geometric number of jumps down while in state i, but assuming that the jumps
rate is some λi < qi with pii = 1−λi/qi. However this effect can also be achieved
in the above framework as well by simply allowing two different states, say i, k to
have qij = qkj and ri = rk and qik = qki = qi − λi where λi = λk.

4 Transient moments

As in the stationary case we define the vector ξn(t) = (ξn
1 (t), . . . , ξn

K(t)) of
transient moments, with components ξn

i (t) = E[W n
t 1{Jt=i}]. It follows as in

(8) that

E[Af(Wt, Jt)] = n(ξn−1(t))T Drc + (ξn(t))T Q ◦ A(n)c . (11)

Dynkin’s martingale is given by f(Wt, Jt) − f(W0, J0) −
∫ t

0
Af(Xs, Js) ds

for functions f in the domain of A (c.f. [4]). In particular if f(x, i) = cix
n

then

E[cJtW
n
t ] = E[cJ0W

n
0 ] +

∫ t

0

E[Af(Ws, Js)] ds.

It follows that for any K-vector c

ξn(t)T c = ξn(0)c +

∫ t

0

(
n(ξn−1(s))T Drc + (ξn(s))T Q ◦ A(n)c

)
ds.

Letting C be an invertible K ×K square matrix, we obtain after differenti-
ation w.r.t. t,

(
d

dt
ξn(t))T C = n(ξn−1(t))T DrC + (ξn(t))T Q ◦ A(n)C,
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and after a multiplication by C−1 and transposition we arrive at the fol-
lowing system of linear equations,

d

dt
ξn(t) = nDrξ

n−1(t) + (Q ◦ A(n))T ξn(t).

A solution is given by

ξn(t) = e(Q◦A(n))T tξn(0) + n

∫ t

0

e(Q◦A(n))T (t−s)Drξ
n−1(s) ds. (12)

Letting Rn(t) = e(Q◦A(n))T tDr, we obtain

ξn(t) = Rn(t)D−1
r ξn(0) + nRn ∗ ξn−1(t) ,

where ∗ denotes convolution, and then iteratively, with R∗n = Rn ∗R∗(n−1)

we have that

ξn(t) = n!

(
n∑

k=1

D−1
r

(n− k + 1)!
ξn−k+1(0)R∗k(t) +

∫ t

0

R∗n(s)π ds

)
.

5 The case of phase type inter-jump times

In this section we would like to consider a growth-collapse process for
which the time between jumps has a phase type distribution and the jump
is only of one type. To define a phase type distribution we need to de-
fine a continuous time Markov chain with states, say, 0, . . . , K such that
0 is accessible from any other state. Given some initial distribution β on
1, . . . , K, a phase type distribution is the distribution of time until 0 is vis-
ited for the first time. Thus, we define a continuous time Markov chain
with the following transition matrix.

Q =

(
−1 βT

−R1 R

)
(13)

where the first row and column correspond to state 0 and the rest to states
1, . . . , K and 1 denotes a K-vector of ones.

From the assumption it follows that the distribution of time it takes to
reach 0 given the initial distribution β on 1, . . . , K is given by βT eRt1 where

8



eA is a matrix exponential. If the defined Markov chain is not irreducible,
then, starting from state 0, some states will never be visited and thus can
be removed. Thus, without loss of generality, irreducibility is assumed.

We now define the upward rates of our process as r0 = 0 and r1 = . . . =
rK = r and

Xij =


X 1 ≤ i ≤ K, j = 0

1 otherwise,
(14)

where P[X = 1] < 1. Hence, the jumps when visiting state 0 are i.i.d.
and independent of the originating state. We also observe that after 0 is
visited, the growth collapse process remains constant until the modulating
Markov chain makes a transition to a different state. This is not quite the
structure of a growth collapse process with phase type interarrival times.
However if we remove the time intervals where the modulating Markov
chain is in zero, then the process does become one. Hence with (W ∗, J∗)
denoting a random pair having the stationary distribution of our Markov
modulated growth collapse process, then the distribution of the growth
collapse process with phase type interarrival times is given by

F (t) =

∑K
i=1 P[W ∗ ≤ t, J∗ = i]

1− π0

and in particular the moments are given by

µn =

∫
[0,t]

tndF (t) =

∑K
i=1 ξn

i

1− π0

(15)

Clearly, Condition 1 is satisfied and with a(α) = EXα we have that
ai0(α) = a(α) for i = 1, . . . , K and aij(α) = 1 for all other pairs. Hence

Q ◦ A(α) =

(
−1 βT

−a(α)R1 R

)
(16)
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Observe that since βT1 = 1 it is straightforward to check that

(Q ◦ A(α))−1 =


− 1

1−a(α)
1

1−a(α)
βT R−1

− a(α)
1−a(α)

1
(
I + a(α)

1−a(α)
1βT

)
R−1



=

 0 0T

0 R−1

+ 1
1−a(α)

 −1 βT R−1

−a(α)1 a(α)1βT R−1

 ,

(17)
where 0 is a K-vector of zeros. Recall that we are assuming here that

Dr =

(
0 0T

0 rI

)
, (18)

so that

Dr(−Q◦A(α))−1 = r

 0 0T

0 −R−1

+
ra(α)

1− a(α)

 0 0T

1 1βT (−R−1)

 . (19)

Finally noting that(
0 0
a A

)(
0 0
b B

)
=

(
0 0

Aa AB

)
(20)

where a,b are some K-vectors and observing that from πT Q = 0 we have
that

pT = (π1, . . . , πK) = π0β
T (−R−1) ,

we now have that

µn =
1

1− π0

(ξn)T

(
0
1

)
=

n!

1− π0

πT

n∏
k=1

Dr(−Q ◦ A(k))−1

(
0
1

)

=
n!rnπ0

1− π0

βT (−R−1)
n∏

k=1

[(
I +

a(k)

1− a(k)
1βT

)
(−R−1)

]
1 .

(21)
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Finally, since πT = π0(1, β
T (−R−1)) and since the coordinates of π sum up

to one, it follows that π0(1 + βT (−R−1)1) = 1 so that

π0

1− π0

=
1

βT (−R−1)1
. (22)

This gives the following.

Theorem 4 For a growth collapse model with linear increase with rate r > 0, re-
maining proportion after a jump with distribution not concentrated at one, with
nth moment a(n) and with i.i.d. inter-collapse times having the phase type distri-
bution F (t) = βT eRt1, a stationary distribution exists and has the following nth
moment:

µn = n!rn βT (−R−1)

βT (−R−1)1

n∏
k=1

[(
I +

a(k)

1− a(k)
1βT

)
(−R−1)

]
1 . (23)

Corollary 1 If in Theorem 4, in addition the remaining proportion after a jump
is zero, then the growth collapse model becomes a clearing process and the corre-
sponding moments are:

µn = n!rn βT (−R−1)n+11

βT (−R−1)1
. (24)
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