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Abstract

A.K. Erlang introduced the M/B/queue in 1917, while F. Pollaczek and C.D. Crommelin
formalized the theory using complex analysis and trans$orioet D(s, \) denote the stationary
probability of experiencing no waiting time in the M/bdueue with arrival rate. and service
requirement 1. We usB(s, \) as a vehicle to give an overview of some of the results we pbthi
over the last years, including explicit characterizatiofihe roots, the derivation of infinite series
from expressions in terms of roots using Fourier sampling,feeavy-traffic limits obtained from
square-root staffing. We propose to cBl(s, A) the Erlang D formula, for which several new
results are presented and compared to the results of Pelllacz
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1 Introduction

The M/D/s queue, with Poisson arrivals, deterministic service tiamabs servers, has a deeply rooted
place in queueing theory. It all started with the 1917 pagek.B. Erlang, in which he introduced
the M/D/s queue along with the M/M/queue (Erlang delay model) and the MA&% queue (Erlang
loss model). All three models are of great historical indgrand the M/D¢ queue in particular is
illustrative for the difficulties occasioned by the abseatexponential service times. The pioneering
work of Erlang, complemented by more formal works on the M/Bdeue by Pollaczek (1930a,b),
and Crommelin (1932, 1934), laid the foundation of moderauging theory and demonstrated the
wealth of mathematical technigues that can be applied.

Erlang obtained expressions for the distribution of theistary waiting time for up to three
servers, while Crommelin (1932) obtained for anthe probability generation function (pgf) of the
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stationary queue length distribution, expressed in terfrtees roots on and within the unit circle
of z® = exp(A(z — 1)). From this pgf, Crommelin was able to obtain the stationaajting time
distribution. Two years earlier, Pollaczek (1930a,b)tedahe M/Dé queue in two papers, deriving
results in terms of infinite series. Pollaczek’s work wadidlift to read, since he relied on rather
complicated analysis, so Crommelin (1934) gave an exposif Pollaczek’s theory for the M/[3/
gueue and found his own results in agreement with those td2ek. Pollaczek too, found alternative
expressions for his infinite series in terms of roots (se@Potk, 1930b, Eqns. (80) and (83)).

By now, queueing theory is a mature branch of applied mattiesnaf which Erlang is considered
the founding father and Pollaczek the main pioneer of aitalymethods. For Pollaczek, the M/D/
gqueue was merely a first step in his impressive collectioresfilts, including investigations of the
M/G/s, GIGH and G/Gé queue. Crommelin should be credited for introducing to giregytheory
the generating function technique, which found numeroydieations, including queues that permit
analysis in terms of embedded processes, like bulk servieeas, M/GI and G/M/i-type queues,
and discrete or discrete-time queues. The generatingifunet transform technique typically leads
to results in terms of implicitly defined, complex-value@t®of some equation.

We shall give an overview of some of the results we obtainext the last years. For a class of
gqueues that contains the MiDdueue, these results include explicit characterizatidnoats, the
derivation of infinite-series or Pollaczek-type resultsfrexpressions in terms of roots using Fourier
sampling, and heavy-traffic results obtained from squaog-staffing. In particular, we confine atten-
tion to the stationary probability that an arbitrary cusésiim the M/Dk queue experiences no waiting
time (meets an empty queue). Henceforth, we denote thistiguag D(s, \), and refer to it as the
Erlang-Pollaczek-Crommelin D formula, Erlang D formulashort.

Some of this work was done in, or has benefitted from, collaimn with colleagues including
I.J.B.F. Adan, 0.J. Boxma, D. Denteneer, J.A.C. Resing,.E.N\Vinands and B. Zwatrt.

2 The M/D/s queue

We consider the M/BYqueue and keep track of the number of customers waiting igukae (without
those in service) at the end of intervals equal to the cohstarvice time (which we set to one).
Customers arrive according to a Poisson process with\rated are served by at maosservers. Let
@, denote the number of customers waiting in the queue at thefkimterval n. The queue length
process is then described by

Qn+1 - (Qn+A>\7n—S)+, nzoal)"'a (l)

wherez™ = max{0, z}, and A, ,, denotes the number of customers that arrived at the queirggdur
intervaln. Obviously, theA, ,, are i.i.d. for alln, and copies of a Poisson random varialdlg with
mean\. Note that due to the assumption of constant service tirhesciistomers which are being
served at the end of the considered interval should stanimwdihis interval, and for the same reason,
the customers whose service is completed during this iatshould start before its beginning.

Assume thaEA) = A\ < s and letQ) denote the random variable that follows the stationary queu
length distribution, i.e.Q) is the weak limit of@,,.

It is fairly straightforward to prove that®* = ¢*(*~1) hass roots in|z| < 1 (using Rouché’s
theorem, see Sec. 3). Denote these rootgpy= 1,z21,...,25_1. For the pgf of@Q, Crommelin
derived the expression
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from which it immediately follows that

P(Q = 0) = eM(—1)""1(s — A L 3
(Q=0)=e*(=1)"( )Hl_Zk (3)
Pollaczek, on the other hand, derived the expression
— 1 (IN)lstm
P(Q=0) =exp{ - 7 2 o (4)

m=1

In his derivation of (4), Pollaczek employed the followingclic scheduling policy: Suppose the
servers are numberddo s and free servers are assigned in numerical order; then $picfime-first-
served, if servei serves arrivalj, it also serves arrivals + j, 2s + j, .... Since waiting times are
independent of this assignment, the waiting time distiilouis the same as that of a single server
serving everysth arrival of a Poisson input, or rather, Erlang input. Far ktter queueing system,
the Laplace-Stieltjes transform of the waiting time is kmow be (see e.g. Riordan, 1962, p. 118)

uls — s—1 s—1 u
W(u) = E(e™*W) = (s = M)A H <1 — —), (5)

Ase™ — (X —u)® P Uk

whereu;, = (1 — z;). Distributional Little’s lawiV (A\(1 — z)) = Q(z) and (2) give the same resullt.
Cyclic scheduling policies play an important role in Fra2d@1) and Jelenkovic et al. (2004). It
immediately follows from (5) that the Erlang D formula is givby (Crommelin, 1932, Eq. (10) and
Pollaczek, 1930b, Eq. (80))

s—A
D(s,A) =P(W =0) = ———, (6)
1 (1 —2k)
whereas Pollaczek’s infinite-series counterpart (Pollac2930b, Eq. (83)) reads
& 1 > l)\ ls+m
Dy =ew{ =327 ST @
In comparing (3), (4), (6) and (7), it should hold that
s—1 0o
o NN
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and

s— )\ _D\ l)\ ls+m
2;11(1—%) { Z mzze (Is +m)! } ©)

Identities of this type were investigated by Crommelm,4,9®ppend|x 1, in order to convince himself
that his results agreed with those of Pollaczek. Directigrob(8) and (9) were also given in Janssen
and van Leeuwaarden, 2005b, pp. 380-382 (for a larger cfapsenies). Hereto, we derived explicit
expressions for the roots and treated the products ocguimithe left-hand sides of (8) and (9) as
Fourier aliasing series with terms given in analytic formerually leading to the right-hand sides of
(8) and (9). The explicit expressions for the roots are dised in the next section.



3 Roots in queueing theory

Crucial in applying the generating function technique i ithvestigation of the roots of some given
equation, and usually these roots have no explicit reptaen. Crommelin (1932) and Pollaczek
(1930b) used Rouché’s theorem to prove the existence bfreats. We consider the roots in the unit
disk of

2% = A(z), (10)

where A(z) is the pgf of a discrete random variable with A(0) > 0, p = A’(1)/s < 1, ands € N.

In order to apply Rouché’s theorem it is required thgt) has a radius of convergence larger
than one, which is not true in general. For Crommelin this afagously not an issue, sincé(z) =
exp(A(z — 1)) is an entire function. A problem does occur whéfx) is the pgf of a random variable
with a heavy-tailed distribution (causing(z) to be non-analytic at = 1), like the discrete Pareto
distribution or Haight’s zeta distribution, see Adan e{(2006).

Define the period- of a seriesy > bjzj as the largest integer for whidh) = 0 whenever; is
not divisible byv. In Adan et al. (2006) the following result was established.

Theorem 3.1 Letz* — A(z) have period-. Thenz® = A(z) hasv roots on the unit circle and exactly
s —wvzerosinjz| < 1.

The remainder of this section will deal with explicit expsims for the roots of (10). All results
stem from Janssen and van Leeuwaarden (2005a,b). We fiesthadtall roots ok® = A(z) lie on
the curve

Sus:={z€C|lz| <1, |A(2)] = |2I°}.

Condition 3.2 S, , is a Jordan curve with O in its interior, and(z) is zero-free on and insid&, ;.
Let C,,[f(z)] denote the coefficient af in f(z). We established the following resuilt.

Theorem 3.3 If Condition 3.2 is satisfied, we have the parametrization
Sas={2(€) | a € [0,2x]},

with .
w) =3 1A (11)

a power series with radius of convergence larger than one.

Theorem 3.3 thus implies that, under Condition 3.2, thesr@®t(10) in the unit disk have the
explicit representations, = Z(wyg), k = 0,1,...,s — 1 with wy, = exp(2wik/s). Most functions
A(z) will satisfy Condition 3.2, although counterexamples carcbnstructed (see van Leeuwaarden,
2005, p. 57). For the Poisson cadéz) = exp(A(z — 1)) with 0 < X < s, Condition 3.2 is always
satisfied, and hence (11) yields

" _ = —lp p)—"' _ B 12
= 2(wg) —Ze Yk k=0,1,...,s — 1. (12)
=1 '
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Figure 1:54 ; for the Poisson case. Figure 2:54 ; for the binomial case.

When A(z) is assumed to have no zeros|i < 1, we know that thes roots ofz® = A(z) in
|z| <1 satisfy
z=wAY3(2), w®=1. (13)

For each feasiblev, Eq. (13) can be shown to have one unique rodtjn< 1, and one could try to
solve the equations by the successive substitutions

z,(cnﬂ) = kal/s(z,gn)), k=0,1,....,s — 1, (14)
with starting value&,(go) =0.

Lemma 3.4 When for|z| < 1, A(z) is zero-free anqi%Al/S(zﬂ < 1, the fixed point equationd4)
converge to the desired roots.

A necessary condition for convergence of the scheme in @4)e formulated as follows.

Condition 3.5 Condition 3.2 should be satisfied and for all pointss S4 , there should hold that
]%Al/s(z)] < 1.

Condition 3.2 is much weaker than Condition 3.5, and heng2gi§lapplicable for a larger class
of A than (14). Nevertheless, fot(z) = exp(A(z — 1)), it is readily seen thati(z) # 0 and
|4 AYs(z)] < Lfor |2| < 1, so that the scheme

z,(cnﬂ) = Wy exp{p(z,gn) -1}, k=0,1,...,s—1, (15)
with starting valueglio) = 0, converges to the desired roots. Figure 1 degiats for p = 0.1, 0.5, 1.0.
The dots on the curves indicate the roetsfor the cases = 20 that can be determined from either
(12) or (15).
While Condition 3.2 implies tha$ 4 ; is a closed curve without double points, Condition 3.5 ap-
parently does not hold for all such curves. Condition 3.5m@agompared with the notions convexity
and starshapedness from the geometric theory of univaleatibns.



Definition 3.6 (i) A closed curve without double points is called starslthpéth respect to a point in
its interior if any ray from this point intersects the curvieexactly one point,

(i) A closed curve without double points is called convexemwl is starshaped with respect to any
point in its interior.

The following intriguing result then holds.

Theorem 3.7

Sa s is convex=- Condition3.5holds = S, ; is starshaped with respect

3.1 Anillustrative example

Consider the binomial casé(z) = (p + ¢z)" wherep, ¢ > 0,p+ ¢ = 1andA’(1) = ng < s. We
compute in this case

BRSNS SRR TCR Y A A _
zk—lzljp q 1) Wk k=0,1,...,s — 1, (16)

whereos := n/s. In can be shown that the coefficients have exponential diecay > 1 and that, for
0 < o < 1, the coefficients have exponential decay if and only if

P’ g1 — o) 7707 < 1. a7

Foro = 1/2, s = 20, constraint (17) requiregto be less tha(v/2 — 1). In Fig. 2 we plotted the
Sasforg =082 < 2(v/2 — 1), and the dots indicate the roots obtained by calculating the sum
in (12) up tol = 50. Whenyg is increased beyong > 2(v/2 — 1), Sa_, turns from a smooth Jordan
curve containing zero into two separate closed curves, B2)d longer holds.

Here is a demonstration of Thm. 3.7. From an inspectios,0f in Fig. 2 one sees thai, ,
is not starshaped with respect to 0, and one can thus immegd@include that Condition 3.5 is not
satisfied and hence the iteration (14) cannot be appliedterrdane the roots.

Wheno > 1, we have that

d gl/s = o1
Jnax |z AV (z) = max Joq(p+q2)”|

occurs atz: = 1 and equalsrqg < 1. Foro € (0,1), it can be shown that Condition 3.5 holds if and
only if
P’ (1 +0)7707 < 1. (18)

Now denote byg; (o) and ¢g2(o) the suprema of; for which (17) and (18) hold, respectively.
These valueg;(0) andgz (o) are plotted in Fig. 3 as a function ef € [0,1]. Observe that the set
of valuesq for which (16) holds ¢ < ¢i1(c)) is much larger than the set for which Condition 3.5
holds ¢ < ¢2(0)). To compare the condition of convexity and Condition 3.5ugt consider the case
o =1/2: when2 — /2 < ¢ < 2/3 we have thatS 4 ; satisfies Condition 3.5 whil 4 s is not convex
(since it is not starshaped with respect to points near teesection point with the negative real axis).
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Figure 3:¢1(c) andgs (o) for o € (0, 1).

4 New expressions for the Erlang D formula

We now give some new expressions for the Erlang D formulaprilodfs are relegated to the appendix.

Theorem 4.1
o p ZS la2/2 > mMe— mefma2/2s
A) = 19
D(s, exp{ ; \/ T mZ:O m! m+ls }’ (19)
with
a = (=2s(1—p+Inp)/% a>0, (20)

andp(n) = n"e "V2mn/nl.

At first glance, (19) and (7) seem very different. Severaldasmnipulations of (7) lead to the
following expression foD (s, \) that shows some more resemblance with (19):

() = { = Y-t S0 B (1) ()7,

From (21) we see that the series owelhas a convergence rage We can also bring (19) in a form
that shows more resemblance with (7).

Theorem 4.2
e 1 oo l)\ m+ls
D(s,)\)—exp{—lzljmzzoe 115 W(l, m)}, (22)
where
(m+1s)l m™ s —am/s.

P(l,m) =

(Is)lm! (Ils)™m + s

Indeed, comparing the new expression (22) with Pollaczelsslt (7) shows close formal agree-
ment, the difference beween the two being embodied by thierfac



5 Square-root staffing

Being aware of the rather heavy analysis involved in thelutgmns to the M/Dé queue, Erlang,
Crommelin and Pollaczek each developed some approxinsatiiter all, it was about the modeling
of real telephone exchanges, and both the implicitly deftmdplex-valued roots and the infinitely
many convolutions were—at that time—not easy to get grip imce the computational burden in-
creased with the number of servers, approximations woulgaptcularly useful for large systems.
Pollaczek, 1930b, Egn. (84a), obtained for lasge

D(s, N =1— — (1 Loy, (23)

The resulting approximation is useful in scaling the numifeservers whilep is kept constant. Pol-
laczek, 1946, p. 28 comments on (23) as follows:

Cette formule approximative devient inutilisable dansds e plus important ou, le nom-
bre s des lignes paralleles étant grand, le coefficient de maedép tend vers I'unité,
c’est-a-dire ou, pour un grand faisceau de lignes, I'ondta approcher de I'état idéal
d’une utilisation parfaite.

Pollaczek then proceeds to propose to scale the systemtsatgh+ 1 — ~v/./s, with v kept constant,
for which he proves that

D(s,\) = i 7{ log <1 - 622/2+72> de +0(s71), (24)
2mi Jo z
where(C' is a contour to the left of and parallel to the imaginary axis.

Pollaczek is, like on many occasions, ahead of his time. Takngp =1 — v/\/s, s — 00, isS
nowadays known as square-root staffing. It gotimmenselylpoplue to its application to call centers
(see Borst et al. (2004); Janssen et al. (2008)), the moaemterparts of telephone exchanges. An
equivalent scaling that we will use in the sequel is obtaineth settings = A + 3v/\. The parameter
«, 0 and~y are closely related, as can be seen from

= (1—p)" s—A s—A 1
a2:s ( p s = —, = = 2,
522 - p 0 T Bp

N[

n

Note thate =~ /s(1 — p) = v =~ 3 for large values of.
Denote byQ, the random variabl€) for the M/D/s queue withs = X + v/ andg > 0 fixed.
From (1) we know tha@), satisfies

Qr 2 (Qx+ Ay —3s)7,

where A, again denotes a Poisson random variable with mealm can be shown thap,/v/), as

A — oo, converges in distribution to the maximubig of the Gaussian random walk with drift3
(see Janssen et al. (2007); Jelenkovit et al. (2004)). Thess€an random walk is defined by the
process(S,, : n > 0} with Sy =0, S, = X1 + ... + X,, and X3, X», ... independent and normally
distributed random variables with mea < 0 and variance 1. Among other things, this implies the
following limiting result for the Erlang D formula (see Jel@vit et al. (2004); Janssen et al. (2007)).



Corollary 5.1
lim D(A+ BVAA) =P(Ms =0), §>0. (25)

Note that this also follows from (24) if one recognizes theegnal on the right-hand side of (24) as
P(M, = 0). Pollaczek (1946), right after introducing (24), remarks:

...et la derniére intégrale, qui se rapporte a la tleéde la fonction¢ de Riemann,
peut aisément étre développée de diverses maniersgéransuivant de simples fonc-
tions dey. C’est ce parameétre qui, pour les grandes valeurs deévalue dans quelle
mesure l'utilisation d’'un groupe de guichets, ou d’'un fa@e de lignes mises en par-
alléle, s'approche du cas idéak 1.

Indeed, Pollaczek, 1931, Eqgn. (45) gives the expression

= (2r)(2m) "7 sin(5E + )¢S+ 1) 241
B(Mp =0) = Va2f exp { Z% 227’_1(7“!)2(;7“ +41) ; (%) }

valid for 8 < 2,/7. Riemann'’s relation fo¢ and some rewriting yields

. BN~ CG=r) (=P
P(Ma—O)—ﬁﬂexp{mgﬂ(%ﬂ)( =)'} B<2vm (26)
the form in which the result was derived by Chang and Peréd,Iehm. 1.1 on p. 788. A third proof
of (26) was presented by Janssen and van Leeuwaarden (2pGbng with the derivation of similar
expressions for the cumulants dfg and analytic continuations that hold for all> 0. Expression
(26) is particularly useful for small values gf in which case it can be complemented by the bounds

3
P(Ms=0) > 2V1-e#/2 exp{_zxg/i_ﬁéﬁbg\ﬁ/%},

that are valid fol) < 5 < /2/7. Also, for smalls and large systems, we hai¥s, \) ~ V23 and
hence the number of servers for whifl{s, A\) = ¢ € (0, 1) is approximately

~ q
SR A+ \/ﬁx/x
Because the Gaussian random walk is the limiting procesheofM/D/s queue length process,
P(Mg = 0) serves as an approximation £(s, \) in heavy-traffic (whers = X\ + BV X and), s —
o0). Real systems, though, have finkkends, and so it is interesting to find refinements to the heavy-
traffic limit P(Mz = 0) in order to construct sharper approximations fs, A). These refinements
follow from a result obtained in Janssen et al. (2007).

Theorem 5.2
1 [oe)
—InP(Qr=0) ~ ——= > s "G (i) (a/V5), (27)
V2T 0
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where
> o0 1 2
Gk(a) — Zlk+1/2/ 6_5l5m y’(m)dx,
=1 a
ne ™"/ 21mn 1 1 = Pk
p) =~y T T T e T

andy defined implicitly as the solution tey — In(1 — y) = %xQ.

The expansion in (27) provides sharp approximations, amaast cases, one term suffices to get
accurate results, so that
NG
P =0 %ex{——G_ « s}. 28
(@xr=0) Pl o 1/ Vs) (28)
In Janssen et al. (2007) we showed thatimits the power series representatjdn) = > ° | a,z"”
|z| < 24/, with
TS SO B 1
ap =1, az = 370'3_3670/4_ -
From (4) and (7) we see that

()
(Is)!

(29)

Nl}—l

—InD(s,\) = —InP(Qy = 0) Z

Combining (28) withy/(z) ~ 1 — —x and (29) yields the approximation

o0

-1 1 _1 2]
D(S,)\)%P(MaZO)exp{mzme 2 }
=1

Many other results of this type were derived in Janssen €2@07), along with series expansions for
the functions;, with terms that involve the Riemann zeta function.
A Proofs of the results in Section 4

A.1 Proof of (19)

In Janssen et al. (2007), Theorem 1, it is proved that

—InP(Q :Zp m/ Y (z/V1s)dz (30)

=1

with « as in (20) and; defined implicitly as the solution tey — In(1 — y) = 2x z € C. For the
sake of completeness, we shortly repeat the derivationG)fi(BAppendix A.3. From Janssen et al.
(2007), Lemma 16, we have

> m—1

m _1 2
y)=1-Y_ € T Jarg(w)| < 7/4,
m=1 :
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from which we find that

Vis [ i
\/%/ y'(z/V1s)dx v /\/_e 2%yl () da
Z mMe™ 2(erls)on/s é 2, i —ma2/25
" Vor = mle™(m +1s) e — vm m+ls

Combining (31) with (29) and—* " — 25 o—1a>/2 completes the proof,
(ls)! 27l

v

A.2 Proof of (22)

(19) can be written as

1 1 lse™ 3(mtls)a®/s
—InD = — Z 2
nD(s,\) 27r;lmzop(lé‘)p(m)\/m — T
Using
s B (ls)ls-i—lmme—m—ls
%p(ls)p(m) E (ls)'m'
and

e_%(m-l-ls)oﬂ/s _ pm—l—lsem—l—lse—l)\e_mp’

the result follows from (32) upon some rearranging of terms.

A.3 Proof of (30)

Forn=0,1,...welet
nook
sn(z) = - 2¢€C
k=0

N

With p = A/s andn = s (so that\l = np), and

a§) =e'7%¢, ¢eC,

we have from Szego, 1922, p. 50 (or Abramowitz and Stegur),1®.5.13 on p. 262),

& I\ j n+l_—n pp
3 Y G 1—e Mg, () = 22 [ g(¢)de.
, 4! n! 0
j=n+1
Using this relation we can rewrite (4) as
~InP(Q=0) = 1/22 “(€)dg,

with p(n) as defined in Thm. 4.1. We then consider the equation

fly):=—Ing(l —y) = %:c2, z € C,

(31)

(32)

(33)

(34)
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from whichy is to be solved. We note that
fW) =3 +350° + 19" + ..,

whence there is a solutigy(z) that is analytic aroung = 0 and that satisfieg(x) = = + O(2?) as
x — 0. Furthermore, sincg increases fronf) to co asy increases front) to 1, we have thay(z)
increases frond to co, and for anyz > 0 there is a unique non-negative solutigr= y(z) of (34).

Furthermore, withy as in (20), it holds thag'* (p) = e*%‘ﬁl, and
[ @i — [ e eV (35)
0 \/E aVl '

Substituting (35) into (33) yields (30).
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