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Abstract

A.K. Erlang introduced the M/D/s queue in 1917, while F. Pollaczek and C.D. Crommelin
formalized the theory using complex analysis and transforms. LetD(s, λ) denote the stationary
probability of experiencing no waiting time in the M/D/s queue with arrival rateλ and service
requirement 1. We useD(s, λ) as a vehicle to give an overview of some of the results we obtained
over the last years, including explicit characterizationsof the roots, the derivation of infinite series
from expressions in terms of roots using Fourier sampling, and heavy-traffic limits obtained from
square-root staffing. We propose to callD(s, λ) the Erlang D formula, for which several new
results are presented and compared to the results of Pollaczek.
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1 Introduction

The M/D/s queue, with Poisson arrivals, deterministic service timesands servers, has a deeply rooted
place in queueing theory. It all started with the 1917 paper of A.K. Erlang, in which he introduced
the M/D/s queue along with the M/M/s queue (Erlang delay model) and the M/M/s/s queue (Erlang
loss model). All three models are of great historical interest, and the M/D/s queue in particular is
illustrative for the difficulties occasioned by the absenceof exponential service times. The pioneering
work of Erlang, complemented by more formal works on the M/D/s queue by Pollaczek (1930a,b),
and Crommelin (1932, 1934), laid the foundation of modern queueing theory and demonstrated the
wealth of mathematical techniques that can be applied.

Erlang obtained expressions for the distribution of the stationary waiting time for up to three
servers, while Crommelin (1932) obtained for anys the probability generation function (pgf) of the
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stationary queue length distribution, expressed in terms of the s roots on and within the unit circle
of zs = exp(λ(z − 1)). From this pgf, Crommelin was able to obtain the stationary waiting time
distribution. Two years earlier, Pollaczek (1930a,b) treated the M/D/s queue in two papers, deriving
results in terms of infinite series. Pollaczek’s work was difficult to read, since he relied on rather
complicated analysis, so Crommelin (1934) gave an exposition of Pollaczek’s theory for the M/D/s
queue and found his own results in agreement with those of Pollaczek. Pollaczek too, found alternative
expressions for his infinite series in terms of roots (see Pollaczek, 1930b, Eqns. (80) and (83)).

By now, queueing theory is a mature branch of applied mathematics of which Erlang is considered
the founding father and Pollaczek the main pioneer of analytical methods. For Pollaczek, the M/D/s
queue was merely a first step in his impressive collection of results, including investigations of the
M/G/s, G/G/1 and G/G/s queue. Crommelin should be credited for introducing to queueing theory
the generating function technique, which found numerous applications, including queues that permit
analysis in terms of embedded processes, like bulk service queues, M/G/1 and G/M/1-type queues,
and discrete or discrete-time queues. The generating function or transform technique typically leads
to results in terms of implicitly defined, complex-valued roots of some equation.

We shall give an overview of some of the results we obtained over the last years. For a class of
queues that contains the M/D/s queue, these results include explicit characterizations of roots, the
derivation of infinite-series or Pollaczek-type results from expressions in terms of roots using Fourier
sampling, and heavy-traffic results obtained from square-root staffing. In particular, we confine atten-
tion to the stationary probability that an arbitrary customer in the M/D/s queue experiences no waiting
time (meets an empty queue). Henceforth, we denote this quantity by D(s, λ), and refer to it as the
Erlang-Pollaczek-Crommelin D formula, Erlang D formula inshort.

Some of this work was done in, or has benefitted from, collaboration with colleagues including
I.J.B.F. Adan, O.J. Boxma, D. Denteneer, J.A.C. Resing, E.M.M. Winands and B. Zwart.

2 The M/D/s queue

We consider the M/D/s queue and keep track of the number of customers waiting in thequeue (without
those in service) at the end of intervals equal to the constant service time (which we set to one).
Customers arrive according to a Poisson process with rateλ and are served by at mosts servers. Let
Qn denote the number of customers waiting in the queue at the endof intervaln. The queue length
process is then described by

Qn+1 = (Qn +Aλ,n − s)+, n = 0, 1, . . . , (1)

wherex+ = max{0, x}, andAλ,n denotes the number of customers that arrived at the queue during
intervaln. Obviously, theAλ,n are i.i.d. for alln, and copies of a Poisson random variableAλ with
meanλ. Note that due to the assumption of constant service times, the customers which are being
served at the end of the considered interval should start within this interval, and for the same reason,
the customers whose service is completed during this interval should start before its beginning.

Assume thatEAλ = λ < s and letQ denote the random variable that follows the stationary queue
length distribution, i.e.,Q is the weak limit ofQn.

It is fairly straightforward to prove thatzs = eλ(z−1) hass roots in |z| ≤ 1 (using Rouché’s
theorem, see Sec. 3). Denote these roots byz0 = 1, z1, . . . , zs−1. For the pgf ofQ, Crommelin
derived the expression

Q(z) := E(zQ) =
(z − 1)(s − λ)

zs − eλ(z−1)

s−1
∏

k=1

z − zk
1 − zk

, (2)
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from which it immediately follows that

P(Q = 0) = eλ(−1)s−1(s− λ)

s−1
∏

k=1

zk
1 − zk

. (3)

Pollaczek, on the other hand, derived the expression

P(Q = 0) = exp
{

−
∞
∑

l=1

1

l

∞
∑

m=1

e−lλ (lλ)ls+m

(ls+m)!

}

. (4)

In his derivation of (4), Pollaczek employed the following cyclic scheduling policy: Suppose the
servers are numbered1 to s and free servers are assigned in numerical order; then for first-come-first-
served, if serveri serves arrivalj, it also serves arrivalss + j, 2s + j, . . .. Since waiting times are
independent of this assignment, the waiting time distribution is the same as that of a single server
serving everysth arrival of a Poisson input, or rather, Erlang input. For the latter queueing system,
the Laplace-Stieltjes transform of the waiting time is known to be (see e.g. Riordan, 1962, p. 118)

W (u) := E(e−uW ) =
u(s− λ)λs−1

λse−u − (λ− u)s

s−1
∏

k=1

(

1 − u

uk

)

, (5)

whereuk = λ(1− zk). Distributional Little’s lawW (λ(1− z)) = Q(z) and (2) give the same result.
Cyclic scheduling policies play an important role in Franx (2001) and Jelenković et al. (2004). It
immediately follows from (5) that the Erlang D formula is given by (Crommelin, 1932, Eq. (10) and
Pollaczek, 1930b, Eq. (80))

D(s, λ) = P(W = 0) =
s− λ

∏s−1
k=1 (1 − zk)

, (6)

whereas Pollaczek’s infinite-series counterpart (Pollaczek, 1930b, Eq. (83)) reads

D(s, λ) = exp
{

−
∞
∑

l=1

1

l

∞
∑

m=0

e−lλ (lλ)ls+m

(ls+m)!

}

. (7)

In comparing (3), (4), (6) and (7), it should hold that

s−1
∏

k=1

zk = (−1)s−1e−λ exp
{

∞
∑

l=1

1

l
e−lλ (lλ)ls

(ls)!

}

, (8)

and
s− λ

∏s−1
k=1 (1 − zk)

= exp
{

−
∞

∑

l=1

1

l

∞
∑

m=0

e−lλ (lλ)ls+m

(ls +m)!

}

. (9)

Identities of this type were investigated by Crommelin, 1934, Appendix 1, in order to convince himself
that his results agreed with those of Pollaczek. Direct proofs of (8) and (9) were also given in Janssen
and van Leeuwaarden, 2005b, pp. 380-382 (for a larger class of queues). Hereto, we derived explicit
expressions for the roots and treated the products occurring in the left-hand sides of (8) and (9) as
Fourier aliasing series with terms given in analytic form, eventually leading to the right-hand sides of
(8) and (9). The explicit expressions for the roots are discussed in the next section.
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3 Roots in queueing theory

Crucial in applying the generating function technique is the investigation of the roots of some given
equation, and usually these roots have no explicit representation. Crommelin (1932) and Pollaczek
(1930b) used Rouché’s theorem to prove the existence of such roots. We consider the roots in the unit
disk of

zs = A(z), (10)

whereA(z) is the pgf of a discrete random variableA, with A(0) > 0, ρ = A′(1)/s < 1, ands ∈ N.
In order to apply Rouché’s theorem it is required thatA(z) has a radius of convergence larger

than one, which is not true in general. For Crommelin this wasobviously not an issue, sinceA(z) =
exp(λ(z− 1)) is an entire function. A problem does occur whenA(z) is the pgf of a random variable
with a heavy-tailed distribution (causingA(z) to be non-analytic atz = 1), like the discrete Pareto
distribution or Haight’s zeta distribution, see Adan et al.(2006).

Define the periodν of a series
∑∞

−∞ bjz
j as the largest integer for whichbj = 0 wheneverj is

not divisible byν. In Adan et al. (2006) the following result was established.

Theorem 3.1 Letzs−A(z) have periodν. Thenzs = A(z) hasν roots on the unit circle and exactly
s− ν zeros in|z| < 1.

The remainder of this section will deal with explicit expressions for the roots of (10). All results
stem from Janssen and van Leeuwaarden (2005a,b). We first note that all roots ofzs = A(z) lie on
the curve

SA,s := {z ∈ C | |z| ≤ 1, |A(z)| = |z|s}.

Condition 3.2 SA,s is a Jordan curve with 0 in its interior, andA(z) is zero-free on and insideSA,s.

LetCzj [f(z)] denote the coefficient ofzj in f(z). We established the following result.

Theorem 3.3 If Condition 3.2 is satisfied, we have the parametrization

SA,s = {z̃(eiα) | α ∈ [0, 2π]},

with

z̃(w) =

∞
∑

l=1

1

l
Czl−1[Al/s(z)]wl (11)

a power series with radius of convergence larger than one.

Theorem 3.3 thus implies that, under Condition 3.2, the roots of (10) in the unit disk have the
explicit representationszk = z̃(wk), k = 0, 1, ..., s − 1 with wk = exp(2πik/s). Most functions
A(z) will satisfy Condition 3.2, although counterexamples can be constructed (see van Leeuwaarden,
2005, p. 57). For the Poisson caseA(z) = exp(λ(z − 1)) with 0 ≤ λ < s, Condition 3.2 is always
satisfied, and hence (11) yields

zk = z̃(wk) =
∞

∑

l=1

e−lρ (lρ)l−1

l!
wl

k, k = 0, 1, ..., s − 1. (12)
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Figure 1:SA,s for the Poisson case.
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Figure 2:SA,s for the binomial case.

WhenA(z) is assumed to have no zeros in|z| ≤ 1, we know that thes roots ofzs = A(z) in
|z| ≤ 1 satisfy

z = wA1/s(z), ws = 1. (13)

For each feasiblew, Eq. (13) can be shown to have one unique root in|z| ≤ 1, and one could try to
solve the equations by the successive substitutions

z
(n+1)
k = wkA

1/s(z
(n)
k ), k = 0, 1, ..., s − 1, (14)

with starting valuesz(0)
k = 0.

Lemma 3.4 When for|z| ≤ 1, A(z) is zero-free and| d
dzA

1/s(z)| < 1, the fixed point equations(14)
converge to the desired roots.

A necessary condition for convergence of the scheme in (14) can be formulated as follows.

Condition 3.5 Condition 3.2 should be satisfied and for all pointsz ∈ SA,s there should hold that
| d
dzA

1/s(z)| < 1.

Condition 3.2 is much weaker than Condition 3.5, and hence (12) is applicable for a larger class
of A than (14). Nevertheless, forA(z) = exp(λ(z − 1)), it is readily seen thatA(z) 6= 0 and
| d
dzA

1/s(z)| < 1 for |z| ≤ 1, so that the scheme

z
(n+1)
k = wk exp{ρ(z(n)

k − 1)}, k = 0, 1, ..., s − 1, (15)

with starting valuesz(0)
k = 0, converges to the desired roots. Figure 1 depictsSA,s for ρ = 0.1, 0.5, 1.0.

The dots on the curves indicate the rootszk for the cases = 20 that can be determined from either
(12) or (15).

While Condition 3.2 implies thatSA,s is a closed curve without double points, Condition 3.5 ap-
parently does not hold for all such curves. Condition 3.5 canbe compared with the notions convexity
and starshapedness from the geometric theory of univalent functions.
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Definition 3.6 (i) A closed curve without double points is called starshaped with respect to a point in
its interior if any ray from this point intersects the curve at exactly one point,

(ii) A closed curve without double points is called convex when it is starshaped with respect to any
point in its interior.

The following intriguing result then holds.

Theorem 3.7

SA,s is convex⇒ Condition3.5holds ⇒ SA,s is starshaped with respect to0.

3.1 An illustrative example

Consider the binomial caseA(z) = (p + qz)n wherep, q ≥ 0, p + q = 1 andA′(1) = nq < s. We
compute in this case

zk =

∞
∑

l=1

1

l
plσ−l+1 ql−1

(

lσ

l − 1

)

wl
k, k = 0, 1, ..., s − 1, (16)

whereσ := n/s. In can be shown that the coefficients have exponential decayfor σ ≥ 1 and that, for
0 ≤ σ < 1, the coefficients have exponential decay if and only if

pσ−1q(1 − σ)1−σσσ < 1. (17)

For σ = 1/2, s = 20, constraint (17) requiresq to be less than2(
√

2 − 1). In Fig. 2 we plotted the
SA,s for q = 0.82 < 2(

√
2 − 1), and the dots indicate the rootszk obtained by calculating the sum

in (12) up tol = 50. Whenq is increased beyondq > 2(
√

2 − 1), SA,s turns from a smooth Jordan
curve containing zero into two separate closed curves, and (12) no longer holds.

Here is a demonstration of Thm. 3.7. From an inspection ofSA,s in Fig. 2 one sees thatSA,s

is not starshaped with respect to 0, and one can thus immediately conclude that Condition 3.5 is not
satisfied and hence the iteration (14) cannot be applied to determine the roots.

Whenσ ≥ 1, we have that

max
z∈SA,s

| d
dzA

1/s(z)| = max
z∈SA,s

|σq(p+ qz)σ−1|

occurs atz = 1 and equalsσq < 1. Forσ ∈ (0, 1), it can be shown that Condition 3.5 holds if and
only if

pσ−1q(1 + σ)1−σσσ < 1. (18)

Now denote byq1(σ) and q2(σ) the suprema ofq for which (17) and (18) hold, respectively.
These valuesq1(σ) andq2(σ) are plotted in Fig. 3 as a function ofσ ∈ [0, 1]. Observe that the set
of valuesq for which (16) holds (q < q1(σ)) is much larger than the set for which Condition 3.5
holds (q < q2(σ)). To compare the condition of convexity and Condition 3.5 wejust consider the case
σ = 1/2: when2−

√
2 < q < 2/3 we have thatSA,s satisfies Condition 3.5 whileSA,s is not convex

(since it is not starshaped with respect to points near the intersection point with the negative real axis).
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Figure 3:q1(σ) andq2(σ) for σ ∈ (0, 1).

4 New expressions for the Erlang D formula

We now give some new expressions for the Erlang D formula. Allproofs are relegated to the appendix.

Theorem 4.1

D(s, λ) = exp
{

−
∞
∑

l=1

p(ls)

l

√
lse−lα2/2

√
2π

∞
∑

m=0

mme−m

m!

e−mα2/2s

m+ ls

}

, (19)

with

α = (−2s(1 − ρ+ ln ρ))1/2, α > 0, (20)

andp(n) = nne−n
√

2πn/n!.

At first glance, (19) and (7) seem very different. Several basic manipulations of (7) lead to the
following expression forD(s, λ) that shows some more resemblance with (19):

D(s, λ) = exp
{

−
∞
∑

l=1

1

l
e−

1

2
α2l

∞
∑

m=0

p(ls+m)
√

2π(ls +m)

(

(

1 − m

m+ ls

)

e
m

m+ls

)m+ls
(λ

s

)m}

. (21)

From (21) we see that the series overm has a convergence rateλs . We can also bring (19) in a form
that shows more resemblance with (7).

Theorem 4.2

D(s, λ) = exp
{

−
∞

∑

l=1

1

l

∞
∑

m=0

e−lλ (lλ)m+ls

(m+ ls)!
ψ(l,m)

}

, (22)

where

ψ(l,m) =
(m+ ls)!

(ls)!m!

mm

(ls)m
ls

m+ ls
e−λm/s.

Indeed, comparing the new expression (22) with Pollaczek’sresult (7) shows close formal agree-
ment, the difference beween the two being embodied by the factor ψ.
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5 Square-root staffing

Being aware of the rather heavy analysis involved in their solutions to the M/D/s queue, Erlang,
Crommelin and Pollaczek each developed some approximations. After all, it was about the modeling
of real telephone exchanges, and both the implicitly definedcomplex-valued roots and the infinitely
many convolutions were–at that time–not easy to get grip on.Since the computational burden in-
creased with the number of servers, approximations would beparticularly useful for large systems.
Pollaczek, 1930b, Eqn. (84a), obtained for larges,

D(s, λ) = 1 − 1

1 − ρ

(ρe1−ρ)s√
2πs

(

1 + O(s−1)
)

. (23)

The resulting approximation is useful in scaling the numberof servers whileρ is kept constant. Pol-
laczek, 1946, p. 28 comments on (23) as follows:

Cette formule approximative devient inutilisable dans le cas le plus important où, le nom-
bre s des lignes parallèles étant grand, le coefficient de rendementρ tend vers l’unité,
c’est-à-dire où, pour un grand faisceau de lignes, l’on tend à approcher de l’état idéal
d’une utilisation parfaite.

Pollaczek then proceeds to propose to scale the system such thatρ = 1− γ/√s, with γ kept constant,
for which he proves that

D(s, λ) =
1

2πi

∮

C
log

(

1 − ez
2/2+γz

) dz

z
+ O(s−1), (24)

whereC is a contour to the left of and parallel to the imaginary axis.
Pollaczek is, like on many occasions, ahead of his time. The scalingρ = 1 − γ/

√
s, s → ∞, is

nowadays known as square-root staffing. It got immensely popular due to its application to call centers
(see Borst et al. (2004); Janssen et al. (2008)), the modern counterparts of telephone exchanges. An
equivalent scaling that we will use in the sequel is obtainedfrom settings = λ+β

√
λ. The parameter

α, β andγ are closely related, as can be seen from

1
2α

2 = s

∞
∑

n=2

(1 − ρ)n

n
, β =

s− λ√
λ
, γ =

s− λ√
s

= βρ
1

2 .

Note thatα ≈ √
s(1 − ρ) = γ ≈ β for large values ofs.

Denote byQλ the random variableQ for the M/D/s queue withs = λ + β
√
λ andβ > 0 fixed.

From (1) we know thatQλ satisfies

Qλ
d
= (Qλ +Aλ − s)+,

whereAλ again denotes a Poisson random variable with meanλ. In can be shown thatQλ/
√
λ, as

λ → ∞, converges in distribution to the maximumMβ of the Gaussian random walk with drift−β
(see Janssen et al. (2007); Jelenković et al. (2004)). The Gaussian random walk is defined by the
process{Sn : n ≥ 0} with S0 = 0, Sn = X1 + . . .+Xn andX1,X2, . . . independent and normally
distributed random variables with mean−β < 0 and variance 1. Among other things, this implies the
following limiting result for the Erlang D formula (see Jelenković et al. (2004); Janssen et al. (2007)).
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Corollary 5.1

lim
λ→∞

D(λ+ β
√
λ, λ) = P(Mβ = 0), β > 0. (25)

Note that this also follows from (24) if one recognizes the integral on the right-hand side of (24) as
P(Mγ = 0). Pollaczek (1946), right after introducing (24), remarks:

...et la dernière intégrale, qui se rapporte à la théorie de la fonctionζ de Riemann,
peut aisément être développée de diverses manières ensérie suivant de simples fonc-
tions deγ. C’est ce paramètreγ qui, pour les grandes valeurs des, évalue dans quelle
mesure l’utilisation d’un groupe de guichets, ou d’un faisceau de lignes mises en par-
allèle, s’approche du cas idéalρ = 1.

Indeed, Pollaczek, 1931, Eqn. (45) gives the expression

P(Mβ = 0) =
√

2β exp
{

∞
∑

r=0

(2r)!(2π)−r− 1

2 sin( rπ
2 + π

4 )ζ(1
2 + r)

22r−1(r!)2(2r + 1)

( β√
2

)2r+1}

,

valid for β < 2
√
π. Riemann’s relation forζ and some rewriting yields

P(Mβ = 0) =
√

2β exp
{ β√

2π

∞
∑

r=0

ζ(1
2 − r)

r!(2r + 1)

(−β2

2

)r}

, β < 2
√
π, (26)

the form in which the result was derived by Chang and Peres, 1997, Thm. 1.1 on p. 788. A third proof
of (26) was presented by Janssen and van Leeuwaarden (2007b,a), along with the derivation of similar
expressions for the cumulants ofMβ and analytic continuations that hold for allβ > 0. Expression
(26) is particularly useful for small values ofβ, in which case it can be complemented by the bounds

P(Mβ = 0) ≤ 2
√

1 − e−β2/2 exp
{

− β√
π

+
1

8
β2

}

,

P(Mβ = 0) ≥ 2
√

1 − e−β2/2 exp
{

− 3β

2
√

2π
+

1

8
β2 − β3

9
√

2π

}

,

that are valid for0 < β ≤
√

2/π. Also, for smallβ and large systems, we haveD(s, λ) ≈
√

2β and
hence the number of servers for whichD(s, λ) = q ∈ (0, 1) is approximately

s ≈ λ+
q√
2

√
λ.

Because the Gaussian random walk is the limiting process of the M/D/s queue length process,
P(Mβ = 0) serves as an approximation toD(s, λ) in heavy-traffic (whens = λ + β

√
λ andλ, s →

∞). Real systems, though, have finiteλ ands, and so it is interesting to find refinements to the heavy-
traffic limit P(Mβ = 0) in order to construct sharper approximations forD(s, λ). These refinements
follow from a result obtained in Janssen et al. (2007).

Theorem 5.2

− ln P(Qλ = 0) ∼ 1√
2π

∞
∑

k=0

pks
−k+1/2G−(k+1)(α/

√
s), (27)
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where

Gk(a) =
∞

∑

l=1

lk+1/2

∫ ∞

a
e−

1

2
lsx2

y′(x)dx,

p(n) =
nne−n

√
2πn

n!
∼ 1 − 1

12n
+

1

288n2
+ . . . =

∞
∑

k=0

pk

nk
, n→ ∞,

andy defined implicitly as the solution to−y − ln(1 − y) = 1
2x

2.

The expansion in (27) provides sharp approximations, and inmost cases, one term suffices to get
accurate results, so that

P(Qλ = 0) ≈ exp
{

−
√
s√
2π
G−1(α/

√
s)

}

. (28)

In Janssen et al. (2007) we showed thaty admits the power series representationy(x) =
∑∞

n=1 anx
n,

|x| < 2
√
π, with

a1 = 1, a2 = −1

3
, a3 =

1

36
, a4 =

1

270
, a5 =

1

4320
.

From (4) and (7) we see that

− lnD(s, λ) = − ln P(Qλ = 0) +
∞

∑

l=1

1

l
e−lλ (lλ)ls

(ls)!
. (29)

Combining (28) withy′(x) ≈ 1 − 2
3x and (29) yields the approximation

D(s, λ) ≈ P(Mα = 0) · exp
{ −1

3
√

2πs

∞
∑

l=1

1

l3/2
e−

1

2
α2l

}

.

Many other results of this type were derived in Janssen et al.(2007), along with series expansions for
the functionsGk with terms that involve the Riemann zeta function.

A Proofs of the results in Section 4

A.1 Proof of (19)

In Janssen et al. (2007), Theorem 1, it is proved that

− ln P(Q = 0) =

∞
∑

l=1

p(ls)

l

1√
2π

∫ ∞

α
√

l
e−

1

2
x2

y′(x/
√
ls)dx, (30)

with α as in (20) andy defined implicitly as the solution to−y − ln(1 − y) = 1
2x

2, x ∈ C. For the
sake of completeness, we shortly repeat the derivation of (30) in Appendix A.3. From Janssen et al.
(2007), Lemma 16, we have

y(x) = 1 −
∞
∑

m=1

mm−1

m!em
e−

1

2
mx2

, |arg(x)| ≤ π/4,
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from which we find that

1√
2π

∫ ∞

α
√

l
e−

1

2
x2

y′(x/
√
ls)dx =

√
ls√
2π

∫ ∞

α/
√

s
e−

1

2
lsx2

y′(x)dx

=

√
ls√
2π

∞
∑

m=1

mme−
1

2
(m+ls)α2/s

m!em(m+ ls)
=

√
ls

2π
e−

1

2
α2l

∞
∑

m=1

p(m)√
m

e−mα2/2s

m+ ls
. (31)

Combining (31) with (29) ande−lλ (lλ)ls

(ls)! = p(ls)√
2πls

e−lα2/2 completes the proof.

A.2 Proof of (22)

(19) can be written as

− lnD(s, λ) =
1

2π

∞
∑

l=1

1

l

∞
∑

m=0

p(ls)p(m)

√

ls

m

e−
1

2
(m+ls)α2/s

m+ ls
. (32)

Using
1

2π
p(ls)p(m)

√

ls

m
=

(ls)ls+1mme−m−ls

(ls)!m!

and
e−

1

2
(m+ls)α2/s = ρm+lsem+lse−lλe−mρ,

the result follows from (32) upon some rearranging of terms.

A.3 Proof of (30)

Forn = 0, 1, . . . we let

sn(z) =

n
∑

k=0

zk

k!
, z ∈ C.

With ρ = λ/s andn = ls (so thatλl = nρ), and

q(ξ) = e1−ξξ, ξ ∈ C,

we have from Szegö, 1922, p. 50 (or Abramowitz and Stegun, 1970, 6.5.13 on p. 262),

∞
∑

j=n+1

e−lλ (lλ)j

j!
= 1 − e−λlsn(λl) =

nn+1e−n

n!

∫ ρ

0
qn(ξ)dξ.

Using this relation we can rewrite (4) as

− ln P(Q = 0) = s1/2
∞
∑

l=1

p(ls)√
2πl

∫ ρ

0
qls(ξ)dξ, (33)

with p(n) as defined in Thm. 4.1. We then consider the equation

f(y) := − ln q(1 − y) = 1
2x

2, x ∈ C, (34)
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from whichy is to be solved. We note that

f(y) = 1
2y

2 + 1
3y

3 + 1
4y

4 + . . . ,

whence there is a solutiony(x) that is analytic aroundx = 0 and that satisfiesy(x) = x+ O(x2) as
x → 0. Furthermore, sincef increases from0 to ∞ asy increases from0 to 1, we have thaty(x)
increases from0 to ∞, and for anyx ≥ 0 there is a unique non-negative solutiony = y(x) of (34).
Furthermore, withα as in (20), it holds thatqls(ρ) = e−

1

2
α2l, and

∫ ρ

0
qls(ξ)dξ =

1√
ls

∫ ∞

α
√

l
e−

1

2
x2

y′(x/
√
ls)dx. (35)

Substituting (35) into (33) yields (30).
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