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Abstract: The Erlang B formula represents the steady-state blocking prob-
ability in the Erlang loss model or M/M/s/s queue. We derive asymp-
totic expansions for the offered load that matches, for a given number of
servers, a certain blocking probability. In addressing this inversion problem
we make use of various asymptotic expansions for the incomplete gamma
function. A similar inversion problem is investigated for the Erlang C for-
mula.
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1 Introduction

The Erlang B formula is perhaps the most classical result in queueing theory, representing
the steady-state blocking probability in the Erlang loss model or M/M/s/s queue. De-
rived by A.K. Erlang in 1917, it has been the subject of extensive study ever since. Its
wide range of applications made many researchers investigate the Erlang B formula from
various angles. This paper deals with the open problem of inverting the Erlang B formula.

The reader is referred to the elucidation of Erlang’s work and era in Brockmeyer et
al. [2], and to Cooper [3], Kosten [11], Riordan [12], Syski [13] and Whitt [18] for some
more of the historical flavor. The Erlang loss model has s homogeneous servers working in
parallel and no extra waiting space. Customers that find all s servers busy upon arrival are
blocked (lost). It is further assumed that customers arrive according to a Poisson process
with rate ν and that the service times are independent and exponentially distributed with
mean 1/µ. We define the offered load as λ = ν/µ, and the service utilization as ρ = λ/s.
The Erlang B formula is then given by

B(s, λ) =
λs/s!∑s

k=0 λk/k!
. (1.1)

The work of Jagerman [8] contains a large variety of exact, asymptotic and approxima-
tive representations of B(s, λ), and serves as a standard reference. As a desirable further
investigation, Jagerman mentions in the conclusion of [8] the inversion of B(s, λ), which
boils down to finding the load λ such that

B(s, λ) = p, (1.2)
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for some p ∈ (0, 1) and s ∈ N. A few years later, Jagerman [9] himself developed an
efficient numerical algorithm based on Newton’s method. For the strongly related problem
of solving (1.2) for s given λ and p, Jagerman [9] also proposed Newton’s method, and
bounds on s were derived in [1] and [6]. An exact and comprehensive treatment of the
inversion problem, though, seems still largely missing from the literature.

As pointed out by Jagerman and many others, the Erlang B formula can be expressed
in terms of the incomplete gamma function. Temme [15] has considered the inversion
problem for the incomplete gamma function based on a uniform asymptotic expansion
developed in [14]. We shall derive various asymptotic expansions for the inverse λ of
the Erlang B formula using asymptotic expansions for the incomplete gamma function.
We also show how these asymptotic techniques can be transferred to a similar inversion
problem for the Erlang C formula, which represents the steady-state probability of delay
in the Erlang delay model or M/M/s queue. That the same machinery can be applied is
not surprising, since the Erlang B and C formulae are intrinsically intertwined, cf. (7.1).

Of fundamental importance in the performance analysis of stochastic systems, the Er-
lang B and C formulae have found numerous applications. The inverse is of concern in
dimensioning problems. The results in this paper may contribute to future investigations
in two ways.

First, we derive asymptotic expansions of which the first few terms serve as highly
accurate approximations. Such approximations may reduce computation time in large op-
timization problems or simulation settings, or may allow for an exact, formal, solution of
an optimization problem in which the true inverse is replaced by its approximation. More-
over, the second terms in the asymptotic expansions render both quantitative and qualitative
insight into the speed of convergence to the asymptotic regime at hand.

Second, while the first few terms of the expansion yield sharp approximations already,
even sharper results may be obtained by either including more terms, or using Newton’s
method; see (6.1) and (7.16). The starting value of Newton’s method, depending on p,
follows from our asymptotic framework. This avoids unfavorable situations like large
errors in successive approximations and, even worse, approximations that are found outside
the definition range of the variable to be computed; see [5, Chapter 10] for more examples.
Then, Newton’s method, with at most 4 iterations, yields the inverse up to at least 10 digits
precision, irrespective of s and p.

2 Outline

The main objective of this paper is to find the λ−value of Equation (1.2) for a large value
of s, where B(s, λ) is the Erlang B formula defined in (1.1). Throughout, we shall use the
representation

B(s, λ)−1 = 1 + s! eλ λ−sQ(s, λ), (2.1)

with Q(s, λ) the incomplete gamma function given by

Q(s, λ) =
Γ(s, λ)
Γ(s)

=
1

Γ(s)

∫ ∞

λ
ts−1e−t dt. (2.2)

Clearly, (2.1) has meaning for non-integral s. Fig. 1 shows graphs of B(s, ρs) for 0 ≤
ρ ≤ 5 and s = 1, 3, 5, 10, 25, 50, 100, 1000 (the far left curve is for s = 1, the far right
one for s = 1000). These graphs suggest the consideration of three regimes corresponding
to small, medium and large blocking probability. The transition from small to medium
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Figure 1: Graphs of B(s, ρs) for 0 ≤ ρ ≤ 5 and s = 1, 3, 5, 10, 25, 50, 100, 1000 (the far
left curve is for s = 1, the far right one for s = 1000.

p, as λ increases, can occur rather abruptly. A small p typically corresponds to λ < s,
while a large p corresponds to λ > s. To further investigate this relation, we derive from
asymptotic properties of Q(s, λ), see §5 or [8, p. 540],

B(s, s) ∼ 6
4 + 3

√
2πs

, s →∞, (2.3)

and the relative error of this estimate is less than one percent for s > 5. When p in (1.2) is
less (larger) than the right-hand side of (2.3), we have λ < s (λ > s), approximately.

We shall derive various asymptotic expansions for the inverse λ of (1.2), using existing
asymptotic expansions for the incomplete gamma function. Based on the above observa-
tions, we shall consider three asymptotic regimes:

Large blocking probability. This typically corresponds to an overload situation λ À s,
in which case the Erlang B formula is well approximated by B(s, λ) ≈ (λ − s)/λ and
hence, for given s and p, λ ≈ s/(1− p). In §3 we derive the higher terms of the expansion
for λ using two standard asymptotic expansions for the incomplete gamma function.

Small blocking probability. This corresponds to the underload situation λ < s, in which
case the Erlang B formula is well approximated by B(s, λ) ≈ e−λλs/s!, leading to a first
order approximation for the inverse λ ∼ ρ0s for s →∞, where ρ = ρ0 solves

(pess!ss)1/s = ρe1−ρ. (2.4)

In §4 we identify some of the higher terms of the asymptotic expansion λ ∼ ρ0s + ρ1 +
ρ2s

−1 + . . . using the connection between Q(s, λ) and the confluent hypergeometric func-
tion. All higher terms can be expressed in terms of ρ0.

General case. For all other cases with p ∈ (0, 1) we employ a uniform asymptotic
expansion for the incomplete gamma function derived in [14], in which the standard nor-
mal distribution function (or error function) is the leading approximant. In [15] the first
coefficients in the expansion were derived by using a perturbation method for a differential
equation, but this approach cannot be transferred directly to the inversion of the Erlang B
formula. We describe an alternative method that uses Taylor expansions and the connection
between the derivatives of Q(s, λ) and Hermite polynomials. This is done in §5.
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Table 1: Numerical results of the approximation (3.4) for p = 4
5 (q = 1

4 ) and several values
of s.

s λ B(s, λ) rel. error
5 2.389 101 8.006 10−1 7.53 10−4

10 4.896 101 8.007 10−1 8.45 10−4

25 1.242 102 8.007 10−1 9.19 10−4

50 2.497 102 8.008 10−1 9.47 10−4

75 3.752 102 8.008 10−1 9.57 10−4

100 5.007 102 8.008 10−1 9.62 10−4

250 1.254 103 8.008 10−1 9.71 10−4

500 2.509 103 8.008 10−1 9.74 10−4

1000 5.018 103 8.008 10−1 9.75 10−4

In §6 we discuss Newton’s method for further improving the accuracy of the approxi-
mation for the inverse found by our asymptotic techniques, and finally, in §7, we apply the
same asymptotic techniques to address the inverse problem for the Erlang C formula.

3 Inversion for p ↑ 1

When p ↑ 1 the solution λ of (1.2) satisfies λ À s (see §2), and we can use the standard
asymptotic expansion of the incomplete gamma function (see [17, p. 280])

Γ(s, λ) ∼ λs−1e−λ
∞∑

n=0

(−1)n(1− s)n

λn
, (3.1)

where (α)n is the Pochhammer symbol defined by (α)0 = 1 and (α)n = Γ(α + n)/Γ(α)
for n = 1, 2, 3, . . .. When α is a non-positive integer we use the following interpretation
of the Pochhammer symbol. We have for m,n = 0, 1, 2, . . .

(−m)n =





0, if n > m,

(−1)nm!/(m− n)!, if n ≤ m.
(3.2)

It follows that for s = 1, 2, 3, . . . the series in (3.1) terminates and contains s terms, giving
an exact representation.

By using (2.2) and the asymptotic expansion, the asymptotic inversion problem reads

q =
1− p

p
∼ s

λ

∞∑

n=0

(−1)n(1− s)n

λn
. (3.3)

When q is small we can find an asymptotic expansion of the solution λ in terms of a series
in powers of q, which holds whether or not s is large. By inverting (3.3) we find

λ−1 ∼ q

s
− (s− 1)q2

s2
+

(s− 1)q3

s2
− (s− 1)(s2 + 1)q4

s4
+ . . . , (3.4)

and we see that it gives the exact result λ−1 = q when s = 1.
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Table 2: Numerical results of the approximation (3.4) for s = 100 and several values of p.

p λ B(s, λ) rel. error
0.60 3.082 102 6.7711 10−1 1.29 10−01

0.70 3.433 102 7.0992 10−1 1.42 10−02

0.80 5.007 102 8.0077 10−1 9.62 10−04

0.90 9.990 102 9.0002 10−1 1.67 10−05

0.99 9.999 103 9.9000 10−1 1.04 10−10

In Table 1 we give the results of numerical computations. We take p = 4
5 (q = 1

4 ) and
several values of s. We have used the terms in (3.4) up to (and including) the term with q4,
as shown in (3.4). We see a rather uniform error for the used values of s. The relative error
is |B(s, λ)/p − 1|. In Table 2 we give the results of the approximation (3.4) for s = 100
and several values of p.

3.1 Using an alternative asymptotic expansion

Next we try to solve (1.2) by using the asymptotic expansion of Γ(s, λ) given in Appendix
A; see (A.6). It follows that we can write (1.2) in the form of the asymptotic identity

q = r

∞∑

n=0

Gn(r)
λn

, r =
s

λ
. (3.5)

Because G0(r) = 1/(1− r), the first term approximation gives

q =
r

1− r
⇒ r =

q

1 + q
⇒ λ =

s(1 + q)
q

, (3.6)

compare with (3.4). Note that this first term follows from the approximation B(s, λ)−1 ≈
λ

λ−s for λ > s. In [9], Equation (46), it is proved that in fact B(s, λ)−1 ≤ λ
λ−s . To find

higher approximations we write

λ0 =
s(1 + q)

q
, (3.7)

which gives q = s/(λ0 − s), and Equation (3.5) can be written as

s

λ0 − s
= r

∞∑

n=0

Gn(r)
λn

, r =
s

λ
. (3.8)

In this section we have p ↑ 1, hence q ↓ 0, and we assume that λ0 is large. Thus, we try to
find a solution λ−1 of (3.8) of the form

λ−1 ∼ λ1λ
−1
0 + λ2λ

−2
0 + λ3λ

−3
0 + λ4λ

−4
0 + λ5λ

−5
0 + . . . , (3.9)

and we find by series manipulations

λ1 = λ2 = 1, λ3 = s, λ4 = 1− s + s2, λ5 = −4 + 7s− 3s2 + s3. (3.10)

In Table 3 we give the results of numerical computations. We take p = 4
5 (q = 1

4 ) and
several values of s. We have used in (3.9) the terms up to (and including) the term with
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Table 3: Numerical results of the approximation (3.9) for p = 4
5 (q = 1

4 ) and several values
of s.

s λ B(s, λ) rel. error
5 2.382441 101 8.000449 10−1 5.62 10−5

10 4.879344 101 8.000277 10−1 3.47 10−5

25 1.237737 102 8.000136 10−1 1.70 10−5

50 2.487669 102 8.000073 10−1 9.19 10−6

75 3.737646 102 8.000050 10−1 6.30 10−6

100 4.987635 102 8.000038 10−1 4.79 10−6

250 1.248761 103 8.000016 10−1 1.97 10−6

500 2.498761 103 8.000008 10−1 9.91 10−7

1000 4.998760 103 8.000004 10−1 4.98 10−7

Table 4: Numerical results of the approximation (3.9) for s = 100 and several values of p.

p λ B(s, λ) rel. error
0.60 2.484512 102 6.001592 10−1 2.65 10−04

0.70 3.319500 102 7.000329 10−1 4.70 10−05

0.80 4.987635 102 8.000038 10−1 4.79 10−06

0.90 9.988913 102 9.000001 10−1 1.19 10−07

0.99 9.998990 103 9.900000 10−1 9.90 10−13

λ−4
0 . The relative error is |B(s, λ)/p − 1|. We see a better performance compared with

the results in Table 1. In Table 4 we give the results of the approximation (3.9) for fixed
s = 100 and several values of p. Again, we see a better performance compared with the
results in Table 2.

4 Inversion for p ↓ 0

Another relatively simple asymptotic inversion is possible when p is small. In that case we
expect a solution of (1.2) for λ < s (see §2). We use the relation

Γ(s, λ) = Γ(s)− γ(s, λ) (4.1)

and the convergent expansion (see [17, p. 279] or Theorem 5 in Jagerman [8])

γ(s, λ) = λse−λ
∞∑

n=0

λn

(s)n+1
, (4.2)

which can also be viewed as an asymptotic expansion for large values of s, with λ fixed.
For the asymptotic inversion, however, it seems better to use the asymptotic expansion
given in Appendix B, see (B.6). When we use this in (2.1) we have the asymptotic inversion
problem

1
p

= 1 + s! λ−seλ −
∞∑

n=0

gn(ρ)
sn

, ρ =
λ

s
. (4.3)
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The expansion holds for large values of s, uniformly for fixed ρ ∈ (0, 1).
When λ is small compared with s, the first term in the right-hand side of (4.1) is much

larger than the second term. Hence, first we consider the inversion of

1
p

= s! λ−seλ. (4.4)

We write
s! = Γ(s + 1) =

√
2πs e−sssΓ∗(s), (4.5)

with, according to Stirling’s formula,

Γ∗(s) = 1 +O (
s−1

)
, s →∞. (4.6)

Equation (4.4) can thus be written as

(
p
√

2πsΓ∗(s)
)1/s

= ρe1−ρ. (4.7)

When p is small we consider the solution ρ of this equation in the interval (0, 1) and denote
it by ρ0. Observe that the right-hand side of (4.7) has a maximum at ρ = 1 (that is, when
λ = s), and a real solution is only possible when p is small enough: p should satisfy

p ≤ 1√
2πs Γ∗(s)

. (4.8)

It follows that the method of this section fails if the equation in (4.7) does not have a
real solution. In that case it is better to use a different method for the transition area λ ∼ s
(see §5). In Fig. 4 the lower curve indicates where in (4.8) the equal sign holds. For pairs
(s, p) properly below this curve the method of this section can be used.

To solve equation (4.7) and to obtain higher approximations it is convenient to introduce
the quantity η defined by

1
2
η2 = ρ− 1− ln ρ, ρ > 0, sign(η) = sign(ρ− 1). (4.9)

This relation plays a role in later sections also, and we give details on the inversion (that
is, finding ρ when η is given) in Appendix C.

It follows from (4.9) that
e−ssseλλ−s = e

1
2
sη2

, (4.10)

and that we can write (4.4) in the form

p
√

2πs Γ∗(s) = e−
1
2
sη2

. (4.11)

We denote the solution of this equation by η0. Since we assume that p satisfies (4.8) and
that the corresponding ρ−value belongs to (0, 1] , we have η0 ≤ 0, that is,

η0 = −
√
−2

s
ln

(
p
√

2πsΓ∗(s)
)
. (4.12)

The corresponding value of ρ follows from inverting the relation in (4.9) for ρ ≤ 1, and is
denoted by ρ0.
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We next turn to the inversion of (4.3). By using (4.5) and (4.10), this equation can be
written in the form

1
p

= 1 +
√

2πsΓ∗(s)e
1
2
sη2 −

∞∑

n=0

gn(ρ)
sn

. (4.13)

We eliminate
√

2πs Γ∗(s) by using (4.11) with η = η0 and obtain

p
∞∑

n=0

gn(ρ)
sn

= p− 1 + e
1
2
s(η2−η2

0). (4.14)

We assume that |η − η0| is small, and expand ρ as

ρ = ρ0 +
∞∑

n=1

ρn(η − η0)n, (4.15)

where the first few coefficients are given by

ρ1 = − η0ρ0

1− ρ0
, ρ2 =

ρ0(η2
0 − (1− ρ0)2)
2(1− ρ0)3

,

ρ3 = −ρ0η0(η2
0(1 + 2ρ0)− 3(1− ρ0)2)

6(1− ρ0)3
.

(4.16)

These values reduce to the first coefficients given in (C.4) when η0 → 0. However, when
η0 = 0 we have ρ0 = 1, and the given values ρj cannot be computed straightforwardly. In
fact, we need a limiting process for η0 → 0, or a series expansion for small values of η0.
For example, by using (C.4) with η and ρ replaced with η0 and ρ0, respectively, we have

ρ1 = 1 + 2
3
η0 +O(η2

0), ρ2 = 1
3

+ 1
12

η0 +O(η2
0). (4.17)

In this section we assume that ρ0 is strictly less than unity, and we don’t need these expan-
sions.

It turns out, after formal asymptotic series operations, that η can be expanded in the
form

η = η0 + η1s
−1 + η2s

−2 + . . . . (4.18)

After substituting (4.15) and (4.18) into (4.14), and comparing equal powers of s, we find

η1 =
1
η0

ln
(

1 +
pρ0

1− ρ0

)
, (4.19)

and

η2 = −η2
1(1− ρ0)2(1− ρ0 + pρ0) + 2pρ0(1 + η0η1)

2η0(1− ρ0)2(1− ρ0 + pρ0)
. (4.20)

By using these values in (4.19), we invert (4.9) to obtain the corresponding ρ−value, from
which we finally obtain an approximation for λ = sρ.

In Table 5 numerical results are given of the approximation (4.18) of Equation (4.3) for
p = 0.0005 and p = 0.0001 and several values of s. These values of p and s satisfy (4.8).
We see that the results become worse as s increases. To explain this, we observe that in the
table the ratio λ/s approaches unity for larger values of s. In that case the approximation
(4.18) is not valid. It holds when ρ is strictly less than unity.

To see the effect of smaller values of p with s fixed we give in Table 6 the results with
s = 100 and s = 1000, and p = 2−n, n = 10, 11, 12, . . . , 20. We see, as expected, that
the relative errors become smaller as p decreases.
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Table 5: Numerical results of the approximation (4.18) of Equation (4.3) for p = 0.0005
and p = 0.0001 and several values of s.

p = 0.0005 p = 0.0001
s λ rel. error λ rel. error
5 0.64858 100 4.65 10−6 0.45195 100 5.13 10−7

10 2.80279 100 8.02 10−6 2.26012 100 8.90 10−7

25 1.22636 101 1.57 10−5 1.08800 101 1.69 10−6

50 3.12920 101 2.62 10−5 2.88661 101 2.72 10−5

75 5.18767 101 3.55 10−5 4.86150 101 3.59 10−6

100 7.32486 101 4.40 10−5 6.92647 101 4.38 10−6

250 2.08287 102 8.89 10−5 2.01034 102 8.30 10−6

500 4.42547 102 1.54 10−4 4.31411 102 1.36 10−5

1000 9.21730 102 2.72 10−4 9.04829 102 2.24 10−5

Table 6: Numerical results of the approximation (4.15) for s = 100 and s = 1000, and
p = 2−n for n = 10, 11, . . . , 20.

s = 100 s = 1000
n λ rel. error λ rel. error

10 7.517 101 1.24 10−4 9.300 102 8.80 10−4

11 7.318 101 4.25 10−5 9.215 102 2.62 10−4

12 7.138 101 1.54 10−5 9.138 102 8.57 10−5

13 6.972 101 5.77 10−6 9.067 102 3.00 10−5

14 6.818 101 2.24 10−6 9.003 102 1.10 10−5

15 6.674 101 8.87 10−7 8.942 102 4.18 10−6

16 6.539 101 3.59 10−7 8.885 102 1.64 10−6

17 6.412 101 1.48 10−7 8.831 102 6.54 10−7

18 6.291 101 6.18 10−8 8.780 102 2.67 10−7

19 6.177 101 2.61 10−8 8.732 102 1.10 10−7

20 6.067 101 1.12 10−8 8.685 102 4.63 10−8

5 Using the uniform asymptotic representation of Q(s, λ)

The expansions used for the incomplete gamma function Q(s, λ) (or Γ(s, λ)), see (3.1),
are valid when λ is large with respect to s. The expansion in (A.6) is more powerful; it
holds when r = s/λ belongs to an interval [0, r0], where r0 is a fixed number, r0 < 1.
Next we consider an approximation of Q(s, λ) that is valid for large s, and which holds
uniformly with respect to λ ≥ 0.

Let
erfc z =

2√
π

∫ ∞

z
e−t2 dt (5.1)

denote the complementary error function. We use quantities ρ and η defined by the relation
in (4.9) (see also Appendix C). Then we have

Q(s, λ) = 1
2
erfc

(
η
√

s/2
)

+ Rs(η), (5.2)
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where Rs(η) has the asymptotic representation

Rs(η) =
e−

1
2
sη2

√
2πs

Ss(η), Ss(η) ∼
∞∑

n=0

Cn(η)
sn

, s →∞. (5.3)

This asymptotic expansion is valid for η ∈ R, that is, for ρ ≥ 0, or λ ≥ 0. A few details
on the coefficients Cn(η) are given in Appendix D.

The inversion problem (1.2) is written in the form (for the function Γ∗ see (4.5))

B(s, λ)−1 = 1 +
√

2πsΓ∗(s)e
1
2
sη2

Q(s, λ), (5.4)

or as
e

1
2
sη2

Q(s, λ) =
q√

2πs Γ∗(s)
, q =

1− p

p
. (5.5)

Next we use (5.2), in which the complementary error function is the main approximant.
We try to find a number η0 defined by the equation

1
2
e

1
2
sη2

0erfc
(
η0

√
s/2

)
=

q√
2πsΓ∗(s)

. (5.6)

The left-hand side is a function of one variable, and, hence, the inversion of this equation
is simpler than that of (5.5).

Let y = η0

√
s/2. The inversion problem (5.6) then reads

f(y) = 1
2
ey2

erfc y − κ = 0, κ =
q√

2πsΓ∗(s)
. (5.7)

We have
f ′(y) = yey2

erfc y − 1√
π

= 2y(f(y) + κ)− 1√
π

. (5.8)

Equation (5.7) can easily be solved numerically, for example by using Newton’s method.
When we have computed y and η0 = y

√
2/s we can compute a first approximation of ρ,

say ρ0, from (4.9) with η replaced with η0 and sign(η0) = sign(ρ0 − 1). After finding ρ0,
we have a first approximation of λ, say λ0, from λ0 = sρ0.

In Table 7 we give the results of this first approximation λ0 for fixed s = 100 and
several values of p. We see a better performance for values of p near 0 and 1. In Table 8
we give the results for fixed p = 0.1 and p = 0.01 and several values of s. We see that
larger values of s do not give a better approximation.

5.1 Bounds

From (5.4) and (5.2) we obtain

B(s, λ)−1 ∼
√

s

2φ(η
√

s)
erfc(η

√
s/2), (5.9)

with φ(x) = 1√
2π

e−
1
2
x2

. Including more terms of Rs(η) in (5.2) is expected to yield
sharper approximations. The approximation (5.9) can be complemented by bounds derived
in [10]:

B(s, λ)−1 ≤
√

s

2φ(η
√

s)
erfc(η

√
s/2) +

2
3

+
√

s

φ(η
√

s)(12s− 1)
, (5.10)

B(s, λ)−1 ≥
√

s

2φ(η
√

s)
erfc(η

√
s/2) +

2
3
. (5.11)
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Table 7: Numerical results of the approximation based on the inversion of (5.6) for s = 100
and several values of p.

p λ0 B(s, λ0) rel.error
1.000 10−4 6.926 101 1.00004 10−4 3.64 10−5

1.000 10−1 1.047 102 1.03411 10−1 3.41 10−2

2.000 10−1 1.230 102 2.13512 10−1 6.76 10−2

3.000 10−1 1.464 102 3.29897 10−1 9.97 10−2

4.000 10−1 1.802 102 4.51501 10−1 1.29 10−1

5.000 10−1 2.342 102 5.76112 10−1 1.52 10−1

6.000 10−1 3.316 102 6.99680 10−1 1.66 10−1

7.000 10−1 5.404 102 8.15367 10−1 1.65 10−1

8.000 10−1 1.144 103 9.12675 10−1 1.41 10−1

9.000 10−1 4.537 103 9.77965 10−1 8.66 10−2

9.990 10−1 4.998 107 9.99998 10−1 9.99 10−4

Table 8: Numerical results of the approximation based on the inversion of (5.6) for p = 0.1
and p = 0.01 and several values of s.

p = 0.1 p = 0.01
s λ0 rel. error λ0 rel. error
5 2.929 100 3.99 10−2 1.362 100 4.48 10−3

10 7.597 10
0

3.73 10−2 4.464 100 4.05 10−3

25 2.301 10
1

3.53 10−2 1.613 101 3.73 10−3

50 4.988 10
1

3.46 10−2 3.791 101 3.58 10−3

75 7.718 10
1

3.43 10−2 6.074 101 3.53 10−3

100 1.047 102 3.41 10−2 8.408 101 3.49 10−3

250 2.709 10
2

3.38 10−2 2.283 102 3.42 10−3

500 5.490 10
2

3.37 10−2 4.741 102 3.39 10−3

1000 1.106 10
3

3.36 10−2 9.713 102 3.37 10−3

These bounds, and hence (5.9), are particularly sharp for the case λ < s (η < 0). The
accuracy deteriorates with η, but improves when s is increasing. Examples for s = 10 and
s = 20 are depicted in Figures 2 and 3, respectively. In the present study we refrain from
using the bounds for inversion purposes, since the asymptotic inversion introduced in §5
already leads to highly accurate results in the case λ < s. Bounds similar to but sharper
than (5.10) and (5.11) can be found in [10].

5.2 Higher order approximation

It is possible to obtain higher approximations, as in [15] for the asymptotic inversion of the
equation Q(s, λ) = c, 0 < c < 1, for large values of s, by using the uniform asymptotic
representation of Q(s, λ) given in (5.2). Then the inversion problem (5.5) can be written
as

e
1
2
sη2

[
1
2
erfc

(
η
√

s/2
)

+ Rs(η)
]

=
q√

2πs Γ∗(s)
, q =

1− p

p
. (5.12)

11
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Figure 2: B(s, λ) and lower and upper bounds for s = 10 and λ ∈ [0, 30].

5 10 15 20 25 30

0.1

0.2

0.3

Figure 3: B(s, λ) and lower and upper bounds for s = 20 and λ ∈ [0, 30].

We can derive an asymptotic expansion of the solution η of this equation in the form

η ∼ η0 +
η1

s
+

η2

s2
+ . . . , s →∞, (5.13)

where η0 is the solution of (5.6) and the higher order coefficients ηj , j ≥ 1 can be obtained
by substituting the expansion (5.13) in to (5.12), after replacing Rs(η) by the expansion
given in (5.3). Details of this analysis are given in Appendix D. The first coefficient is
found to be

η1 =
1
η0

ln
(

1 +
η0C0(η0)

1− η0q/Γ∗(s)

)
, (5.14)

where C0(η) is the first coefficient in the expansion in (5.3).
With η ∼ η0 + η1/s the corresponding λ−value follows from solving (4.9) for ρ, from

which we obtain an approximation λ = ρs. The argument of the logarithm in (5.14) will
become negative when p ↑ 1 (q ↓ 0), because η0q/Γ∗(s) will approach unity in that case.
In Fig. 4 the upper curve corresponds to values s and p where the argument of the logarithm
in (5.14) vanishes.

12



p

a

0.5

1.0

50 100O

PSfrag replacements

s
0

Figure 4: For values of s and p above the upper curve the argument of the logarithm in
(5.14) is negative, and the expansion in (5.13) is useless in that case. The lower curve
corresponds with values s and p where in (4.8) the equal sign holds.

In Table 9 we give the results of numerical computations. We take p = 0.1 and p = 0.01
and several values of s. We have used the term η1 of (5.14) in the expansion (5.13).
Comparing the results with those of Table 8 we see for p = 0.1 an improvement for the
smaller values of s. It appears that the argument of the logarithm in (5.14) becomes smaller
as s increases.

6 Newton’s method for inverting B(s, λ)

Jagerman [9] uses Newton’s method to derive an iteration that is well suited for determining
the inverse λ that solves the equation B(s, λ) = p. In the context of the present study,
Newton’s method can be applied for computing even better approximations of λ through

λ(n+1) = λ(n) − B(s, λ(n))− p

(s/λ(n) − 1 + B(s, λ(n)))B(s, λ(n))
, n = 0, 1, . . . , (6.1)

with λ(0) an asymptotic approximation.
For the asymptotic approximations given in §3.1, §4, and §5.2 we selected 30.000 ran-

dom pairs (p, s), with s ∈ [5, 1000] and p in intervals which depend on the method.
For the asymptotic approximation (3.9) for p ↑ 1 we used all coefficients λj given in

(4.9). We took p ∈ (0.1, 0.9999), and we found that the Newton process always converges
to at least 10 digits accuracy in λ, with at most 4 iterations. For the asymptotic approxi-
mation (4.18) for small values of p we used the coefficients ηj given in (4.19)–(4.20). We
took p ∈ (3.05 10−5, 1.8 10−2), p and s such that pΓ∗(s)

√
2πs ≤ 0.1 (see Equation (4.8)),

and found that the Newton process always converges to at least 10 digits accuracy in λ,
with at most 3 iterations. Finally, for the approximation (5.13), with η1 given in (5.14),
we took p ∈ (0.30 10−5, 0.5), and found that the Newton process always converges to at

13



Table 9: Numerical results of the approximation based on the inversion of (5.12) for p =
0.1 and p = 0.01 and several values of s by using (5.13), only with η1 of (5.14).

p = 0.1 p = 0.01
s λ0 rel. error λ0 rel. error
5 2.881 100 3.50 10−4 1.361 100 1.67 10−5

10 7.510 100 4.15 10−4 4.461 100 4.01 10−6

25 2.283 101 6.32 10−4 1.612 101 1.36 10−6

50 4.955 101 9.24 10−4 3.790 101 1.34 10−6

75 7.673 101 1.18 10−3 6.073 101 1.49 10−6

100 1.041 102 1.43 10−3 8.406 101 1.63 10−6

250 2.695 102 2.86 10−3 2.283 102 2.20 10−6

500 5.464 102 5.42 10−3 4.740 102 2.79 10−6

1000 1.100 103 1.21 10−2 9.712 102 3.64 10−6

least 10 digits accuracy in λ, with at most 5 iterations. The small values of p require only
2 iterations.

7 The inversion of the Erlang C formula

The Erlang C gives the steady-state probability of delay in the Erlang delay model or
M/M/s queue. It can be expressed in terms of the Erlang B formula as

C(s, λ)−1 =
λ

s
+

(
1− λ

s

)
B(s, λ)−1, λ < s. (7.1)

Note that we now impose the condition λ < s. For more background on the Erlang C
formula we refer to [3, 12, 13, 18]. In this section we consider the inversion problem of
p = C(s, λ) , p ∈ (0, 1) for a given (possibly large) value of s.

Fig. 5 shows graphs of C(s, ρs) for 0 ≤ ρ ≤ 1 and s = 1, 3, 5, 10, 25, 50, 100, 1000
(the far left curve is for s = 1, the far right one for s = 1000).

7.1 Inversion of C(s, λ) for p ↓ 0

We write the inversion problem in the form

p−1 = ρ + (1− ρ)

(
1 +

√
2πs Γ∗(s)e

1
2
sη2 −

∞∑

n=0

gn(ρ)
sn

)
, ρ =

λ

s
, (7.2)

where we have used (2.1), (2.2), (4.1), (4.5), (4.9), (4.10), and (B.6). We try to find the
coefficients ηj in the expansion

η = η0 + η1s
−1 + η2s

−2 + η3s
−3 . . . . (7.3)

To obtain the first coefficient η0, we neglect in (7.2) the term 1 − g0(ρ), the remaining
terms of the series, and the other two quantities ρ (when p is small, ρ is small as well).
Thus we consider (cf. (4.11))

p−1 =
√

2πs Γ∗(s)e
1
2
sη2

0 , (7.4)
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Figure 5: Graphs of C(s, ρs) for 0 ≤ ρ ≤ 1 and s = 1, 3, 5, 10, 25, 50, 100, 1000 (the far
left curve is for s = 1, the far right one for s = 1000.

where p satisfies the same condition as for p in (4.8). We obtain from (7.4) as a first
approximation to η the solution

η0 = −
√
−2

s
ln

(
p
√

2πsΓ∗(s)
)
. (7.5)

Proceeding as in §4 we eliminate
√

2πsΓ∗(s) by using (7.4), which gives for (7.1) the
relation

p−1 = ρ + (1− ρ)

(
1 +

1
p
e

1
2
s(η2−η2

0) −
∞∑

n=0

gn(ρ)
sn

)
. (7.6)

Expanding ρ as in (4.15) we find after series manipulations

η1 = − 1
η0

ln(1− ρ0), (7.7)

η2 = −η2
1(1− ρ0)2 + 2η1ρ0η0 + 2pρ0)

2η0(1− ρ0)2
, (7.8)

and

η3 =
c3η

3
1 + c2η

2
1 + c1η1 + c0

2η2
0(1− ρ0)4

, (7.9)

where
c0 = −pη0ρ0(−6ρ0 + pρ0 − 2),

c1 = 2ρ0(p(1− ρ0)2 + η2
0ρ0 + pρ0η

2
0 + pη2

0),

c2 = η0ρ0(2(1− ρ0)2 + η2
0(1 + ρ0)),

c3 = (1− ρ0)4.

(7.10)

When we have computed the values ηj we use (7.3) for obtaining the approximation of
η, from which the corresponding ρ follows by inverting (4.9), which finally gives λ = ρs.

In Table 10 numerical results are given of the approximation (7.3) of equation (7.2) for
p = 0.0005 and p = 0.0001 and several values of s. We see that the results become worse
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Table 10: Numerical results of the approximation (7.3) of equation (7.2) for p = 0.0005
and p = 0.0001 and several values of s.

p = 0.0005 p = 0.0001
s λ rel. error λ rel. error
5 0.28896 100 2.43 10−5 0.44284 100 3.81 10−6

10 2.68457 100 2.83 10−4 2.18941 100 6.70 10−5

25 1.16831 101 2.45 10−3 1.04748 101 6.99 10−4

50 2.98508 101 8.22 10−3 2.78015 101 2.45 10−3

75 4.95860 101 1.51 10−2 4.68881 101 4.54 10−3

100 7.01351 101 2.25 10−2 6.68938 101 6.76 10−3

250 2.00682 102 7.02 10−2 1.95167 102 2.06 10−2

500 4.28379 102 1.49 10−1 4.20576 102 4.29 10−2

1000 8.95836 102 2.91 10−1 8.85585 102 8.29 10−2

as s increases. To explain this, we observe that in the table the ratio λ/s approaches unity
for larger values of s. In that case the approximation (7.3) is not valid. To see the effect of
smaller values of p with s fixed we give in Table 11 the results with s = 100 and s = 1000,
and p = 2−n, n = 10, 11, 12, . . . , 20. We see, as expected, that the relative errors become
smaller as p decreases.

Table 11: Numerical results by using approximation (7.3) for s = 100 and s = 1000, and
p = 2−n for n = 10, 11, 12, . . . , 20.

s = 100 s = 1000
n λ rel. error λ rel. error

10 7.159 101 4.18 10−2 8.979 102 5.30 10−1

11 7.008 101 2.21 10−2 8.957 102 2.85 10−1

12 6.864 101 1.26 10−2 8.916 102 1.60 10−1

13 6.727 101 7.72 10−3 8.869 102 9.52 10−2

14 6.597 101 4.95 10−3 8.822 102 6.00 10−2

15 6.474 101 3.31 10−3 8.776 102 3.96 10−2

16 6.356 101 2.29 10−3 8.731 102 2.72 10−2

17 6.243 101 1.62 10−3 8.687 102 1.93 10−2

18 6.135 101 1.18 10−3 8.644 102 1.41 10−2

19 6.032 101 8.78 10−4 8.603 102 1.05 10−2

20 5.932 101 6.63 10−4 8.563 102 8.05 10−3

When we compare the results of the case p ↓ 0 with the corresponding results for the
Erlang B formula in §4, we observe that the present results are worse, even when we have
one extra term in the expansion (7.3) (cf. (4.18)). An explanation might be that in the
simplified Equation (7.4), for computing the first term η0, more terms are neglected in
(7.2) than in the corresponding case of §4 (cf. (4.3) and (4.11)).
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7.2 Inversion of C(s, λ) for p ↑ 1

We use in (7.1) representation (5.3) and obtain the inversion problem

p−1 = ρ + (1− ρ)
(
1 +

√
2πs Γ∗(s)e

1
2
sη2

[
1
2
erfc(η

√
s/2) + Rs(η)

])
, (7.11)

which we solve for η given in (4.9). When p ↑ 1 we have for the solution λ the estimate
λ ∼ s, that is, ρ ∼ 1 ∼ −η (see (C.4)), and we consider for a first approximation to η the
reduced equation (compare with (5.6) and (5.7))

1− p

p
√

πΓ∗(s)
= −η

√
s/2e

1
2
sη2

erfc(η
√

s/2), (7.12)

the solution of which will be called η0. This gives the first coefficient of the expansion
(7.3).

To find higher coefficients ηj we proceed as in §5 and Appendix D. We expand ρ as in
(4.15) and in this way we find the equivalent of (D.14), which reads for the present case

∞∑

n=0

Cn(η0)s−n +
εs

1!

∞∑

n=0

D(1)
n (η0)s−n +

(εs)2

2!

∞∑

n=0

D(2)
n (η0)s−n + . . .

∼ 1− p

η0pΓ∗(s)

[
1− η0

ρ− 1
e−

1
2
s(η2−η2

0)

]
.

(7.13)

The coefficients D
(k)
n (η0) are given in (D.15). Expanding in powers of s−1, using (4.15),

and comparing terms with powers s0, we find

η1 =
1
η0

ln
η0

ρ0 − 1
, (7.14)

which, for small values of |η0|, can be expanded as

η1 = −1
3

+ 1
36

η0 + 1
1620

η2
0 − 7

6480
η3
0 + . . . . (7.15)

In Table 12 we give numerical results with s = 100 and s = 1000, and p = 1 − 2−n,
n = 1, 2, . . . , 10. We see a rather uniform relative error for these values of p and s.

7.3 Newton’s method for inverting C(s, λ)

For computing better approximations of λ that solves the equation C(s, λ) = p, Newton’s
method result in the scheme

λ(n+1) = λ(n) − C(s, λ(n))− p

C ′(s, λ(n))
,

C ′(s, λ) =
dC(s, λ)

dλ
=

(λ + (s− λ)2 + λ(1− C(s, λ)))C(s, λ)
λ(s− λ)

,

(7.16)

with λ(0) an asymptotic approximation.
For the asymptotic approximations given in §7.1, §7.2, we selected 30.000 random pairs

(p, s), with s ∈ [5, 1000] and p in intervals which depend on the method. For the asymp-
totic approximation (7.3) for small values of p we used the coefficients ηj given in (7.7)–
(7.9). We took p ∈ (3.05 10−6, 1.01 10−2), such that pΓ∗(s)

√
2πs ≤ 0.1 (see the remark

after Equation (7.4)), and found that the Newton scheme always converges to at least 10
digits accuracy in λ, with at most 6 iterations. For the approximation η ∼ η0 + η1/a of
§7.2, with η1 given in (7.14), we took p ∈ (0.1, 0.9999), and found that the Newton scheme
always converges to at least 10 digits accuracy in λ, with at most 4 iterations.

17



Table 12: Numerical results by using approximation (7.3) with η1 given in (7.5) for s =
100 and s = 1000, and p = 1− 2−n for n = 1, 2, . . . , 10.

s = 100 s = 1000
p λ rel. error λ rel. error

5.000 10−1 9.470 101 3.17 10−2 9.838 102 1.03 10−2

7.500 10−1 9.748 101 3.63 10−2 9.927 102 1.18 10−2

8.750 10−1 9.863 101 3.83 10−2 9.964 102 1.24 10−2

9.375 10−1 9.916 101 3.92 10−2 9.981 102 1.27 10−2

9.688 10−1 9.942 101 3.97 10−2 9.989 102 1.29 10−2

9.844 10−1 9.954 101 3.99 10−2 9.993 102 1.30 10−2

9.922 10−1 9.960 101 4.00 10−2 9.995 102 1.30 10−2

9.961 10−1 9.964 101 4.01 10−2 9.996 102 1.30 10−2

9.980 10−1 9.965 101 4.01 10−2 9.996 102 1.30 10−2

9.990 10−1 9.966 101 4.01 10−2 9.996 102 1.30 10−2

A An alternative asymptotic expansion of Γ(s, λ) for large λ

The asymptotic expansion in (3.1) is of no use when s becomes large as well. We give a
different expansion in which the range of s can be extended, say in the sense s < λ−A

√
λ,

where A is a fixed positive number and λ is large.
We write

Γ(s, λ) = λs

∫ ∞

1
ts−1e−λt dt = λse−λ

∫ ∞

1
e−λψ(t) dt

t
, (A.1)

where
ψ(t) = t− r ln t− 1, s = rλ. (A.2)

We write f0(t) = 1 and integrate by parts

Γ(s, λ) = λse−λ

∫ ∞

1

f0(t)
t

e−λψ(t) dt = −λs−1e−λ

∫ ∞

1

f0(t)
t− r

de−λψ(t), (A.3)

which gives

Γ(s, λ) = λs−1e−λ

[
G0(r) +

∫ ∞

1
e−λψ(t) f1(t)

t
dt

]
, (A.4)

where

G0(r) =
1

1− r
, f1(t) = t

d

dt

f0(t)
t− r

. (A.5)

Continuing this we obtain

Γ(s, λ) = λs−1e−λ

[
N−1∑

n=0

Gn(r)
λn

+
1

λN−1
RN ,

]
, N = 0, 1, 2, . . . , (A.6)

where

fn(t) = t
d

dt

fn−1(t)
t− r

, Gn(r) =
fn(1)
1− r

, n = 0, 1, 2, . . . (A.7)
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and

Rn =
∫ ∞

1
e−λψ(t) fn(t)

t
dt. (A.8)

The expansion in (A.6) holds for large values of λ, with r = s/λ satisfying 0 ≤ r ≤
r0 < 1, where r0 is fixed.

We have the recursion for the coefficients

Gn+1(r) =
r−n

r − 1
d

dr

[
rn+1Gn(r)

]
, n = 1, 2, 3, . . . , (A.9)

and the first few are given by

G0(r) =
1

1− r
, G1(r) = − 1

(1− r)3
, G2(r) =

2 + r

(1− r)5
,

G3(r) = −6 + 8r + r2

(1− r)7
, G4(r) =

24 + 58r + 22r2 + r3

(1− r)9
.

(A.10)

The expansion in (A.6) is the same as the one given in [7, Eq. (19)], where it is derived
for Γ(s + 1, λ). In Hwang’s notation we have

f̃0(r) = G0(r), f̃j(r) = (−1)jrGj(r), j = 1, 2, 3, . . . . (A.11)

This relation follows from Γ(s+1, λ) = sΓ(s, λ)+λse−λ. The expansion in (A.6) follows
also from [16, Eq. (4.1)], where it is derived with s replaced with −s, with s as the large
parameter.

B An alternative asymptotic expansion of γ(s, λ) for large s

The convergent expansion in (4.2) for the incomplete gamma function γ(s, λ) has an
asymptotic property for large values of s. When s and λ are of the same order this prop-
erty is lost. We derive an asymptotic expansion for γ(s, λ) that holds for large s and
0 ≤ λ ≤ s(1 − δ), where δ is a fixed positive number, δ < 1. This expansion is of the
same nature as the expansion for Γ(s, λ) given in Appendix A, which holds for large λ and
0 ≤ s ≤ λ(1− δ).

We start with the integral representation

γ(s, λ) =
∫ λ

0
ts−1e−t dt, <s > 0, (B.1)

and write it in the form

eλλ−sγ(s, λ) =
∫ 1

0
esψ(t)f0(t) dt, (B.2)

where
f0(t) =

1
1− t

, ψ(t) = ρt + ln(1− t), ρ =
λ

s
. (B.3)

We assume that ρ ∈ (0, 1). In that case, ψ′(t) 6= 0 on (0, 1).
Integrating by parts gives (observe that ψ(0) = 0 and ψ′(0) = ρ− 1)

eλλ−sγ(s, λ) =
1
s

∫ 1

0
f0(t)

desψ(t)

ψ′(t)
=

1
s

f0(0)
1− ρ

+
1
s

∫ 1

0
esψ(t)f1(t) dt, (B.4)
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where

f1(t) = − d

dt

f0(t)
ψ′(t)

. (B.5)

Repeating these steps gives the expansion

eλλ−sγ(s, λ) ∼ 1
s

∞∑

n=0

gn(ρ)
sn

, gn(ρ) =
fn(0)
1− ρ

, (B.6)

which holds as s →∞, uniformly for fixed ρ ∈ (0, 1), and where

fn+1(t) = − d

dt

fn(t)
ψ′(t)

, n = 0, 1, 2, . . . , (B.7)

with f0(t) given in (B.3).
For gn(ρ) we have the recursion

gn+1(ρ) = − ρ

1− ρ

d

dρ
gn(ρ), n = 0, 1, 2, . . . , (B.8)

and the first few are

g0(ρ) =
1

1− ρ
, g1(ρ) = − ρ

(1− ρ)3
, g2(ρ) =

ρ(2ρ + 1)
(1− ρ)5

,

g3(ρ) = −ρ(6ρ2 + 8ρ + 1)
(1− ρ)7

, g4(ρ) =
ρ(24ρ3 + 58ρ2 + 22ρ + 1)

(1− ρ)9
.

(B.9)

The relation with the coefficients Gn(r) given in Appendix 2 for Γ(s, λ) reads

ρn+1gn(ρ) = (−1)nGn(1/ρ), n = 0, 1, 2, . . . . (B.10)

C On the inversion of Equation (4.9)

We recall the relation

1
2
η2 = ρ− 1− ln ρ, ρ > 0, sign(η) = sign(ρ− 1). (C.1)

To invert this equation, we can use the Lambert W function, the solution W (x) of the
equation WeW = x. For example, we can write the equation in the form (using y = 1

2η2)

−ρe−ρ = −e−y−1 ⇒ ρ = e−W (− exp(−y−1))−y−1, (C.2)

which is given by Maple, although ρ = −W (− exp(−y − 1)) can also be viewed as a
formal solution. The problem is the multi-valuedness of this function, and we like to view
the solution ρ(η) of (C.1) as one analytic function on R (and in a certain domain of the
complex plane, which is not our concern at this moment).

It is not difficult to compute ρ(η), for example by using Newton’s method, and it is
convenient to have reliable starting values for this method. Let η 6= 0 and let ρ(0) 6= 1 be a
starting value. Then we can compute better approximations of ρ through

ρ(n+1) = ρ(n) − ρ(n) − 1− ln ρ(n) − 1
2η2

1− 1/ρ(n)
= ρ(n) ln ρ(n) + 1

2η2

ρ(n) − 1
, n = 0, 1, . . . . (C.3)
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For obtaining a starting value for small values of |η|, we can use the expansion

ρ = 1 + η + 1
3
η2 + 1

36
η3 − 1

270
η4 + 1

4320
η5 +O (

η6
)
. (C.4)

The complete expansion converges for |η| < 2
√

π (as explained for a corresponding inver-
sion in [17, pp. 284-286]).

When η < 0 we have the convergent expansion

ρ =
∞∑

k=1

kk−1δk

k!
, δ = e−1− 1

2
η2

. (C.5)

This expansion converges very fast when η is not close to zero, and it follows from applying
the Lagrange inversion formula (see [4, pp. 22-23].

For η → +∞ we can use

ρ = τ + σ +
∞∑

k=1

ck

τk
, τ = 1 + 1

2
η2, σ = ln τ, (C.6)

where

c1 = σ, c2 = σ − 1
2
σ2, c3 = σ − 3

2
σ2 + 1

3
σ3,

c4 = σ − 3σ2 + 11
6

σ3 − 1
4
σ4.

(C.7)

This expansion follows from a similar analysis as given in [4, §2.5].

D Details on the uniform expansion and its asymptotic inversion

The first few coefficients of the expansion in (5.3) are (see [14])

C0(η) =
1

ρ− 1
− 1

η
, C0(0) = −1

3
,

C1(η) =
1
η3
− 1

(ρ− 1)3
− 1

(ρ− 1)2
− 1

12(ρ− 1)
, C1(0) = − 1

540
,

(D.1)

and the higher coefficients an be obtained from the recurrence relation

ηCn(η) =
d

dη
Cn−1(η) +

η

ρ− 1
γn, n ≥ 1, (D.2)

where the numbers γn appear in the well-known asymptotic expansion of the Euler gamma
function. That is, we use (see also (4.5)) the asymptotic expansion

Γ∗(s) ∼
∞∑

n=0

(−1)nγns−n, s →∞, (D.3)

where
γ0 = 1, γ1 = − 1

12
, γ2 = 1

288
, γ3 = 139

51840
, γ4 = − 571

2488320
. (D.4)

Next we give the analysis of the asymptotic inversion of the uniform expansion. We
consider (5.12) and substitute η = η0 + ε, where η0 is the solution of (5.6). We assume
that ε is small and expand in Taylor series. In this way we obtain

1
2

∞∑

k=1

εk

k!
dk

dηk
erfc

(
η
√

s/2
)

+
∞∑

k=0

εk

k!
dk

dηk
Rs(η) =

q(e−
1
2
sη2 − e−

1
2
sη2

0 )√
2πs Γ∗(s)

, (D.5)

21



where the derivatives are evaluated at η0.
We replace the derivatives of Rs(η) by derivatives of the expansion in (5.3) (from

asymptotic analysis it follows that the expansion may be differentiated). In this way,

dk

dηk
Rs(η) ∼ sk e−

1
2
sη2

√
2πs

∞∑

n=0

C
(k)
n (η)
sn

, (D.6)

where
C(0)

n (η) = Cn(η), n ≥ 0, C
(k)
0 (η) = −ηC

(k−1)
0 (η), k ≥ 1, (D.7)

and
C(k)

n (η) = −ηC(k−1)
n (η) +

d

dη
C

(k−1)
n−1 (η), k, n ≥ 1. (D.8)

Observe that C
(k)
n (η) is not the kth derivative of Cn(η). The relation (D.8) follows easily

from the relations in (5.3).
The derivatives of the complementary error function in (D.5) can be replaced by deriva-

tives of the exponential function, see (5.1), and we can use Hermite polynomials. We have
[17, p. 145]

Hn(z) = (−1)nez2 dn

dzn
e−z2

, n = 0, 1, 2, . . . , (D.9)

and it follows that for k ≥ 1

1
2

dk

dηk
erfc

(
η
√

s/2
)

= (−1)k
(

1
2
s
) 1

2
k e−

1
2
sη2

√
π

Hk−1

(
η
√

s/2
)

. (D.10)

We wish to write this in the same form as the right-hand side of (D.6). This can be done by
using the explicit representation of the Hermite polynomials. That is, we use [17, p. 153]

Hn(z) = n!
bn/2c∑

m=0

(−1)m (2z)n−2m

m! (n− 2m)!
. (D.11)

This gives

1
2

dk

dηk
erfc

(
η
√

s/2
)

= sk e−
1
2
sη2

√
2πs

b(k−1)/2c∑

n=0

h
(k)
n (η)
sn

, k ≥ 1, (D.12)

where, for k ≥ 1 and n = 0, 1, 2, . . . , b(k − 1)/2c,

h(k)
n (η) = (−1)k+n2−nηk−1−2n (k − 1)!

n! (k − 1− 2n)!
. (D.13)

Substituting (D.6) and (D.12) into (D.5), we obtain, after some manipulations, the asymp-
totic equality

∞∑

n=0

Cn(η)s−n +
εs

1!

∞∑

n=0

D(1)
n (η)s−n +

(εs)2

2!

∞∑

n=0

D(2)
n (η)s−n + . . .

∼ q(e−
1
2
sε2−sηε − 1)
Γ∗(s)

,

(D.14)

22



with η = η0 and where the coefficients D
(k)
n (η) are given by

D(k)
n (η) = C(k)

n (η) + h(k)
n (η), n ≥ 0, k ≥ 1. (D.15)

We assume an expansion of ε of the form (cf. (5.13))

ε ∼ η1

s
+

η2

s2
+ . . . , s →∞, (D.16)

and collect coefficients of equal powers of s. In this way we can find ηk. For η1 we find
the equation

C0(η0) +
∞∑

k=1

ηk
1

k!
D

(k)
0 (η0) =

q(e−η0η1 − 1)
Γ∗(s)

. (D.17)

From (D.7) and (D.13) we find

C
(k)
0 (η) = (−η)kC0(η), h

(k)
0 (η) = −(−η)k−1, k ≥ 1. (D.18)

This gives
D

(k)
0 (η) = −(−η)k−1 (1 + ηC0(η)) , k ≥ 1. (D.19)

Evaluating the series in (D.17) we obtain

η0C0(η0) + (1 + η0C0(η0))
(
e−η0η1 − 1

)
= η0

q(e−η0η1 − 1)
Γ∗(s)

. (D.20)

Solving for η1 gives the value used in (5.14). That is,

η1 =
1
η0

ln
(

1 +
η0C0(η0)

1− η0q/Γ∗(s)

)
. (D.21)
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