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Abstract

The securitization of financial assets is a form of structured finance, developed by the
U.S. banking world in the early 1980’s (in Mortgage-Backed-Securities format) in order to
reduce regulatory capital requirements by removing and transferring risk from the balance
sheet to other parties. Today, virtually any form of debt obligations and receivables has been
securitized, resulting in an approximately $2.5 trillion ABS outstanding in the U.S. alone1,
a market which is rapidly spreading to Europe, Latin-America and Southeast Asia.

Though no two ABS contracts are the same and therefore each deal requires its very
own model, there are three important features which appear in virtually any securitization
deal: default risk, Loss-Given-Default and prepayment risk. In this paper we will only be
concerned with default and prepayment and discuss a number of traditional (continuous)
and Lévy-based (pure jump) methods for modeling the latter risks. After briefly explaining
the methods and their underlying intuition, the models are applied to a simple ABS deal in
order to determine the rating of the notes. It turns out that the pure jump models produce
lower (i.e. more conservative) ratings than the traditional methods (e.g. Vasicek), which are
clearly incapable of capturing the shock-driven nature of losses and prepayments.

Keywords: Lévy processes; Default probability; Prepayment probability; Rating; Asset-
Backed securities.
Classification: 60G35, 62P05, 91B28, 91B70.

1Source: SIFMA, Q2 2008.

2



New Models for Rating ABS

1 Introduction

Securitization is the process whereby an institution packs and sells a number of financial
assets to a special entity, created specifically for this purpose and therefore termed the
Special Purpose Entity (SPE) or Special Purpose Vehicle (SPV), which funds this purchase
by issuing notes secured by the revenues from the underlying pool of assets. In general, we
can say that securitization is the transformation of illiquid assets (for instance, mortgages,
auto loans, credit card receivables and home equity loans) into liquid assets (marketable
securities that can be sold in securities markets).

This form of structured finance was initially developed by the U.S. banking world in the
early 1980’s (in Mortgage-Backed-Securities format) in order to reduce regulatory capital
requirements by removing and transferring risk from the balance sheet to other parties.
Over the years, however, the technique has spread to many other industries (also outside
the U.S.) and the goal shifted from reducing capital requirements to funding and hedging.
Today, virtually any form of debt obligations and receivables has been securitized, with
companies showing a seemingly infinite creativity in allocating the revenues from the pool
to the noteholders (respecting their seniority). This results in an approximately $2.5 trillion
ABS market in the U.S. alone, which is rapidly spreading to Europe, Latin-America and
Southeast Asia.

Unlike the nowadays very popular Credit Default Swap, ABS contracts are not yet stan-
dardized. This lack of uniformity implies that each deal requires a new model. However,
there are certain features that emerge in virtually any ABS deal, the most important ones
of which are default risk, amortization of principal value (and thus prepayment risk) and
Loss-Given-Default (LGD). Since defaults, losses and accelerated principal repayments can
substantially alter the projected cashflows and therefore the planned investment horizon,
it is of key importance to adequately describe and model these phenomena when pricing
securitization deals.

In the current ABS practice, the probability of default is generally modeled by means of
a sigmoid function, such as the Logistic function, or by Vasicek’s one-factor model, whereas
the prepayment rate and the LGD rate are assumed to be constant (or at least deterministic)
over time and independent of default. However, it is intuitively clear that each of these events
is coming unexpectedly and is generally driven by the overall economy, hence infecting many
borrowers at the same time, causing jumps in the default and prepayment term structures.
Therefore it is essential to model the latter by stochastic processes that include jumps.
Furthermore, it is unrealistic to assume that prepayment rates and loss rates are time-
independent and uncorrelated, neither with each other, nor with default rates. For instance, a
huge economic downturn will most likely result in a large number of defaults and a significant
increase of the interest rates, causing huge losses and a decrease in prepayments. Reality
indeed shows a negative correlation between default and prepayment.

In this paper, we propose a number of alternative techniques that can be applied to
stochastically model default, prepayment and Loss-Given-Default, introducing dependence
between the latter as well. The models we propose are based on Lévy processes, a well know
family of jump-diffusion processes that have already proven their modeling abilities in other
settings like equity and fixed income (cf. Schoutens (2003)). The text is organized as follows.
In the following section we present four models for the default term structure. In Section 3
we discuss three models for the prepayment term structure. Numerical results are presented
in Section 4, where the default and prepayment models are built into a cashflow model in
order to determine the cumulative expected loss rate, the Weighted Average Life (WAL)
and the corresponding rating of two subordinated notes of a simple ABS deal. Section 5
concludes the paper.
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2 Default models

In this section we will briefly discuss four models for the default term structure, respectively
based on

1. the generalized Logistic function;

2. a strictly increasing Lévy process;

3. Vasicek’s Normal one-factor model;

4. the generic one-factor Lévy model Albrecher et al (2006), with an underlying shifted
Gamma process.

We will focus on the time interval between the issue (t = 0) of the ABS notes and the
weighted average time to maturity (t = T ) of the underlying assets. In the sequel we will
use the term default curve to refer to the default term structure. By default distribution, we
mean the distribution of the cumulative default rate at time T . Hence, the endpoint of the
default curve is a random draw from the default distribution.

2.1 Generalized Logistic default model

Traditional methods typically use a sigmoid (S-shaped) function to model the term structure
of defaults. One famous example of such sigmoid functions is the (generalized) Logistic
function (Richards (1959)), defined as

F (t) =
a

1 + be−c(t−t0)
, (1)

where F (t) satisfies the following ODE

dF (t)

dt
= c

(
1 − F (t)

a

)
F (t), (2)

with a, b, c, t0 > 0 being constants and t ∈ [0, T ].
In the context of default curve modeling, Pd(t) := F (t) is the cumulative default rate

at time t. Note that when b = 1, t0 corresponds to the inflection point in the loss buildup,
i.e. Pd grows at an increasing rate before time t0 and at a decreasing rate afterwards.
Furthermore, limt→+∞ F (t) = a, thus a controls the right endpoint of the default curve. For
sufficiently large T we can therefore approximate the cumulative default rate at maturity by
a, i.e. Pd(T ) ≈ a. Hence, a is a random draw from a predetermined default distribution (e.g.
the Log-Normal distribution) and each different value for a will give rise to a new default
curve. This makes the Logistic function suitable for scenario analysis. Finally, the parameter
c controls the spread of the Logistic curve around t0. In fact, c determines the growth rate
of the Logistic curve, i.e. the proportional increase in one unit of time, as can be seen from
equation (2). Values of c between 0.10 and 0.20 produce realistic default curves.

The left panel of Figure 1 shows five default curves, generated by the Logistic function
with parameters b = 1, c = 0.1, t0 = 55, T = 120 and decreasing values of a, drawn from a
Log-Normal distribution with mean 0.20 and standard deviation 0.10. Notice the apparent
inflection in the default curve at t = 55. The probability density function (p.d.f.) of the
cumulative default rate at time T is shown on the right.

It has to be mentioned that the Logistic function (1) has several drawbacks when it
comes to modeling a default curve. First of all, assuming real values for the parameters, the
Logistic function does not start at 0, i.e. Pd(0) > 0. Moreover, a is only an approximation
of the cumulative default rate at maturity, but in general we have that Pd(T ) < a. Hence
Pd has to be rescaled, in order to guarantee that a is indeed the cumulative default rate in
the interval [0, T ]. Secondly, the Logistic function is a deterministic function of time (the
only source of randomness is in the choice of the endpoint), whereas defaults generally come
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Figure 1: Logistic default curve (left) and Lognormal default distribution (right).

as a surprise. And finally, the Logistic function is continuous and hence unable to deal with
the shock-driven behavior of defaults.

In the next sections we will describe three default models that (partly) solve the above
mentioned problems. The first two problems will be solved by using a stochastic (instead of
deterministic) process that starts at 0, whereas the shocks will be captured by introducing
jumps in the model.

2.2 Lévy portfolio default model

In order to tackle the shortcomings of the Logistic model, we propose to model the default
term structure by the process2

Pd =
{
Pd(t) = 1 − e−λd

t , t ≥ 0
}

, (3)

with λd =
{
λd

t : t ≥ 0
}

a strictly increasing Lévy process. The latter introduces both jump
dynamics and stochasticity, i.e. Pd(t) is a random variable, for all t > 0. Therefore, in order
to simulate a default curve, we must first draw a realization of the process λd. Moreover,
Pd(0) = 0, since by the properties of a Lévy process λd

0 = 0.
In this paper we assume that λd is a Gamma process G = {Gt : t ≥ 0} with shape

parameter a and scale parameter b, hence λd
t ∼ Gamma (at, b), for t > 0. Hence, the

cumulative default rate at maturity follows the law 1 − e−λd

T , where λd
T ∼ Gamma (aT, b).

Using this result, the parameters a and b can be found as the solution to the following system
of equations 




E
[
1 − e−λd

T

]
= µd;

Var
[
1 − e−λd

T

]
= σ2

d,
(4)

for predetermined values of the mean µd and standard deviation σd of the default distribution.
Explicit expressions for the left hand sides of (4) can be found, by noting that the expected
value and the variance can be written in terms of the characteristic function of the Gamma
distribution.

2This can be linked to the world of intensity-based default modeling. See Lando (1994) and Schönbucher
(2003) for a more detailed exposition. Cariboni and Schoutens (2008) incorporate jump dynamics into intensity
models.
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The left panel of Figure 2 shows five default curves, generated by the process (3) with
parameters a ≈ 0.024914, b ≈ 12.904475 and T = 120, such that the mean and standard
deviation of the default distribution are 0.20 and 0.10. Note that all curves start at zero,
include jumps and are fully stochastic functions of time, in the sense that in order to construct
a new default curve, one has to rebuild the whole intensity process over [0, T ], instead of just
changing its endpoint. The corresponding default p.d.f. is again shown on the right. Recall,

in this case, that Pd(T ) follows the law 1 − e−λd

T , with λd
T ∼ Gamma (aT, b).
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Figure 2: Lévy portfolio default curves (left) and corresponding default distribution (right).

2.3 Normal one-factor default model

The Normal one-factor (structural) model (Vasicek Vasicek (1987), Li Li (1995)) models the
cash position V (i) of a borrower, where V (i) is described by a geometric Brownian motion,

V
(i)
T = V

(i)
0 exp

[
a
(
µ

(i)
T , σ

(i)
T

)
+ b

(
µ

(i)
T , σ

(i)
T

)
W

(i)
T

]

d
= V

(i)
0 exp

[
a
(
µ

(i)
T , σ

(i)
T

)
+ b

(
µ

(i)
T , σ

(i)
T

)
Zi

]
, (5)

for i = 1, 2, ..., N , with N the number of loans in the asset pool. Here
d
= denotes equality in

distribution and Zi ∼ N(0, 1). Furthermore, Zi satisfies

Zi =
√

ρX +
√

1 − ρXi, (6)

with X, X1, X2, ..., XN
i.i.d.∼ N(0, 1). It is easy to verify that ρ = Corr (Zi, Zj), for all i 6= j.

The latter parameter is calibrated to match a predetermined value for the standard deviation
σ of the default distribution.

A borrower is said to default at time t, if his financial situation has deteriorated so

dramatically that V
(i)
T hits a predetermined lower bound Bd

t , which (as can be seen from
(5)) is equivalent to saying that Zi hits some barrier Hd

t . The latter barrier is chosen such that
the expected probability of default before time t matches the default probabilities observed
in the market, where it is assumed that the latter follow a homogeneous Poisson process with
intensity λ, i.e. Hd

t satisfies

Pr
[
Zi ≤ Hd

t

]
= Φ

[
Hd

t

]
= Pr [Nt > 0] = 1 − e−λt, (7)

where λ is set such that Pr
[
Zi ≤ Hd

T

]
= µd, with µd the predetermined value for the mean

of the default distribution. From (7) it then follows that

λ = − log
(
[1 − µd]

1

T

)
(8)
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and hence
Hd

t = Φ−1
[
1 − (1 − µd)

t

T

]
, (9)

with Φ the standard Normal cumulative distribution function.
Given a sample of (correlated) standard Normal random variables Z = (Z1, Z2, ..., ZN ),

the default curve is then given by

Pd(t;Z) =
♯
{
Zi ≤ Hd

t ; i = 1, 2, ..., N
}

N
, t ≥ 0. (10)

In order to simulate default curves, one must thus first generate a sample of standard Normal
random variables Zi satisfying (6), and then, at each (discrete) time t, count the number of
Zi’s that are less than or equal to the value of the default barrier Hd

t at that time.
The left panel of Figure 3 shows five default curves, generated by the Normal one-factor

model (6) with ρ ≈ 0.121353, such that the mean and standard deviation of the default
distribution are 0.20 and 0.10. All curves start at zero and are fully stochastic, but unlike
the Lévy portfolio model the Normal one-factor default model does not include any jump
dynamics. Therefore, as will be seen later, this model is unable to deal with the shock-
driven nature of defaults and as such generates ratings that are too optimistic (high). The
corresponding default p.d.f. is again shown in the right panel.
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Figure 3: Normal one-factor default curves (left) and corresponding default distribution (right).

2.4 Generic one-factor Lévy default model

The generic one-factor Lévy model Albrecher et al (2006) is comparable to and in fact
is a generalization of the Normal one-factor model. Instead of describing a borrower’s cash
position by a geometric Brownian motion, V (i) is now modeled with a geometric Lévy model,
i.e.

V
(i)
T = V

(i)
0 exp

[
A

(i)
T

]
, (11)

for i = 1, 2, ..., N . The process A(i) =
{
A

(i)
t : t ≥ 0

}
is a Lévy process and satisfies

A
(i)
T = Yρ + Y

(i)
1−ρ, (12)

with Y, Y (1), Y (2), ..., Y (N) i.i.d. Lévy processes, based on the same mother infinitely divisible
distribution L, such that E [Y1] = 0 and Var [Y1] = 1, which implies that Var [Yt] = t. From

this it is clear that E
[
A

(i)
T

]
= 0 and Var

[
A

(i)
T

]
= 1, such that Corr

(
A

(i)
T , A

(j)
T

)
= ρ, for all

7



New Models for Rating ABS

i 6= j. As with the Normal one-factor model, the cross-correlation ρ will be calibrated to
match a predetermined standard deviation for the default distribution.

As for the Normal one-factor model, we again say that a borrower defaults at time t, if

A
(i)
T hits a predetermined barrier Hd

t at that time, where Hd
t satisfies

Pr
[
A

(i)
T ≤ Hd

t

]
= 1 − e−λt, (13)

with λ given by (8).
In this paper we assume that Y, Y (1), Y (2), ..., Y (N) are i.i.d. shifted Gamma processes,

i.e. Y = {Yt = tµ̃ − Gt : t ≥ 0}, where G is a Gamma process, with shape parameter a and
scale parameter b. From (12) and the fact that a Gamma distribution is infinitely divisible
it then follows that

A
(i)
T

d
= µ̃ − X̃

d
= µ̃ − [X + Xi] , (14)

with X ∼ Gamma(aρ, b) and Xi ∼ Gamma(a(1 − ρ), b) mutually independent and Xi ∼
Gamma(a, b). If we take µ̃ = a

b
and b =

√
a, we ensure that E

[
A

(i)
T

]
= 0, Var

[
A

(i)
T

]
= 1 and

Corr
(
A

(i)
T , A

(j)
T

)
= ρ, for all i 6= j.

Furthermore, from (13), (14) and the expression for λ it follows that

Hd
t = µ̃ − Γ−1

a,b

[
(1 − µd)

t

T

]
, (15)

where Γa,b denotes the cumulative distribution function of a Gamma(a, b) distribution.
In order to simulate default curves, we first have to generate a sample of random variables

AT =
(
A

(1)
T , A

(2)
T , ..., A

(N)
T

)
satisfying (12), with Y, Y (1), Y (2), ..., Y (N) i.i.d. Shifted-Gamma

processes and then, at each (discrete) time t, count the number of A
(i)
T ’s that are less than or

equal to the value of the default barrier Hd
t at that time. Hence, the default curve is given

by

Pd(t;AT ) =
♯
{
A

(i)
T ≤ Hd

t ; i = 1, 2, ..., N
}

N
, t ≥ 0. (16)

The left panel of Figure 4 shows five default curves, generated by the Gamma one-
factor model (12) with (µ̃, a, b) = (1, 1, 1), and ρ ≈ 0.095408, such that the mean and
standard deviation of the default distribution are 0.20 and 0.10. Again, all curves start at
zero and are fully stochastic. Furthermore, when comparing the curves of the one-factor
shifted Gamma-Lévy model (hereafter termed the shifted Gamma-Lévy model or Gamma
one-factor model) to the ones generated by the Lévy portfolio default model, one might be
tempted to conclude that the former model does not include jumps. However, it does, but the
jumps are embedded in the underlying dynamics of the asset return AT . The corresponding
default p.d.f. is shown in the right panel. Compared to the previous three default models,
the default p.d.f. generated by the shifted Gamma-Lévy model seems to be squeezed around
µd and has a significantly larger kurtosis.

It should also be mentioned that the latter default distribution has a rather heavy right
tail, with a substantial probability mass at the 100 % default rate. This can be explained
by looking at the right-hand side of equation (14). Since both terms between brackets are
strictly positive and hence cannot compensate each other (unlike the Normal one-factor

model), A
(i)
T is bounded from above by µ̃. Hence, starting with a large systematic risk factor

X , things can only get worse, i.e. the term between brackets can only increase and therefore
Ai,T can only decrease, when adding the idiosyncratic risk factor Xi. This implies that when
we have a substantially large common factor (close to Γ−1

a,b [1 − µd], cf. (15)), it is very likely

that all borrowers will default, i.e. that A
(i)
T ≤ Hd

T for all i = 1, 2, ..., N .
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Figure 4: Gamma 1-factor default curves (left) and corresponding default distribution (right).

3 Prepayment models

In this section we will briefly discuss three models for the prepayment term structure, re-
spectively based on

1. constant prepayment;

2. a strictly increasing Lévy process;

3. Vasicek’s Normal one-factor model.

As before, we will use the terms prepayment curve and prepayment distribution to refer to
the prepayment term structure and the distribution of the cumulative prepayment rate at
maturity T .

3.1 Constant prepayment model

The idea of constant prepayment stems from the former Public Securities Association3 (PSA).
The basic assumption is that the (monthly) amount of prepayment begins at 0 and rises at a
constant rate of increase α until reaching its characteristic steady state rate at time t00, after
which the prepayment rate remains constant until maturity T . Note that t00 is generally not
the same as the inflection point t0 of the default curve.

The corresponding marginal (e.g. monthly) and cumulative prepayment curves are given
by

cpr(t) =

{
αt ; 0 ≤ t ≤ t00
αt00 ; t00 ≤ t ≤ T

(17)

and

CPR(t) =

{
αt2

2 ; 0 ≤ t ≤ t00

−αt2
00

2 + αt00t ; t00 ≤ t ≤ T
. (18)

From (17) it is obvious that the marginal prepayment rate increases at a speed of α per period
before time t00 and remains constant afterwards. Consequently, the cumulative prepayment
curve (18) increases quadratically on the interval [0, t00] and linearly on [t00, T ]. Given t00

3In 1997 the PSA changed its name to The Bond Market Association (TBMA), which merged with the
Securities Industry Association on November 1, 2006, to form the Securities Industry and Financial Markets
Association (SIFMA).
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and CPR(T ), i.e. the cumulative prepayment rate at maturity, the constant rate of increase
α equals

α =
CPR(T )

T t00 − t2
00

2

. (19)

Hence, once t00 and CPR(T ) are fixed, the marginal and cumulative prepayment curves are
completely deterministic. Moreover, the CPR model does not include jumps. Due to these
features, the CPR model is an unrealistic representation of real-life prepayments, which are
shock-driven and typically show some random effects. In the next sections we will describe
two models that (partially) solve these problems.

Figure 5 shows the marginal and cumulative prepayment curve, in case the steady state t00
is reached after 48 months and the cumulative prepayment rate at maturity equals CPR(T ) =
0.20. The corresponding constant rate of increase is α = 0.434bps.
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Figure 5: Marginal (left) and cumulative (right) constant prepayment curve.

3.2 Lévy portfolio prepayment model

The Lévy portfolio prepayment model is completely analogous to the Lévy portfolio default
model described in Section 2.2, with λd

t replaced λ
p
t . Although there is empirical evidence

that defaults and prepayments are negatively correlated, in the simulation study in Section
4 we assumed the above mentioned processes to be mutually independent.

Evidently, also the Lévy portfolio prepayment curves start at zero, are fully stochastic
and include jumps, solving the above mentioned problems of the CPR model.

3.3 Normal one-factor prepayment model

The Normal one-factor prepayment model starts from the same underlying philosophy as its
default equivalent of Section 2.3. We again model the cash position V (i) of a borrower. Just
as a borrower is said to default if his financial situation has deteriorated so dramatically
that V (i) hits some predetermined lower bound Bd

t , we state that a borrower will decide to
prepay if his financial health has improved sufficiently, so that V (i) (or equivalently Zi) hits
a prespecified upper bound B

p
t (Hp

t ).
The barrier H

p
t is chosen such that the expected probability of prepayment before time

t equals the (observed) cumulative prepayment rate CPR(t), given by (18), i.e.

Pr [Zi ≥ H
p
t ] = 1 − Φ [Hp

t ] = CPR(t), (20)
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which implies,
H

p
t = Φ−1 [1 − CPR(t)] , (21)

with Φ the standard Normal cumulative distribution function.
In order to simulate prepayment curves, we must thus draw a sample of standard Normal

random variables Z = (Z1, Z2, ..., ZN ) satisfying (6), and then, at each (discrete) time t,
count the number of Zi’s that are greater than or equal to the value of the prepayment
barrier H

p
t at that time. The prepayment curve is then given by

Pp(t;Z) =
♯{Zi ≥ H

p
t : i = 1, 2, ..., N}

N
, t ≥ 0. (22)

The left panel of Figure 6 shows five prepayment curves, generated by the Normal one-
factor model (6) with ρ ≈ 0.121353, such that the mean and standard deviation of the
prepayment distribution are 0.20 and 0.10 (as for the default model). The fact that the cross-
correlation coefficient ρ is the same as the one of the default model is a direct consequence of
the symmetry of the Normal distribution. The curves start at zero and are fully stochastic,
but the model lacks jump dynamics. As will be seen later on, ignoring prepayment shocks
results in an overestimation of the weighted average life of an ABS, which in turn produces
higher (unsafe) ratings. The corresponding prepayment p.d.f. is shown in the right panel.
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Figure 6: Normal one-factor prepayment curves (left) and corresponding prepayment distribu-
tion (right).

4 Numerical results

4.1 Introduction

One can now build these default and prepayment models into any scenario generator for rat-
ing and analyzing asset-backed securities. Any combination of the above described default
and prepayment models is meaningful, except for the combination of the shifted Gamma(-
Lévy) default model with the Normal one-factor prepayment model. In that case the bor-
rower’s cash position would be modeled by two different processes: one to obtain his default
probability and another one for his prepayment probability, which is neither consistent nor
realistic.

Hence, all together we can construct 11 different scenario generators. Table 1 summarizes
the possible combinations of default and prepayment models.
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Prepayment models
CPR Lévy portfolio Normal one-factor

Default models

Logistic ok ok ok
Lévy portfolio ok ok ok
Normal one-factor ok ok ok
Gamma one-factor ok ok nok

Table 1: Possible combinations of default and prepayment models.

We will now apply each of the above mentioned 11 default-prepayment combinations to
derive the expected loss, the WAL and the corresponding rating of two (subordinated) notes
backed by a homogeneous pool of commercial loans. Table 2 lists the specifications of the
ABS deal under consideration (cf. Raynes and Rutledge (2003)).

ASSETS

Initial balance of the asset pool V0 $30,000,000
Number of loans in the asset pool N0 2,000
Weighted Average Maturity of the assets WAM 10 years
Weighted Average Coupon of the assets WAC 12% p.a.
Payment frequency monthly
Reserve target 5%
Eligible reinvestment rate 3.92% p.a.
Loss-Given-Default LGD 50%
Lag 5 months

LIABILITIES

Initial balance of the senior note A0 $24,000,000
Premium of the senior note rA 7% p.a.
Initial balance of the subordinated note B0 $6,000,000
Premium of the subordinated note rB 9% p.a.
Servicing fee rsf 1% p.a.
Servicing fee shortfall rate rsf−sh 20% p.a.
Payment method Pro-rata

Sequential

Table 2: Specifications of the ABS deal.

Note that the cash collected (from the pool) and distributed (to the note holders) by
the SPV, in a particular period, contains both principal and interest. Each period, principal
(scheduled, prepaid and recoveries from default) and interest collections are combined into a
pool, which is then used to pay the interest and principal (in this order) due to the investors.
Whatever cash is left after fulfilling the interest obligations is used to pay the principal due
(scheduled principal + prepaid principal + defaulted face value) on the notes, according to
the priority rules. From this it is evident that default and prepayment will have a significant
effect on the amortization of the notes and (consequently) on the interest received by the
note holders.

Furthermore, as can be seen from Table 2, the ABS deal under consideration benefits
from credit enhancement under the form of a reserve account, required to be equal to 5% of
the balance of the asset pool at the end of each payment period. The funds available in this
account are reinvested at the 10-year US Treasury rate (of May 22, 2008) and will be used to

12
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fulfill the payment obligations, in case the collections in a specific period are insufficient to
cover the expenses. In order to achieve the targeted reserve amount of 5% of the asset pool’s
balance at the end of each payment period, before being transferred to the owners of the
SPV, any excess cash is first used to replenish the reserve account. Hence it is possible that
the owners of the SPV are not compensated in certain periods, or in the worst case not at all.
On the other hand, there may also be periods in which the SPV owners receive a substantial
amount of cash. This especially happens in periods with a high number of defaults and/or
prepayments, where the outstanding balance of the asset pool suddenly decreases very fast,
requiring the reserve account to be reduced in order to match the targeted 5% of the asset
pool at the end of the payment period.

Furthermore, unless explicitly stated otherwise, the parameter values mentioned in Table
3 will be used.

Mean of the default distribution µd 20%
Standard deviation of the default distribution σd 10%
Mean of the prepayment distribution µp 20%
Standard deviation of the prepayment distribution σp 10%
Parameters of the Logistic curve b 1

c 0.1
t0 55 months

Steady state of the prepayment curve t00 45 months

Table 3: Default parameter values for the default and prepayment models.

Finally, before moving on to the actual sensitivity analysis, we introduce two important
concepts, i.e. the DIRR and the WAL of an ABS. By DIRR we mean the difference between
the promised and the realized internal rate of return. The WAL is defined as

WAL =
1

P

(
T∑

t=1

t · Pt + T

[
P −

T∑

t=1

Pt

])
, (23)

where Pt is the total principal paid at time t and P is the initial balance of the note. The
term between the square brackets accounts for principal shortfall, in the sense that if the note
is not fully amortized after its legal maturity, we assume that the non-amortized amount is
redeemed at the legal maturity date4. Clearly, both the DIRR and the WAL are non-negative.
Furthermore, by inspecting the rating table mentioned Cifuentes and O’Connor (1996) and
Cifuentes and Wilcox (1998), it is obvious that there is some interplay between the DIRR
and the WAL: of two notes with the same DIRR, the one with the highest WAL will have
the highest rating. For instance, consider two notes A1 and A2 with a DIRR of 0.03%, but
with respective WALs of 4 and 5 years. Then note A1 will get a Aa3 rating, whereas the
A2 note gets a Aa2 rating. Obviously, of two notes with the same WAL, the one with the
highest DIRR will get the lowest rating.

4.2 Sensitivity analysis

Tables 4-6 contain ratings – based on the Moody’s Idealized Cumulative Expected Loss
Rates5– and DIRRs and WALs of the two ABS notes, obtained with each of the 11 default-
prepayment combinations, for several choices of µd and µp. The figures mentioned in these
tables are averages based on a Monte Carlo simulation with 1,000,000 scenarios.

4This method is proposed in Mazataud and Yomtov (2000). Moreover, in Moody’s ABSROMTM application

(v 1.0) the WAL of a note is calculated as
∑T−1

t=0
Ft

F0

, with Ft the note’s outstanding balance at time t. Hence
F0 = P . It is left as an exercise to the reader to verify that this formula is equivalent to formula (23).

5See Cifuentes and O’Connor (1996) and Cifuentes and Wilcox (1998) for further details.
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More specifically, in Table 4 we investigate what happens to the ratings if µd is changed,
while holding µp and σp constant6, whereas Table 4 provides insight in the impact of a
change in µp, while keeping µd and σd fixed.

Unless stated otherwise, the (principal) collections from the asset pool are distributed
across the note holders according to a pro-rata payment method, i.e. proportionally with
the note’s outstanding balances. However, Table 6 presents the ratings using both pro rata
and sequential payment method, where the subordinated B note starts amortizing only after
the outstanding balance of the senior A Note is fully redeemed, in both cases assuming that
there exists a reserve account. The effect of having no reserve account in the pro rata case
is also shown in Table 6.

4.2.1 Influence of µd

From Table 4 we may conclude that when increasing the average cumulative default rate the
credit rating of the notes stays the same or is lowered for all combinations of default and
prepayment models.

For the model dependence we first analyse the rating columns for the A note. For
µd = 10% we can see that all but the two pairs with the Gamma one-factor default model
give Aaa ratings, indicating that the rating is not so model-dependent for a relatively low
cumulative default rate.

Increasing µd to 20%, the rating using the Normal one-factor default model stays at Aaa
regardless of prepayment models. For the Logistic default model the rating is changed to Aa1
for all combination of prepayment models and for the Gamma one-factor model the rating
is Aa3. It is only for the Lévy portfolio default model that we can see a small difference
between the CPR model and the two other prepayment models.

Finally, assuming that µd = 40%, the Lévy portfolio prepayment model in combination
with either the Logistic or the Normal one-factor default model gives lower ratings than
the other two prepayment models. For the other default models no dependence on the
prepayment model can be traced.

Analyzing the influence of the prepayment model, it is worth noticing that the Lévy
portfolio model always gives the lowest WAL and the highest DIRR for any default model,
compared to the other two prepayment models. This can be explained by looking at the
typical path of a Lévy portfolio process (cf. Figure 2). Note that such a path does not
increase continuously, but moves up with jumps, between which the curve remains rather
flat. Translated to the prepayment phenomena, this means that there will be times when a
large number of borrowers decide to prepay, followed by a period where there are virtually
no prepayments, until the next time where a substantial amount of the remaining debtors
prepays. Obviously, this results in a very irregular cash inflow, which will cause difficulties
when trying to honour the payment obligations. Indeed, as previously explained, in payment
periods with a jump in the prepayment rate, the outstanding balance of the asset pool and
consequently the reserve account will be significantly decreased, which in turn increases the
probability of future interest and principal shortfalls, leading to higher DIRRs. Moreover,
since a shock-driven prepayment model increases the probability that a substantial number
of borrowers will choose to prepay very early in the life of the loan, it is not surprising
that the Lévy portfolio prepayment model produces lower WALs than the other two models.
Finally, as explained before, higher DIRRs and lower WALs lead to lower ratings.

The Gamma one-factor model always gives the lowest rating, and a look at the DIRR and
WAL columns gives the explanation for this, namely, the DIRRs for the Gamma one-factor
model is always much higher than for any of the other default models but the WALs is almost
the same leading to a lower rating. The Normal one-factor default model gives in general
the highest rating, which can be explained by the fact that it produces the lowest DIRRs.

6In order to keep µp and σp fixed, also the cross-correlation ρ must remain fixed, since there is a unique
parameter ρ for each pair (µp, σp) (or equivalently (µd, σd)). This explains why also σd changes if µd changes.
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For the B note the general tendency is that the rating is lowered when the mean cumula-
tive default rate is increased. It is worth mentioning that the Normal one-factor model gives
the highest rating among the default models and that the Gamma one-factor model gives
the lowest rating for µd = 10% and the Lévy portfolio model gives the lowest for µd = 40%.
Thus, the jump-driven default models produce the lowest ratings. The Lévy portfolio pre-
payment model combined with the Lévy portfolio, Normal one-factor or Gamma one-factor
default model gives generally the lowest rating compared to the other prepayment models,
for reasons explained in the previous paragraph.

4.2.2 Influence of µp

The influence of changing the mean cumulative prepayment rate is given in Table 5. A
comparison to Table 4 learns that the ratings are less sensitive to changes in the mean pre-
payment rate than they are to changes in the expected default rate, as the rating transitions
caused by the former are significantly smaller.

Furthermore, any of the above made observations concerning specific prepayment or
default models remains valid also here. Especially it still holds that the Normal one-factor
default model gives the same or higher rating of both notes than the other default models
and that the jump-driven models give the lowest ratings, for each of the prepayment models.

4.2.3 Influence of the reserve account

Table 6 provides insight into the effect of incorporating a reserve account (credit enhance-
ment) into the cash flow waterfall of an ABS deal. The results in this table show no surprises:
since assuming there is no reserve account implies that there are less funds available for re-
imbursing the note investors (on the contrary, any excess cash is fully transferred to the
SPV owners) it is evident that removing the reserve account will lead to higher DIRRs and
WALs and lower ratings. This is indeed what we see, when comparing the above mentioned
two tables. Notice that the effect is greater for the B note. This is of course due to its
subordinated status.

4.2.4 Influence of the payment method

Table 6 shows the impact of choosing either the pro-rata or the sequential payment method,
for allocating the (principal) collections to the different notes. What is clear from the def-
inition of the two payment methods is that sequential payment will shorten the WAL of
the A note and increase the WAL of the B note. Consulting Moody’s Idealized Cumulative
Expected Loss Rate table one can see that an increase in WAL, keeping the DIRR fixed, will
result in a higher rating. The expected decrease and increase in WAL for the A note and B
note, respectively, are evident. In fact, the WAL increases on average with a factor 1.72 (or
3.8 years) for the B note, going from pro rata to sequential payment. The decrease of the
WAL for the A note is on average with a factor 0.82 (or 0.95 years). Thus the change in WAL
is much more dramatic for the B note than for the A note. So based only on the change of
the WALs, without taking the change in DIRR into account, we can directly assume that the
rating would improve for the B note and for the A note we would expect the rating to stay
the same or be lowered. However, taking the change in DIRR into account, we see that the
the actual rating of both the A note and the B note stays the same or improves going from
pro rata to sequential payment. The improvement of the A note rating is due to the fact
that the DIRR is smaller for the sequential case than for the pro rata case, compensating for
the decrease in WAL. For the B note the changes of the DIRRs are not enough to influence
the rating improvements due to the increases in WALs.
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5 Conclusion

Traditional models for the rating and the analysis of ABSs are typically based on Normal
distribution assumptions and Brownian motion driven dynamics. The Normal distribution
belongs to the class of the so-called light tailed distributions. This means that extreme events,
shock, jumps, crashes, etc. are not incorporated in the Normal distribution based models.
However looking at empirical data and certainly in the light of the current financial crisis,
it are these extreme events that can have a dramatical impact on the product. In order to
do a better assessment, new models incorporating these features are needed. This paper has
introduced a whole battery of new models based on more flexible distributions incorporating
extreme events and jumps in the sample paths. We observe that the jump-driven models in
general produce lower ratings than the traditional models.
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Note A
Rating DIRR (bp) WAL (year)

Model pair µd = 10% µd = 20% µd = 40% µd = 10% µd = 20% µd = 40% µd = 10% µd = 20% µd = 40%

Logistic – CPR Aaa Aa1 Aa3 0.026746 0.3466 5.3712 5.4867 5.2742 4.8642

Logistic – Lévy portfolio Aaa Aa1 A1 0.039664 0.48683 7.4258 5.343 5.1311 4.729

Logistic – Normal one-factor Aaa Aa1 Aa3 0.027104 0.3278 5.1148 5.4869 5.2745 4.8656

Lévy portfolio – CPR Aaa Aaa A1 0.0017992 0.16105 9.0857 5.4799 5.2529 4.7895

Lévy portfolio – Lévy portfolio Aaa Aa1 A1 0.0067859 0.34616 12.044 5.3355 5.1101 4.6543

Lévy portfolio – Normal one-factor Aaa Aa1 A1 0.0032759 0.20977 9.0265 5.4795 5.2532 4.7912

Normal one-factor – CPR Aaa Aaa Aa2 0.00036114 0.034631 2.9626 5.4775 5.2427 4.7309

Normal one-factor – Lévy portfolio Aaa Aaa Aa3 0.00060627 0.055516 3.6883 5.3335 5.0986 4.5895

Normal one-factor – Normal one-factor Aaa Aaa Aa2 0.00014211 0.017135 2.0175 5.4774 5.2427 4.7303

Gamma one-factor – CPR Aa1 Aa3 A2 1.4443 4.6682 18.431 5.4828 5.2599 4.7939

Gamma one-factor – Lévy portfolio Aa2 Aa3 A2 2.5931 4.9614 20.385 5.3427 5.1167 4.6503

Note B
Rating DIRR (bp) WAL (year)

Model pair µd = 10% µd = 20% µd = 40% µd = 10% µd = 20% µd = 40% µd = 10% µd = 20% µd = 40%

Logistic – CPR Aa1 A1 Baa3 0.93026 10.581 139.46 5.4901 5.3124 5.3358

Logistic – Lévy portfolio Aa1 A1 Baa3 1.1996 13.624 164.07 5.3471 5.1771 5.2456

Logistic – Normal one-factor Aa1 A1 Baa3 0.93764 10.906 140.55 5.4903 5.3135 5.3391

Lévy portfolio – CPR Aa1 A2 Baa3 1.4051 17.801 175.75 5.4949 5.3525 5.4753

Lévy portfolio – Lévy portfolio Aa2 A2 Ba1 1.9445 21.891 195.61 5.3526 5.2204 5.373

Lévy portfolio – Normal one-factor Aa1 A2 Baa3 1.6019 18.35 175.49 5.4951 5.353 5.4738

Normal one-factor – CPR Aaa Aa1 Baa1 0.033692 1.5642 57.936 5.4777 5.2502 4.9709

Normal one-factor – Lévy portfolio Aaa Aa2 Baa2 0.041807 1.9829 65.669 5.3337 5.1071 4.8421

Normal one-factor – Normal one-factor Aaa Aa1 Baa1 0.023184 1.156 48.936 5.4776 5.2491 4.9498

Gamma one-factor – CPR Aa3 A2 Baa2 6.288 20.736 85.662 5.4955 5.3022 4.9739

Gamma one-factor – Lévy portfolio A1 A3 Baa3 15.293 28.406 120.76 5.3631 5.1588 4.8351

Table 4: Ratings, DIRR and WAL of the ABS notes, for different combinations of default and prepayment models and mean cumulative
default rate µd = 0.10, 0.20, 0.40 and mean cumulative prepayment rate µp = 0.20.
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Note A
Rating DIRR (bp) WAL (year)

Model pair µp = 10% µp = 20% µp = 40% µp = 10% µp = 20% µp = 40% µp = 10% µp = 20% µp = 40%

Logistic – CPR Aa1 Aa1 Aa1 0.31365 0.3466 0.27714 5.4309 5.2742 4.9611

Logistic – Lévy portfolio Aa1 Aa1 Aa1 0.34552 0.48683 0.90665 5.365 5.1311 4.618

Logistic – Normal one-factor Aa1 Aa1 Aa1 0.30488 0.3278 0.25706 5.431 5.2745 4.9633

Lévy portfolio – CPR Aaa Aaa Aa1 0.10416 0.16105 0.42327 5.4093 5.2529 4.9404

Lévy portfolio – Lévy portfolio Aaa Aa1 Aa1 0.14828 0.34616 1.4266 5.3439 5.1101 4.5982

Lévy portfolio – Normal one-factor Aaa Aa1 Aa1 0.11976 0.20977 0.51304 5.4096 5.2532 4.9424

Normal one-factor – CPR Aaa Aaa Aaa 0.023787 0.034631 0.046599 5.3995 5.2427 4.9292

Normal one-factor – Lévy portfolio Aaa Aaa Aaa 0.03208 0.055516 0.1094 5.3335 5.0986 4.5842

Normal one-factor – Normal one-factor Aaa Aaa Aaa 0.016874 0.017135 0.018373 5.3995 5.2427 4.9291

Gamma one-factor – CPR Aa3 Aa3 Aa2 5.811 4.6682 2.8855 5.4149 5.2599 4.9497

Gamma one-factor – Lévy portfolio Aa3 Aa3 Aa2 6.7492 4.9614 3.2188 5.3487 5.1167 4.6043

Note B
Rating DIRR (bp) WAL (year)

Model pair µp = 10% µp = 20% µp = 40% µp = 10% µp = 20% µp = 40% µp = 10% µp = 20% µp = 40%

Logistic – CPR A1 A1 A2 8.9089 10.581 14.756 5.4642 5.3124 5.0111

Logistic – Lévy portfolio A1 A1 A3 9.9097 13.624 26.681 5.4011 5.1771 4.695

Logistic – Normal one-factor A1 A1 A2 9.0211 10.906 14.436 5.4646 5.3135 5.0123

Lévy portfolio – CPR A1 A2 A3 14.216 17.801 27.506 5.4994 5.3525 5.0628

Lévy portfolio – Lévy portfolio A1 A2 Baa1 15.687 21.891 42.04 5.4384 5.2204 4.7511

Lévy portfolio – Normal one-factor A1 A2 A3 14.318 18.35 28.531 5.4992 5.353 5.0644

Normal one-factor – CPR Aa1 Aa1 Aa2 1.3334 1.5642 2.0323 5.4064 5.2502 4.9375

Normal one-factor – Lévy portfolio Aa1 Aa2 Aa3 1.4404 1.9829 3.4481 5.3406 5.1071 4.5943

Normal one-factor – Normal one-factor Aa1 Aa1 Aa1 1.1397 1.156 1.2153 5.4059 5.2491 4.9356

Gamma one-factor – CPR Baa1 A2 A1 54.297 20.736 11.785 5.4614 5.3022 4.9848

Gamma one-factor – Lévy portfolio A3 A3 A2 42.16 28.406 17.871 5.3945 5.1588 4.6418

Table 5: Ratings, DIRR and WAL of the ABS notes, for different combinations of default and prepayment models and mean cumulative
default rate µd = 0.20 and mean cumulative prepayment rate µp = 0.10, 0.20, 0.40.
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Note A
Rating DIRR (bp) WAL (year)

Model pair Reserve (Sq) Reserve (PR) No Reserve (PR) Reserve (Sq) Reserve (PR) No Reserve (PR) Reserve (Sq) Reserve (PR) No Reserve (PR)

Logistic – CPR Aaa Aa1 Aa1 0.02813 0.3466 0.71815 4.3424 5.2742 5.2752

Logistic – Lévy portfolio Aaa Aa1 Aa1 0.036137 0.48683 1.0068 4.1747 5.1311 5.1327

Logistic – Normal one-factor Aaa Aa1 Aa1 0.032607 0.327 0.7184 4.3475 5.2745 5.2755

Lévy portfolio – CPR Aaa Aaa Aa1 0.064217 0.16105 0.71116 4.3189 5.2529 5.28

Lévy portfolio – Lévy portfolio Aaa Aa1 Aa1 0.094711 0.34616 1.1772 4.1503 5.1101 5.1379

Lévy portfolio – Normal one-factor Aaa Aa1 Aa1 0.056669 0.0977 0.80489 4.323 5.2532 5.2802

Normal one-factor – CPR Aaa Aaa Aaa 0.020445 0.034631 0.16448 4.2894 5.2427 5.2437

Normal one-factor – Lévy portfolio Aaa Aaa Aa1 0.018883 0.055516 0.26287 4.1185 5.0986 5.0997

Normal one-factor – Normal one-factor Aaa Aaa Aaa 0.013992 0.017135 0.051144 4.2858 5.2427 5.2437

Gamma one-factor – CPR Aa3 Aa3 Aa3 4.1521 4.6682 5.9435 4.3125 5.2599 5.264

Gamma one-factor – Lévy portfolio Aa3 Aa3 Aa3 4.2954 4.9614 6.5872 4.1417 5.1167 5.1207

Note B
Rating DIRR (bp) WAL (year)

Model pair Reserve (Sq) Reserve (PR) No Reserve (PR) Reserve (Sq) Reserve (PR) No Reserve (PR) Reserve (Sq) Reserve (PR) No Reserve (PR)

Logistic – CPR Aa3 A1 A3 10.792 10.581 38.957 9.0526 5.3124 5.4739

Logistic – Lévy portfolio Aa3 A1 Baa1 13.567 13.624 46.316 9.0201 5.1771 5.3522

Logistic – Normal one-factor Aa3 A1 A3 10.952 10.906 39.955 9.0348 5.3135 5.4763

Lévy portfolio – CPR Aa3 A2 Baa1 17.089 17.801 67.004 9.1082 5.3525 5.6466

Lévy portfolio – Lévy portfolio A1 A2 Baa2 20.412 21.891 75.017 9.0832 5.2204 5.5242

Lévy portfolio – Normal one-factor Aa3 A2 Baa1 17.566 18.35 67.608 9.0939 5.353 5.6467

Normal one-factor – CPR Aa1 Aa1 A1 1.5244 1.5642 8.5988 9.0657 5.2502 5.3062

Normal one-factor – Lévy portfolio Aa1 Aa2 A1 1.9526 1.9829 10.739 9.0305 5.1071 5.171

Normal one-factor – Normal one-factor Aa1 Aa1 Aa3 1.1428 1.156 5.4548 9.078 5.2491 5.2995

Gamma one-factor – CPR A1 A2 A3 20.322 20.736 30.589 9.0956 5.3022 5.341

Gamma one-factor – Lévy portfolio A1 A3 A3 28.065 28.406 37.646 9.063 5.1588 5.1986

Table 6: Ratings, DIRR and WAL of the ABS notes, for different combinations of default and prepayment models with and without reserve account
for sequential (Sq) and pro rata (PR) payment. Mean cumulative default rate µd = 0.20 and mean cumulative prepayment rate µp = 0.20.
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